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Abstract. An improved Quasi Cyclic Low Density Parity 
Check code (QC-LDPC) is proposed to reduce the com-
plexity of the Low Density Parity Check code (LDPC) 
while obtaining the similar performance. The proposed 
QC-LDPC presents an improved construction at high SNR 
with circulant sub-matrices. The proposed construction 
yields a performance gain of about 1 dB at a 0.0003 bit 
error rate (BER) and it is tested on 4 different decoding 
algorithms. Proposed QC-LDPC is compared with the 
existing QC-LDPC and the simulation results show that the 
proposed approach outperforms the existing one at high 
SNR. Simulations are also performed varying the number 
of horizontal sub matrices and the results show that the 
parity check matrix with smaller horizontal concatenation 
shows better performance.  
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1. Introduction 
Low-Density Parity-Check codes (LDPC) have been 

the subject of intense research lately because of their 
capacity-achieving performance and linear decoding com-
plexity by using an iterative decoding algorithm, the so-
called belief propagation or sum-product algorithm [1]. 
They were originally proposed in 1962 by Robert Gallager. 
In the late 90’s LDPC codes were rediscovered by Mackay 
and Neal [3], [4] and also by Wiberg [5]. Current hardware 
speeds make them a very attractive option for wired and 
wireless systems. Gallager considered only regular LDPC, 
i.e., codes that are represented by a sparse parity-check 
matrix with a constant number of ‘ones’ (weight) in each 
column and in each row. Later it was shown that the per-
formance of LDPC codes can be improved by using ir-
regular LDPC codes, i.e., both non uniform weight per 
column and non uniform weight per row [6], [7]. The 
parity-check matrix of a code can be viewed as defining 

a bipartite graph [8] with "variable" vertices corresponding 
to the columns and "check" vertices corresponding to the 
rows. Each non-zero entry in the matrix corresponds to 
an edge connecting a variable to a check.  

Quasi-Cyclic (QC)-LDPC has been proposed to re-
duce the complexity of the LDPC while obtaining the 
similar performance [9]. Recently, a Construction of 
Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure 
Channels has been proposed by L. Lan [14]. Hardware 
implementations of decoders for Quasi-Cyclic LDPC 
Codes are being analyzed in some current research works 
[15], [16]. Some researchers are working on Quantum 
Quasi-Cyclic LDPC Codes in which, error detection and 
correction can be performed efficiently for quantum mem-
ory [17-19]. Girth of Quasi-Cyclic LDPC codes is an im-
portant issue and several current researches are going on 
this topic [20-23]. It has been shown that increasing the 
girth or average girth of a code increases its decoding per-
formance. The girth also determines the number of itera-
tions before a message propagates back to its original node. 
Performance of structured codes could therefore be 
improved by increasing their girths. 

LDPC codes can be decoded by using different de-
coding algorithms. The same soft decision iterative decod-
ing algorithms can be applied to the QC-LDPC codes. 
Decoding algorithms using Weighted Bit-Flipping decod-
ing is a current research issue [25]. The significant benefit 
of the QC-LDPC lies in the code construction where the 
rows of the generator matrix are just cyclic shifts of the 
first row. These structured QC-LDPC codes having a rela-
tively simple algebraic construction can be implemented 
with an inexpensive shift register generator and they 
greatly simplify the encoder design. The generator matrix 
G or Parity check matrix H of an LDPC has been generated 
randomly, which requires large power and storage space 
because of its larger size. 

In this paper, we have constructed a QC-LDPC code 
which is suitable for small and medium block length appli-
cations. This new QC-LDPC code works better at high 
SNR and smaller horizontal concatenation. We have tested 
this code using bit flipping decoding, weighted bit flipping 
decoding, implementation-efficient reliability ratio based 
weighted bit flipping decoding and sum product (belief 
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propagation) decoding. The proposed code is compared 
with an existing QC-LDPC code and our proposal shows 
better performance at high SNR. 

