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Abstract. In compressive sensing theory, the measurement 
matrix plays a crucial role in compressive observation of 
sparse signals. The bipolar Toeplitz measurement matrix 
constructed based on chaotic map has advantages such as 
generating fewer free elements and supporting fast algo-
rithms, making it widely used. While optimizing the meas-
urement matrix can effectively improve its compressive 
sensing reconstruction performance, existing optimization 
algorithms are not suitable for the bipolar Toeplitz meas-
urement matrix due to its structural and bipolar properties. 
To address this issue, this paper proposes an optimization 
method for the bipolar Toeplitz measurement matrix based 
on cosine-exponential (CE) chaotic map sequences and 
an improved Abolghasemi algorithm. Using an enhanced 
CE chaotic map to generate chaotic sequences with 
greater chaos and randomness, we construct the measure-
ment matrix and optimize it using the structure matrix and 
the improved Abolghasemi algorithm, which preserves the 
matrix's bipolarity without altering its structure. We also 
introduce constraints on the generated sequence values 
during the optimization process. Through simulation ex-
periments, the effectiveness of our optimization algorithm 
is verified, as the optimized bipolar Toeplitz measurement 
matrix significantly reduces reconstruction error and im-
proves reconstruction probability. 

Keywords 
Chaotic map, measurement matrix, bipolar Toeplitz 
matrix, optimization 

1. Introduction 
In 2006, Candes et al. discovered that if a signal has 

a good sparse representation, then the signal can be accu-
rately reconstructed from its small number of non-adaptive 
linear measurements [1–6]. This led to the emergence of 
the new concept of "compressive sensing". Compressive 
sensing theory is able to accurately reconstruct high-

dimensional signals with good sparse representations from 
a small number of non-adaptive linear measurements, 
which breaks the limitations of the Nyquist sampling theo-
rem on the sampling process. It enriches the method of 
signal sampling theory and is widely used in fields such as 
broadband signal acquisition [7], medical imaging [8], and 
data compression [9], with great development prospects. 

Compressive sensing theory consists of three parts: 
sparse representation, measurement matrix, and reconstruc-
tion algorithm [10]. Among them, the measurement matrix 
projects high-dimensional sparse signals onto low-
dimensional space, playing a crucial role in compressive 
observation of sparse signals. The compression observation 
performance of the measurement matrix is usually meas-
ured by the restricted isometry property (RIP) [11], [12] 
and cross-correlation coefficients [13]. The better the com-
pression observation performance, the higher the accuracy 
of signal reconstruction. When constructing the measure-
ment matrix, RIP must be satisfied to obtain accurate 
measurement values of the original signal through a certain 
number of observations. For a measurement matrix that 
already satisfies RIP, the smaller the inter-correlation coef-
ficient between the measurement matrix elements, the 
better the compression observation performance. Optimiza-
tion algorithms are commonly used to reduce the correla-
tion between the measurement matrix and the sparse 
dictionary or to enhance the independence among the 
measurement matrix column vectors, thereby reducing the 
cross-correlation coefficient. 

The construction of the measurement matrix can gen-
erally be divided into random measurement matrices and 
deterministic measurement matrices according to the way 
in which the matrix elements are generated. The elements 
of a random measurement matrix are generated using 
a random sequence, ensuring that the matrix elements have 
high independence, so that random measurement matrices 
have good RIP and compression observation performance. 
However, too many free elements in a random measure-
ment matrix are not conducive to hardware implementation 
[14], [15]. The elements of a deterministic measurement 
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matrix are generated using a deterministic function, and 
thus have repeatability and high hardware implementabil-
ity. Deterministic measurement matrices constructed using 
chaotic sequences not only retain the advantages of random 
measurement matrices, but also have high hardware im-
plementability, making them widely used. Popular chaotic 
maps include Logistic [16], Chebyshev [17], [18] and Cu-
bic chaos [19], [20], etc.  

