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Abstract. Wireless Federated Learning (WFL) is an in-
novative machine learning paradigm enabling distributed
devices to collaboratively learn without sharing raw data.
WFL is particularly useful for mobile devices that generate
massive amounts of data but have limited resources for train-
ing complex models. This paper highlights the significance
of reducing delay for efficient WFL implementation through
advanced multiple access protocols and joint optimization
of communication and computing resources. We propose
optimizing the WFL Compute-then-Transmit (CT) protocol
using hybrid Non-Orthogonal Multiple Access (H-NOMA).
To minimize and optimize latency for the transmission of
local training data, we use the Successive Convex Optimiza-
tion (SCA) method, which efficiently reduces the complexity
of non-convex algorithms. Finally, the numerical results ver-
ify the effectiveness of H-NOMA in terms of delay reduction,
compared to the benchmark that is based on Non-Orthogonal
Multiple Acces (NOMA).

Keywords
WFL, NOMA, SCA, latency, Compute-then-
Transmit (CT)

1. Introduction
Federated learning (FL), introduced in 2017 [1], is a dis-

tributed learning approach that Google pioneered. Federated
learning (FL) has attracted substantial attention from both
the realms of research and practical application [2], [3]. Un-
like conventional distributed machine learning techniques,
FL’s primary objective is to achieve a unified, shared ma-
chine learning model for all participating distributed clients,
while safeguarding the confidentiality of each client’s sensi-
tive data. The uniqueness of FL’s privacy-preserving charac-
teristic lies in its utilization of secure model aggregation, as
opposed to the more conventional data aggregation. In the
FL framework, individual clients train their machine-learning
models locally and transmit only their model parameters to
a central server without revealing their local data.

Several research studies have explored FL and its po-
tential applications. Yi Liu et al. [4] described an overview
of integrating federated learning into 6G communications
and the core challenges of federated learning for 6G applica-
tions. In [5], the authors outlined a learning paradigm at the
edge within distributed networks and conducted a compar-
ison with traditional distributed data center computing and
classical privacy-preserving learning. To provide commu-
nication efficiency, i.e. reduce uplink communication cost,
two updates such as structured updates and sketched updates
for communicating the local model to the central server in
a federated learning have been provided in [6].

In [7], the authors discussed open problems and chal-
lenges present in FL and also described how FL gained trac-
tion in interdisciplinary fields such as machine learning, op-
timization, information theory, and statistics to cryptogra-
phy, fairness, and privacy. D. Chen et al. [8] focused on
how to solve the computation efficiency, low-latency object
detection, and classification problems in augmented reality
applications. In reliable federated learning, to select trusted
mobile devices i.e., to guard against unreliable model up-
dates, reputation has been introduced as a reliable metric [9].
Data privacy leakage issues related to ensuring secure FL
in 5G networks have been addressed [10] and also proposed
a blockchain-based framework to defend against poisoning
attacks.

For collaborative model training at mobile edge net-
works, how FL can serve as an enabling technology has
been presented in [11], and the authors also discussed the
implementation of FL for privacy-preserving mobile edge
networks. In [12], an overview of the integration of FL and
blockchain, known as FLchain, in mobile edge networks is
presented. Furthermore, the paper explored the utilization of
FLchain for various applications, including edge data shar-
ing, edge content caching, and edge crowdsensing. In [13],
the authors explored insights into the implementation of dis-
tributed learning over wireless networks.

It is envisioned that 6G will heavily depend on pervasive
artificial intelligence services and progressively surpass the
capabilities of the fifth generation (5G) of wireless networks.
Machine Learning (ML) has optimized wireless network
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performance and enhanced data-driven applications [14].
Centralized configurations of ML techniques, which typi-
cally rely on a single entity like a central server for data
upload and processing, could be more practical for upcom-
ing 6G-enabled applications such as smart grids, autonomous
vehicles, and augmented reality. This is due to strict latency
requirements and concerns about data privacy. Consequently,
the convergence of these constraints alongside the growing
computational capabilities of devices has opened doors to
the adoption of distributed frameworks for building learning
models.

Although many works have successfully discussed the
challenges imposed by FL, the authors in [15] provided an ex-
tensive analysis of the wireless aspect within the framework
of federated learning (FL), concurrently enlightening the
prospective paths for future research in the domain of WFL,
aligned with the 6G vision. They also highlighted that WFL’s
efficacy is closely related to the capabilities of the underlying
wireless communication network. Furthermore, their work
emphasized that in the model transmission phase of each
communication round, all devices employ a multiple access
scheme to upload their individually trained outcomes to fa-
cilitate the seamless integration of WFL within the context
of 6G.

