
RADIOENGINEERING, VOL. 32, NO. 4, DECEMBER 2023 511

Synchronization of Dissipative Nosé–Hoover Systems:
Circuit Implementation

Rending LU 1, Hayder NATIQ 2, Ahmed M. Ali ALI 3,4,
Hamid Reza ABDOLMOHAMMADI 5, Sajad JAFARI 6,7

1 School of Electronic Engineering, Changzhou College of Information Technology, 213164, China
2 Dept. of Computer Technology Engineering, College of Information Technology,

Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
3 Dept. of Electronics Techniques, Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Babylon, Iraq

4 Al-Mustaqbal University College, Babylon, 51001, Iraq
5 Electrical and Computer Engineering Group, Golpayegan College of Engineering,

Isfahan University of Technology, Golpayegan, 87717-67498, Iran
6 Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

7 Dept. of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

36429720@qq.com, haydernatiq86@gmail.com, Ahmed.ali@atu.edu.iq, abdolmohammadi@iut.ac.ir,
sajadjafari83@gmail.com

Submitted July 27, 2023 / Accepted September 4, 2023 / Online first October 30, 2023

Abstract. The synchronization of dynamical systems has
been extensively studied across various scientific disciplines,
including secure communication, providing insights into the
collective behavior of complex systems. This paper investi-
gated the synchronization of diffusively coupled dissipative
Nosé-Hoover (DNH) systems analytically and experimen-
tally. This system exhibits a variety of fascinating dynamical
phenomena, including multistable or monostable chaotic so-
lutions and attractive torus. The DNH circuit is implemented
in OrCAD–PSpice, focusing on chaotic dynamics. The DNH
system is thus said to be diffusively coupled by consider-
ing a passive resistor to link the corresponding states of
two DNH circuits. The coupling scheme and strength (re-
sistor value) under which two circuits can be synchronized
are attained using the master stability function method and
are then confirmed by computing the synchronization error.
The correlation of coupled circuits’ outputs (time evolutions)
demonstrates complete synchronization, which is consistent
with the analytical and experimental results.
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1. Introduction
The deliberate use of nonlinear elements in chaotic cir-

cuit design results in circuits that behave chaotically [1–3].
Chaotic circuit design embraces the inherent unpredictability

and complexity of chaotic systems as opposed to traditional
circuit design, which seeks steady and predictable perfor-
mance [4], [5]. These circuits are useful for many differ-
ent applications, including cryptography, secure communi-
cations, and random number generation, since they produce
complex and seemingly random waveforms [6–8]. For in-
stance, image encryption is currently a prominent area of re-
search that can be effectively implemented using chaotic sys-
tems [9–11]. Therefore, many chaotic systems have been de-
signed and analogously implemented in the literature. Chua’s
system and its variations are the most famous chaotic circuits
that have been studied in different fields. For instance, the
hidden attractors of Chua’s circuit were investigated in [12].
Introducing the fractional-order Chua’s circuit with modi-
fications was the subject of the study in [13]. A simpli-
fied version of Chua’s circuit was introduced in [14], and
many studies have been conducted on proposing or investi-
gating memristor-based Chua’s circuit [15–17]. In addition
to Chua’s system, different chaotic circuits with their cor-
responding mathematical models have been proposed. For
example, a new circuit with multiple memristors was de-
signed in [18]. A chaotic circuit with one stable equilibrium
point is presented in [19]. Using five state variables, in [20],
a novel circuit was designed with the ability to exhibit ex-
treme multistability. The hardware implementation of the
memristive Hodgkin–Huxley neuron model was proposed
in [21], and similarly, using local active memristors, another
neuromorphic circuit was designed in [22].

