
296 P. KADLEC, Z. RAIDA, J. DŘÍNOVSKÝ, MULTI-OBJECTIVE SELF-ORGANIZING MIGRATING ALGORITHM: SENSITIVITY …  

Multi-Objective Self-Organizing Migrating Algorithm: 
Sensitivity on Controlling Parameters 

Petr KADLEC, Zbyněk RAIDA, Jiří DŘÍNOVSKÝ 

Dept. of Radio Electronics, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic 

kadlecp@feec.vutbr.cz,  raida@feec.vutbr.cz,  drino@feec.vutbr.cz 

 
Abstract. In this paper, we investigate the sensitivity of 
a novel Multi-Objective Self-Organizing Migrating Algo-
rithm (MOSOMA) on setting its control parameters. Usu-
ally, efficiency and accuracy of searching for a solution 
depends on the settings of a used stochastic algorithm, 
because multi-objective optimization problems are highly 
non-linear. 

In the paper, the sensitivity analysis is performed exploit-
ing a large number of benchmark problems having differ-
ent properties (the number of optimized parameters, 
the shape of a Pareto front, etc.). The quality of solutions 
revealed by MOSOMA is evaluated in terms of a genera-
tional distance, a spread and a hyper-volume error. Rec-
ommendations for proper settings of the algorithm are 
derived: These recommendations should help a user to set 
the algorithm for any multi-objective task without prior 
knowledge about the solved problem. 

Keywords 
MOSOMA, sensitivity, control parameters, multi-
objective optimization. 

1. Introduction 
Stochastic optimizers became a very efficient tool for 

the design of various electromagnetic structures. Usually, 
the design of these structures considers more than one 
objective. Therefore, efficient multi-objective optimizers 
have been derived from single-objective ones: e.g. NSGA-
II (elitist Non-dominated Sorting Genetic Algorithm) [1] 
for genetic algorithms, MOPSO (Multi-Objective Particle 
Swarm Optimization) [2] for the particle swarm intelli-
gence, GDE3 (Generalized Differential Evolution) [3] for 
the differential evolution etc.  

Since multi-objective optimization problems are 
highly non-linear, accuracy and efficiency of their solution 
strongly depends on settings of a used algorithm [4]. From 
the viewpoint of a user, a proper setting of the parameters 
controlling the optimizer is a rather difficult task. On one 
hand, the settings have to be very robust so that the opti-
mizer can achieve the global optimum with high probabil-

ity. On the other hand, the parameters should be chosen to 
ensure high efficiency of the optimization process. There-
fore, many researchers put their efforts to reveal sensitivity 
rules of multi-objective algorithms and to formulate rec-
ommendations for proper setting of optimizers. 

The influence of control parameters on the GDE3 
algorithm is studied in [5]. The tuning of multi-objective 
PSO-based optimizer parameters is described in [6]. In [7], 
the author tries to fix crucial parameters of NSGA-II so 
that the user does not need to take care of it. 

This paper tries to follow up the article [8] where 
a novel Multi-Objective Self-Organizing Migrating Algo-
rithm (MOSOMA) was introduced. As described in [8] and 
[9], run of MOSOMA is controlled by few parameters set 
by a user. These parameters have to be set properly to 
make run of the algorithm efficient. In this paper, we de-
scribe the sensitivity of MOSOMA to the setting of its 
control parameters. The control parameters of MOSOMA 
are tuned on a test suite of various benchmark problems. 
The quality of the computed solution is evaluated by 
the spread, the generational distance and the hyper-volume 
error metrics. 

In the paper, we briefly explain the most important 
principles of MOSOMA first. Then, we describe the setup 
of experiments: benchmark problems and evaluation met-
rics are introduced here. Results of experiments for each 
investigated control parameter are summarized conse-
quently. Some values are recommended for each of control 
parameters. The correctness of the recommended values of 
individual control parameters is verified on two two-objec-
tive problems from the field of electromagnetics. Pareto 
fronts obtained by MOSOMA are compared with other 
benchmark algorithms for those EM problems. Last ex-
periments present comparison of MOSOMA results with 
other benchmark optimizers when the recommended set-
tings cannot be used due to an excessive increase of com-
putation time. 

2. MOSOMA 
MOSOMA is based on the cooperation of a group of 

agents as described in a single-objective Self-Organizing 
Migrating Algorithm published in [10]. Each agent corre-
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sponds to a vector of state variables of the optimized 
structure. For each agent, we evaluate objective functions. 
The agents can update their positions in the decision space 
in so called migration loops. The direction of the migration 
is determined by information obtained from the objective 
space. The values of objective functions are shared by 
the whole group of agents. The pseudocode of MOSOMA 
is depicted in Fig. 1. 

First, agents from the initial population Q(1) are ran-
domly distributed over the whole decision space according 
to [8]: 

  , min , max minq n n q n n nx x rnd x x    (1) 

where xq,n denotes the n-th variable of the q-th agent, 
xn,min; xn,max denotes the feasible interval for the n-th 
variable, and rndq,n is a random number from the interval 
0; 1 with a uniform distribution of probability. 

 
Fig. 1. Pseudocode of MOSOMA [9]. 

Then, the non-dominated sorting [4] according to 
the values of the objective function fm is made for the entire 
group of agents. The non-dominated sorting uses a concept 
of dominance which can be found in [4]. 

The non-dominated solutions build so called advanc-
ing fronts as can be seen in Fig. 2. Here, the group of 12 
individuals is sorted into three fronts. The solutions from 
the first front dominate every solution from the advancing 
fronts, the solutions from the third front are dominated also 
by the solutions from the second front. Within each front, 
the less crowded solutions are preferred; therefore, e.g. 
the solution x6 is better than the solution x11 in the first 
front. 

The non-dominated solutions of the first order are 
saved into an external archive (EXT). If the number of non-
dominated solutions in the first front is lower than  

the minimal size of the external archive Nex,min, then 
the EXT is filled in with the best solutions from advancing 
fronts [4]. The less crowded solutions are preferred. 
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Fig. 2. Non-dominated sorting to advancing fronts. 