In recent years, Non-Orthogonal Multiple Access
(NOMA) has gained significant attention as a spectral-
efficient multiple access technique [16]. In addition to its
spectral efficiency benefits, NOMA has the potential to in-
crease the number of served devices and provide fairness
among users. This makes NOMA-based schemes a promis-
ing alternative for next-generation multiple access schemes,
which are essential to meet the connectivity requirements of
6G [17]. In [18], the authors investigated the examination
of a novel power allocation strategy designed to amplify the
total throughput within a downlink NOMA system. In [19],
the authors focused on the combination of NOMA and Mo-
bile Edge Computing (MEC), and they also considered the
application of NOMA uplink transmission to MEC, which
enables multiple users to perform offloading simultaneously.

To minimize delay for offloading in a multi-user MEC
network under maximum power, and energy constraints, the
authors focused on NOMA and they also demonstrated that
using NOMA can achieve a lower delay than Time Divi-
sion Multiple Access (TDMA) under maximum power con-
straints [20]. In [21], the authors considered the minimiza-
tion of the offloading delay for Nonorthogonal Multiple Ac-
cess Assisted Mobile Edge Computing (NOMA-MEC). To
minimize the energy consumption of the network, NOMA
has been integrated with MEC networks in an underlay Un-
manned Aerial Vehicle (UAV) [22]. For a wireless-powered
MEC, the authors investigated the application of User Coop-
eration (UC) and NOMA [23]. In [24], the authors demon-
strated that NOMA has the potential to decrease latency dur-
ing a WFL round and accelerate the training process, which
is essential for efficiently integrating WFL into 6G.

Our work explores the available potential of hybrid NO-
MA/OMA configurations to enhance the scalability of WFL.
The notion of employing such hybrid NOMA configurations
has already been introduced as a promising tactic for op-
timizing the offloading of data in Mobile Edge Computing
(MEC), as demonstrated in references [25] and [26]. Build-
ing upon this foundation, our work seeks to extend and adapt
the concept of hybrid NOMA to tackle the unique scalability
challenges posed by WFL.

In the framework of optimizing the Compute-Then-
Transmit (CT) protocol with the hybrid Non-Orthogonal Mul-
tiple Access (NOMA) technique, the challenge of formulating
a multi-objective optimization problem aimed at minimizing
latency requirements is encountered. This optimization prob-
lem is non-convex in nature which poses a computational
problem. Low-complexity successive optimization algo-
rithm is introduced to address this computational challenge.

The paper is organized as follows. Section 2 describes
the system model. Section 3 analyses the delay minimization
of Hybrid NOMA. Section 4 discusses its numerical result.
The paper concludes in Sec. 5.

2. System Model
Consider a WFL with M number of users and

a Server/Base Station (BS) as shown in Fig. 1. Each user
is indexed as m, where m ∈ M = {1, 2, . . . , 𝑀}. Each user
m has a local dataset 𝔇m, where Dm = |𝔇m | are the total
data samples.

During each 𝑖th communication round, the process fol-
lows these steps until global model convergence is achieved:

• BS broadcasts the global parameter 𝑤𝑖 to all users par-
ticipating in the current round.

• Upon receiving the global model parameter, each user
𝑚 ∈ 𝑀 trains their respective local model using their
dataset. Subsequently, the user uploads the trained local
parameter to the server.

• Once all local parameters have been received, the server
aggregates them to update the global model parameter
to 𝑤𝑖+1.

Fig. 1. System diagram.
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Fig. 2. Hybrid NOMA transmission phase.

As shown in Fig. 2, in Compute-Then-Transmit hybrid
NOMA, two phases have been carried out during WFL round.
In the first phase, users execute the local computations. While
in the second phase, they transmit their messages, i.e., the
trained parameters to the base station. A hybrid NOMA pro-
tocol has been considered during the transmission phase. In
the hybrid NOMA strategy, some of the users are capable to
complete their transmission before the other users, while the
BS decodes by utilizing Successive Interference Cancellation
(SIC). In Compute-Then-Transmit hybrid NOMA, all users
are required to complete their local computations before the
information transmission phase starts.