Synchronization of chaotic oscillators refers to the phe-
nomena in which two or more chaotic oscillators attain coor-
dinated behavior due to their nonlinear dynamics and unpre-
dictability. It entails adjusting the states and dynamics of the
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oscillators so that they become correlated and exhibit similar
patterns over time. Complete synchronization [23], imper-
fect synchronization [23], generalized synchronization [24],
cluster synchronization [25], phase synchronization [26], lag
synchronization [27], and partial synchronization [28] are all
different synchronization aspects. Complete synchroniza-
tion, the most well-known and important type of synchro-
nization, is the state in which two or more chaotic oscillators
exhibit identical behavior, with all of their state variables
converging to the same values and their trajectories nearly
overlapping [29], [30]. The chaotic systems effectively op-
erate as a single system, with their dynamics precisely coor-
dinated, offering applications in areas such as secure com-
munications, where they can be utilized for encryption pur-
poses [31–33] and neuroscience to study the brain’s func-
tion [34–37]. The synchronization of chaotic circuits has
gained significant attention due to its potential applications
in various fields, particularly secure communication and in-
formation transmission. Complete synchronization can be
assessed through experiments and master stability function
(MSF). The MSF, coined by Pecora and Carroll in 1998 [38],
is a mathematical tool used to analyze the stability of syn-
chronized states in complex networks. It provides a criterion
to determine under what conditions a network of coupled dy-
namical systems can achieve and maintain synchronization.
Using experimental or MSF-based approaches, the synchro-
nization of different chaotic systems and circuits has been
taken into account. For example, the synchronization of two
coupled Chua’s circuits was investigated in [39] using the
MSF-based analysis. In this study, a passive resistor was
considered to link two corresponding states of circuits. The
complete synchronization of two or more diffusively coupled
elegant circuits, equivalent to linking corresponding states
by a resistor, was studied using both experiments and the
MSF technique [40]. In another study detailed in [41], the
extended MSF method is used to examine the stability of syn-
chronization in a network of nearly identical Chua’s circuits.
As a theoretical framework to investigate cluster synchro-
nization, the MSF-based analysis was used to confirm the
experimental results in a network of neuronal circuits with
gap junctions as the connection between the corresponding
states, addressed in [42]. In another study [43], iter-layer
synchronization of a two-layer network of electronic circuits
is explored using experiments and the MSF method. The
multiplex network of Chus’s circuits was also investigated
in [44], considering both resistors and capacitors as static
and dynamic diffusive couplings.

This paper investigates the synchronization of two cou-
pled dissipative Nosé–Hoover (DNH) systems in both experi-
mental and analytical approaches. The Nosé–Hoover system,
known as the Sprott A system, is a third-case conservative
system based on the categories defined in [45]. However,
the dissipative version of the Nosé–Hoover system was pro-
posed in [46]. More details about the definition, dynamics,
and importance of the DNH system are provided in Sec. 2.
In Sec. 3, the circuit implementation of the DNH system is
presented. The MSF-based analysis to obtain the necessary

synchronization criteria, i.e., the coupling scheme and cou-
pling strength, is performed mathematically in Sec. 4. Sec-
tion 5 includes the results of the MSF-based approach and
the synchronization error as a numerical tool to evaluate the
MSF-based results. Moreover, the circuit implementation
in the synchronous state is given in Sec. 5. To conclude
the paper, Section 6 highlights the findings by summing up
the results.

2. Definition
The Nosé–Hoover system is generally described by the

following equations:
d𝑥
d𝑡

= 𝑦,

d𝑦
d𝑡

= −𝑥 − 𝑦𝑧,

d𝑧
d𝑡

= 𝑦2 − 𝑎.

(1)

In the equations above, 𝑎 is the control parameter. The term
𝑦𝑧 functions as a thermostat in System (1) by interpreting.
𝑦2 as the normalized temperature at each instant. Since
⟨ 𝜕 ¤𝑥
𝜕𝑥

+ 𝜕 ¤𝑦
𝜕𝑦

+ 𝜕 ¤𝑧
𝜕𝑧
⟩, where ⟨...⟩ denotes averaging over a time

duration after removing transients, and ⟨𝑧⟩ = 0, based on the
previously reported results, the Nosé–Hoover system is rec-
ognized as a well-known instance of conservative systems.
Additionally, this system exhibits a chaotic sea in coexistence
with nested conservative tori. The Nosé–Hoover system, also
known as the Nosé–Hoover thermostat, is important since it
describes how a thermostat behaves at a specific tempera-
ture. A damping term +𝑏𝑧 added to the third equation of
System (1) has recently been demonstrated to increase the
system’s dissipativeness significantly [46]. The damped or
dissipative system is then defined in further detail as follows:

d𝑥
d𝑡

= 𝑦,

d𝑦
d𝑡

= −𝑥 − 𝑦𝑧,

d𝑧
d𝑡

= 𝑦2 − 𝑎 + 𝑏𝑧.

