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Abstract. In recent years, many deep learning and ma-
chine learning based side channel analysis (SCA) tech-
niques have been proposed, most of which are based on the 
optimization of existing network models to improve the 
performance of SCA. However, in practice, the attacker 
often captures unbalanced and small samples of data due 
to various environmental factors that limit and interfere 
with the successful implementation of SCA. To address this 
problem, in this paper, we firstly introduced the Condi-
tional Generation Adversarial Network (CGAN). We pro-
posed a new model SCA-CGAN that combines SCA and 
CGAN. We used it to generate a specified number and 
class of simulated energy traces to expand and augment the 
original energy traces. Finally, we used the augmented 
data to implement SCA and achieved a good result. 
Through experiments on the unprotected ChipWhisperer 
(CW) data and the ASCAD jittered dataset, the results 
shown that the SCA using the augmented data is the most 
efficient, and the correct key is successfully recovered on 
both datasets. For the CW dataset, the model accuracy is 
improved by 20.75% and the traces number required to 
recover the correct key is reduced by about 79.5%. For the 
ASCAD jittered dataset, when the jitter is 0 and 50, the 
traces number required to recover the correct key is re-
duced by about 76.8% and 75.7% respectively. 
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Deep learning side channel analysis, SCA-CGAN, 
unbalanced small samples, data augmentation 

1. Introduction 
SCA is a cryptanalytic attack that exploits the physi-

cal environment of an encrypted system to recover some 
information about its secrets [1]. Realistic cryptographic 
devices inevitably leak some physical information, such as 
electromagnetic radiation [2], power consumption [3], and 
time consumption during encryption and decryption [4], in 
the process of running encryption algorithms, and all these 
leaked physical information are related to the computation 

of secret information during encryption and decryption, 
which can be exploited by attackers to recover secret in-
formation. So far, numerous works on SCAs are based on 
these leakages' information [5–8]. 

SCA was originally proposed [9] by Paul Kocher in 
1996, who used the method to perform a timing attack on 
encrypted devices and successfully recovered secret infor-
mation, and since then, countries around the world have 
developed research plans for SCA, defense, evaluation, and 
application, and the research on SCA theories and methods 
have achieved fruitful results. With the further develop-
ment of SCA, Machine Learning (ML) based SCAs [10], 
[11] have emerged, where the two most commonly used 
machine learning models are Support Vector Machine 
(SVM) [12] and Random Forest (RF) [13]. In recent years, 
due to the rapid development of Deep Learning (DL) [14], 
[15] techniques, deep learning techniques for SCAs have 
been strongly developed and many excellent works have 
emerged [16–18]. Compared with the classical Template 
Attack (TA) [19], deep learning-based side channel attacks 
(DLSCAs) generally do not require finding Points of Inter-
est (POIs) or performing energy trace curve alignment 
work, and in addition, it can map high-dimensional data 
into a low-dimensional vector matrix space by learning 
from deep learning networks. However, almost all of the 
above works focus on how to propose better model algo-
rithms or improve existing ones in order to reduce the 
number of energy traces required for a successful attack to 
recover the key. In fact, the number of energy traces used 
in the profiling phase of these works is sufficient to ensure 
that the training and testing of deep learning models is 
properly and reasonably done. In theory, this makes sense, 
since an important prerequisite for a SCA in the profiling 
phase is that the attacker has a fully controllable crypto-
graphic device and access to enough energy traces to build 
a SCA model, but, thinking in terms of hardware security 
defense, a major factor in implementing a successful SCA 
is the quality and quantity of the leaked information ob-
tained during the profiling phase. Generally, embedded 
engineers and security analysts strive to improve defensive 
countermeasures at the hardware and software levels to 
minimize side-channel data leakage from encrypted hard-
ware. Therefore, data collection during the profiling phase 
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plays an important role in the execution of a successful and 
robust SCA. 

In reality, due to the environmental restrictions and 
interference, which lead to the attackers often collected 
unbalanced small sample energy traces [20], [21], in this 
situation, the SCA using traditional deep learning algo-
rithms will be very ineffective, and cannot even implement 
the SCA successfully. To address this problem, in this 
paper, we propose a SCA method based on conditional 
adversarial generative networks to address the above prob-
lems and successfully implemented the SCA, and the re-
sults show that excellent performance on both CW dataset 
and ASCAD dataset. Specifically, in the experiments, we 
first collected the CW dataset through the ChipWhisperer 
platform, and then obtained unbalanced small samples 
through data preprocessing. To enhance the original data, 
we constructed a SCA-CGAN model with Hamming 
weight labels for conditioning. Then, we used the pre-
trained SCA-CGAN model to generate simulated data with 
specified classes and specified quantities, and mixed the 
generated simulated data with the original data to obtain 
the class balanced samples at last. After finish the data 
augmentation task, we further investigated the classifica-
tion experiments with Hamming weight labels to evaluate 
the performance for the augmented dataset by the result of 
the guess entropy. In the experiments, we have set up four 
sets of experimental cases to quantitatively investigate the 
effect of the SCA based on SCA-CGAN model. In addition, 
we also evaluated the quality of the simulated data by ap-
pearance shape, leakage information correlation, feature 
clustering, and classification performance. 