Unlike NOMA, in hybrid NOMA users close to the base
station are allowed to complete their transmission before the
other users. During the first 𝑡1 seconds, user 1 is requested
to complete its transmission. In addition to user 1, the other
users are also permitted to carry out transmission during the
first 𝑡1 seconds. During the next 𝑡2 seconds, user 2 is re-
quested to complete its transmission, where the other users,
user 𝑚, 2 ≤ 𝑚 ≤ 𝑀 , can continue their transmission si-
multaneously. During the last 𝑡𝑀 seconds, only user 𝑀 is
transmitted, because all other users should have already com-
pleted their transmission by then. Denote the user’s transmit
powers during 𝑡𝑛 by 𝑃𝑚,1, 1 ≤ 𝑛 ≤ 𝑚, 2 ≤ 𝑚 ≤ 𝑀 .

By applying the proposed hybrid NOMA scheme, at 𝑡𝑛,
the base station receives the following data from all user’s
trained data:

𝑦𝑛 =

𝑀∑︁
𝑚=𝑛

√︁
𝑃𝑚,𝑛ℎ𝑚𝑑

− 𝛼
2

𝑚 𝑠𝑚,𝑛 + 𝜔𝑛 (1)

where 𝑠𝑚,𝑛 denotes the local trained data by user 𝑚 during
𝑡𝑛, 𝑑𝑚 is the distance from the user 𝑚 to BS, 𝛼 is the path
loss exponent, the complex random variable ℎ𝑚 ∼ CN(0, 1)
is the small scale fading and 𝜔𝑛 denotes the white Gaussian
noise. The Successive Interference Cancellation (SIC) de-
coding is considered. The decoding process starts with the
user closest to the base station and proceeds to decode the
next user who is closer in proximity. At 𝑡𝑛, the base station

first decodes user 𝑚’s signal, when 𝑚 > 𝑛, i.e., the signal
from the user who is closer to the BS, before decoding signal,
i.e., the signal from the user far away from the BS.

Using this SIC decoding order guarantees that user 𝑛
experiences the same performance as with Orthogonal Mul-
tiple Access (OMA) at 𝑡𝑛. As a result, at 𝑡𝑛, user 𝑚’s signal is
decoded in the (𝑀 −𝑚 + 1) − 𝑡ℎ SIC step with the following
data rate:

𝑅𝑚,𝑛 = log2

(
1 +

𝑃𝑚,𝑛 |ℎ𝑚 |2𝑑−𝛼
𝑚∑𝑚−1

𝑗=𝑛 𝑃 𝑗 ,𝑛 |ℎ 𝑗 |2𝑑−𝛼
𝑗

+ 𝑁0𝐵

)
. (2)

As a consequence, at 𝑡𝑛, user 𝑛’s signal is decoded last with
the data rate of 𝑅𝑛,𝑛 = log2

(
1 + 𝑃𝑛,𝑛 |ℎ𝑛 |2𝑑−𝛼

𝑛

𝑁0𝐵

)
, which means

that user 𝑛 experiences interference-free information as in
OMA.

The utilized computation resources for local model
training, i.e., the CPU cycle frequency, for the 𝑚-th user is
denoted as 𝑓𝑚. Let 𝑐𝑚 represent the number of CPU cycles
required for the 𝑚-th user to perform one sample of data and
𝐷𝑚 represent the total data samples in local model training.
Hence, the computation time dedicated to a local iteration
from [24] and [27] is given as

𝜏𝑚 =
𝑐𝑚𝐷𝑚

𝑓𝑚
, ∀𝑚 ∈ 𝑀. (3)

Accordingly, the energy consumption for a local itera-
tion can be expressed as follows.

𝐸
comp
𝑚 = 𝜁𝑐𝑚𝐷𝑚 𝑓 2

𝑚, ∀𝑚 ∈ 𝑀 (4)

where 𝜁 is a constant parameter related to the hardware ar-
chitecture of device 𝑚. As discussed previously, all users
are forced to complete the local computations within 𝜏, with
the corresponding energy consumed by each user being a de-
creasing function concerning 𝜏. Thus, it should hold

𝜏𝑚 = 𝜏, ∀𝑚 ∈ 𝑀. (5)

3. Delay Minimization
The primary goal of this work is to minimize the over-

all delay experienced by all users during a WFL round by
optimizing parameter aggregation on the server, improving
processing capabilities, enhancing network communication,
and implementing efficient algorithms. In the CT-Hybrid
NOMA protocol, users terminate the computation phase si-
multaneously, but users complete its transmission phase at
different times. So, the total delay of a WFL round is de-
scribed as

𝑇 = 𝜏 + 𝑡1 + 𝑡2 + · · · + 𝑡𝑀 . (6)

The total delay of a WFL round is the sum of com-
putation and transmission latency. This includes the time
required for both the computation processes and the trans-
mission of data. It is important to note that the delay of the
server in broadcasting the global parameter is ignored, as
the transmit power of the Base Station (BS) is significantly
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higher than that of the individual users. The BS transmits
the same message to all users simultaneously without signif-
icant delay. Thus, the focus is primarily on minimizing the
computation and transmission latency to reduce the overall
delay experienced by the users. Also, we assume that the
data size transmitted by each user is the same i.e., 𝑍𝑚 = 𝑍

for ∀𝑚 ∈ 𝑀 , related to the model parameters.