In each migration loop, T selected agents migrate to-
wards the members of current EXT. The migration pro-
ceeds in steps. Each agent xp migrating towards the agent 
xq from EXT visits temporary places tmp [9]: 
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where i denotes the current migration loop, ST is the num-
ber of steps during one migration (s goes from 1 to ST), PL 
stands for the normalized length of the migration (the dis-
tance between the p-th and q-th agent multiplied by PL) 
and PRTV denotes a perturbation vector. This vector has 
the same length as the vector x and has to be generated for 
every migration according to the equation: 
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where PR stands for the probability of perturbation. Per-
turbation is introduced here to prevent the algorithm from 
freezing in a local optimum. Perturbation behaves similarly 
to mutation in genetic algorithms. 

The objective functions are computed for each tempo-
rary position tmp. Then, a new external archive EXT(i) is 
determined by non-dominated sorting the union between 
EXT(i – 1) and all fm(tmp). In one migration loop, 
the number of FFC(i) is given by the size of the previous 
external archive EXT(i-1), the number of migrating agents 
T and the number of steps ST: 

    1FFC T STEXTi i   . (4) 

When a new external archive is determined, stopping 
conditions are checked. If any of the stopping conditions 
becomes fulfilled, the final set P (with defined size) is 

Start 
 Define initial population Q(1)  
 Compute objective functions in tmp 
 Find external archive EXT  
 While i < I | FFC < Nf,max | |EXT(i)| < Nex, max 
  For q = 1 : |Q(i – 1)| 
   xq

 migrates to all members of EXT(i – 1) 
   Compute objective functions in tmp 
  End 
  Find EXT(i) from tmp ⋃	EXT(i – 1) 
  While | EXT(i)| < Nex, min 
   Find advancing front and crowding distance 
   Fill EXT(i) with best agents from advancing front 
  End 
  i++  
 End 
 Choose final set P from EXT(i) 

End 
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chosen from the current EXT so that the members of P are 
distributed as uniformly as possible [9]. 

3. Experimental Settings 
The multi-objective optimization is assumed to 

achieve two goals at the same time: 

1. The element of the computed non-dominated set P 
has to lie in the minimal distance from the true Pareto 
front of the problem. 

2. Elements of the set P have to be distributed uni-
formly. This ensures that the whole Pareto front has 
been found. 

The quality of achievements can be expressed by means of 
metrics applied for benchmark problems with known 
Pareto fronts. This section describes used metrics, bench-
mark problems and general settings of MOSOMA for the 
analysis of the sensitivity on values of individual control 
parameters. 

3.1 Evaluation Metrics 

3.1.1 Generational Distance 

The generational distance (GD) was introduced by 
Veldhuizen in [11]. This metric evaluates the quality of 
the computed non-dominated set from the viewpoint of 
accuracy. GD measures the Euclidian distance between P 
members and a set of 500 uniformly spread true Pareto 
front members P*. The GD metric is defined by [11]: 
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where dp stands for the minimal Euclidian distance 
measured in the objective space between the p-th solution 
from the computed P and the corresponding member of 
the true Pareto front P* [4]: 
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Here, k denotes the index of the solution in the set P* 
which has the minimal distance to the p-th member of the 
set P and M stands for the number of objective functions. 
The lower value of the GD metric achieved, the more accu-
rate the solution. For the ideal solution, the GD reaches 
zero. 

3.1.2 Spread 

The spread (Δ) was introduced by Deb in [1]. This 
metric expresses the quality of the spread of the computed 
set P and can be evaluated in the objective space. The 
spread metric measures the ratio between the sum of de-

viations from average distances among neighboring Pareto-
optimal solutions and the sum of all distances. The set P 
has to be sorted such a way so that the neighboring solu-
tions can be found. Therefore, such a defined metric can be 
computed only for two-objective problems. 

The way of also evaluating a spread for problems 
with more than two objectives was proposed in [9]. The 
procedure is based on searching for the so-called minimum 
spanning tree (MST) of the set P. Simply said, MST con-
nects all the nodes in the set so that the sum of connections 
is the shortest one. Connections between any two nodes 
have to be available, and cycles in the tree have to be pro-
hibited. 

The described approach can be applied to problems 
with an arbitrary number of objectives (including two). 
The multi-objective spread ΔM can be computed using 
equation [9]: 
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where dp denotes the Euclidian distance between the p-th 
and (p + 1)-th solution from P, de,m denotes the distance 
from computed extreme solutions to the true ones and davg 
is the average distance among all computed solutions. 

If computed solutions are spread ideally on the true 
Pareto front, the spread metric becomes zero. Commonly 
used algorithms usually achieve a spread between 0.1 and 
0.7 [4]. 

3.1.3 Hyper-volume 

The hyper-volume metric HV evaluates the multi-ob-
jective optimizers from the viewpoint of the spread and 
the accuracy at the same time. HV measures the volume in 
the objective space, which is covered by the solutions from 
the found non-dominated set P [11]. Here, the metric was 
introduced as hyperarea, but it is usually called hyper-
volume in most references [4]. For each solution from P, 
the hypercube volume vp between the p-th solution and 
a reference point W is computed. Then, the hyper-volume 
can be defined [11]: 
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Here, vp denotes the hypervolume between p-th point from 
the non-dominated set P and the reference point W. Total 
hypervolume HV is the union of individual hypervolumes 
vp. The position of the reference point can be simply 
defined by a vector composed of the maximal values of 
the extreme solutions of the true Pareto front for particular 
objective. For example in Fig. 2, the reference point would 
be defined W = {f1(x8); f2(x6)} considering that x6 and x8 
are the extreme true Pareto-optimal solution. 
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Obviously, values of the HV metric are significantly 
influenced by the magnitudes of individual objectives. 
Therefore, the relative hyper-volume metric HVR was 
proposed in [11]. The hyper-volume of the computed set P 
is normalized with the hyper-volume size of the true Pareto 
front (the same set of 500 uniformly spread solutions, as in 
the case of GD, is used) [11]:  

  
 

HV PHVR
HV P

 . (9) 

The relative hyper-volume metric can increase with the in-
creasing accuracy of the computed solution P. The relative 
hyper-volume metric equals one for the ideal distribution 
of the computed Pareto optimal set P. Usually, the relative 
hyper-volume error is given by: 

 error 1HV HVR  . (10) 

Similarly to the previously described metrics, solutions 
with a better spread and accuracy can reach a smaller value 
of the hyper-volume error. 