(2)

Here 𝑏 is a control parameter with a real and positive value.
This newly defined system is considered the DNH system.
Letting 𝑏 valued as a small positive value like 0.3, Figure 1
shows the rich dynamical properties of System (2), taking
a gradually increases from 1.5 to 10. To obtain the bifur-
cation diagram and the Lyapunov exponents (LEs) spectra
𝑥(0) = −0.5, 𝑦(0) = 0, and 𝑧(0) = 0 are used. Moreover,
the LEs spectra are calculated employing the Wolf algorithm
presented in [47]. Figure 1 shows System (2) exhibits attract-
ing torus for 2.078 ≤ 𝑎 ≤ 2.452, 6.787 ≤ 𝑎 ≤ 8.062, and
8.266 ≤ 𝑎 ≤ 8.776 (with many periodic windows), chaotic
solutions for 2.639 ≤ 𝑎 ≤ 2.741, 2.996 ≤ 𝑎 ≤ 3.03,
3.268 ≤ 𝑎 ≤ 4.186, and 4.305 ≤ 𝑎 ≤ 5.019, and periodic
orbits for the rest of the studied range of parameter 𝑎. Many
periodic windows within the chaotic and torus zones can be
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Fig. 1. Various dynamical behavior of the DNH system in terms of (a) the bifurcation diagram and (b) the LEs spectra. Here 𝑏 = 0.3 and
𝑥 (0) = −0.5, and 𝑦 (0) = 𝑧 (0) = 0 are considered.

Fig. 2. The chaotic dynamic of the DNH system represented as (a1)–(a3) phase portraits in 𝑥 − 𝑦, 𝑥 − 𝑧, and 𝑦 − 𝑧 plane and (b1)–(b3) time
series of variables 𝑥, 𝑦, and 𝑧. Here 𝑎 = 4.5, 𝑏 = 0.3 and 𝑥 (0) = −0.5, and 𝑦 (0) = 𝑧 (0) = 0 are considered.
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detected, while exterior and interior crises can also be found
at critical values of a where the system’s dynamic alters, or
the attractor volume suddenly increases.

Taking the parameter 𝑎 = 4.5, which is in the chaotic
area of Fig. 1 and marked with the green dashed line, the
phase portraits of the system trajectory in 𝑥 − 𝑦, 𝑥 − 𝑧, and
𝑦 − 𝑧 plane is displayed in Fig. 2 alongside the time series
of the variables 𝑥, 𝑦, and 𝑧. Since System (2) continues to
be impacted by the transformation (𝑥, 𝑦, 𝑧) → (−𝑥,−𝑦, 𝑧),
the attractor in Fig. 2 is symmetric with regard to the 𝑥 − 𝑦
plane. Moreover, the LEs of the attractor are 𝐿𝐸1 = −0.325,
𝐿𝐸2 = 0, and 𝐿𝐸3 = 0.025, ensuring that the observed solu-
tion is chaotic.

3. Circuit Realization
The equivalent circuit definition of System (2) can be

expressed as:

d𝑥(𝑡)
d𝑡

=
1

𝑅1𝐶1
𝑦(𝑡),

d𝑦(𝑡)
d𝑡

= − 1
𝑅2𝐶2

𝑥(𝑡) − 1
10𝑅3𝐶2

𝑦(𝑡)𝑧(𝑡),

d𝑧(𝑡)
d𝑡

=
1

10𝑅4𝐶3
𝑦(𝑡)2 − 1

𝑅5𝐶3
𝑉p (𝑡) +

1
𝑅6𝐶3

𝑧(𝑡).