In the process of constructing the measurement ma-
trix, it is necessary to ensure that the matrix satisfies the 
Restricted Isometry Property (RIP) and that its elements 
are statistically approximately independent. Therefore, 
when constructing the measurement matrix using chaotic 
systems, it is common to sample the chaotic sequence with 
a relatively large sampling interval. This is because sam-
pling intervals that are too close together can result in 
strong correlations among the elements of the measurement 
matrix, which can adversely affect its performance. In [21] 
and [22], measurement matrices were constructed based on 
the Logistic and Tent chaotic systems, respectively, with 
a minimum sampling interval of 15. However, this ap-
proach can lead to the generation of a large amount of 
redundant data during the sampling process, which wastes 
system resources. To address this problem, a polarized 
Toeplitz block measurement matrix based on bipolar cha-
otic sequences is proposed in [23]. By introducing bipolar 
functions to transform Chebyshev chaotic sequences into 
sequences consisting of −1 and +1, the sampling frequency 
of the measurement matrix elements is made equal to the 
frequency of sequence generation, reducing the sampling 
interval, increasing the utilization rate of elements, and 
avoiding resource waste. 

However, chaotic mapping functions of Chebyshev, 
Logistic, and Cubic only enter into a chaotic state under 
specific conditions and produce chaotic sequences with 
low chaos density and weak randomness. This significantly 
affects the performance of the measurement matrix. There-
fore, it is necessary to use some optimization algorithms to 
optimize the measurement matrix. However, some com-
monly used measurement matrix optimization algorithms, 
such as Elad algorithm [24], Duarte-Carvajalino algorithm 
[25], Abolghasemi algorithm [26], Gallagher algorithm 
[27], and singular value decomposition algorithm [28], 
when applied to the optimization of bipolar Toeplitz meas-
urement matrices, will destroy the matrix structure and 
bipolarity. 

From the above analysis, it can be seen that there are 
still some shortcomings in the construction and optimiza-
tion of bipolar Toeplitz measurement matrices using exist-
ing methods, mainly including two aspects: first, the chaos 
density and randomness of chaotic map during the con-
struction process will affect the compressive observation 
performance of the measurement matrix; second, tradition-
al measurement matrix optimization algorithms will de-
stroy the structure and bipolarity of bipolar Toeplitz meas-
urement matrices. 

To address these problems, this paper proposes a bi-
polar Toeplitz matrix optimization method based on the 
construction and optimization of the measurement matrix, 
using both the Cosine-exponential (CE) chaotic map and 
improved Abolghasemi algorithms. Firstly, the CE map-
ping is not limited by fractal coefficients and can quickly 
enter into a chaotic state with high chaos density and ran-
domness, ensuring the performance of the constructed 
bipolar Toeplitz measurement matrix. Secondly, the struc-
ture matrix is introduced to represent the bipolar Toeplitz 
measurement matrix, and the improved Abolghasemi algo-
rithm is used for optimization, which will not destroy the 
matrix structure and satisfies the constraint of threshold 
function, ensuring that the optimized matrix still has bipo-
larity. Experimental results show that the compressed sens-
ing reconstruction error of the optimized bipolar Toeplitz 
measurement matrix is reduced, and the reconstruction 
probability is significantly improved. 

The rest of this paper is organized as follows. In 
Sec. 2, we describe the expression of the CE chaotic se-
quence and analyze the method of constructing a bipolar 
Toeplitz measurement matrix using the CE chaotic se-
quence. In Sec. 3, we investigate the optimization method 
for bipolar Toeplitz measurement matrices. In Sec. 4, we 
combine simulation experiments to analyze the effective-
ness of the constructed measurement matrix. Section 5 is 
the conclusion of the paper. 