3.2 Benchmark Problems 

The benchmark suite should be large enough to cover 
different types of problems. Therefore, we have chosen 
9 different unconstrained problems having a different 
number of decision space variables, different number of 
objective functions and different shapes of Pareto fronts. 
All fitness functions are formulated as minimization 
problems.  
 

abbrev. ref. M N PF 

DTLZ1 [12] 3 5 flat 

DTLZ2 [12] 3 5 concave 

FON [13] 2 10 concave 

GSA2 [14] 3 2 convex 

SCH1 [15] 2 1 convex 

UF8 [16] 3 10 concave 

TP1 [17] 3 2 convex 

ZDT1 [18] 2 30 convex 

ZDT2 [18] 2 30 concave 

Tab. 1. The MOSOMA settings for the sensitivity analysis of 
the FFC parameter. 

Nine multi-objective benchmark problems were 
employed for purposes of MOSOMA sensitivity analysis. 
To keep the reasonable extent of the paper, we put here 
only references to the benchmark problem used, their 
abbreviations, number of objective functions M, number of 
variables N and type of Pareto front PF. 

Performance of MOSOSMA has been tested on 
a large suite of benchmark problems having various num-
bers of decision space variables and objectives in [8] and 
[9]. The results of various convergence metrics were com-
pared with commonly used algorithms NSGA-II [1] and 
SPEA2 [19]. All algorithms were allowed to evaluate 
objective functions same times to maintain fairness of 

those comparisons. MOSOMA achieved at least compara-
ble results in accuracy (generational distance metric) and 
significantly better results in uniform coverage of the true 
Pareto front (spread metric).  

4. Sensitivity Analysis 
The sensitivity analysis of the MOSOMA conver-

gence was performed for seven control parameters: 

1. The total number of computations of the fitness 
function FFC, 

2. The minimal size of the external archive Nex,min, 

3. The size of the initial population P(1), 

4. The path length PL, 

5. The probability of perturbation PR, 

6. The number of steps ST, 

7. The number of migrating agents T. 

Since each benchmark problem from the test suite has 
a different number of decision space variables, some con-
trol parameters are normalized to the number of the deci-
sion space variables N (control parameters FFC, P(1) and 
T) or the initial population size P(1) (Nex,min). During 
the sensitivity evaluation of a selected parameter, other pa-
rameters remain constant. Constant values of parameters 
are summarized in Tab. 2. These settings were chosen 
according to the results of previously performed tests [8] 
and [9]. 
 

FFC/N Nex,min/P(1) P(1)/N PL PR ST T/N 
(-) (-) (-) (-) (-) (-) (-) 

12000 2/3 10 1.5 0.15 4 8 

Tab. 2. The MOSOMA settings for the sensitivity analysis of 
the FFC parameter. 

For the settings of each parameter, MOSOMA was 
run 50 times to search for 50 Pareto optimal solutions. 
Some statistics were computed for the generational dis-
tance, the spread and the hyper-volume error metric. 

Totally, MOSOMA was run approximately 50000-
times (50 repetitions × 7 parameters × 16 values per pa-
rameter × 9 test problems). In order to keep the paper to 
a reasonable extent, we aren’t publishing the results of 
the investigated sensitivity for every test problem and 
every metric. For every parameter, the least sensitive test 
problem, a typical one and the most sensitive one were 
chosen. The sensitivity is evaluated only for one chosen 
metric in Fig. 3. - 9. We have tried to publish here results 
for metrics that should be the most influenced by the set-
tings of a specific parameter.  

The results are presented in the form of standard box-
plot graphs for the investigated metric and parameter. Here, 
median of the data is highlighted with the central mark. 
Edges of the box are the 25th and 75th percentiles. These 
boxplots bring information about typical values of metrics 
for particular MOSOMA settings. For each parameter, 
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recommendations for its proper setting are derived ac-
cording to the results of each metric and each test problem. 
The borders of recommended intervals are chosen so, that 
all metrics remain within this interval constant and all the 
metrics median values are sufficiently low (GD < 2.010-2, 
ΔM < 3.010-1, errorHV < 210-1). 

4.1 Fitness Function Computation 

Usually, the fitness function computation is the most 
time-consuming part of the whole process of the optimiza-
tion. The number of computations of the objective func-
tions in the migration loop changes with the size of the 
external archive when running MOSOMA. Therefore, 
formulating some limits for FFC is necessary. Obviously, 
FFC grows with increasing accuracy of the optimization. 
Unfortunately, the computational time grows. 

For the experiments, the total number of computations 
of the fitness functions was changed within the interval 
FFC/N  1000; 20000. Other parameters were set as 
indicated in Tab. 2. 

Fig. 3 depicts the results of the generational distance 
metric for three test problems: GSA2, DTLZ2 and ZDT2. 
In accordance with predictions, the accuracy of the opti-
mizer increases with the growth of FFC. The ZDT2 prob-
lem is strongly sensitive to the FFC parameter. The accu-
racy seems to remain the same from a certain value of 
FFC. This is not true for the ZDT2 problem, where several 
local optima can be assigned incorrectly as a result [18]. 
Therefore, we recommend to choose the parameter FFC 
from the interval FFC/N  8000; 15000 considering 
the time devoted for the evaluation of objectives. 

4.2 EXT Minimal Size 

The minimal size of the external archive Nex,min influ-
ences the speed of the convergence of algorithms primar-
ily. If MOSOMA is not able to find the sufficient number 
of non-dominated solutions of the first order during the 
first migration loop, we have to fill in the external archive 
with the solutions from advancing fronts. The less-crowded 
solutions are preferred in this case to preserve the diversity 
among the members of EXT. Obviously, the highest value 
of the EXT minimal size is limited by the size of the initial 
population. 

The minimal size of EXT influences the diversity 
among the computed non-dominated sets. Therefore, 
a spread metric was chosen in Fig. 4 to show the sensitivity 
of MOSOMA on the Nex,min parameter. The influence of 
the EXT minimal size is more significant for more complex 
problems as indicated by the most sensitive results for 
the ZDT1 test problem. 