Our contributions are as follows: 

1．There is still no better solution to the problem of 
SCA for unbalanced small samples, while this paper uses 
the SCA-CGAN model to achieve the purpose of data 
enhancement and successfully implements the SCA. 

2．In this paper, under the external condition of 
Hamming weight, the SCA-CGAN model can automatical-
ly generate simulated data of specified class and quantity 
for the expansion and augmentation of the original data, 
which addresses the problem of original unbalanced small 
samples. 

3．In this paper, we found that the SCA technique 
based on SCA-CGAN is also a threat to the first-order 
mask and jitter strategy by studying the experiment of 
SCA-CGAN model for ASCAD dataset, which can suc-
cessfully recover the correct key. 

2. Deep Learning Based Profiled SCA 

2.1 Profiled SCA 
Profiled side-channel analysis [22] is considered to be 

the most powerful SCA. Profiled SCA assumes that the 
attacker has a programmable cryptographic device that is 

identical to the target cryptographic device, and the attack-
ers have all the privileges of this device to extract the phys-
ical leakage information of the target cryptographic chip 
precisely through this device. This type of attack mainly 
includes Template Attack (TA) and Random Model Analy-
sis (RMA) (e.g. Linear Regression Analysis). The process 
of general profiled side-channel analysis is divided into two 
phases: 

(1) Profiling Phase 

The attacker has a programmable encryption device 
identical to the target encryption device and has all the 
privileges of this device. The attacker uses the known 
plaintext set Pprofiling = {pi | i = 1,2, ..., Np} and a fixed key 
k* to encrypt this cryptographic device and obtain a total of 
Np power consumption leakage data Tprofiling = {ti | i = 1, 
2, …, Np}, where ti denotes the i-th power consumption 
trace vector. Assume vi = g (pi, ki*) is a random intermedi-
ate value variable to represent the intermediate value of the 
encryption operation when the i-th power trace ti corre-
sponds to the fixed key ki

* with known plaintext pi. Thus, 
the attacker gets the profiled model {ti, vi}i=1,2,...,Np for 
power consumption traces and intermediate values. 

(2) Attack Phase 

The attacker collects Na new power consumption 
traces from the actual target device (which is structurally 
identical to the encryption device in the analysis phase), 
denoted by the set Tattack = {ti | i = 1, 2, ..., Na}. Tattack and 
Tprofiling are independent of each other, and the key corre-
sponding to each power consumption trace is ka*, which is 
fixed and unknown. To recover ka*, it is first necessary to 
compute all intermediate values for all possible guess keys 
kguess∈K and the corresponding plaintexts, and then com-
pute the posterior probability of each power consumption 
trace ti and the corresponding intermediate values accord-
ing to Bayes' theorem as follows: 
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The strategy for (1) according to the maximum 

likelihood function is calculated as follows: 
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The result of the calculation of (2) is the guessed key 
corresponding to the maximum of all posterior probabilities, 
which is the actual real key. 

2.2 Metrics 
In this paper, the results of the experiments on SCA 

will be evaluated in the following aspects: 

(1) Accuracy and Loss  

The accuracy of a model is one of the most commonly 
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used evaluation metrics in ML to characterize the model's 
ability to classify data. The precision of the model refers to 
the probability of the model achieving the correct classifi-
cation result on the validation set, which can also be under-
stood as the ratio of the number of power traces when the 
guess key is equal to the correct key to the number of pow-
er traces in all validation sets. The accuracy of the general 
model can be defined as: 
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The improvement in the accuracy of the model indi-
cates that the back propagation algorithm further optimizes 
the weights and bias parameters of the whole network 
model.  

(2) Guessing Entropy (GE) [23] 

GE is one of the common SCA metrics. In the imple-
mentation of DLSCA, assuming that the model to be evalu-
ated is M, a score matrix on M can be calculated based on 
the power consumption dataset and the corresponding 
plaintext matrix as follows: 
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In (4), yi[kguess] is the score of the prediction result of 
model M for guessing key kguess. The rank function of 
model M is calculated as follows: 

( ) { }*
train test guess guessrank , , , | .n nn k k k  = >   M T T S S  (5) 

In (5), Ttrain, Ttest are the training set and test set re-
spectively, n is the number of power traces in the training 
set. When the score of (4) is the highest, the corresponding 
rank is zero, at which time the key k* is the correct key kreal. 
In DLSCA, under the fixed size dataset, in order to elimi-
nate the influence of the division of training set and test set 
on rank, the mean rank method is usually used, so the GE 
expression is obtained as follows: 

 train testGE( ) E[rank( , , , )].n n= Μ T T  (6) 

Briefly, the GE is the mean rank of the correct key in 
multiple experiments. In the experiments of this paper, the 
generated new energy traces and the original energy traces 
are randomly divided into training and testing sets, and 
then the results of 50 experiments are averaged to obtain 
the final guess entropy results. 

