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Abstract. To address the challenges of increasing com-
plexity and larger number of training samples required for 
high-accuracy spectrum prediction, we propose a novel 
lightweight model, leveraging a temporal convolutional 
network (TCN) and knowledge distillation. First, the pre-
diction accuracy of TCN is enhanced via a self-transfer 
method. Then, we design a two-branch network which can 
extract the spectrum features efficiently. By employing 
knowledge distillation, we transfer the knowledge from 
TCN to the two-branch network, resulting in improved 
accuracy for spectrum prediction of the lightweight net-
work. Experimental results show that the proposed model 
can improve accuracy by 19.5% compared to the widely-
used LSTM model with sufficient historical data and re-
duces 71.1% parameters to be trained. Furthermore, the 
prediction accuracy is improved by 17.9% compared to 
Gated Recurrent Units (GRU) in the scenarios with scarce 
historical data. 

Keywords 
Spectrum prediction, knowledge distillation, temporal 
convolutional network, lightweight networks, few-
shot learning 

1. Introduction 
In the heterogeneous spectrum sharing networks, 

spectrum prediction enables the secondary users (SUs) to 
learn the spectrum usage patterns of the primary users 
(PUs), so the spectrum holes can be identified proactively 
and the optimal spectrum access strategy can be obtained 
by the SUs on-line. This reduces the communication delay 
and improves the channel throughput. In recent years, 
a number of spectrum prediction models have been pro-
posed, including moving average [1], [2], hidden Markov 
model, Bayesian reasoning [3], multilayer perceptron [4] 
and recurrent network [5], etc. However, most existing 
studies assumed that the training samples were abundant 
and unabridged. In practice, when the spectrum usages of 
PUs or the electromagnetic environment changes, it is 

challenging to ensure the pre-trained models perform well 
due to the lack of site-specific historical data. At the same 
time, existing models usually come with high complexity 
to attain high predicting accuracy, and is difficult to be 
implemented in mobile edge devices with limited storage 
and computing resources. 

Considering the uncertainty of data collection behav-
iors by mobile devices and dynamic changes of the spec-
trum environment in wireless communication [6], research-
ers have paid attention to the scenarios with incomplete or 
insufficient data. Literature [7] considered the incomplete-
ness of historical data and converted the two-dimensional 
spectrum prediction problem into a matrix completion 
problem. Ding et al. [8] analyzed the impact of abnormal 
data on the rank distribution of the spectrum matrix, and 
developed an optimization method to address the problem 
via matrix recovery theory. Based on the work in [8], 
a robust online spectrum prediction framework (ROSP) 
was proposed in [9], and a joint optimization algorithm for 
matrix completion and matrix recovery was designed and 
tested with real spectrum data. In [10], a new spectrum 
predicting approach for the electromagnetic countermeas-
ure environment was proposed, in which transfer learning 
was adopted to tackle the issue of sparse spectrum data. 
Furthermore, the similarity of the spectrum data among 
different scenarios was measured and the applicability of 
the single frequency point training model to other bands 
could be obtained. This innovative approach offered 
a fresh perspective on the spectrum prediction problem. In 
[11], the generative adversarial network (GAN) and deep 
transfer learning was combined to construct a spectrum 
prediction model suitable for different frequency bands. 
However, it required a large amount of similar data of the 
target domain for prediction, and the network structure was 
complex and difficult for training. Therefore, in [12], the 
transfer learning and meta-learning was combined for the 
spectrum prediction, for which the meta-learning was 
adopted to learn experiences gained from similar spectrum 
prediction tasks. This approach resulted in improved 
adaptability in terms of cross-band prediction when com-
pared to the solution proposed in [11]. In summary, a few 
schemes have been proposed to address the spectrum pre-
diction problems with relatively scarce historical data, yet 
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the complexity of the model and the difficulty in the actual 
deployment of the model have not been fully considered. 
To account for this problem, the knowledge distillation 
approach is investigated in this study to construct a light-
weight prediction model.  