MOSOMA is almost insensitive to the EXT minimal 
size in the case of less-complicated problems as shown by 
the results for FON and TP1. Usually, the quality of 
the spread slightly decreases with the Nex,min parameter. In 

this case, a lot of evaluations of objectives are devoted for 
migration towards solutions which can lie a far distance 
from the true Pareto front, while the region of the true 
Pareto front is not revealed sufficiently. 

The optimal value of the EXT minimal size can be 
somewhere within the borders of the recommended interval 
Nex,min/P(1)  0.3; 0.6. 

4.3 Initial Population Size 

The parameter Q(1) defines the number of agents 
randomly generated at the beginning of a MOSOMA run. 
At first sight, a larger value of Q(1) might seem to be better 
to research the whole decision space. On the other hand, 
a too large Q(1) slows down the algorithm during the first 
migration loops. Therefore, some trade-off has to be cho-
sen taking into account the number of state variables and 
the maximal FFC given by (4). The Q(1) parameter di-
rectly influences the ability to achieve the true Pareto front. 
A larger Q(1) ensures that agents can reach the region of 
the global optimum during the first migration loops. Then, 
this region can be researched adequately in the rest of the 
optimization process to provide a very good accuracy and 
the spread of the non-dominated set. 

The sensitivity of MOSOMA on the Q(1) parameter 
is depicted in Fig. 5. Here, the hyper-volume error meas-
ured for the different values of the Q(1) parameter can be 
seen. The hyper-volume error seems to decrease slightly 
with the growth of the Q(1) but the decrease is not so 
strong. After the detailed study of all tests, we can recom-
mend to choose the size of the initial population from the 
interval Q(1)/N  5; 12.  

4.4 Path Length 

The path length defines the length of the migration 
between two agents as a multiple of their Euclidian dis-
tance in the decision space. The path length is strictly con-
nected to the ST parameter (the number of steps). Both 
parameters have to be set such a way so that the agents do 
not visit the previously researched positions. Therefore, 
the following condition has to be met: 

  1for 1, 2,...,
PL

s s ST
ST

   . (11) 

The sensitivity of MOSOMA to the path length (PL) 
is depicted in Fig. 6. The generational distance versus 
the path length is given here. The accuracy of MOSOMA 
grows with the increase of PL, especially for more complex 
problems (as in the case of DTLZ2 and ZDT1 problems). 
The searching range of MOSOMA is enlarged with 
a higher value of PL, which avoids the algorithm to freeze 
in the local optimum and increases the diversity among 
the non-dominated set. 

The recommended interval for the path length is 
PL  1.2; 1.7. 
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4.5 Number of Steps 

During each iteration loop, each agent from the set T 
migrates towards the members of the external archive. 
Every migration proceeds in the predefined number of 
steps ST. Again, a larger value of ST causes an increase of 
computational demands, but the decision space is re-
searched more carefully. The parameter ST has to be cho-
sen considering the value of PL together with the condition 
in (11). 

Fig. 7 depicts the variation of the hyper-volume error 
with the variation of the parameter ST. The hyper-volume 
error increases with a growing number of steps. This is 
probably caused by the fact, that regions wide from 
the Pareto-optimal solutions are researched in detail during 
first migration loops. Then, only few FFC remain for de-
tailed research of Pareto-optimal regions during further 
migration loops. Therefore, we recommend to set the lower 
values of the ST in the interval ST  2; 5.  

4.6 Probability of Perturbation 

The probability of perturbation was introduced in 
the original single-objective SOMA to prevent the algo-
rithm from freezing in the local optimum. If the agent re-
mains in the local optimum, the direction of this migration 
can be arbitrarily changed with a certain probability, 
defined by the parameter PR. Obviously, a higher value of 
the probability of perturbation decreases the speed of  

MOSOMA to move agents in the decision space more 
chaotically, which reduces the convergence of MOSOMA. 

Fig. 8 shows that the spread metric of the computed 
non-dominated set grows slowly with the increasing prob-
ability of the perturbation for all the test problems.  

Therefore, we recommend lower values of PR. This 
parameter should be chosen within the interval 
PR  0.1; 0.3. 

4.7 Number of Migrating Agents 

The number of migrating agents T is limited by the 
size of the initial population. With a higher number of T, 
the research of the decision space is more precise on the 
one hand, but the speed of MOSOMA decreases on the 
other hand.  

The hyper-volume error metric covering both the ac-
curacy and the spread has been chosen for the evaluation of 
the sensitivity of MOSOMA on the parameter T. Results 
are depicted in Fig. 9. MOSOMA seems to be almost in-
sensitive on the settings of T for all types of problems. 

The recommended interval is T/N  5; 10. 
 

Par. FFC/N Nex,min/P(1) P(1)/N PL PR ST T/N 
 (-) (-) (-) (-) (-) (-) (-) 

Min 8000 0.3 5 1.2 0.1 2 5 
Max 15000 0.6 12 1.7 0.3 5 10 

Tab. 3. Recommended intervals for MOSOMA control pa-
rameters. 
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Fig. 3. Sensitivity of MOSOMA on FFC (the number of fitness functions computations) measured by generational distance metric: 

test problem GSA2 (left), DTLZ2 (middle) and ZDT2 (right). 
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Fig. 4. Sensitivity of MOSOMA on Nex,min (external archive minimal size) measured by spread metric: test problem FON (left), 

TP1 (middle) and ZDT1 (right). 
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Fig. 5. Sensitivity of MOSOMA on P(1) (initial population size) measured by hyper-volume error metric: test problem TP1 (left), 

FON (middle) and DTLZ2 (right). 
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Fig. 6. Sensitivity of MOSOMA on PL (path length) measured by generational distance metric: test problem GSA2 (left), DTLZ2 (middle) 

and ZDT1 (right). 
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Fig. 7. Sensitivity of MOSOMA on ST (number of steps during one migration) measured by hyper-volume error metric: test problem GSA2 

(left), UF8 (middle) and ZDT1 (right). 
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Fig. 8. Sensitivity of MOSOMA on PR (probability of perturbation) measured by spread metric: test problem GSA2 (left), ZDT2 (middle) and 

SCH1 (right). 
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Fig. 9. Sensitivity of MOSOMA on T (number of migrating agents) measured by hyper-volume error metric: test problem UF8 (left), DTLZ2 

(middle) and ZDT1 (right). 