2. Description of the Problem 

2.1 Chaotic Map 
Chaotic systems are nonlinear systems with strong 

randomness. Since the expressions of chaotic systems are 
deterministic, their randomness is commonly referred to as 
"pseudo-randomness." Compared to random matrices, this 
"pseudo-random" characteristic guarantees the measure-
ment matrix's performance while being easier to implement 
in hardware, striking a balance between the measurement 
matrix's performance and hardware implementation. Chaot-
ic systems include low-dimensional and high-dimensional 
chaotic systems, with low-dimensional chaotic systems 
being widely used for their speed and efficiency. Typical 
one-dimensional chaotic maps such as Logistic, Cubic, and 
Chebyshev maps correspond to (1–3). 

 1 (1 ), [ 1,1]j j j jx rx x x+ = − ∈ − ,  (1) 

 2
1 (1 ), [0,1]j j j jx x x xα+ = − ∈ ,   (2) 

 1 cos( arccos( )), [ 1,1]j j jx k x x+ = ∈ −     (3) 

where r, α and k denote the fractal coefficients, i.e., the 
parameters of the chaotic state of the control system, and xj  
and xj+1 denote the values of the chaotic map in the itera-
tive process of the system. 
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When constructing measurement matrices using the 
aforementioned chaotic maps, there are some general 
drawbacks. First, the system can only enter chaos when the 
fractal coefficient exceeds a certain value. Second, the 
chaotic randomness of the three aforementioned mappings 
is poor, which is unfavorable for constructing measurement 
matrices. The stronger the randomness of the chaotic map, 
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(b) 

 
(c) 

 
(d) 

Fig. 1.  Bifurcation diagrams of chaotic maps: (a) Logistic; 
(b) Cubic; (c) Chebyshev; (d) CE. 

the smaller the correlation coefficient of the constructed 
measurement matrix, thereby yielding better compressive 
sensing performance. To address these issues, this paper 
introduces an enhanced CE chaotic sequence by incorpo-
rating exponential and polynomial functions based on the 
Logistic map. 

 5
1 cos( e (1 ) 10 (e ))j jx x

j j j jx rx x xπ π+ = + + +  (4) 

where the cosine function can control the function value in 
the interval of [−1,1], the introduction of the exponential 
term can break the restriction that the initial value is not 
zero, and D = 10π (exp xj + xj

5) can further enhance the 
chaotic density and randomness of the system. The 
bifurcation diagrams of the four chaotic systems 
corresponding to (1–4) are shown in Fig. 1. 

Figure 1 intuitively demonstrates that the CE chaotic 
system can quickly enter a chaotic state when the fractal 
coefficient is very small, and it outperforms the other three 
chaotic maps in Fig. 1. 

Furthermore, analyzing the randomness and chaotic 
state of the chaotic map, the Lyapunov exponent (LE) is 
introduced as an evaluation index. The calculation formula 
for LE is defined as follows: 

 
1

'

0

1lim ln ( )
n

jn j
LE f x

n

−

→∞
=

 
=  

 
∑   (5) 

where f’(xj) represents the first-order derivative of the cha-
otic map f(xj) = xj + 1. When LE > 0, the system is in a cha-
otic state, and the larger the LE value, the stronger the 
randomness of the chaotic sequence generated by the sys-
tem. The relationship between the LE values of the four 
chaotic maps with respect to changes in fractal indices is 
shown in Fig. 2. 

According to the results shown in Fig. 2, the LE val-
ues of the Logistic, Cubic, and Chebyshev mappings are 
not always greater than zero. The Logistic mapping enters 
a chaotic state when the fractal coefficient r is greater than 
3.57; the Cubic mapping enters a chaotic state when the 
fractal coefficient α  is greater than 2.3; and the Chebyshev 
mapping enters a chaotic state when the fractal coefficient 
k is greater than 2. On the other hand, the CE mapping can 

 
Fig. 2.  Lyapunov exponent of different chaotic maps. 
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enter a chaotic state when the fractal coefficient is 0, and 
its LE value is always greater than zero and greater than 
that of the other three mappings. This indicates that the 
chaotic sequence generated by the CE mapping has 
stronger randomness. 