Knowledge distillation was initially introduced by 
Hinton et al. [13] to transfer knowledge from larger models 
to smaller ones. This technique enables the simpler models 
to achieve similar performances compared with the com-
plex teacher models, while with reduced model parameters. 
Since its introduction, various variants and network archi-
tectures have been developed for different practical appli-
cations [14]. For example, a prediction model was pro-
posed in [15] for the furnace temperature based on the 
transfer learning and knowledge distillation, which used 
a generative adversarial loss to facilitate the transfer pro-
cess and established a distillation network based on multi-
task learning to address the high delay of the deep transfer 
network. A recent study [16] presented a hybrid mode to 
predict the remaining service life of aircraft engines, which 
employed two knowledge distillations. The first distillation 
is heterogeneous, which can compress the model and ac-
celerate the training, while the second isomorphic distilla-
tion aims to improve the model prediction accuracy with-
out changing the model structure. In [17], knowledge dis-
tillation was explored in the context of time series classifi-
cation. The results verified that employing knowledge 
distillation techniques improved the performance of small-
scale convolutional networks on multiple datasets, while 
also reducing computational costs and storage require-
ments. The above methods demonstrate that knowledge 
distillation can significantly improve the prediction accuracy 
and reduce the model complexity in diverse applications. 

In this paper, a knowledge distillation model is pro-
posed to address the problems of limited historical data and 
high complexity in the spectrum prediction. We design 
a framework combining knowledge distillation and tem-
poral convolutional network (TCN) to construct a light-
weight and fast prediction model, which can achieve accu-
rate prediction even with a small number of available sam-
ples. The main contributions are summarized as follows: 

• A novel prediction model based on TCN has been de-
signed for spectrum prediction. We use knowledge 
distillation method to transfer the knowledge learned 
from a large model to a small model, which can ac-
celerate the spectrum prediction process while attains 
high prediction accuracies. 

• We use self-transfer learning scheme to update the 
parameters of TCN by freezing certain layers and up-
dating only some of the weights. This approach 
avoids the problem of information omission in the 
hidden layer caused by a high hole factor. Additional-
ly, we construct a two-branch network that uses the 
low-dimensional representation of the data for both 
reconstruction and prediction, making the proposed 
model more efficient and robust. 

• We conduct extensive experiments with real spectrum 
data, results demonstrate that the proposed method 
performs well in scenarios with sufficient and scarce 
historical data. Moreover, this approach offers a sim-
plified implementation and deployment, even in re-
source-constrained environments 

The rest of this paper is organized as follows. Sec-
tion 2 presents the spectrum prediction definition and the 
principle of knowledge distillation. Section 3 proposes 
a TCN teacher model optimization method based on self-
transfer and constructs a two-branch network student 
model. Section 4 gives the results and discussion of exper-
imental simulations. Finally, we conclude the whole paper 
in Sec. 5. 

2. System Model 

2.1 Problem Statement 
We consider a typical centralized cognitive radio 

(CR) system with a fusion center (FC) and K sparsely dis-
tributed SUs. As shown in Fig. 1, the SUs continuously 
monitor N frequency bands and send the received signal 
strength (RSS) to FC [11], [18], FC collects the RSSs form 
spectrum data D = {f1,f2,…,fn,…,fN}. To facilitate the mod-
el for time series prediction [19], we transform the spec-
trum data fn = {x1,x2,…,xt,   xT} by using a sliding window 
with a length of c + 1. We define the first c samples as 
an input vector st = {xt – c + 1, xt – c + 2,…,xt} and the last sam-
ple as the ground truth yt = xt + 1, which be predicted. We 
then have a transformed dataset fn = {(st, yt)}m

t=1 at frequen-
cy point n, where m = T − c. The goal of spectrum predic-
tion is to train a model to predict yt given the observed 
spectrum data st. Concisely, the following formula is used 

 ˆ arg max ( | )t t ty p y= s  (1) 

where ŷt is the expected output, yt is the target output, and 
the predicted value ŷt should be close to the target value yt. 

2.2 Knowledge Distillation Model 
Knowledge distillation is a deep learning method that 

transfers knowledge from a complex and highly accurate 
teacher model to a simpler student model with relatively 
less performance loss [20]. The teacher model is trained on 
historical spectrum data and is capable of capturing fea-
tures that the student model may have difficulty in learn-
ing. To extract higher-level features and facilitate enhanced 
learning for the student model, we use the intermediate 
layer output of the teacher model as the input for the stu-
dent model. Two loss functions are to be minimized, namely 
soft loss and hard loss, to enable the student model to learn 
the knowledge of the teacher model. 