The CPU clock speed of each user is restricted to a max-
imum of 𝑓 max

𝑚 . So, it must hold 𝑓𝑚 ≤ 𝑓 max
𝑚 ,∀𝑚 ∈ 𝑀 , which

is equivalent to 𝜏 ≥ max
𝑚∈𝑀

(
𝑐𝑚𝐷𝑚

𝑓 max
𝑚

)
≜ 𝑏1. Moreover, the max-

imum available energy of each user is 𝐸max
𝑚 . So, it must hold

𝐸
comp
𝑚 + 𝐸𝑚 = 𝜁

𝑐3
𝑚𝐷

3
𝑚

𝜏2 + 𝐸𝑚 ≤ 𝐸max
𝑚 , ∀𝑚 ∈ 𝑀, (7)

since the total consumed energy for both computation and
communication purposes cannot exceed the maximum avail-
able energy.

The optimization problem for minimizing the latency
of a WFL round in the case of CT-hybrid NOMA can be
given as,

min
𝜏,𝑡1 ,𝑡2 ,...,𝑡𝑀 ,𝐸

𝜏 + 𝑡1 + 𝑡2 + · · · + 𝑡𝑀 ,

s.t. 𝐶1 : 𝜁
𝑐3
𝑚𝐷

3
𝑚

𝜏2 + 𝐸𝑚 ≤ 𝐸max
𝑚 ,∀𝑚 ∈ 𝑀,

𝐶2 : 𝑍 ≤
𝑚∑︁
𝑛=1

𝑡𝑛𝑅𝑛,𝑚,

𝐶3 :
𝑚∑︁
𝑛=1

𝑡𝑛𝑃𝑛,𝑚 = 𝐸𝑚

(8)

where 𝐶1, 𝐶2 and 𝐶3 are contraints. This optimization
problem is a multi-objective optimization problem and the
problem is non-convex because the objective and constraint
functions are coupled with 𝑡𝑚 and 𝑃𝑛,𝑚. This paper proposes
a low-complexity successive convex algorithm to solve this
problem.

From (8), energy of the 𝑚th user 𝐸𝑚 can be written as

𝐸𝑚 = 𝐸max
𝑚 − 𝜁

𝑐3
𝑚𝐷

3
𝑚

𝜏2 , ∀𝑚 ∈ 𝑀. (9)

Furthermore, since 𝐸𝑚 ≥ 0,∀𝑚 ∈ 𝑀 , by manipulat-

ing (9), it yields 𝜏 ≥ max
𝑚∈𝑀

(√︃
𝜁
𝑐3
𝑚𝐷3

𝑚

𝐸max
𝑚

)
≜ 𝑏2. Thus, by also

recalling that 𝜏 ≥ 𝑏1, it should finally hold for 𝜏

𝜏 ≥ max{𝑏1, 𝑏2} ≜ 𝜏low. (10)

3.1 Low-Complexity Successive Convex
Optimization Algorithm

In this section, first, a low-complexity successive algo-
rithm is proposed to solve the problem in (8). The Successive
Interference Cancellation (SIC) algorithm is proposed to de-
code the data of users 1, 2, . . . , 𝑀 . Due to the use of SIC,

user 𝑛’s choices for 𝑡𝑛 and 𝑃𝑛,𝑚 have no impact on user 𝑚’s
data rate, 𝑚 < 𝑛. An extreme example is user 1’s data rate,
which is 𝑅1,1 = 𝑡1𝐵 log2

[
1 + 𝑃1,1 |ℎ1 |2𝑑−𝛼

1
𝑁0𝐵

]
and depends only

on 𝑡1 and 𝑃1,1.This motivates the use of a successive opti-
mization strategy, where user 𝑚’s transmission parameters
are optimized after user (𝑚 − 1)’s.