 

5. EM Problems 
In this section, we are going to demonstrate that rec-

ommended values of control parameters are derived rea-
sonably. Two multi-objective problems from the field of 
electromagnetics introduced in [8] are solved here: the de-
sign of a partially filled waveguide and the order reduction 
of a Debye model. Results of MOSOMA with different 
settings randomly chosen from the recommended intervals 
are presented here. 

Two multi-objective problems from [8] are completed 
by a real-life EM optimization which requires an extremely 
high CPU power to evaluate objective functions. The de-
sign of a Yagi-Uda filtenna shows the behavior of 
MOSOMA in case when an adequate number of FFC can-
not be performed. 

Pareto fronts found by MOSOMA are compared with 
results of commonly used optimizers NSGA-II [1] and 
MOPSO [20] for all the examined problems. 

5.1 Partially Filled Waveguide 

The cut-off frequency of a waveguide dominant mode 
can be decreased if a proper dielectric layer is placed in 
[21]. The model of a partially filled waveguide is depicted 
in Fig. 10. Here, the symbol a denotes the width of the 
waveguide, d1 and d2 stand for the height of the dielectric 
layer and vacuum (2 = 1) inside the waveguide, respec-
tively. Relative permittivity of the dielectric layer is de-
noted by 1. We assume non-magnetic materials in the 
waveguide (relative permeability remains one μ1 = μ2 = 1). 

Our goal is to determine the “cheapest” dielectric 
layer for every possible cut-off frequency of the R100 
waveguide (a = 22.86 mm, d1 + d2 = 10.16 mm). There-
fore, two objectives were formulated in [8]: 

 1

2 1 1

cf f

f d



 (12) 

The first objective minimizes the cut-off frequency fc of 
the dominant mode. The second objective minimizes the 
expected production cost. The price of the used dielectric 

material is assumed to increase with the increasing relative 
permittivity and the height of the layer. 

We would like to make a note that both the relative 
permittivity and the height of the layer are discrete pa-
rameters in real life. This is caused by the fact that dielec-
tric substrates are manufactured in a limited number of 
combinations of relative permittivity and heights. 

The state parameters can be chosen from the follow-
ing intervals: 1  1; 10	and	d1  0; 10.16 mm. 

The decision space with the highlighted Pareto-opti-
mal solutions is depicted in Fig. 11. Two types of Pareto-
optimal solutions can be found here: the waveguide is fully 
filled by the dielectric material (d1 = 10.16 mm) and the 
waveguide is partially filled by the layer having the relative 
permittivity approximately 1 ≈ 2. The Pareto front is fully 
completed by the waveguide filled by vacuum only 
(d1 = 0 mm). 
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Fig. 10. Partially filled waveguide [8]. 

MOSOMA was run several times with different set-
tings of control parameters. Three randomly chosen set-
tings are summarized in Tab. 4. In Fig. 12, we compare 
Pareto fronts consisting of 25 elements, which were com-
puted by MOSOMA with the corresponding settings, with 
the true Pareto front of the problem. Obviously, MOSOMA 
was able to find the Pareto front with a very good accuracy 
and an excellent spread. The stability of the results can be 
seen in the detailed plot of the Pareto front, especially. 
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Fig. 11. Decision space of the partially filled waveguide prob-

lem: Pareto-optimal solutions are depicted in red. 
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Fig. 12. Pareto front members obtained by three independent 

runs of MOSOMA with randomly chosen settings. 

The Pareto front chosen from 10 independent 
MOSOMA runs with settings #1 from Tab. 4 is compared 
with results obtained by algorithms NSGA-II and MOPSO 
in Fig. 13. The best result of ten runs of each algorithm is 
depicted here. All the algorithms were set so that the ob-
jective functions were evaluated 20000 times in maximum 
to keep the comparison fair. 
 

run FFC/N Nex,min/P(1) P(1)/N PL PR ST T/N 
 (-) (-) (-) (-) (-) (-) (-) 

1 10 000 0.50 10 1.5 0.2 3 8 
2 7 000 0.56 8 1.3 0.3 2 7 
3 9 000 0.42 6 1.4 0.1 4 9 

Tab. 4. MOSOMA settings for individual runs of partially 
filled waveguide design. 

Parameters of the NSGA-II algorithm were set in 
the following way: the population consisted of 25 
individuals; the optimization comprised 800 generations; 
probability of the crossover was 0.9 and probability of 
the mutation was 0.1. 

Parameters of the MOPSO algorithm were set in 
the following way: the population was created by 25 indi-
viduals; the optimization comprised 800 generations; the 

inertia weight decreased from 0.9 in the first iteration to 
0.4 in the last iteration; and current speed vector was com-
puted using the coefficients c1 = c2 = 1.494. 
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Fig. 13. Pareto front elements for partially filled waveguide 

problem obtained by the following algorithms: 
MOPSO (blue triangle), NSGA-II (green square) and 
MOSOMA (red cross). 

Obviously, the Pareto-front elements computed by 
MOSOMA and MOPSO catch accurately the true Pareto 
front. On the other hand, some Pareto-front elements com-
puted by NSGA-II do not catch the true Pareto front. 

MOSOMA outperforms both MOPSO and NSGA-II 
in the spread of the computed set: the length of the curve 
between two neighboring elements of the MOSOMA set 
remains constant. On the contrary, both the NSGA-II algo-
rithm and the MOPSO algorithm overcrowds some regions 
of the true Pareto front by the solutions and do not cover 
other parts of the true Pareto front by the solutions. 
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Fig. 14. Elements of the non-dominated sets computed by 

MOPSO (blue), NSGA-II (green) and MOSOMA (red) 
after 500, 1 000 and 1 500 evaluations of the objective 
function. 

Fig. 13 demonstrates that all the used algorithms are 
more or less effective with their robust settings. Dealing 
with the efficiency, Fig. 14 shows the evolution of the non-
dominated set computed by particular optimizers in 500, 
1 000 and 1 500 FFC. The best result of ten independent 
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runs for every optimizer was chosen. The settings of opti-
mizers were identical to tests presented in Fig. 13; only 
the size of the non-dominated set was reduced to 10 to 
keep Fig. 14 readable. 