The remainder of this paper is organized as follows: 
In Section 2, encoding and decoding using QC-LDPC is 
analyzed where different encoding and decoding tech-
niques are shown. In Section 3, the proposed QC-LDPC 
technique is discussed. In Section 4, simulation results 
using BER analysis is shown and compared. Then Section 
5 concludes this paper. 

2. Encoding and Decoding using QC-
LDPC Codes 
In this section the encoding and decoding of QC-

LDPC code will be discussed. 

2.1 QC-LDPC Encoding 

This paper discusses an algebraic construction for the 
regular and irregular QC-LDPC codes [9]. The regular 
LDPC codes have the same number of ones in every row 
and column. The irregular LDPC codes have a different 
number of ones in columns and rows. The QC-LDPC 
codes consist of horizontally concatenated circulant sub-
matrices. Each circulant sub-matrix is a square matrix for 
which every row is the cyclic shift of the previous row, and 
the first row is obtained by the cyclic shift of the last row. 
In this way, every column of each circulant sub-matrix is 
automatically the cyclic shift of the previous column, and 
the first column is obtained by the cyclic shift of the last 
column. The H matrix of dimension (m×Lm) for the QC-
LDPC can be written as 

  LHHHHH 321   (1) 

where Hi is the i-th circulant sub-matrix of dimension 
(m×m), i=1, …, L. For the circulant matrices, the row 
weight and column weight are the same and fixed. Once 
the parity check matrix H is defined, the generator matrix 
is obtained. The matrices are created such that they should 
satisfy the constraint GHT=0. All the bits to be encoded are 
run through the generator matrix, and, therefore, all valid 
code words obey the property CHT=0 where C is the 
codeword. 

The Quasi-Cyclic Generator matrix of rate R=(L-1)/L 
has the following structure: 
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From the above relation, we can get Pi=H1
-1Hi H, 

where i=1, …, L. The inverse of a circulant matrix is 
a circulant, and the product of two circulant matrices is 
also a circulant matrix. 

Therefore, the QC-LDPC of different rates (L-1)/L  
can be produced from the above-defined generator matrix 
G. By using this construction, the quasi-cyclic nature of 
generator matrix is preserved. Since the generator matrix is 
quasi-cyclic, the first row of each circulant sub-matrix is 
stored, and successive rows can be generated by a shift 
register generator. This greatly simplifies the encoder de-
sign. It is crucial that the circulant sub-matrix H1 must be 
a nonsingular matrix. In order to maintain the nonsingular-
ity of the circulant sub matrix H1, polynomial representa-
tion of its first row should not be a factor of xm - 1. This 
point is illustrated with an example given below. 

Let m = 15. So, we have 
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If the weight of the circulant sub-matrix is 3, then the 
polynomial representation of its first row, or any one of the 
remaining cyclic shifts of its first row, should not be 
a factor of x15- 1. For instance, if the first row of H1 is 
[1 0 0 0 0 1 0 0 0 1 0 0 0 0 0], the corresponding polyno-
mial representation, is (1 + x5 + x9). H1 is invertible, since 
neither its first row polynomial representation nor any of 
its cyclic shifts is a factor of x15- 1. These QC LDPC codes 
should also avoid cycles of length 4 as defined by Mackay 
and Bresnan [4], [9]. For this to be possible, the separation 
between two nonzero positions in a row of length m in the 
circulant sub matrix Hi must satisfy the following equation 
[9]  
 ]mod)(,mod)min[( mabmbaab     (4) 

where a and b are the nonzero positions in the first row of 
the circulant sub-matrix.  

   
Fig. 1. Separation between the nonzero positions in a circular 

sub matrix. 
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This is demonstrated in Fig.1. In this example, a = 1, b =6, 
c = 10 and ab = 5. In each circulant submatrix, the 
separation between any two nonzero positions should be 
calculated and placed in a set. The total number of 
elements in set t is given as 
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where 
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 , w is the weight of the circulant sub-

matrix, and L is the total number of circulant sub-matrices 
in H. For any two nonzero positions, the separation be-
tween them is calculated by using equation (5) and adding 
them to the set. If either two elements of the set are equal 
or an element of set is equal to m/2 (for m is even), then 
a cycle of length 4 exists in H [9]. 