(3)

Thus, it reads:

𝑥(𝑡) = − 1
𝑅1𝐶1

∫ 𝑡

0
−𝑦(𝑡)d𝑡 + 𝑥0,

𝑦(𝑡) = − 1
𝑅2𝐶2

∫ 𝑡

0
𝑥(𝑡)d𝑡

− 1
10𝑅3𝐶2

∫ 𝑡

0
𝑦(𝑡) × 𝑧(𝑡)d𝑡 + 𝑦0,

𝑧(𝑡) = − 1
10𝑅4𝐶3

∫ 𝑡

0
−𝑦(𝑡) × 𝑦(𝑡)d𝑡

− 1
𝑅5𝐶3

∫ 𝑡

0
𝑉p (𝑡) −

1
𝑅6𝐶3

∫ 𝑡

0
−𝑧(𝑡)d𝑡 + 𝑧0.

(4)

Using the three circuit elements, namely resistors,
capacitors, and opamps, Figure 3 represents the circuit
schematic of the DNH system in the OrCAD–PSpice envi-
ronment. Assuming 𝑅1 = 30 kΩ and 𝐶1 = 𝐶2 = 𝐶3 = 10 nF,
other values of the main circuits in Fig. 3 (mentioned in Sys-
tem (3) can be solved as 𝑅2 = 30 kΩ, 𝑅3 = 𝑅4 = 3 kΩ,
𝑅5 = 𝑅6 = 100 kΩ. The resistors in the subcircuits of Fig. 3
are valued as 𝑅 = 100 kΩ, which are adjustable.

The circuit output, i.e., phase portraits in the 𝑥− 𝑦, 𝑥− 𝑧,
and 𝑦 − 𝑧 plane, as well as the time series of variables 𝑥, 𝑦,
and 𝑧, is demonstrated in Fig. 4 using the mentioned circuit
parameter values which is resemble the results of implemen-
tation in MATLAB software (shown in Fig. 2). It should be
noted that the circuit is solved for 1000 milliseconds with
the maximum time step of Δ𝑡 = 0.00001 in OrCAD–PSpice,
while in MATLAB, the fourth-order Runge–Kutta algorithm
is used to solve the system’s set of equations with the time

step of Δ𝑡 = 0.001 for 10000 milliseconds. Also, the same
initial conditions, i.e., 𝑥(0) = −0.5, 𝑦(0) = 0, and 𝑧(0) = 0,
is considered in circuit implementation.

4. Synchronization Analysis Based on
MSF
Considering a system of two coupled DNH systems

coupled through a passive resistor, which can be described
as a diffusive term applied to connect state(s)/variable(s), the
following equations can be defined for every possible condi-
tion:

d𝑥1
d𝑡

= 𝑦1+

𝜎𝑥𝑥 (𝑥2 − 𝑥1) + 𝜎𝑦𝑥 (𝑦2 − 𝑦1) + 𝜎𝑧𝑥 (𝑧2 − 𝑧1),
d𝑦1
d𝑡

= −𝑥1 − 𝑦1𝑧1+

𝜎𝑥𝑦 (𝑥2 − 𝑥1) + 𝜎𝑦𝑦 (𝑦2 − 𝑦1) + 𝜎𝑧𝑦 (𝑧2 − 𝑧1),
d𝑧1
d𝑡

= 𝑦2
1 − 𝑎 + 𝑏𝑧1+

𝜎𝑥𝑧 (𝑥2 − 𝑥1) + 𝜎𝑦𝑧 (𝑦2 − 𝑦1) + 𝜎𝑧𝑧 (𝑧2 − 𝑧1),
d𝑥2
d𝑡

= 𝑦2+

𝜎𝑥𝑥 (𝑥1 − 𝑥2) + 𝜎𝑦𝑥 (𝑦1 − 𝑦2) + 𝜎𝑧𝑥 (𝑧1 − 𝑧2),
d𝑦2
d𝑡

= −𝑥2 − 𝑦2𝑧2+

𝜎𝑥𝑦 (𝑥1 − 𝑥2) + 𝜎𝑦𝑦 (𝑦1 − 𝑦2) + 𝜎𝑧𝑦 (𝑧1 − 𝑧2),
d𝑧2
d𝑡

= 𝑦2
2 − 𝑎 + 𝑏𝑧2+

𝜎𝑥𝑧 (𝑥1 − 𝑥2) + 𝜎𝑦𝑧 (𝑦1 − 𝑦2) + 𝜎𝑧𝑧 (𝑧1 − 𝑧2).