We use the soft loss to measure the difference 
between the outputs of the teacher model and the student 



RADIOENGINEERING, VOL. 32, NO. 4, DECEMBER 2023 471 

 

 
Fig. 1.  Source of data and division. 

model. The goal of soft loss is to maintain the knowledge 
of teacher model. The output of the teacher model is de-
fined as a soft label, which is also taken as the target varia-
ble for the student model. The formula for soft loss is de-
fined as 

 S ' T 2
soft

1

1 ( ( ) ( ))
m

t t
t

L f f
m =

= −∑ s s  (2) 

where f T(∙) is the teacher model, f S(∙) is the student model, 
st is the input vector, and stˈ is the intermediate output of 
the teacher model which will be discussed in Sec. 3.1. 

The hard loss is incorporated to evaluate the predic-
tion accuracy of the student model by measuring the differ-
ence between the output of the student model and the 
ground truth. The ground truth yt, namely the hard label, is 
used as the target variable of the student model. Then the 
hard loss is can be formulated as 

 S ' 2
hard

1

1 ( ( ) ) .
m

t t
t

L f y
m =

= −∑ s  (3) 

By minimizing both the soft loss and hard loss func-
tions, the student model can achieve high predictive accu-
racy while reduce computational costs. This approach 
improves operational efficiency and enhances the adapta-
bility of the models to diverse environments with limited 
resources. 

3. Spectrum Prediction Based on 
Knowledge Distillation 

3.1 A Framework for Knowledge Distillation 
Based on Intermediate Layer 
The proposed knowledge distillation framework is il-

lustrated in Fig. 2. We implement an intermediate layer on 
the teacher model to provide more critical data features for 
the student model. At the same time, knowledge distillation 
constrains the output of the student model from both the 
soft and the hard loss functions to improve the prediction 
performance of the student model. Additionally, we use 
a factor to balance the generalization ability of learning 
new data and preserving existing knowledge. If the teacher 
model is more powerful than the student model, a larger 
balance factor can be selected to ensure that the student 
model can learn more existing knowledge. In contrast, 
a smaller balance factor is enough if both the teacher model 
and the student model have advanced skills. Then the pro-
posed model parameters are updated by minimizing the 
following function 

 total soft hard(1 )L L Lα α= + −  (4) 

where α is the balancing factor following in [0, 1]. Due to 
the higher complexity and accuracy compared to the 
student model, we set α = 0.6. 

3.2 Construction of the Teacher Model TCN 
and the Self-transfer Optimization 
Traditional recurrent networks (RNNs) perform well 

in time series prediction for their inherent memory capabil-
ities. However, in practice, there is an inevitable internal 
design problem, i.e., only one time step can be handled at 
a time. This serial computation design results in high 
memory consumption during training. To address the issue, 
TCN is taken as the teacher model for distillation in this 
study, which allows parallel computation and the training 
process can be accelerated consequently. 

 
Fig. 2.  The structure of the proposed model. 
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Fig. 3.  Parameter optimization of teacher model based on self-
transfer. 

The TCN model is composed of causal convolution 
layers, dilated causal convolution layers, and residual 
blocks. The unidirectional nature of causal convolution 
ensures that future spectral values are predicted based 
solely on the historical momentary spectrum data. Dilated 
causal convolution can expand the receptive field of con-
volutional layers without increasing the number of parame-
ters. This is achieved by introducing a dilation factor that 
controls the interval size in the convolutional kernel. The 
dilation rate of each layer increases exponentially by 
a factor of 2, enabling the higher-level convolutional 
kernels to capture longer dependencies. 

Each layer of the TCN subsamples the input sequence 
and compresses it into a shorter representation. However, 
as the numbers of TCN layers increase, the hole factor also 
increases, potentially causing the loss of vital information 
in the hidden layers [21]. To improve TCN prediction 
accuracy and to capture the long-term dependencies better 
in the sequence [22], we adopted a method of freezing the 
shallow weights and retraining to update the unfrozen 
weights. As shown in Fig. 3, we use historical spectrum 
data training the original TCN model. In order to protect 
hidden layers of important information, we freeze some of 
the TCN network layers and update the remaining layers, 
then we get a more accurate prediction model TCN as the 
teacher model. More details on hyperparameters are de-
scribed in Sec. 4.3. 