2.2 Bipolar Toeplitz Measurement Matrix 
Based on the enhanced CE chaotic sequence, a bipo-

lar threshold function is introduced: 

 
1, 0 1,

( )
1, 1 0.

j
j j

j

x
a T x

x
+ ≤ ≤= = − − ≤ <

         (6) 

Then the sequence {aj} constitutes a set of bipolar chaotic 
sequences: 

 1

1, 0.5,
1, 0.5.j

p
p

a +

+ =
= − =

    (7) 

The enhanced bipolar chaotic sequence is used to 
construct the Toeplitz measurement matrix Φ ∈ M × N with 
the following expression: 
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

    (8) 

where 
1
M

 is the column normalization factor. 

According to the special structural characteristics of 
Toeplitz matrices, the measurement matrix Φ can be di-
vided into b Toeplitz matrices: 

 (1) (2) ( )b =  Φ Φ Φ Φ   (9) 

where Φ(i) ∈ M × n(i = 1,2,…,b), n = N/b (n ∈ ) and each 
matrix Φ(i) has the structural characteristics of a Toeplitz 
matrix, and its expression is as follows: 
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.    (10) 

Although the RIP of bipolar Toeplitz matrices have 
been effectively demonstrated in [11], the independence of 
the column vectors of the measurement matrix itself, as 
well as the correlation between the measurement matrix 
and the sparse dictionary, can both affect the compressive 
observation performance in practical applications. There-
fore, it is necessary to further optimize the constructed 
Toeplitz matrix to ensure its effectiveness in practical ap-
plications. However, conventional measurement matrix 

optimization methods achieve this by reducing the numeri-
cal values of non-diagonal elements in the Gram matrix 
through techniques such as thresholding, gradient descent, 
or singular value decomposition. For Toeplitz matrices, 
using these optimization methods could destroy their struc-
tural and bipolar properties, making them unsuitable for 
optimizing bipolar Toeplitz measurement matrices. To 
address this issue, this paper proposes an improved Abol-
ghasemi algorithm for bipolar Toeplitz measurement 
matrices. 

3. Optimization of Bipolar Toeplitz 
Measurement Matrix  
The fundamental principle of improving the Abol-

ghasemi algorithm is to enhance the independence between 
column vectors of the bipolar Toeplitz measurement matrix 
or reduce the correlation between the measurement matrix 
and the sparse dictionary. This principle can be realized by 
lowering the Gram coefficient of the measurement or sens-
ing matrix, after which the optimization objective function 
can be established. 

3.1 The Optimization Objective Function 

For a signal x ∈ N, the compressive sensing process 
can be represented as follows: 

 Φ ΦΨy = x = s              (11) 

where y ∈ M is the measurement data, Φ ∈ M × N is the 

measurement matrix, Ψ ∈ N × N is the sparse dictionary, 

and s ∈ N is the sparse vector. 

Reducing the correlation between the measurement 
matrix and the sparse dictionary can effectively improve 
the compressive sensing reconstruction performance of 
compressed sampling system and the recovery accuracy of 
signals. The Gram matrix is defined as follows: 

 T T=G Ψ Φ ΦΨ .             (12) 

The objective function of the measurement matrix can 
be expressed as: 

 
ideal

2
ideal,

min
F

−
G G

G G             (13) 

where Gideal is the ideal target matrix, whose expression 
will be introduced in subsequent section. 

To ensure that the structural properties of the meas-
urement matrix are unchanged during the optimization 
process, the measurement matrix is decomposed based on 
the number of free elements: 

 
1

J
j

j
j

a
=

= ∑Φ Φ             (14) 
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where J = M + N − 1 represents the number of free ele-
ments used to construct the Toeplitz matrix. The structural 
matrix corresponding to element aj is denoted by Φj. Φj has 
the same matrix dimension as Φ and consists of two ele-
ments, 0 and 1 / M . If the element at a given point in 
matrix Φj is 1 / M  , the element at that position in matrix 
Φ is aj. So equation (11) can be expanded as follows: 

 

1

1

1 1
1 1

0 0 0
...