(5)

To investigate the case wherein two DNH systems coor-
dinate their temporal behavior to the same chaotic dynamics
shown in Figs. 2 and 4, the MSF approach is used. The MSF
method is a mathematical tool proposed by Pecora and Car-
roll in 1998 [38], allowing to obtain the necessary conditions
under which 𝑁 coupled oscillators synchronize.

Letting 𝑣 be a vector of states (𝑣 = [𝑥, 𝑦, 𝑧]) and 𝐹 (𝑣)
describes the velocity field or, in other words, the dynam-
ics of the system (𝐹 (𝑣) = [ d𝑥

d𝑡 ,
d𝑦
d𝑡 ,

d𝑧
d𝑡 ]), System (5) can be

generally written as:

d𝑣𝑖
d𝑡

= 𝐹 (𝑣𝑖) − 𝜎
𝑁∑︁
𝑗=1

𝐴𝑖 𝑗𝐻 (𝑣 𝑗 ) (6)

in which 𝐻 is the coupling function that specifies which vari-
able the diffusive function is in terms of and which equation
it is added to. Thus, it is basically a 𝑑 × 𝑑 matrix, where 𝑑
is the dimension of the studied system (here, 𝑑 = 3). 𝐴 is
the coupling matrix where

∑𝑁
𝑗=1 𝐴𝑖 𝑗 = 0 for each row of the

matrix belonging to the node 𝑖, where 𝑖 = 1, 2. This ma-
trix determines which nodes are connected through a link.
Consequently, 𝐴𝑖 𝑗 = 1 means there is a link between nodes
𝑖 and 𝑗 , while 𝐴𝑖𝑖 = 𝛼𝑖 , where 𝛼𝑖 is the degree of the node 𝑖.



RADIOENGINEERING, VOL. 32, NO. 4, DECEMBER 2023 515

Fig. 3. The circuit implementation of the DNH system in the OrCAD–PSpice environment.

Fig. 4. The output of the DNH system analog circuit represented as (a1)–(a3) phase portraits in 𝑥 − 𝑦, 𝑥 − 𝑧, and 𝑦 − 𝑧 plane and (b1)–(b3) time
series of variables 𝑥, 𝑦, and 𝑧. Here 𝑎 = 4.5, 𝑏 = 0.3 and 𝑥 (0) = −0.5, and 𝑦 (0) = 𝑧 (0) = 0 are considered.
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Also, 𝑁 is the number of interconnected systems (here, 𝑁 =

2), and 𝜎 is the coupling parameter determining the strength
of the connection between two nodes. It should be noted that,

here, 𝜎 =


𝜎𝑥𝑥 𝜎𝑦𝑥 𝜎𝑧𝑥
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑧𝑦
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

 with the similar notation used

in System (5).

In the case where all systems behave synchronously in
time, the diffusive term disappears from (6) since all states
are equal, i.e., 𝑣1 (𝑡) = 𝑣2 (𝑡) = 𝑣(𝑡). This means that each
node pursues the dynamics of a single system (defined by
System (2)). This synchronous state needs to be resilient to
local disturbance if it is to be considered stable. Given that
𝛿𝑣 is the local disturbance added to the synchronous state,
where 𝛿𝑣(𝑡) = 𝑣𝑖 (𝑡) − 𝑣(𝑡), the dynamics of the variational
equations can be expressed as:

d𝛿𝑣𝑖
d𝑡

= 𝐽𝐹 (𝑣)𝛿𝑣𝑖 − 𝜎
𝑁∑︁
𝑗=1

𝐴𝑖 𝑗𝐽𝐻 (𝑣)𝛿𝑣 𝑗 (7)

where 𝐽𝐹 and 𝐽𝐻 are both 𝑑 × 𝑑 Jacobian matrices cor-
responding to the functions 𝐹 and 𝐻 evaluated at the syn-
chronization state or 𝑣(𝑡). Here, 𝐽𝐹 (𝑣) can be obtained via