3.3 Two-branch Network Student Model 
In this paper, we construct a two-branch network that 

extracts the spectrum data features completely. The archi-
tecture is depicted in Fig. 4, it consists of two branches, 
namely the Encoder-Reconstruction branch frec and the 
Encoder-Prediction branch fpre. These branches serve dif-
ferent purposes. 

The Encoder-Reconstruction branch compresses the 
data into a coded form, which is then reconstructed into 
an output that closely resembles the original data. This 
allows the model to learn a low-dimensional represen-
tation. The branch comprises an encoder with parameter θ1 

 
Fig. 4.  Two-branch student model. 

and a reconstructor with parameter θ2, and it takes the input 
data stˈ and outputs frec(stˈ;θ1,θ2). The reconstruction loss is 
defined as follows 

 ' 2
rec rec 1 2

1

1 ( ( ; , ) ) .
m

t t
t

L f
m

θ θ
=

= −∑ s s  (5) 

The Encoder-Prediction branch shares the same en-
coder as in Encoder-Reconstruction branch and predicts the 
output values. It consists of an encoder with parameter θ1 
and a predictor with parameter θ3. This branch receives the 
data stˈ and predicts the future spectrum values fpre(st;θ1,θ3). 
We define the prediction loss as 

 ' 2
pre pre 1 3

1

1 ( ( ; , ) ) .
m

t t
t

L f y
m

θ θ
=

= −∑ s  (6) 

Since this model contains two branches, the total loss 
of the model should be a weighted combination of two loss 
functions. Hence, equation (2) can be rewritten as follows 

 hard rec pre .L L L= +  (7) 

The Encoder-Reconstruction branch plays a crucial 
role in learning the inherent representation, while reducing 
the noise and redundancy in the input data. By sharing the 
same encoder, both the reconstructor and the predictor can 
leverage a low-dimensional data representation, thereby 
improving the training efficiency and generalization ability 
of the model. 

3.4 The Overall TCN-KD Procedure 
 

Alg. 1. TCN-KD Training Procedure 
input: Spectrum data 1{ }N

n n==D f  with '
1{( , )}m

n t t ty ==f s  
output: Model fS with parameters 1̂θ , 2̂θ and 3̂θ  

1 Initialize 1θ , 2θ  and 3θ  
2 for {1,2,..., }n N∈  do 
3   while not converged do 
4     for {1,2,..., }t m∈  do 
5       Obtain st, yt ∈ D 
6       Pass st through f T to obtain stˈ, fT(st) 
7       Pass stˈ through fS to obtain ' '

rec 1 2 pre 1 3( ; , ), ( ; , )t tf fθ θ θ θs s  
8       Compute Lsoft by (2) 
9       Compute Lhard by (7) 
10      Compute Ltotal by (4)  
11     end for 
12   end while 
13   Update 1θ , 2θ  and 3θ  by minimizing Ltotal 
14 end for 
15 return 1̂θ , 2̂θ and 3̂θ  



RADIOENGINEERING, VOL. 32, NO. 4, DECEMBER 2023 473 

 

We refer to the knowledge distillation network of op-
timized teacher and student models as TCN-KD. The 
whole training process of TCN-KD is summarized in Algo-
rithm 1. The teacher model receives normalized and fixed-
length spectrum data, generating intermediate layer fea-
tures and soft labels. The student model utilizes middle 
layer features to generate predicted values. By minimizing 
both the soft loss and hard loss, the student model reduces 
the discrepancy with the teacher model. In the testing pro-
cess of TCN-KD, the input data is passed through the En-
coder-Prediction branch of the trained model to obtain the 
predicted results. 

4. Experiments and Analysis 

4.1 Dataset Description and Preliminary 
Analysis 
The adopted spectrum data in the experiments was de-

rived from an open-source dataset from RWTH Aachen 
University in Germany [23]. We selected the dataset lo-
cated on the roof of a residential area in Maastricht. The 
dataset consists of four sub-bands with central frequencies 
of 770 MHz, 2250 MHz, 3750 MHz, and 5150 MHz. Each 
sub-band is with a bandwidth of 1500 MHz, a frequency 
resolution of 200 kHz, and a temporal resolution of 1.8 s. 
For this data, the power spectral density (PSD) value of 
1000 time slots are available every half an hour. However, 
processing these data requires a significant amount of 
memory and computing capacity, which is difficult for 
typical computers to process. To solve this problem, we 
use a weighted average of 100 consecutive values. As the 
PSD value in the dataset are in dBm/200 kHz, a weighted 
average cannot be applied directly. Therefore, we first 
convert PSD values to linear from with mW units, and 
convert the computed average values to the original loga-
rithmic form to get the final average PSD values. We select 
spectrum data for four widely-used cellular services as 
shown in Fig. 5. These services include the GSM 1800 up- 
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(d) GSM1800DL 

Fig. 5.  Service activity in different frequency bands. 

link band, GSM 1800 downlink band, GSM 900 uplink 
band, and GSM 900 downlink band, which were collected 
over a duration of seven days. 