2.3 Introduction of CGAN 
Generative Adversarial Network (GAN) is an unsu-

pervised learning model. The classical GAN network con-
sists of two parts, Generator and Discriminator. The role of 
the generator is to map the input random noise into simu-
lated data with a similar distribution to the real data by 
learning the feature distribution of the real data. The dis-

criminator aims to discriminate whether the input data is 
real data or simulated data generated by the generator. The 
generator generates simulated data satisfying the Pg distri-
bution by simulating the feature distribution Pdata of the real 
data with a priori distribution Pnoise. The input of the dis-
criminator is a mixture of real and simulated data, and the 
output represents the accuracy of the classification of the 
realness of the mixed data. During the model training, the 
generator and the discriminator are always playing against 
each other until the discriminator cannot determine whether 
the input data is real or fake, at which time the generator 
and the discriminator reach a balanced state and the whole 
network model is optimal. The objective function of GAN 
can be expressed as follows: 
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In (7), Pdata denotes the distribution of real data and Pnoise 
denotes the distribution of random noise. When training the 
discriminator, the optimization objective of the discrimina-
tor model is to distinguish the original data from the simu-
lated data as much as possible, specifically, to make the 
discriminant of the original data as close to 1 as possible, 
which means to increase the accuracy of D(x) as real, and 
at the same time, the discriminator should make the discri-
minant of the generated simulated data as close to 0 as 
possible, which means to reduce the accuracy of 
D(G(noise)) as real. When training the generator G, the 
optimization goal of the generator model is to improve the 
truthfulness of the generated simulated data to deceive the 
discriminator as much as possible, which means the gen-
erator should improve the accuracy of D(G(noise)) result 
as real as much as possible. The optimal discriminator can 
be calculated from (7) as (8). From (8), we can see that 
when Pdata = Pnoise, the discriminator cannot distinguish 
whether the input mixed data is real or fake, and the 
discriminator and the generator reach the Nash equilibrium 
state at this time, and the discriminant accuracy of the 
discriminator is 0.5. 

 ( ) data

data noise

.Px
P P

=
+
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In GAN, there is no control over the pattern of the da-
ta to be generated, while CGAN is based on GAN with the 
addition of the control of external condition Y to generate 
simulated data under specified conditions. When using 
CGAN to generate simulated data, it is necessary to first 
add external constraints Y to the original data and noise 
data respectively, and then feed the data with constraints to 
the discriminator and generator respectively, and then train 
the discriminator and generator until the mutual confronta-
tion process of the discriminator and generator reaches 
a dynamic equilibrium state, at which time the discrimina-
tor cannot judge the reality or fake of the input data. 

The principle, structure and training process of 
CGAN are very similar to GAN, but the objective function 
is slightly different: 
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Unlike (7), in (9), the external condition Y are added 
to both the discriminator and the generator, becoming 
D(x | Y) and G (noise | Y). 

2.4 SCA-CGAN Model 
In this paper, considering the unbalanced small sam-

ple data and the training of the SCA-CGAN model as well 
as the complexity of data generation, the Hamming weight 
model (HW model) is used. There are a total of 9 classes of 
labels for the data under this energy model, and the corre-
sponding SCA-CGAN external constraint Y is set to the 
HW label, which has a total of 9 classes. 

The basic structure of SCA-CGAN is shown in Fig. 1 
where both generator and discriminator use MLP as the 
basic architecture. The Pnoise of random noise satisfies the 
normal distribution, and it is an n × 100 dimensional vector, 
combined with the condition Y as the input data of the 
generator, and finally generated the simulated data by using 
the generator, and Pg is the corresponding data distribution 
function. The input of the discriminator is a mixture of the 
original data and the simulated data and the external condi-
tion variable Y. Under the joint action of these input data, 
the discriminator will discriminate the authenticity of the 
input data, and then give feedback to the generator and the 
discriminator to complete the parameter fine-tuning and the 
next training, when the simulated data generated by the 
generator achieves the effect of falsity and the discrimina-
tor cannot distinguish the authenticity of the input data. The 
whole SCA-CGAN model reaches the optimum. 