2.2 QC-LDPC Decoding 

The LDPC and QC-LDPC codes can use the same de-
coding algorithm using the appropriate parity check matrix 
H. The LDPC is a linear block code defined by a parity 
check matrix H with m rows and n columns that mostly 
contain zeros and very few ones. LDPC codes can be 
represented by a Tanner graph that contains two different 
nodes: Bit nodes and Check nodes [4]. Each bit node cor-
responds to a code bit, and the check node corresponds to 
one parity check constraint on the bits defining a code-
word. In other words, these bit nodes and the check nodes 
relate to the columns and rows of H, respectively. An edge 
between a bit node and a check node exits if, and only if, 
the bits participate in the parity check equation represented 
by the check node. 

2.2.1 Bit Flipping (BF) Decoding Algorithm 

Bit flipping decoding of LDPC codes was devised by 
Gallager in the early 1960’s [2], [11]. The same decoding 
can be used in our proposed QC-LDPC code. Let H be the 
parity check matrix of a QC-LDPC code with J rows and n 
columns. Let h1, h2, …, hJ denote the rows of H, where  
hJ = (hJ,0, hJ,1, …, hJ,n-1). 

For {1 j  J}, 

 THzs .    (6) 

gives the syndrome of the received sequence z, where the j 
th syndrome component sj is given by the check sum      
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The received vector z is a codeword if and only if 
s = 0. When detectable errors occur during transmission, 
there will be parity check failures in the syndrome 

s = (s1, s2, …, sJ), and some of the syndrome bits will be 
equal to 1. 

BF decoding is based on the change of the number of 
parity failures in {zhj: 1 j  J}when a bit in the received 
sequence z is changed or flipped. The steps in BF decoding 
algorithm are shown as follows [12] 

Step 1: Compute the parity check sums (syndrome 
bits) based on (6) and (7). If all the parity check sums are 
zero, stop the decoding. 

Step 2: Find the number of failed parity check equa-
tions for each bit, denoted by fj, j = 0, 1, …, n - 1. 

Step 3: Identify the set S of bits for which fj is the 
largest. 

Step 4: Flip the bits in set S 

Step 5: Repeat steps 1 to 4 until all the parity check 
sums are zero or a preset maximum number of iterations is 
reached. 

2.2.2 Weighted Bit Flipping (WBF) Decoding  
Algorithm 

The simple hard decision one step BF decoding can 
be improved to achieve better performance by including 
some kind of reliability information of the received sym-
bols in their decoding decisions. Consider the soft decision 
received sequence y = (y1, y2, …, yn-1) at the output of the 
receiver matched filter. For an AWGN channel, a simple 
measure of the reliability of a received symbol yl is its 
magnitude, yl. The larger the magnitude yl is, the 
larger is the reliability of the hard decision digit zl. 

Consider a QC-LDPC code specified by a parity 
check matrix H with J rows, h1, h2, …, hJ. For  
{0  l  n – 1} and {1 j  J} we define 
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El is simply a weighted checksum that is orthogonal on the 
code bit position l. Steps in weighted BF decoding can be 
summarized as follows: 

Step 1: Compute the parity check sums (syndrome 
bits) based on (6) and (7). If all the parity check sums are 
zero, stop the decoding. 

Step 2: Compute El based on (9), for {0  l  n – 1}. 

Step 3: Find the bit position l for which El is largest. 

Step 4: Flip the bit zl. 