0 0 0

= ... .
M N

M N
M N

a

a

a a
+ −

+ −
+ −

  
  = + +   

   
   

+ +

Φ

Φ Φ

 

     

 

   (15) 

Φj in (14) can be expressed as follows: 
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M
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Substituting (14) into (13), the optimization objective 
function of the measurement matrix can be expressed as: 
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To maintain the structural properties of the measure-
ment matrix, only sequence {aj} needs to be optimized in 
the objective function optimization process. 

3.2 Improved Abolghasemi Algorithm 
The basic idea underlying the original Abolghasemi 

algorithm is to alternate between updating the Gram matrix 
and the measurement matrix Φ. However, optimizing Φ 
directly would destroy its structural properties. Therefore, 
in this paper, optimization of the measurement matrix is 
achieved through updating the sequence {aj} while ensur-
ing the structural properties of the measurement matrix. 

First, the ideal Gram matrix Gideal is updated using 
shrinkage operation: 

 
( )
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, , , _ ideal
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g g
i j i j G
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µ
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⋅ >


(18) 

where G_idealij is the element of the target matrix, sign(·) 
is the sign function, gij denotes the ij-th element of the 
G = ΨTΦTΦΨ, μwelch is mutual coherence lower bound 
(Welch bound), which is defined as follows: 

 Welch ( 1)
M N

N M
µ −

=
−

 (19) 

where M and N are the size parameters of the measurement 
matrix. 

Then, the elements in the sequence {aj} are updated 
using gradient descent algorithm: 

 1
ideal({ }, )i i

j j ji
j

a a f a
a

η+ ∂
= −

∂
G   (20) 

where η is the step size of the gradient descent. 

3.3 The Constraints on the Sequence {aj} 
Although the improved Abolghasemi algorithm can 

ensure that the structural properties of the measurement 
matrix remain unchanged, it cannot maintain the bipolarity 
of the measurement matrix. Therefore, this paper con-
strains the sequence {aj} during the iterative process using 
a threshold function: 
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1
1

1, 0,

1, 0.

i
ji
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j
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          (21) 

The bipolar threshold constraint function in (21) can 
preserve the bipolarity of the measurement matrix during 
the optimization process. When the iteration meets the 
termination condition, we obtain the optimized sequence 
and calculate the measurement matrix according to (14). 
The proposed optimization algorithm for the bipolar 
Toeplitz matrix is shown in Algorithm 1. 

Algorithm 1: The optimization algorithm for bipolar Toeplitz 
measurement matrix 

Input: Bipolar Toeplitz measurement matrix Φ, sparse dictionary Ψ 

Output: Optimized Φ 

Step 1: Construct the sequence {aj} and structural matrix {Φj} using 
the input measurement matrix Φ. 

Step 2: Update Gideal using (18). 

Step 3: Update each element aj in the sequence {aj} individually using 
(20). 

Step 4: Apply (21) to constrain the modified elements aj. 

Step 5: Verify that the criterion for iteration termination has been met. 
If so, go to Step 6. If not, go back to Step 2. 

Step 6: Using (14), output the optimized measurement matrix Φ. 

4. Experiments and Analysis 
To validate the effectiveness of the proposed method, 

numerical simulations are conducted to analyze the optimi-
zation effect of the measurement matrix and the compres-
sive sensing reconstruction performance of the optimized 
matrix. 

4.1 Performance Analysis of the Optimization 
Algorithm 
Since the CE chaotic sequence proposed in this paper 

is an improvement based on the Logistic chaotic map, 
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a comparative experiment was conducted to construct a Lo-
gistic chaotic sequence using the following four methods: 

1) Φ1, a bipolar Toeplitz measurement matrix based on 
the Logistic chaotic map; 

2) Optimized Φ1; 

3) Φ2, a bipolar Toeplitz measurement matrix based on 
the CE chaotic map; 

4) Optimized Φ2. 