2.5 The Workflow of SCA-CGAN 
The workflow of SCA-CGAN is shown in Fig. 2. It 

contains four main phases: data pre-processing, generation 
of simulated data, generation of data quality assessment, 
and finally classifier training and testing. The specific 
operational information is as follows: 

(1) Data Pre-processing Phase 

Data preprocessing is the core of almost all deep 
learning tasks. In this phase, the main operations are as 
follows: 

• Using CPA technology to find points of interest (POIs) 
on the original dataset and to reduce the dimension. 
The dimensionality reduction operation will greatly 
reduce the complexity of the model calculation, and 
improve the training speed of the model. 

• Classifying the reduced-dimensional dataset by HW 
labels and determining the distribution of the number 
of each class of unbalanced data. 

HW

Generator Fake traces(Pg)

Discriminator
Real or Fake

Raw traces(Pdata)

Random noise(Pnoise)

0 1 2 3 4 5 6 7 8

Fine Tune
Training

Fine Tune
Training

Condition  Y

 
Fig. 1. The structure of SCA-CGAN. 
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CPA Classifier 
Performance

Yes

No
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Augmented 
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Fig. 2. SCA workflow of SCA-CGAN model. 

• Normalizing data, which can speed up gradient de-
scent of the model, which can improve the efficiency 
and the accuracy of model. 

(2) Generating Simulated Data Phase 

The final classification performance of the deep learn-
ing model is largely influenced by the balance of the input 
data, so it is important to ensure the balance of the classes 
of data in the deep learning task. The main operations in 
this phase are as follows: 
• Feeding the pre-processed data in phase (1) into the 

SCA-CGAN model and setting the external condition 
Y to the HW labels. 

• Iterative training of the SCA-CGAN model. 
• Using a pre-trained SCA-CGAN model to generate 

a specified class and number of simulated power con-
sumption traces, ensuring a balanced and sufficient 
number of hybrid data classes for the expansion 
enhancement. 

(3) Simulated Data Quality Assessment Phase 

After generating a certain amount of side channel 
energy data, the quality of the generated data needs to be 
further evaluated in the following steps: 
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• Visualizing the simulated data and the original data 
and observing the appearance and shape of the two 
sets of data. 

• Pearson correlation coefficient of the leakage infor-
mation in the leakage interval for the original traces 
and simulated traces respectively. 

• The performance of the classification of the generated 
simulated data is evaluated using the classifier model, 
and if it does not satisfy the requirements, it returns to 
phase (2) and the SCA-CGAN model is fine-tuned 
with the corresponding hyper-parameters, and then 
the SCA-CGAN model is retrained to generate simu-
lated energy traces and continue with the quality 
evaluation in this phase. 

(4) Training and Testing Classifier Model Phase 

After phase (3) is completed, the simulated data are 
merged with the original data to obtain an expanded and 
augmented balanced data set, which is randomly divided 
into a training set, a validation set, and a test set. After all 
the data are prepared is the classifier model building, train-
ing and testing phase, in which the structure of the classifi-
er model is determined according to the data characteristics 
of the augmented dataset, then the model is trained and 
validated using the training set and validation set, and final-
ly the trained classifier is tested using the test set. The 
experiments will calculate the GE of the correct key from 
the testing results of the classifier model to determine how 
many numbers of energy traces are needed to retrieve the 
correct key. 

In this paper, all classifier models are composed of 6 
fully connected layers with a classification number of 9. 
The loss function is multi-classification cross-entropy, and 
the corresponding output layer activation function is 
Softmax. 

3. Experimental Setups and Datasets 

3.1 Experimental Setups 
In this paper, the details of the environment setup re-

lated to the capture of ChipWhisperer (CW) data are shown 
in Tab. 1. The cryptographic platform in the experiment is 
ChipWhisperer [24], the target cryptographic board is 
CW308T-STM32F3, the cryptographic chip is 32-bit Arm 
Cortex-M4, the cryptographic algorithm is TinyAES-128C,  

 

Experimental Configuration Detailed Information 
Encrypted Platform ChipWhisperer 

Target Board CW308T-STM32 F3 
Target Chip 32-bit Arm Cortex-M4 

Target Encryption Algorithm TinyAES-128C 
Encrypted Mode ECB 

Programming Languages Python 3.6 

Deep Learning Framework Keras_gpu 2.3.1 + 
Tensorflow_gpu 2.1.0 

Tab. 1.  Experimental configuration details. 

and the encryption mode is ECB. The data in the experi-
ment is captured through the components of ChipWhisper-
er's Capture board with a sampling frequency of 40 MHz. 

3.2 The POIs of CW Dataset 
In the implementation of SCA, it is first necessary to 

simulate the energy consumption of the cryptographic 
device when running the encryption algorithm. There are 
generally three main energy models, respectively, the iden-
tity model (ID model), the Hamming distance model (HD 
model) and the Hamming weight model (HW model), and 
the labels of the power consumption data are different for 
different energy consumption models. In this paper, the 
HW model is chosen, and all the data corresponding to the 
labels are the HW (the number of 1 contained in the 8-bit 
binary data) of the target byte, and there are 9 classes in 
total. 