Obviously, all the optimizers are able to reach the true 
Pareto front after 1500 FFC. MOPSO seems to be the most 
efficient algorithm because all the elements of the non-
dominated set are located almost on the true Pareto front 
just after 1000 FFC. 

Efficiency of the NSGA-II algorithms seems to be 
the lowest one because some of the elements of the non-
dominated set are located far away from the true Pareto 
front even after 1500 FFC. The evolution of the non-domi-
nated set computed by MOSOMA shows that MOSOMA is 
able to produce the non-dominated set with good spread 
very efficiently after reaching the true Pareto front region. 

5.2 Debye Model Order Reduction 

Dispersive materials can be modeled using the Debye 
model if a time domain technique is employed. Then, the 
frequency dependent relative permittivity of the dispersive 
material is described by [22]: 

  
1 1
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n
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n n

j
j

   








 

  (13) 

where r denotes the relative permittivity of the material, j 
stands for the imaginary unit, the angular frequency is 
denoted by ω, N is the order of the Debye model,  is 
the relative permittivity for the infinite frequency and n 
and n are the static permittivity and the relaxation time of 
the n-th pole, respectively. 

In some solvers, the first-order Debye model is im-
plemented only. Then, the materials described by higher 
order Debye models have to be replaced by the model with 
the reduced order. The order reduction can be defined as 
a two-objective problem: 
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where P stands for the number of frequency steps used for 
the comparison of the first-order Debye model and the 
third-order Debye model of the relative permittivity r,first 
and r,third. 

When reducing the order of Debye model of the Ec-
cosorbe LS22 material, three parameters have to be deter-
mined: the relative permittivity for the infinite frequency 
  1; 100, the relaxation time1  1·10-12; 1·10-9 s and 
the static permittivity 1  1; 30. 

The frequency band from 0.3 GHz to 6.0 GHz was 
divided into P = 359 samples. Again, three randomly cho-

sen MOSOMA settings from the intervals recommended in 
Sec. 4 of this paper were used to solve the optimization 
task (see Tab. 5). 
 

run FFC/N Nex,min/P(1) P(1)/N PL PR ST T/N 
 (-) (-) (-) (-) (-) (-) (-) 

1 10000 0.50 10 1.5 0.2 3 6 
2 12000 0.58 8 1.4 0.3 3 9 
3 8000 0.42 11 1.3 0.1 5 7 

Tab. 5. MOSOMA settings for individual runs of order 
reduction of Debye model. 

Fig. 15 depicts 25 Pareto front solutions of three in-
dependent runs of MOSOMA. Our algorithm was able to 
find the Pareto front with very good accuracy. Considering 
the previous example, the individual Pareto-optimal sets 
differ in their spread because MOSOMA has problems to 
find the extreme solutions of the Pareto front. This problem 
is probably caused by a higher dimensionality of the prob-
lem and a higher sensitivity of objective functions on the 
variation of input variables. 
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Fig. 15. Pareto front of order reduction of Debye model for 

three runs of MOSOMA with randomly chosen 
settings. 

Fig. 16 shows the comparison of Pareto fronts com-
puted by MOSOMA, MOPSO and NSGA-II; the best re-
sult of 10 independent runs of the algorithms is presented.  
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Fig. 16. Pareto sets obtained by MOPSO, NSGA-II and 

MOSOMA; order reduction of Debye model. 
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MOSOMA was set according to #1 from Tab. 5 (ob-
jective functions could be computed 30000-times in maxi-
mum). Settings of other two algorithms were identical with 
the previous example; only the number of generations was 
increased to 1200 to keep the comparisons fair. 

Some non-dominated elements of the set computed by 
MOPSO are located in a longer distance from the true 
Pareto front. Elements of the set computed by NSGA-II 
caught the Pareto-front accurately but were non-uniformly 
spread on the true Pareto front. MOSOMA had a problem 
to reveal the extreme Pareto front solutions but almost 
the whole true Pareto front was covered with a good accu-
racy and uniformity. 

5.3 Yagi-Uda Filtenna Design 

The multi-objective design of the Yagi-Uda filtenna 
was introduced in [23]. The filtenna is an antenna which 
can provide prescribed frequency filtering for the prede-
fined direction of the radiation or the reception. Elements 
of the Yagi-Uda filtenna are designed to irradiate the en-
ergy in the main-lobe direction in the pass band and to 
the backward directions in the stop band. 

For the design of the filtenna, two objectives can be 
formulated. First, the gain of the antenna in the main lobe 
direction should be relatively high with minor variations 
for the pass band. Second, the gain of the antenna in 
the main lobe direction should sharply dive out for the stop 
band. These two goals can be formulated as the minimiza-
tion of the following objective functions F1 and F2 [23]: 
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where P and S denote the number of frequency samples in 
the pass band fp and the stop band fs, respectively. The 
symbol G denotes the gain and θ0 stands for the main lobe 
direction. In order to ensure the proper impedance match-
ing of the designed antenna, two constraint functions have 
to be formulated [23]: 
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where Zin denotes the input impedance of the antenna. 

The standard configuration of the Yagi-Uda antenna 
[24] with one driven element, one reflector and five direc-
tors is considered for this experiment. The length of indi-
vidual elements d and the spacing between neighboring 
elements s are the parameters computed by the optimizer. 
Hence, the decision space has N = 13 dimensions. 
The length of individual elements can vary within 
0.3λ < dn < 0.7λ and spacing of elements can vary within 
0.2λ < sn < 0.6λ. Here, the symbol λ denotes the wave-

length for the central frequency of the pass band fp. 
The frequency band considered was from 24 GHz to 
36 GHz with the pass band fp from 28 GHz to 32 GHz. 

The values of the gain and the input impedance which 
are necessary for the evaluation of objective functions and 
constraint functions are computed by the moment-method 
software 4NEC2 [25]. The analysis of an antenna configu-
ration takes two seconds, approximately. Therefore, 
the number of FFC was limited to 10000. So, the whole 
optimization process takes approximately 5.5 hours. All the 
algorithms MOPSO, NSGA-II and MOSOMA were run 
five-times and the best results are presented here. 