Step 5: Repeat steps 1 to 4 until all the parity check 
sums are zero or a preset maximum number of iterations is 
reached.  
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2.2.3 Implementation-Efficient Reliability Ratio Based 
Weighted Bit Flipping (IRRWBF) Decoding 
Algorithm 

Bit-flipping-based LDPC code decoding algorithms, 
such as weighted bit-flipping (WBF) and modified 
weighted bit-flipping (MWBF) algorithms [26] are con-
sidered as good trade-off between error-correcting 
performance and decoding complexity compared to belief-
propagation-based (BP-based) decoding algorithms. BP-
based algorithms yield excellent error-correcting capabil-
ity, but their decoding complexity is also higher. Therefore, 
sometimes it is more practical to use bit-flipping decoding 
algorithms in energy-sensitive mobile devices. It was 
recently shown that the implementation efficient reliability 
ratio based bit flipping (IRRWBF) [13] algorithm performs 
best among existing bit flipping-based algorithms. To 
explain this decoding algorithm, four steps are needed: 
Initialization, Check node, Variable node, and Decision 
steps. Following equations describe this algorithm. For 
further details see the reference [13].  

Step 1: 

  


)(mNn nm rT     (10) 

Step 2: 
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Step 3: 
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Step 4: 

Flip the bit for zn for n = arg maxn’E n’. 

Symbols used in the previous steps can be summa-
rized as follows: Hmn represents the m-th row and n-th 
column of parity-check matrix H, rn represents the n-th bit 
received from the channel, zn represents Hard decision of 
rn, N(m) represents the set of variable nodes that participate 
in the m-th check node and M(n) represents the set of 
check nodes in which the n-th variable node participates. 

2.2.4 Standard Belief Propagation Algorithm 

This section describes the decoding algorithm of 
LDPC codes based on a Belief Propagation or sum product 
decoding algorithm, according to Mackay and Neal [3], [4] 
and [10]. The decoder can be represented as a soft decision 
iterative algorithm called a message passing or belief 
propagation algorithm based on a tanner graph made up of 
check and bit nodes. Messages which are extrinsic infor-
mation based on a-posteriori probability (APP) are passed 
along edges. A full iteration is defined as a cycle of mes-
sage passing from bit nodes to check nodes and check 
nodes to bit nodes. The decoder is initialized by a soft-
decision information received codeword. A full iteration is 

completed by a hard decision syndrome calculation. If 
a syndrome is detected, iteration continues. If no syndrome 
is detected, a valid codeword is found, and the decoder 
stops. The decoding problem is to find the most likely 
vector x such that Hx = 0 with the likelihood of x given by 
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a = 1, σ2 is the variance of the additive white Gaussian 
noise (AWGN), and yn is the channel output at time n. The 
elements of x behave as the bit nodes and the rows of H as 
the check nodes. The set of bits n that participate in check 
m is denoted by N(m) = {n: Hmn = 1}. The set of checks in 
which bit n participates is defined as M(n) = {m: Hmn = 1}. 
A set N(m) with bit n excluded is denoted by N(m)\n. The 
decoding algorithm describes two parts, in which quantities 
qmn and rmn associated with each of the ‘ones’ in the H 
matrix are updated in an iterative fashion. The quantity qx

mn 
is the probability that bit n of x is x = 0 or 1, given the 
information obtained via checks other than the check m. 
The quantity rx

mn is the probability of check m being satis-
fied if bit n of x is considered fixed at x and the other bits 
have a separable distribution given by the probabilities 
{qmn’: n’ N(m)\n} [5]. The main steps involved in the 
Belief propagation algorithm are summarized as follows: 

Initialization: 

The variables q0
mn and q1

mn are initialized to the 
values f0

n and f1
n as q0

mn = f0
n and q1

mn = f1
n. 

Step 1: Compute 

 10
mnmnmn qqq    (16) 

for each m and n. And for x = 0 and 1, compute 
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Step 2: For each m and n and for x = 0 and 1, update 
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where αmn is chosen such that q0
mn + q1

mn = 1. For each n 
and x = 0 and 1, we can update the pseudo posterior 
probabilities q0

n and q1
n as 
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where αn is chosen such that q0
n + q1

n = 1. 

Step 3: First, create  nxx ˆˆ  such that 1ˆ nx  if 

q1
n > 0.5 and 0ˆ nx if 5.01 nq . 
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 If 0ˆ nxH , then x̂ is considered as a valid codeword, 

and the decoding algorithm comes to a halt.  