In this paper, the target encryption algorithm is AES-
128, which consists of a total of 10 rounds of encryption 
operations, each with a round key length of 128 bits (16 
bytes). In AES-128, the only nonlinear transformation is 
the byte substitution operation of the S-box, which can 
guarantee the security of the whole encryption algorithm 
significantly. 

The labels of all models trained in the experiments are 
set to the output state of the S-box in the first round of 
encryption operations, denoted as: 

 ( )Sbox .i i i= ⊕state p k    (10) 

In (10), ⊕  indicates the XOR operation, pi and ki respec-
tively represent the i-th byte of the plaintext and the i-th 
byte of the initial key, and statei indicates the states (e.g. 
labels) after the output of S-box. The reason for setting the 
labels in this way is that when the target encryption chip 
runs the encryption algorithm, it needs to invoke the S-box 
from the internal registers of the chip to perform the Sub-
Bytes operation firstly, and then load the intermediate 
states after the operation to the data bus, however, the 
capacitive load on the data bus is usually large, which 
corresponds to the maximum energy consumption of the S-
box operation. In this paper, for all 16 bytes of a set of keys, 
the attack strategy is to decrypt each byte one by one and 
finally achieve the recovery of all key byte. 

After determining the location of the target attack 
point need to find the corresponding interest interval, gen-
erally use CPA techniques to find the interest interval of 
the target byte, the main analysis steps are as follows: 

1) Capture original energy data and align all data. 

2) Calculate the matrix of intermediate values. Use pub-
lic information (e.g., plaintext or ciphertext) and all 
possible keys (guessing keys) for SubBytes. 

3) To find the interval of interest. Use CPA to calculate 
the Pearson Correlation between the intermediate 
value matrix and the original energy data, and select 
the interval with the largest correlation coefficient. 
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4) Data dimensionality reduction. Based on the interest 
interval found, all the original energy data are 
downscaled, and only the energy data information 
within the interest interval is retained. 

3.3 CW Dataset 
A total of 60,000 side channel power traces were col-

lected in the experiments, and each power trace contains 
3,000 sampling points. The encryption device uses random 
plaintexts and fixed keys for the entire encryption process. 
The visualization results of the original energy trace curves 
and the POIs are shown in Fig. 3, where Figure 3(a) shows 
the traces curve of all operations in the first round of en-
cryption, and Figure 3(b) shows a zoomed-in view of the 
traces curve for the first round of SubBytes operations, and 
Figure 3(c) shows the POIs corresponding to the power 
consumption traces, where the range marked by the dashed 
line is the interval of interest of the target byte. 

 
(a) 

 
(b) 

 
(c) 

Fig. 3.  (a) Single energy trace; (b) Zoomed in S-box energy 
trace; (c) The result of CPA. 

3.4 ASCAD Dataset 
The dataset provided in the ASCAD database is ex-

tracted from the ATMega8515_raw_traces.h5 file contain-
ing the raw traces. In order to avoid useless and extensive 
data processing, it only retains the 700 feature points from 
45,400 to 46,100, which correspond to the third byte of the 
output of the S-box operation of the first round of AES-128 
encryption. The ASCAD database contains mainly the 
following three datasets in HDF5 file format: 

1) ASCAD.h5, which contains traces that are 
synchronized and without jitter. 

2) ASCAD_desync50.h5, which contains traces with 
a 50 samples window maximum jitter. 

3) ASCAD_desync100.h5, which contains traces with 
a 100 samples window maximum jitter. 

The datasets contained in the above three files are di-
vided into two groups, one is the profiling datasets, which 
contains a total of 50,000 energy traces, and the other is the 
attack datasets, which contains a total of 10,000 energy 
traces. For the ASCAD dataset, the targeted attack point is 
the third byte state of the S-box output of the first round of 
encryption, and the corresponding label is set as 
Sbox(P3⊕K3). 

After extracting all the data sets from ASCAD dataset, 
the same pre-processing operation is done for each set of 
data, and the main steps are as follows: 

1) Making unbalanced small samples. All data are classi-
fied according to HW labels, and then a few energy 
traces are randomly extracted from each class and 
combined to obtain the unbalanced small sample da-
taset, which is a total of 2000 data in the experiments 
of this paper. 

2) Normalizing the unbalanced small samples. 

4. The Experimental Results and 
Analysis 

4.1 Experimental Protocols 
In this paper, we design the same comparison experi-

ments for both CW data and ASCAD dataset with defense 
strategies, and the specific experimental protocols are 
shown in Tab. 2. 