Settings of MOPSO and NSGA-II are identical to 
the previous examples; only the number of generations was 
reduced to 200 and number of individuals was set to 50. 
For MOSOMA, we set the total number of evaluation of 
objectives to FFC = 10000, we considered the size of the 
initial population P(1) = 25, the length of the path 
PL = 1.3, probability of perturbation PR = 0.1, the number 
of steps ST = 3 and the number of migrating agents T = 20. 
Parameters P(1) and T were not set according to the rec-
ommended values given in Tab. 3: we decreased them to 
lower the number of FFC. If the recommended values 
would be used, MOSOMA would spent too much of the 
available FFC for exploring the initial populations. 

All the algorithms started with the same random ini-
tial population to enhance the fairness of the comparison. 
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Fig. 17. Pareto fronts computed by MOPSO, NSGA-II and 

MOSOMA: design of Yagi-Uda filtenna. 

Fig. 17 shows that all the optimizers face a problem to 
find the desired number of non-dominated solutions. 
The set computed by NSGA-II contains 46 elements; 
MOSOMA computed 19 non-dominated solutions and 
MOPSO produced only 12 elements. The Pareto set of 
the lowest quality was computed by MOPSO: all the com-
puted elements were dominated by the solutions computed 
by NSGA-II and MOSOMA. The Pareto set computed by 
NSGA-II was closer to the best Pareto set computed by 
MOSOMA compared to the MOPSO set. Still, all elements 
of the MOPSO set are dominated by the solutions com-
puted by MOSOMA. 
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6. Conclusions 
The paper deals with control parameters of the novel 

Multi-Objective Self-Organizing Migrating Algorithm. The 
sensitivity of the algorithm on its own settings has been 
evaluated on a large test suite of benchmark problems with 
known true Pareto fronts. The quality of computed solu-
tions was measured by the spread, generational distance 
and hyper-volume error. 

The sensitivity analysis has shown that results of 
the optimization are almost insensitive on some parameters 
(the number of migrating agents or the size of the initial 
population). On the other hand, the convergence of 
MOSOMA is slightly influenced by some parameters (the 
probability of perturbation or the path length). The simula-
tion can become instable with a more complex problem 
having a large number of decision space variables and local 
optima (the ZDT problems family).  

According to the sensitivity analysis, some recom-
mendations for setting the control parameters correctly 
were made. All the evaluated metrics of MOSOMA results 
are stable within those intervals. Choosing parameters 
according to the recommended intervals should ensure that 
MOSOMA reveals the true Pareto front with satisfactory 
accuracy and uniformity of spread. 

The correctness of recommended intervals for 
MOSOMA control parameters derived in Tab. 3 was veri-
fied by three two-objective electromagnetic problems: 
the design of a partially filled waveguide, the reduction of 
the order of the Debye model, and the design of a Yagi-
Uda filtenna. The MOSOMA was shown to produce stable 
solutions in terms of the accuracy of the Pareto front and 
the spread of elements of the Pareto front if control pa-
rameters are chosen from the recommended intervals. 

Pareto fronts computed by MOSOMA were compared 
with solutions produced by commonly used algorithms 
MOPSO and NSGA-II. MOSOMA outperforms both the 
algorithms particularly in spread of the computed non-
dominated set. In case of the Yagi-Uda filtenna design, 
optimizers could not perform an adequate number of 
evaluations of objective functions due to an excessively 
increasing computational time. Still, MOSOMA was able 
to find the non-dominated set with the highest quality. 

Acknowledgements 

Research described in this paper was financially 
supported by the Czech Science Foundation under grant 
no. P102/12/1274.  

Support of the WICOMT project, the registration 
number CZ.1.07/2.3.00/20.0007, is also gratefully 
acknowledged.  

Optimization routines were run on computational 
facilities of the SIX Research Center, the registration 
number CZ.1.05/2.1.00/03.0072. 

References 

[1] DEB, K., PRATAP, A., AGARWAL, S., MEYARIVAN, T. A fast 
and elitist multi-objective genetic algorithm: NSGA-II. IEEE 
Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, 
p. 182 - 197. 

[2] COELLO COELLO, C. A., LECHUGA, M. S. MOPSO: A pro-
posal for Multiple Objective Particle Swarm Optimization. In 
IEEE Congress on Evolutionary Computation. Hawaii (USA), 
2002, p. 825 - 830. 

[3] KUKKONEN, S., LAMPINEN, J. GDE3: The third evolution step 
of Generalized Differential Evolution. In IEEE Congress on Evo-
lutionary Computation. Edinburgh (Scotland), 2005, p. 443 - 450. 

[4] DEB, K. Multi-Objective Optimization using Evolutionary 
Algorithms. Chichester (UK): Wiley, 2001. 

[5] KUKKONEN, S., LAMPINEN, J. An empirical study of control 
parameters for the third version of Generalized Differential Evolu-
tion (GDE3). In Proceedings of IEEE Congress on Evolutionary 
Computation, Vancouver (Canada), 2006, p. 2002 – 2009. 

[6] ZHENG, B., LI, Z., FENG, X. An exploratory study of sorting 
particle swarm optimizer for multiobjective optimization. In 
Fourth International Conference on Bio-Inspired Computing BIC-
TA ´09. Hangzhou (China), 2009, p. 112 – 119. 

[7] KHOA, D. T. Elitist non-dominated sorting GA-II (NSGA-II) as 
a parameter-less multi-objective genetic algorithm. In Proceedings 
of IEEE SoutheastCon. Fort Lauderdale (Florida, USA), 2005, 
p. 359 - 367. 

[8] KADLEC, P., RAIDA, Z. A novel Multi-Objective Self-Organiz-
ing Migrating Algorithm. Radioengineering, 2011, vol. 20, no. 4, 
p. 804 – 816, 2011. 

[9] KADLEC, P., RAIDA, Z. Self-Organizing Migrating Algorithm 
for optimization with general number of objectives. In Proceedings 
of 22nd International Conference Radioelektronika 2012. Brno 
(Czech Republic), 2012, p. 111 - 115. 

[10] ZELINKA, I., LAMPINEN, J. SOMA – Self organizing migrating 
algorithm. In Proceedings of 6th MENDEL International Confer-
ence on Soft Computing. Brno (Czech Republic), 2000, p. 76 – 83. 