To meet the input requirements of TCN, it is neces-
sary to normalize the data and divide it into time windows. 
The normalization step is to scale the original data into the 
range of [0,1]. Autocorrelation coefficient reflects the de-
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gree of correlation between time series at different times 
[24]. The higher the autocorrelation coefficient, the more 
significant the correlation between the sequences, and more 
likely spectrum predictions can be made from the observed 
spectrum data [25]. Generally, when the autocorrelation 
coefficient exceeds 0.8, it indicates a high level of correla-
tion. The utilized autocorrelation coefficient is given by 

 t
t,t+ t

t

cov( , )t t

t t

x x
x x

ρ
σ σ

+∆
∆

+∆

=  (8) 

where cov(∙) denotes the covariance, and σ denotes the 
sample standard deviation. 

The calculation result is shown in Fig. 6, it can be 
seen that the autocorrelation coefficient gradually decreas-
es with the lag time step. We also compare and evaluate 
different window sizes, using the same dataset and model, 
trying various sliding window sizes, and analyzing their 
impact on prediction performance using RMSE. Table 1 
demonstrates that when the sliding window size is 20, the 
RMSE is the smallest. Moreover, this window size ensures 
that the autocorrelation coefficient remains larger than 0.8. 
Therefore, we set the size of sliding window is 20. 

4.2 Evaluation Metrics 
In this study, we use two metrics for performance 

evaluation, i.e., the Root Mean Square Error and the Mean 
Absolute Error (MAE). 

RMSE represents the square root of the mean differ-
ence between the predicted value and the ground truth, 
which is computed as 

 ( )2

1

1 ˆ
m

i i
i

RMSE y y
m =

= −∑  (9) 
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Fig. 6.  Autocorrelation coefficient. 

 

Sliding window 5 10 15 20 25 
RMSE 0.85775 0.8553 0.8206 0.8119 0.8224 

Tab. 1.  The average RMSE of different size of sliding windows. 

where m is the number of the predicted data, y is the value 
of the ground truth, and ŷ is the value of the predicted data. 

MAE calculates the average of the absolute values of 
the deviations of the predicted values from the ground 
truth, which can avoid the problem of error offset. The 
computation of MAE is 

 
1

1 ˆ .
m

i i
i

MAE y y
m =

= −∑  (10) 

4.3 Teacher Model Optimization Experiments 
Based on Self-transfer 
In our previous setup, we set the window width as 20, 

so the hole factor of the TCN can be d = [1,2,4,8,16]. The 
proposed TCN architecture includes an input layer, a one-
dimensional convolutional layer, five residual blocks, 
a fully connected layer, and a final regression output layer. 
Each convolutional layer has 64 convolutional kernels with 
a size of 3. Based on the self-transfer TCN optimization 
network structure mentioned in the previous section, we 
continue to use RMSprop as the backpropagation opti-
mizer, the epoch value is set as 50, and the learning rate 
dropped from 0.01 to 0.001.  

After multiple experiments and averaging the results, 
it was determined that freezing the first 27 layers mini-
mizes the prediction error. Therefore, we selected this 
model as the teacher model in the following experiments. 
Figure 7 shows the performance comparison of the opti-
mized TCN with the classical time series prediction model 
[26]. According to the formula (9)–(10), a good model 
should have small RMSE and MAE. The results indicate 
that the self-transfer TCN outperforms the original TCN, 
with a decrease of 5.8% and 4.2% in the evaluation metrics 
RMSE and MAE, respectively. Moreover, the TCN 
demonstrates significant advantages in predicting the spec-
trum data. Compared to the LSTM and support vector 
regression (SVR), the optimized TCN reduces RMSE by 
20.9% and 19.3%, respectively. These findings suggest that 
TCN is suitable for the spectrum prediction problems, and 
the self-transfer TCN model can further improve the net-
work prediction accuracy. 
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Fig. 7.  Comparison of teacher model optimization experiment. 
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4.4 Performance of Knowledge Distillation 
Learning for Spectrum Prediction 
Here we perform knowledge distillation simulation 