All experiments use first-order CPA to find the POIs 
in the corresponding dataset. In addition, for the ASCAD 
dataset, the role of mask is not considered in the experi-
mental profiling phase, which is because the attacker does 
not know the existence of mask in the actual SCA. 
 
 
 
 
 



130 W. WANG, J. N. WANG, F. L. HU, ET AL., SCA-CGAN: A NEW SIDE-CHANNEL ATTACK METHOD … 

 

Experimental 
Protocols 

Original 
traces 

Generated 
traces 

Augmented 
traces 

Training 
set: Test set 

A 1000 0 1000 4:1 
B 1500 0 1500 4:1 
C 1500 1500 3000 4:1 
D 1500 1500 × 2 4500 4:1 

Tab. 2. All experimental protocols. 
 

Layer(type) Output Shape Param # 
Dense (None, 100) 10100 

LeakyReLU (None, 100) 0 
Dense (None, 256) 25856 

LeakyReLU (None, 256) 0 
BatchNormalization (None, 256) 1024 

Dense (None, 512) 131584 
LeakyReLU (None, 512) 0 

BatchNormalization (None, 512) 2048 
Dense (None, 512) 262656 

LeakyReLU (None, 512) 0 
BatchNormalization (None, 512) 2048 

Dense (None, 256) 131328 
LeakyReLU (None, 256) 0 

BatchNormalization (None, 256) 1024 
Dense (None, 100) 25700 

Total params:  593,368 

Tab. 3. Structure of the Generator. 
 

Layer(type) Output Shape Param # 
Dense (None, 100) 10100 

LeakyReLU (None, 100) 0 
Dense (None, 512) 51712 

LeakyReLU (None, 512) 0 
Dropout (None, 512) 0 

Dense (None, 512) 262656 
LeakyReLU (None, 512) 0 

Dropout (None, 512) 0 
Dense (None, 512) 262656 

LeakyReLU (None, 512) 0 
Dropout (None, 512) 0 

Dense (None, 512) 262656 
LeakyReLU (None, 512) 0 

Dropout (None, 512) 0 
Dense (None, 1) 513 
Dense (None, 9) 4617 

Tab. 4. Structure of the Discriminator. 
 

Optimizer Adam 
Learning rate 0.0002 
Loss function Cross-Entropy 
Mini_batch 256 

Epochs 5000 

Tab. 5.  Hyperparameter setting. 

4.2 The Experimental Results and Analysis 
for CW Dataset 

4.2.1 Training 

The structures and parameters of the SCA-CGAN 
model in the experiments for CW dataset are shown in 
Tab. 3 and Tab. 4, and the information on the hyperpa-
rameter settings for model training and testing is shown in 
Tab. 5. For the ASCAD dataset, the structure of the SCA-

CGAN model is the same, except that the number of input 
data features. 

4.2.2 Testing 

After training the SCA-CGAN model, for experi-
ments A, B, C and D, the corresponding number of simu-
lated power consumption traces were generated with the 
generator in SCA-CGAN, and finally the simulated traces 
and the original traces were visualized, as shown in Fig. 4.  

In the visualization results, the original trace curve 
(blue) and the simulated trace curve (orange) are very simi-
lar in appearance and shape, with only minor differences at 
individual peak vertices. 

In addition, the leaked information correlation analy-
sis of the simulated traces is performed using CPA tech-
nique, and the results are shown in Fig. 5. The experi-
mental results show that the simulated traces also have 
leakage information in the leakage interval, and the correla-
tion of the leakage information is high and very close to the 
results of the original traces, which indicates that the simu-
lated traces have a positive effect on keys recovery. In 
addition, for CW dataset, we also find that the CPA results 
show that the generated traces have more jittered parts than 
the results of the original traces, which may be the reason 
that the noisy data input to the generator is not completely 
fitted to the distribution of the real data during the training 
of the SCA-CGAN model, and some noisy information still 
exists. 

In order to further evaluate whether the generated 
simulated traces have obvious features between each class, 
this paper uses the feature clustering technique to cluster 

 
Fig. 4.  The appearance of original trace and generated trace. 

 
Fig. 5.  The result of CPA for original traces and generated 

traces. 
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Fig. 6.  The clustering result of generated traces. 

the simulated traces, and the final results are shown in 
Fig. 6. The clustering results shows that there is no obvious 
crossover between each class of the generated traces, and 
the data points of each class are clustered relatively well, 
and the overall clustering effect is relatively good. 

4.2.3 The Performance of Classifiers and GE 

In this paper, the labels of traces selected in the profil-
ing phase is the Hamming weight of the intermediate value 
of the target byte, so the number of classifications of the 
corresponding classifier is 9 classes in total. The specific 
structures and parameters of the classifier are shown in 
Tab. 6. The activation function of all hidden layers of the 
classifier is set to ReLU, and the activation function of the 
output layer is set to Softmax. Detailed classifier hyperpa-
rameters is shown in Tab. 7. 