The parameters of the measurement matrix are set as 
N = 256 and M = 128, and the optimization process of two 
different bipolar Toeplitz measurement matrices, Φ1 and 
Φ2, is shown in Fig. 3. As seen from Fig. 3, with an in-
creased number of iterations, the objective function contin-
uously decreases. And the objective function converges 
quickly after a smaller number of iterations, which is due 
to the structural properties of the bipolar Toeplitz matrix 
and the bipolar property that largely limits the optimization 
space of the measurement matrix. 

To better assess the performance of four measurement 
matrices, introduce the average mutual coherence and max-
imum cross-correlation coefficient. 

 max 1 , ' , '
max ( , ')

n n N n n
n nµ

≤ ≤ ≠
= G ,  (22) 

 av
1 , ' , '

1 ( , ')
( 1) n n N n n

n n
N N

µ
≤ ≤ ≠

=
− ∑ G .  (23) 

Table 1 shows the average and maximum normalized 
mutual correlation coefficients of four different measure-
ment matrices. From Tab. 1, it can be seen that the proposed 

 

 
Fig. 3.  Optimization of the bipolar Toeplitz measurement ma-

trix. (a) The optimization of Φ1; (b) The optimization 
of Φ2. 

 

Method μmax μav 

Φ1 0.4975 0.0965 

Optimized-Φ1 0.3125 0.0719 

Φ2 0.3281 0.0675 

Optimized-Φ2 0.2384 0.0629 

Tab. 1.  Correlation coefficient. 

optimization algorithm is effective in reducing the coher-
ence between the measurement matrix and the sparse dic-
tionary. The average and maximum correlation coefficients 
are significantly reduced, and the proposed method's corre-
lation coefficient is much smaller than that of the logistic 
construction measurement matrix. This is because the CE 
mapping can generate chaotic sequences with stronger 
randomness and chaos, thereby reducing the correlation 
between the constructed measurement matrix column vec-
tors. 

4.2 Experimental Analysis of Linear 
Frequency Modulation (LFM) Signals 
LFM signals are a typical non-stationary signals with 

advantages such as high target resolution, anti-interference, 
and strong anti-jamming capabilities, making them widely 
used in radar applications. Therefore, using LFM signals to 
verify the effectiveness of the proposed method has practi-
cal significance. The model expression of the LFM signal 
is defined as follows: 

 2

1

1( ) exp j2
2

K

i i i
i

x t A f t k tπ
=

  = +    
∑  (24) 

where K is the number of LFM signal components, Ai and fi 
are the amplitude and initial frequency of the i-th compo-
nent respectively, and ki is the chirp rate of the i-th component. 

Although the LFM signal itself does not exhibit spar-
sity, considering that the LEM signal has good sparsity in 
the fractional Fourier transform (FRFT) domain, the FRFT 
dictionary is used as the sparse representation dictionary 
for the LFM signal in this paper. During the experiment, 
a four-component LFM signal was selected as the analysis 
object, and its parameters were set as shown in Tab. 2. The 
time-domain, frequency-domain, and sparse representation 
of the LFM signal are shown in Fig. 4. Figure 4 shows that 
the LFM signal has good sparsity in the fractional Fourier 
transform domain (FRFT-domain). 
 

Parameter Values 

K 4 

Ai [0.9  1.1  1.1  0.9] 

fi (MHz) [100 200 300 400] 

k (MHz) –300 

T (μs) 1 

Tab. 2.  LFM signal parameters. 
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(a) 

 
(b) 

 
(c) 

Fig. 4.  LFM signal. (a) Time domain diagram; (b) Fourier 
transform; (c) FRFT-sparse representation. 