0 1 0
−1 −𝑧 −𝑦
0 2𝑦 𝑏

 .
Assuming 𝐴 as a diagonalizable matrix with eigenval-

ues 𝜆𝑖 , where 0 = 𝜆1 < 𝜆2 < ... < 𝜆𝑁 , and matrix 𝑄

containing the eigenvectors of matrix 𝐴 as its columns, the
transformation 𝜁 = 𝑄−1𝛿𝑣 results in a new set of linearized
equations by describing 𝐴 by its eigenvalues as follows:

𝑑𝜁𝑖

d𝑡
= [𝐽𝐹 (𝑣) − 𝜎𝜆𝑖𝐽𝐻 (𝑣)]𝜁𝑖 . (8)

Considering 𝐾 as the normalized coupling parameter
where 𝐾 = 𝜎𝜆, (8) can be rewritten in its generic form as
below:

𝑑𝜁

d𝑡
= [𝐽𝐹 (𝑣) − 𝐾𝐽𝐻 (𝑣)]𝜁 . (9)

Due to the diffusive nature of the couplings in this study,
where 𝑑 = 3, 𝑁 = 2 and 𝜆2 = 2, 𝐽𝐻 (𝑣) determines where
to put the passive resistor in the corresponding circuit. More
clearly, based on 𝐽𝐻 (𝑣) different configurations can be stud-
ied, which are noted in Tab. 1. The largest LE calculated
from System (9) is the MSF (Ψ), where Ψ < 0 reveals that
the local disturbance can exponentially dwindle; therefore,
the synchronous solution is stable.

5. Results
Performing the Lyapunov analysis on System (9) con-

cerning the changing in the value of the 𝐾 parameters, the
MSF of all cases noted in Tab. 1 is obtained and shown in
Fig. 5. As the results show, the coupling term, which, in
fact, acts as linear feedback, can lead to the synchronization
only for cases 1 → 1, 2 → 2, and 3 → 3. More clearly, the
following networks can achieve synchrony accordingly:

Notation Coupling scheme Coupling parameters
in System (5)

1 → 1 𝐽𝐻 (𝑣) =

1 0 0
0 0 0
0 0 0

 𝜎 =


𝐾/2 0 0

0 0 0
0 0 0


2 → 1 𝐽𝐻 (𝑣) =


0 1 0
0 0 0
0 0 0

 𝜎 =


0 𝐾/2 0
0 0 0
0 0 0


3 → 1 𝐽𝐻 (𝑣) =


0 0 1
0 0 0
0 0 0

 𝜎 =


0 0 𝐾/2
0 0 0
0 0 0


1 → 2 𝐽𝐻 (𝑣) =


0 0 0
1 0 0
0 0 0

 𝜎 =


0 0 0
𝐾/2 0 0

0 0 0


2 → 2 𝐽𝐻 (𝑣) =


0 0 0
0 1 0
0 0 0

 𝜎 =


0 0 0
0 𝐾/2 0
0 0 0


3 → 2 𝐽𝐻 (𝑣) =


0 0 0
0 0 1
0 0 0

 𝜎 =


0 0 0
0 0 𝐾/2
0 0 0


1 → 3 𝐽𝐻 (𝑣) =


0 0 0
0 0 0
1 0 0

 𝜎 =


0 0 0
0 0 0
𝐾/2 0 0


2 → 3 𝐽𝐻 (𝑣) =


0 0 0
0 0 0
0 1 0

 𝜎 =


0 0 0
0 0 0
0 𝐾/2 0


3 → 3 𝐽𝐻 (𝑣) =


0 0 0
0 0 0
0 0 1

 𝜎 =


0 0 0
0 0 0
0 0 𝐾/2


Tab. 1. Different notations to study the synchronization of two

coupled DNH systems.