In the experiment, all classifiers from experiment A to 
D are of the same structure. The final model performance 
of each group of experiments is shown in Fig. 7. As can be 
seen from Fig. 7, the accuracy and loss value of each model 
gradually converge optimally in the four groups of experi-
ments from experiment A to D, and all of them can reach 
 

Layer(type) Output Shape Param # 
Dense (None, 100) 10100 
Dense (None, 200) 20200 

Dropout (None, 200) 0 
Dense (None, 400) 80400 

Dropout (None, 400) 0 
Dense (None, 400) 160400 

Dropout (None, 400) 0 
Dense (None, 400) 160400 

Dropout (None, 400) 0 
Dense (None, 200) 80200 

Dropout (None, 200) 0 
Dense (None, 9) 1809 

Total params:  513,509 

Tab. 6.  Structure of the classifier. 
 

Optimizer Adam 
Learning rate 0.0002 
Loss function Cross-Entropy 
Mini_batch 256 

Epochs 1000 

Tab. 7.  Hyperparameter setting of the classifier. 

 
(a) 

 
(b) 

Fig. 7. (a) The validation accuracy of classifier; (b) The 
validation loss of classifier. 

the optimal model after 1,000 iterations of training. The 
final results show that the model accuracy of experiment A 
finally reaches 70.50% and the corresponding loss value 
decreases to 0.6562, which indicates that the performance 
of this model is the worst.  

However, the model accuracy of experiment D finally 
reaches 91.25%, which is 20.75% higher than the model 
accuracy of experiment A, and the corresponding loss 
value decreases to 0.2212, which is 0.3759 lower than the 
model loss value of experiment A, which indicates that the 
performance of this model is the best. In addition, the com-
parison with the experimental results of experiments C and 
D reveals that the results of experiments A and B are better, 
which indicates that the quality of the generated simulated 
traces is better and can enhance the original traces, which 
has a positive effect on the training of the classification 
model and can improve the accuracy of the model. 

After training all the classifiers, the further operation 
of correct key recovery needs to be performed. In the 
experiment, based on the prediction results of each group of 

 
Fig. 8. The GE results of model with HW label. 
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experimental classifiers on the test set, the number of 
power traces needed to recover the correct key can be cal-
culated by the guessing entropy algorithm, and the results 
of GE are visualized as shown in Fig. 8. 

As can be seen from Fig. 8, when a total of 500 origi-
nal power traces are used for key recovery, the GE results 
of all four groups of experiments can be reduced to 0, and 
all of them can successfully recover the correct key infor-
mation. In addition, among the four groups of experiments, 
the number of power traces required to reduce GE to 0 is 
the largest in experiment D, which needs 278 traces, while 
it is the smallest in experiment A, which needs only 57 
traces and reduces the number of power traces by about 
79.5% compared with experiment D. The results of the 
comparative analysis prove that the generated simulated 
power traces have a positive effect on key recovery, which 
can effectively reduce the number of power traces required 
for correct key recovery and greatly improve the efficiency 
of SCA. 

4.3 The Experimental Results and Analysis 
for ASCAD Dataset 
To further investigate the performance of the SCA-

CGAN model for SCA on datasets where first-order mask-
ing strategies exist, this paper performs an experimental 
study on each of the three jitter datasets from the ASCAD 
database. 

4.3.1 Testing 

Before the training of the SCA-CGAN model, the 
original energy trace data is first subjected to a prepro-
cessing operation. All three jitter datasets in the ASCAD 
data contain 60,000 energy traces, each with 700 temporal 
sampling points. In the experiments, all the ASCAD data 
are firstly classified into energy traces with HW labels, and 
then the unbalanced traces are extracted separately and 
formed into a new unbalanced small sample, and then the 
SCA-CGAN model is trained. 

After the SCA-CGAN model is trained, the quality of 
the generated simulated energy traces needs to be further 
evaluated. First, a visual comparison analysis between the 
original and simulated energy traces in terms of the appear-
ance and shape of the energy traces and the correlation of 
the leakage information is performed, and the results are 
shown in Fig. 9. As can be seen from Fig. 9, the simulated 
energy traces generated by the SCA-CGAN model are very 
similar to the original traces in terms of appearance for 
three jittered ASCAD datasets, and there are only small 
deviations at some peak points. In addition, due to the 
presence of first-order mask in all jittered ASCAD datasets, 
that caused the results of all CPAs to show no significant 
correlation. In fact, in the actual SCA, the attacker is nei-
ther aware of the existence nor what the mask is, so the 
masking role of the mask is not considered in this experi-
mental profiling phase. 