experiments to train the lightweight student model, using 
the self-transfer TCN as teacher model. For the student 
model, we choose two-branch network, the parameters of 
which were set as follows. The Encoder is a feed-forward 
neural network with three hidden layers of different dimen-
sions, which has 20, 64, 32 dimensions separately. The 
ReLU activation function is applied after each hidden lay-
er. The Reconstructor has two linear layers with 32 and 20 
neurons respectively, while the Predictor has two linear 
layers with 16 and 1 neurons. For notation purpose, our pro-
posed knowledge distillation model is termed as TCN-KD. 

To evaluate the performance of TCN-KD, we conduct 
experiment in the four spectrum bands, GSM 900 UL, 
GSM 900 DL, GSM 1800 UL, and GSM 1800 DL, using 
LSTM, GRU, CNN-LSTM, two-branch network, and 
TCN-KD. Two-branch network is student model without 
the help of teacher and TCN-KD is the model with the 
knowledge of pre-trained teacher. Tables 2 and 3 show the 
RMSE and MAE results for each model in the experiments. 
It can be seen that in four different frequency bands, the 
proposed model is smaller than the RMSE and MAE of 
others except TCN teacher model. At the same time, TCN-
KD has significantly fewer parameters to be trained than 
the other models. Compared to the two-branch network, 
TCN-KD has only 2,816 more parameters, but the predic-
tion performance has been significantly improved. This 
shows that with the help of the teacher model, the student 
model can obtain higher prediction accuracy at the cost of 
smaller scale. To gain more insight, we present the RMSEs 
and MAEs of different models in Fig. 8. Notably, the two-
branch network that we proposed has a relatively low 
RMSE but a higher MAE. This is due to the presence of 
extreme outliers between predicted and actual values and 
MAE is sensitive to outliers. However, when we incorpo-
rated knowledge distillation for our TCN-KD model, it 
shows higher accuracy and more stable performance. 
Although TCN-KD is not as effective as the teacher model 
 

RMSE 1800UL 1800DL 900UL 900DL Params 
LSTM 0.3752 0.9539 1.4313 0.9378 40 901 
GRU 0.3647 0.9474 1.3551 0.8991 30 701 

CNN-LSTM 0.3642 0.9412 1.4124 0.9036 53 493 
TCN 0.3222 0.7448 1.1960 0.7917 141 633 

Two-Branch 0.3546 0.9045 1.3551 0.8805 5 685 
TCN-KD 0.3199 0.7542 1.1983 0.7994 8 501 

Tab. 2.  RMSEs and numbers of different models in four bands. 
 

MAE 1800UL 1800DL 900UL 900DL Params 
LSTM 0.2734 0.6613 0.6673 0.4827 40 901 
GRU 0.2668 0.6591 0.6259 0.4467 30 701 

CNN-LSTM 0.2654 0.6534 0.6300 0.4347 53 493 
TCN 0.2357 0.5507 0.5309 0.3636 141 633 

Two-Branch 0.2628 0.6796 0.6549 0.4566 5 685 
TCN-KD 0.2344 0.5607 0.5413 0.3699 8 501 

Tab. 3.  MAEs and numbers of different models in four bands. 
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(a) RMSE comparisons for multiple methods. 
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(b) MAE comparisons for multiple methods 

Fig. 8.  Comparison of knowledge distillation experiment. 

TCN, the difference in prediction error is negligible, and 
the number of parameters to train is significantly lower, 
indicating that the knowledge distillation step helps im-
proving TCN-KD’s prediction performance while main-
taining model simplicity. 

In order to analyze the timeliness performance of the 
proposed model, we record the total time required for each 
model from training to prediction. The purpose was to 
evaluate the efficiency and applicability of the models [27]. 
In the experiment, we initialize the learning rate to 0.01 
and employ an early stopping mechanism. We use 
RMSprop as the optimizer for 50 epoch training and set the 
batch size to 12. Results are given in Tab. 4, we can find 
that the training time of the model usually increases pro-
portionally with the number of training parameters. Due to 
the large number of trainable parameters in the TCN mod-
el, it requires more time to attain higher prediction accura-
cy. LSTM training is time-consuming due to its serial 
computing nature. GRU requires less time compared to 
LSTM because it omits the output gate in its computation 
process. Utilizing knowledge distillation, TCN-KD 
achieves better training accuracy and less training time 
than LSTM and GRU. Given limited resources, TCN-KD 
is more suitable for practical deployment. 
 