d𝑥1
d𝑡

= 𝑦1 +
𝐾

2
(𝑥2 − 𝑥1),

d𝑦1
d𝑡

= −𝑥1 − 𝑦1𝑧1,

d𝑧1
d𝑡

= 𝑦2
1 − 𝑎 + 𝑏𝑧1,

d𝑥2
d𝑡

= 𝑦2 +
𝐾

2
(𝑥1 − 𝑥2),

d𝑦2
d𝑡

= −𝑥2 − 𝑦2𝑧2,

d𝑧2
d𝑡

= 𝑦2
2 − 𝑎 + 𝑏𝑧2,

(10)



d𝑥1
d𝑡

= 𝑦1,

d𝑦1
d𝑡

= −𝑥1 − 𝑦1𝑧1 +
𝐾

2
(𝑦2 − 𝑦1),

d𝑧1
d𝑡

= 𝑦2
1 − 𝑎 + 𝑏𝑧1,

d𝑥2
d𝑡

= 𝑦2,

d𝑦2
d𝑡

= −𝑥2 − 𝑦2𝑧2 +
𝐾

2
(𝑦1 − 𝑦2),

d𝑧2
d𝑡

= 𝑦2
2 − 𝑎 + 𝑏𝑧2,

(11)
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

d𝑥1
d𝑡

= 𝑦1,

d𝑦1
d𝑡

= −𝑥1 − 𝑦1𝑧1,

d𝑧1
d𝑡

= 𝑦2
1 − 𝑎 + 𝑏𝑧1 +

𝐾

2
(𝑧2 − 𝑧1),

d𝑥2
d𝑡

= 𝑦2,

d𝑦2
d𝑡

= −𝑥2 − 𝑦2𝑧2,

d𝑧2
d𝑡

= 𝑦2
2 − 𝑎 + 𝑏𝑧2 +

𝐾

2
(𝑧1 − 𝑧2).

(12)

Figure 5 shows that System (10) synchronizes when
2.8 < 𝐾 < 5.3 since, in this range of 𝐾 values, Ψ is negative.
Thus, two zero crossing point is observed, and according to
the notation in [48], this type of MSF can be classified in the
class Γ2. However, for System (11), three crossing points can
be detected in the MSF diagram, which are 𝐾 = 0.22, 0.36,
and 0.54. Here, Ψ is negative for 0.22 < 𝐾 < 0.36 and
𝐾 > 0.54. Therefore, this type of MSF is classified in the
class Γ3. System (12) also can be categorized in class Γ1
since only one zero crossing point can be identified in the
MSF diagaram, and Ψ < 0 can be seen for 𝐾 > 0.5. All
other coupling schemes do not allow for synchronization, and
thus, they are categorized in the class Γ0. For further analysis
and to confirm the results reported by the MSF calculations,
Systems (10)–(12), which are able to synchronize for certain
values of parameter 𝐾 , are used to calculate the synchro-
nization error (𝐸avg). Synchronization error is a numerical
approach that can show the regions of coupling parameters
leading to synchronization states since it becomes zero when
systems become fully synchronized. The synchronization
error is computed via the following relation:

𝐸avg = lim
𝑇→inf

1
𝑇

∫ 𝑇

0

√︃
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

(13)

where 𝑇 is the run-time after removing the transients. Fig-
ure 6 shows the synchronization error of two coupled DNH
systems for cases 1 → 1 (System (10), 2 → 2 (System (11)),
and 3 → 3 (System (12)).

The results shown in Fig. 6 align with those observed
in Fig. 5, and thus, it is expected to obtain synchronous tem-
poral behaviors when two DNH circuits are coupled through
a resistor in 1 → 1, 2 → 2, 3 → 3 coupling schemes (shown
in Fig. 7). According to Figs. 5 and 6, the circuits are ex-
pected to synchronize for 𝐾 = 4 in 1 → 1 and in 1 → 1 and
3 → 3 coupling schemes 𝐾 = 1 is enough to synchronize the
coupled DNH systems. Therefore, in 1 → 1 configuration,
𝑅7 = 𝑅8 = 120 kΩ (for 𝐾 = 4), and in both 2 → 2 and

3 → 3 schemes, 𝑅7 = 𝑅8 = 30 kΩ (for 𝐾 = 1) are considered
to model the resistors and the linear feedback between the
circuit states.