Additionally, the generated simulated energy traces 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Appearance of the original trace and the generated 
trace for: (a) ASCAD; (b) ASCAD_desync50; 
(c) ASCAD_desync100. 

are further visualized and analyzed by feature clustering, 
and the experimental results are shown in Fig. 10. From the 
clustering effect, it can be seen that the simulated traces 
under all jittered situations can be successfully clustered 
and clustered into 9 classes at one time. In addition, there is 
no serious cross-mixture among all classes, which indicates 
that the generated simulated traces have clear class charac-
teristics and the data quality is good. 

4.3.2 The Performance of GE 

After evaluating the quality of all the simulated traces, 
we have to go further to investigate the effect of SCA on 
the simulated traces. In this experiment, the same experi-
ments are performed for all jittered ASCAD datasets, and 
all classifiers have the same structure, which is basically 
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the same as the classifier structure of the CW dataset, only 
the number of features of the input data is different. 

After training and testing all classifiers, the GE of the 
correct key under each jitter case is calculated, and the 
results are shown in Fig. 11. 

As can be seen from Fig. 11, all four groups of exper-
iments use 1,000 original traces to calculate the GE of the 
correct key. Among all jittered ASCAD, only in the cases 
of jitter of 0 and 50, the corresponding GE can be reduced 
to 0, while in the case of jitter of 100, the GE cannot be 
reduced to 0. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10.  The clustering result of generated traces for: 
(a) ASCAD; (b) ASCAD_desync50; 
(c) ASCAD_desync100. 

 
(a) 

 
(b) 

 
(c) 

Fig. 11.  The results of GE for: (a) ASCAD; 
(b) ASCAD_desync50; (c) ASCAD_desync100. 

When the jitter is 0, only the GE of experiment A 
cannot be reduced to 0, while the GE of the remaining three 
groups of experiments can be reduced to 0. In addition, 
experiment B requires a total of 436 original traces to re-
duce the GE of the correct key to 0, while experiment D 
requires only 101 original traces, which requires the least 
number of traces and is about 76.8% less than the result of 
experiment B. 

When the jitter is 50, only experiment A still cannot 
reduce the GE to 0. In the remaining three groups of exper-
iments, experiment B requires a total of 848 original traces 
to reduce the GE of the correct key to 0, while experiment 
D requires only 206 original traces, the least number of 
traces required, which is about 75.7% less than the result of 
experiment B. 

When the jitter is 100, the GE of all four groups of 
experiments cannot be reduced to 0, and none of them can 
successfully recover the correct key. 

In addition, the GE of experiment C and experiment 
D are better than those of experiment A and experiment B 
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in all cases of jitter, which indicates that the generated 
traces have a positive effect on the final key recovery and 
can improve the efficiency of the SCA. When the jitter is 0 
and 50, all classifiers trained with the enhanced balanced 
dataset can successfully recover the correct key, with the 
results of experiment D outperforming those of experiment 
C, which further indicates that the enhanced dataset ex-
panded with more generated traces can train a better classi-
fier, which can recover the correct key faster and more 
efficiently. 

Experimental studies on ASCAD data further show 
that SCA-CGAN can be successfully implemented and 
recover the correct key information. Thus, for side-channel 
energy data with a defense strategy of first-order mask 
protection or a tiny range of timing data jitter, it is possible 
to successfully implement SCA and recover the key by 
using SCA-CGAN. 

5. Conclusion 
In this paper, we address the problem of unbalanced 

small-sample data in DLSCA where the original dataset is 
small and unbalanced, by using the generator of SCA-
CGAN and external constraints to generate the specified 
number and class of data. In this paper, experimental stud-
ies related to unproducted CW data and protected ASCAD 
dataset with first-order mask are performed separately, and 
the same four experimental scenarios are designed for each 
dataset for comparative analysis. For the quality of the 
generated energy traces, the evaluated metrics include 
appearance shape, leakage information correlation, feature 
clustering, classifier performance, and the performance of 
each model. The efficiency of SCA is evaluated based on 
the accuracy and GE of the classifier model. 

Finally, the results show that the SCA using the 
expanded and enhanced balanced dataset is more efficient 
and recover the correct key faster. In addition, the data en-
hancement method based on SCA-CGAN is still effective 
for ASCAD datasets with first-order mask masking and 
a certain range of timing sampling jitter, and the experi-
mental results also show that the correct key can be suc-
cessfully recovered.  

In our future work, we will continue to study the work 
on SCA-CGAN, which mainly consists of the following: 

1) Studying the impact of simulated data generated by 
different structures of discriminators and generators 
on SCAs. 

2) Focusing on SCAs under protection strategies such as 
random time delay, second-order masking, etc. 

3) Finding or improving corresponding side channel de-
fense strategies. 
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