Model LSTM GRU CNN-LSTM TCN TCN-KD 
Times [s] 44.05 31.46 28.49 39.06 19.56 

Tab. 4.  Time cost for multiple methods training. 
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Fig. 9.  Performance of three prediction model involved. 

For further analysis, the performance of MLP two-
branch network and the proposed model TCN-KD are 
compared in Fig. 9. MLP is the two-branch network with-
out reconstruction loss, two-branch network is the TCN-
KD without teacher. Although the prediction accuracy of 
MLP is not high, with the help of reconstruction loss, the 
accuracy is improved a lot. Meanwhile, with the help of 
pre-trained teacher model, the prediction accuracy of two-
branch neural network is further improved. 

4.5 Performance in Small Sample Scenarios 
for Spectrum Prediction 
By conducting comparative experiments between 

TCN-KD and other networks, we find that the proposed 
spectrum prediction framework based on the knowledge 
distillation has certain advantages regarding prediction 
time and accuracy, particularly when there are sufficient 
target samples. Further experimental verification is neces-
sary to determine whether TCN-KD can maintain good 
prediction performance with limited data. In this experi-
ment, we change the input data period from 7 days to 2 
days and tested various networks on the four spectrum 
bands. The RMSE was used to evaluate the prediction 
accuracy. As shown in Fig. 10, the analysis of errors in 
each frequency band shows that TCN-KD still performs 
well even with a limited amount of data. For example, in 
the GSM900UL band, the proposed algorithm reduces 
RMSE by 24.2% compared to CNN-LSTM and by 12.3% 
compared to the two-branch network. This is because 
knowledge distillation enables the student model to acquire 
comprehensive knowledge from the teacher model, which 
helps it achieve better generalization performance with 
limited data. In addition, we observe that CNN-LSTM 
performs poorly with a small amount of data. This can be 
attributed to the model complexity and large number of 
parameters in CNN-LSTM, making it challenging to effec-
tively train with limited data. Consequently, CNN-LSTM 
tends to overfit and its generalization ability decreases.  

For visualization purpose, Figure 11 shows the series 
of some predicted values in the experiment, where the 
ground truth, predicted values for the GRU and TCN-KD 
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Fig. 10.  The performance of different models under small 

sample scenarios in four bands. 
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Fig. 11.  Comparison of the spectrum prediction results. 

models are plotted. To present a clearer comparison, we 
selected the GRU with relatively better prediction perfor-
mance in the algorithm comparison. The results demon-
strate that TCN-KD, aided by knowledge distillation, can 
more effectively capture the intricate details in spectral 
data compared to the GRU model. Conversely, the GRU 
model exhibits poor fitting to the actual values.  

5. Conclusions 
In this study, a fast spectrum prediction model termed 

TCN-KD has been proposed to address the spectrum pre-
diction problem in the real spectrum environment with 
limited available samples. The knowledge distilled from 
the teacher model was used to guide the training process of 
the student model and allow the student model to learn 
more efficiently and quickly. The complexity and the sam-
ple requirements during training of the model was reduced, 
making it applicable to spectrum prediction tasks. Experi-
ments results with both sufficient and limited data show 
that TCN-KD can improve prediction accuracy by 19.5% 
compared to LSTM prediction in sufficient historical data 
and reduces 71.1% parameters to be trained at the same 
time. Furthermore, the accuracy can be improved by 17.9% 
compared to GRU in the scenarios with scarce usable his-
torical data. 



RADIOENGINEERING, VOL. 32, NO. 4, DECEMBER 2023 477 

 

In our future work, we will primarily concentrate on 
expanding the time-domain of spectrum prediction to joint 
time frequency domains. Such an approach may gather 
more comprehensive spectrum information, enabling us to 
make more accurate predictions. Further, the spectrum 
prediction results will be utilized in dynamic spectrum 
access to minimize system delay and maximize throughput 
capacity. 
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