[11] VELDHUIZEN, D. V. Multiobjective evolutionary algorithms: 
classifications, analyses and new innovations. Ph.D. Thesis, 
Dayton, OH, Air Force Institute of Technology. Technical report 
No. AFIT/DS/ENG/99-01, 1999, 270 p. 

[12] DEB, K., THIELE, L., LAUMANNS, M., ZITZLER, E. Scalable 
Test Problems for Evolutionary Multi-Objective Optimization. 
Kanpur (India): Kanpur Genetic Algorithms Lab. (KanGAL), 
Indian Institute of Technology, 2001. KanGAL Report 2001001. 

[13] FONSECA, C. M., FLEMING, P. J. An overview of evolutionary 
algorithms in multi-objective optimization. Evolutionary Compu-
tation Journal, 1995, vol. 3, no. 1, p. 416 – 423. 

[14] MAO, J., HIRASAWA, K., HU, J., MURATA, J. Genetic 
symbiosis algorithm for multiobjective optimization problem. In 
Proceedings of the International Workshop on Robot and Human 
Interactive Communication. Osaka (Japan), 2000, pp. 137 – 142. 

[15] SCHAFFER, J. D. Some experiments in machine learning using 
vector evaluated genetic algorithms. Ph.D. Thesis, Nashville, 
Tennessee, Vanderbilt University. 

[16] LI, H., ZHANG, Q. Multiobjective optimization problems with 
complicated Pareto sets, MOEA/D and NSGA-II. IEEE 
Transactions on Evolutionary Computation, 2009, vol. 13, no. 2, 
p. 284 – 302.  

[17] JIN, Y., OKABE, T., SENDHOFF, B. Solving three-objective 
optimization problems using evolutionary dynamic weighted 
aggregation: Results and analysis. In Genetic and Evolutionary 



308 P. KADLEC, Z. RAIDA, J. DŘÍNOVSKÝ, MULTI-OBJECTIVE SELF-ORGANIZING MIGRATING ALGORITHM: SENSITIVITY …  

Computation – GECCO 2003. Berlin: Springer, p. 203 – 214, 
2003. 

[18] ZITZLER, E., DEB, K., THIELE, L. Comparison of multiobjective 
evolutionary algorithms: Empirical results. Evolutionary 
Computation Journal, 2000, vol. 8, no. 2, p. 125 – 148.  

[19] ZITZLER, E., LAUMANNS, M., THIELE, L. SPEA2: Improving 
the strength Pareto evolutionary algorithm. Technical Report 103, 
Zürich, Switzerland: Computer Engineering and Networks 
Laboratory (TIK), Swiss Federal Inst. of Technology (ETH), 2001. 

[20] NANBO, J., RAHMAT-SAMII, Y. Advances in Particle Swarm 
Optimization for antenna designs: Real-number, binary, single-
objective and multi-objective implementations. IEEE Transactions 
on Antennas and Propagation, vol. 6, no. 2, p. 182 – 197, 2002. 

[21] HARRINGTON, R. F. Time-harmonic Electromagnetic Fields. 
New York (US): McGraw-Hill, 1961. 

[22] MARADEI, F. A frequency-dependent WETD formulation for 
dispersive materials. IEEE Transactions on Magnetics, 2001, 
vol. 37, no. 5, p. 3303 - 3306. 

[23] RAIDA, Z. et al. Communication subsystems for emerging wire-
less technologies. Radioengineering, 2012, vol. 21, no. 4, p. 1036 
to 1049. 

[24] VENKATARAYALU, N. V., RAY, T. Optimum design of Yagi-
Uda antennas using computational intelligence. IEEE Transactions 
on Antennas and Propagation, 2004, vol. 52, no. 7, p. 1811 - 1818. 

[25] RICHESON, P. D. NEC-2 Manual, Part III: User´s Guide, 
available at <http://www.nec2.org/other/nec2prt3.pdf>. 

About Authors... 
Petr KADLEC was born in Brno, Czech Republic in 
1985. He received his B.Sc., M.Sc. and Ph.D. degrees in 
Electronics and Communication in 2007, 2009 and 2012, 
respectively, all from the Brno University of Technology, 
Brno, Czech Republic. Currently, he is with the Dept. of 
Radio Electronics, Brno University of Technology, as 
a researcher. His research interests include numerical 
methods for electro-magnetic field computations and evo-

lutionary algorithms for the optimization of the electro-
magnetic components.  

Zbyněk RAIDA received Ing. (M.Sc.) and Dr. (Ph.D.) 
degrees from the Brno University of Technology in 1991 
and 1994, respectively. Since 1993, he has been with 
the Dept. of Radio Electronics, FEEC BUT as an assistant 
professor (1993 to 1998), associate professor (1999 to 
2003), and professor (since 2004). In 1997, he spent six 
months at the Laboratoire de Hyperfrequences, Universite 
Catholique de Louvain, Belgium working on variational 
methods of numerical analysis of electromagnetic struc-
tures. Since 2006, he has been the head of the Dept. of 
Radio Electronics. Zbyněk Raida has been working 
together with his students and colleagues on numerical 
modeling and optimization of electromagnetic structures, 
exploitation of artificial neural networks for solving 
electromagnetic compatibility issues, and the design of 
special antennas. Prof. Raida is a member of the IEEE 
Microwave Theory and Techniques Society. 

Jiří DŘÍNOVSKÝ was born in Litomyšl, Czech Republic, 
in 1979. He received the M.Sc. and Ph.D. degrees in 
Electronics and Communication from the Brno University 
of Technology, Czech Republic, in 2003 and 2007, 
respectively. His Ph.D. thesis was awarded by Emil Škoda 
Award in 2007. Since 2006 he has been an assistant 
professor in Electronics and Communication at the Dept. of 
Radio Electronics, Brno University of Technology. His 
research activities include selected topics of EMC, EMI 
measurements, and EMS testing. He is also interested in 
specialized problems of radiofrequency and microwave 
measurements. Since 2008, he has been leading the 
“Radioelectronic measurements” course in master degree 
study program and since 2009 he has been leading the 
Electromagnetic compatibility course in bachelor study 
program at the Faculty of Electrical Engineering and 
Communication, Brno University of Technology. He is 
a member of IEEE. 

 