Figure 8 shows that the circuits designed in Fig. 7
achieve synchrony after passing 5000 milliseconds, while in
MATLAB software, the results are demonstrated for 10000
milliseconds. Moreover, it can be seen that the circuits’
outputs are the same as the time series in Figs. 2 and 4.
This means that the system’s behavior in the synchroniza-
tion state is similar to that of a single isolated DNH system,
as previously mentioned in Sec. 4. It should be noted that
𝑥1 (0) = −0.5, 𝑥2 (0) = −0.51, 𝑦1 (0) = 𝑦2 (0) = 0, and
𝑧1 (0) = 𝑧2 (0) = 0 are considered. Moreover, the output of
variables 𝑥1 (solid red line) and 𝑥2 (cyan dashed line) are
represented in Fig. 8, while other corresponding states are
completely correlated and synchronized.

6. Conclusion
Studying linked circuits’ synchronization state has

emerged as a fascinating field of study due to its significant
applicability in different fields, such as secure communica-
tion. The Chua system is a famous instance that is studied
deeply in this field. This paper addresses the synchroniza-
tion of another system proposed in [42] by adding a damping
term to the third equation of the original conservative Nosé–
Hoover system. The DNH system can exhibit a monos-
table attracting torus or a multistable one in coexistence with
chaotic or periodic solutions. However, performing the bifur-
cation analysis, the paper focused on the chaotic monostable
solution, which is significant in information processing. Af-
ter determining the parameter settings, the equivalent analog
circuit of the DNH system is implemented in the environment
of OrCAD–PSpice, showing the expected output. Consider-
ing a passive resistor to link two circuits, the mathematical
equations were expressed in diffusive form. Thereafter, the
MSF analysis was performed to find out the coupling scheme
leading to complete synchronization. The MSF-based results
showed that the feedback term could result in synchroniza-
tion in 1 → 1, 2 → 2, and 3 → 3 configurations, according
to the notations in Tab. 1. Moreover, it was revealed that
in the 3 → 3 configuration, when the normalized coupling
parameter passed a threshold, the DNH systems maintained
the synchronous behavior, while in the 1 → 1 scheme, this
synchronous state can be detected in limited values of the
normalized coupling parameter. On the other hand, when
the 2 → 2 coupling scheme is considered, the synchroniza-
tion was identified after the normalized coupling parameter
crossed a threshold similar to case 3 → 3. However, be-
fore this threshold in small values of normalized coupling
parameter, the synchronization was detected, similar to case
1 → 1. To confirm the results and to ensure that the results
are attainable in real simulations, the synchronization error
of two coupled circuits was computed. Finally, in each case,
the equivalent circuits were designed, and the analog results
delivered the synchronization of the two circuits.
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Fig. 5. The MSFs of the linearized variational equation with regard to the changes in the value of the normalized coupling parameter 𝐾 . Here,
different coupling schemes are considered and demonstrated with the same notation as in Tab. 1.

Fig. 6. The synchronization error of two diffusively coupled DNH systems with regard to the changes in the value of the normalized coupling
parameter 𝐾 . Here different coupling schemes (clarified in Systems (10)–(12) are considered and demonstrated with the same notation as
in Tab. 1.
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Fig. 7. The circuit implementation of two coupled DNH systems in the OrCAD–PSpice environment for 1 → 1, 2 → 2, 3 → 3 coupling schemes.
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Fig. 8. The output (time series) of two coupled DNH systems in (a1), (a2) 1 → 1, (b1), (b2) 2 → 2, and (c1), (c2) 3 → 3 configurations. The first
column contains the results obtained from OrCAD–PSpice for 5000 milliseconds, and the second column contains the results obtained
from the MATLAB software for 10000 milliseconds. Here 𝑥1 (0) = −0.5, 𝑥1 (0) = −0.51, and 𝑦1 (0) = 𝑦2 (0) = 𝑧1 (0) = 𝑧2 (0) = 0 are
considered.
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