As Fig. 4(c) exhibits the best sparsity representation 
effect, utilizing the proposed method to analyze Fig. 4(c) 
can result in higher reconstruction accuracy. During the 
experiment, four different measurement matrices were 
compared, with the measurement matrix parameters set as 
N = 500 and M = 128. The orthogonal matching pursuit 
(OMP) algorithm was used for reconstruction, and the 
reconstruction results of Φ1 and optimized Φ1 are shown in 
Fig. 5. The reconstruction results of Φ2 and optimized Φ2 
are shown in Fig. 6.  

From the reconstruction results, it can be seen that 
under the condition of M = 128, all four measurement 
matrices achieved effective reconstruction of the fractional 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Recovery results of the measurement matrix Φ1. 
(a) Φ1, recovery rendering; (b) Φ1, detail drawing of 
recovery rendering; (c) Optimized Φ1, recovery render-
ing; (d) Optimized Φ1, detail drawing of recovery ren-
dering. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 6.  Recovery results of the measurement matrix Φ2. 
(a) Φ2, recovery rendering; (b) Φ2, detail drawing of 
recovery rendering; (c) Optimized Φ2, recovery render-
ing; (d) Optimized Φ2, detail drawing of recovery ren-
dering. 

 
Fig. 7.  Original and recovery LFM signal. 

Fourier spectrum. However, a comparison of the recon-
struction errors in the detail chart reveals that the recon-
struction error of the optimized measurement matrix is 
significantly reduced, and the reconstruction performance 
of Φ2 is better than that of Φ1. 

Combining the above analysis shows that using the 
proposed method to reconstruct the fractional Fourier spec-
trum can improve the reconstruction accuracy. In conjunc-
tion with the FRFT sparse representation dictionary and the 
sparse coefficient for signal recovery, the recovered signal 
is shown in Fig. 7. It can be seen from Fig. 7 that the re-
constructed signal is almost identical to the original signal. 

In practical applications, noise in the signal measure-
ment process is inevitable. Therefore, different signal-to-
noise ratios (SNR) of noise were added to the compression 
sampling process to analyze the reconstruction perfor-
mance of the four measurement matrices under noisy con-
ditions. During the experiment, the SNR was set to in-
crease from 10 dB to 30 dB, and when the relative 
reconstruction error was less than 10−2, it was considered as 

 
(a) 

 
(b) 

Fig. 8.  Recovery performance with different SNRs: 
(a) Recovery probability; (b) Relative error in average. 

successful; otherwise, it was a failure. The reconstruction 
success rate and average relative error of the four meas-
urement matrices under different SNR conditions are 
shown in Fig. 8. 

It can be observed from Fig. 8 that the performance of 
the optimized measurement matrix was improved. When 
SNR ≥ 19 dB, the performance of the four measurement 
matrices was comparable, with a reconstruction success 
rate approaching 1, and the average relative error was also 
very close. When SNR < 19 dB, it is evident from the fig-
ure that the reconstruction success rate of the measurement 
matrix constructed based on CE mapping approaches 1 
faster, and the average relative error is significantly lower 
than other methods. Therefore, the proposed method is 
beneficial for improving the compressive sensing recon-
struction performance under noisy conditions. 

4.3 Experimental Analysis of Two-Dimensio-
nal Data 
This paper further validates the proposed method 

using two-dimensional data. In the experiment, two classic 
image photos with a size of 256 × 256 were selected for 
analysis. Each image was divided into 256 blocks of size 
16 × 16, and then compressed sensing reconstruction 
experiments were conducted. Since the image data used in 
this paper has certain sparsity in the wavelet transform 
domain, a discrete wavelet dictionary was used as the 
sparse dictionary in the experiment. The measurement 
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matrix was still compared using the four different schemes 
in Sec. 4.1, and the size of the observation matrix was set 
to 256 × 128. The original image and the reconstruction 
results of the two pictures are shown in Figs. 9 and 10, 
respectively, and it can be observed from the figures and 
the calculated relative reconstruction error that the perfor-
mance of the two different optimized measurement matri-
ces has been improved, and the proposed method has 
a better compression reconstruction effect. 