 If the valid codeword is not found, then the algorithm 
repeats from step 1.  

 The algorithm is terminated when it reaches the 
maximum number of iterations, and a failure is 
declared. 

3. Proposed QC-LDPC Code 
H matrix for proposed QC-LDPC code can be written 

as 

  LL HHHHHH  2121 .  (21) 

The Quasi-Cyclic Generator matrix of rate R = ½ has 
the following structure: 
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From the above equation, we can get several relations 
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The previous equation concludes iii HHP 1
1


 , where 

i = 2,…, L. The inverse of a circulant matrix is circulant, 
and the product of two circulant matrices is also a circulant 
matrix. By using this construction, the quasi-cyclic nature 
of generator matrix is preserved. Since the generator matrix 
is quasi-cyclic, the first row of each circulant sub-matrix is 
stored, and successive rows can be generated by a shift 
register generator. 

4. Simulation Results 
The simulation parameters used here are shown in 

Tab. 1. We experimented on two types of QC-LDPC 
codes: The existing one and the proposed one. At first we 
compare these two schemes in Fig. 2. We used Standard 

Belief Propagation algorithm (sum product decoding) for 
simulating these QC-LDPC codes. Codeword size, code 
rate, iterations, modulation and channel model are the same 
for both the proposed and existing QC-LDPC codes. Re-
sults show that the proposed QC-LDPC code outperforms 
the existing QC-LDPC at high SNR. The proposed con-
struction yields a performance gain of about 1 dB at 
a 0.0001 bit error rate (BER).  
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Fig. 2. Comparison between proposed and existing schemes 

using sum product decoding. 

Again the proposed QC-LDPC code is tested on Bit 
Flipping (BF) [2], Weighted Bit Flipping (WBF) [2] and 
Implementation efficient Reliability Ratio based Weighted 
Bit Flipping (IRRWBF) decoding [13]. Fig. 3 shows the 
comparison between these decoding using our proposed 
QC-LDPC code. The result matches with the literature 
where IRRWBF is the most BER efficient decoding tech-
nique amongst these three. The effect of horizontal con-
catenation to develop matrix is then analyzed and shown in 
Fig. 4. The result shows that the increase in the number of 
horizontal concatenation increases BER. During simula-
tion, we used the basis sub matrix dimension of 200×200. 
Using L = 2, the parity check matrix dimension becomes 
200×400 where L = 3 makes the parity check matrix di-
mension 200×800. When we use the horizontal concatena-
tion parameter L = 6, the parity check matrix dimension 
becomes 200×2000. So, the parity check matrix with larger 
rate shows better performance. 
 

 

Simulation tool used Matlab 
Codeword Size 200-2000 bit 

Code rate ½, ¼, 1/10 
Iterations 10 

Modulation BPSK 
Channel Model AWGN 

Maximum number of iterations 10 
Number of rows in H matrix for Fig. 2 and 

Fig. 3 
50 

Number of rows in H matrix for Fig. 2 and 
Fig. 3 

200 

Number of 1’s in each row per sub matrix 2 
L for Fig. 2 and Fig. 3 3 

Tab. 1. System parameters. 
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Fig. 3. Comparison between different decoders using the 

proposed scheme. 
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Fig. 4. Effect of horizontal concatenation in H matrix. 

5. Conclusion 
In this paper, an improved construction of circulant 

sub matrices based QC-LDPC code is proposed. The pro-
posed QC-LDPC shows better performance than the exist-
ing QC-LDPC code at high SNR. The proposed construc-
tion yields a performance gain of about 1 dB at a 0.0003 bit 
error rate (BER). The proposed code is tested on four dif-
ferent decoding algorithms and compared. Simulation is 
also performed varying the number of horizontal sub 
matrix. The proposed structured QC-LDPC code has a rela-
tively simple algebraic construction, which greatly simpli-
fies the encoder design. This code construction can also be 
easily extended to the irregular QC-LDPC codes. 
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