Furthermore, to analyze the impact of the number of 
observations on the performance of the measurement ma-
trix, the experiment set the number of observations to in-
crease from 80 to 180 and obtained the reconstruction error 
results of the four different measurement matrices as 
shown in Fig. 11. From the experimental results shown in 
Fig. 11, it can be seen that the reconstruction error of the 
image decreases continuously with the increase of the 
number of observations. Although the performance of  the 

   
(a)                                   (b)                                   (c) 

  
(d)                                (e) 

Fig. 9.  “House” (a) Original image; (b) Φ1, error = 
4.8926×10−04; (c) Optimized Φ1, error = 3.2987×10−04; 
(d) Φ2, error = 3.9618×10−04; (e) Optimized Φ2, error = 
2.7346×10−04. 

   
(a)                                  (b)                                 (c) 

  
(d)                                 (e) 

Fig. 10.  “Lena” (a) Original image; (b) Φ1, error = 
2.1841×10−04; (c) Optimized Φ1, error = 1.6209×10−04; 
(d) Φ2, error = 1.3918×10−04; (e) Optimized Φ2, error = 
9.3071×10−05. 

 
(a) 

 
(b) 

Fig. 11. Recovery error with different observations: 
(a) “House”; (b) “Lena”. 

four measurement matrices is not significantly different, 
the experimental results of the four different methods show 
that the performance of the measurement matrix corre-
sponding to CE is always better than that of the Logistic-
measurement matrix, and the optimization algorithm can 
further improve the performance of the measurement ma-
trix. 

4.4 Analysis of Different Reconstruction 
Algorithms 
To further validate the effectiveness of the proposed 

methods in this paper and engage in a broader discussion, 
various reconstruction algorithms were employed in the 
reconstruction process: 

(1) FISTA: Fast Iterative Shrinkage-Thresholding 
Algorithm ; 

(2) ISTA: Iterative Shrinkage-Thresholding Algorithm ; 
(3) OMP: Orthogonal Matching Pursuit ; 
(4) CoSaMP: Compressive Sampling Matching Pursuit. 

Using the aforementioned methods, the reconstruction 
of the LFM signals in Sec. 4.2 and the "House" image in 
Sec. 4.3 were performed. The reconstructions were 
considered successful when the relative reconstruction 
error was less than 10−2. The success probability of the 
reconstruction for both signals can be seen in Fig. 12 and 
Fig. 13, respectively. 
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Fig. 12.  LFM signals with different reconstruction algorithms. 

 
Fig. 13.  “House” with different reconstruction algorithms. 

The results depicted in the figures demonstrate that 
the proposed methods, in combination with different 
reconstruction algorithms, can achieve successful recon-
struction of both one-dimensional and two-dimensional 
signals, maintaining a high reconstruction probability. 
Furthermore, based on the reconstruction results shown in 
the figures, there is little difference in performance among 
different reconstruction algorithms, indicating the adapt-
ability of the proposed methods to various reconstruction 
algorithms. 

5. Conclusion 
This paper proposes a novel optimization method for 

bipolar Toeplitz matrices, which enhances the measure-
ment matrix performance in two aspects. Firstly, a CE 
mapping is proposed, and the constructed measurement 
matrix with enhanced CE mapping has better compressive 
observation performance. Secondly, by introducing struc-
tural matrices, improving the Abolghasemi optimization 
algorithm, and constraining the threshold function, the 
structural characteristics and bipolarity of the Toeplitz 
matrix are ensured during the optimization process. Exper-
imental results show that the proposed method not only 
reduces the correlation coefficient of the measurement 
matrix but also effectively applies to the compressive sens-
ing reconstruction of one-dimensional signals and two-
dimensional images when combined with sparse represen-
tation dictionaries. Compared with the previous methods, 
the reconstruction error is significantly reduced, and the 
reconstruction performance is significantly improved. 
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