After manipulating 𝜏 from (10), 𝑡1, 𝑡2, . . . , 𝑡𝑀 for mini-
mizing overall delay can be solved by first solving for 𝑡1. For
user 1 maximum data size at the time, 𝑡1 can be written as

𝑍 = 𝑡1𝐵 log2

[
1 +

𝑃1,1 |ℎ1 |2𝑑−𝛼
1

𝑁0𝐵

]
(11)

where 𝑃1,1 =
𝐸1,1
𝑡1

=
𝐸1
𝑡1

and 𝐴1 = 𝐸1 |ℎ1 |2𝑑−𝛼
1 . So, the

equation (11) becomes

𝑍 = 𝑡1𝐵 log2

[
1 + 𝐴1

𝑡1𝑁0𝐵

]
. (12)

The optimal value of 𝑡1 can be written from Appendix A
by solving (12) as

𝑡∗1 = − 𝑍 ln(2)𝐴1
𝐵 (𝑍𝑁0 ln(2) +W−1 (𝑎1)𝐴1)

(13)

where W−1 (·) denotes Lambert 𝑊 function and 𝑎1 is given
by

𝑎1 = −𝑍𝑁0 ln 2
𝐴1

2− 𝑍𝑁0
𝐴1 . (14)

After performing global optimization, the ideal value of
the user 1 delay is determined by optimizing the parameter 𝜏.
With the preparation completed, we can now proceed to im-
plement the bisection method within the designated interval
and present Algorithm 1 for acquiring the most favorable
solutions that minimize the communication round delay con-
sidering only user 1.

Algorithm 1. Delay 𝑡1 minimization for CT-Hybrid NOMA.

1: Initialize 𝜏low = max{𝑏1, 𝑏2}, 𝜏𝑚, �̄�, 𝜏up = 𝑇1 ( �̄� ) , 𝜖 ;
2: while 𝜏up − 𝜏low > 𝜖 do
3: Set 𝜏 = 𝜏𝑚, and derive 𝑡∗1 (𝜏𝑚 ) from (13)
4: Set 𝑇1 (𝜏𝑚 ) = 𝜏𝑚 + 𝑡∗1 (𝜏𝑚 );
5: Set 𝜏 = 𝜏up, and derive 𝑡∗1 (𝜏up ) from (13)
6: Set 𝑇1 (𝜏up ) = 𝜏𝑚 + 𝑡∗1 (𝜏up);
7: if 𝑇1 (𝜏𝑚 ) < 𝑇1 (𝜏up ) then
8: 𝜏up = 𝜏𝑚

9: else
10: 𝜏low = 𝜏𝑚

11: end if
12: 𝜏𝑚 =

𝜏low+𝜏up
2

13: end while
14: Output 𝜏∗ = 𝜏up, 𝑡∗1 = 𝑡∗1 (𝜏up ) , 𝑇∗

1 = 𝜏∗ + 𝑡∗1

Subsequently, the algorithm’s key steps are explained,
starting with the required initializations in line 1, followed
by the application of the bisection method in lines 2–13. In
the subsequent lines 3–6 of the algorithm, the delay of the
communication round considering user 1 is computed at the
values of 𝜏 = 𝜏𝑚 and 𝜏 = 𝜏up. Subsequently, in lines 7–12,
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the algorithm adjusts the bounds of 𝜏 appropriately in each
iteration by comparing the values of 𝑇1 (𝜏𝑚) and 𝑇1 (𝜏up),
aiming for convergence to the optimal solution.

To optimize 𝑡2, 𝑡3, . . . , 𝑡𝑀 , the optimization in (8) can
be decomposed into subproblems, and defined as follows,

min
𝑡𝑚

𝑡𝑚

s.t. 𝐶1 : 𝜁
𝑐3
𝑚𝐷

3
𝑚

𝜏2 + 𝐸𝑚 ≤ 𝐸max
𝑚 , 1 < 𝑚 < 𝑀,

𝐶2 : 𝑍 ≤
𝑚∑︁
𝑛=2

𝑡𝑛𝑅𝑛,𝑚,

𝐶3 :
𝑚∑︁
𝑛=2

𝑡𝑛𝑃𝑛,𝑚 = 𝐸𝑚.

(15)

Algorithm 2 demonstrates how the proposed low-
complexity successive convex algorithm tackles the multi-
objective optimization problem in (8) by decomposing it into
a sequence of subproblems described in (15) and solving
them successively.

Algorithm 2. Low-complexity optimization algorithm.

1: Set 𝑡∗1 from (13) and 𝑃∗
1,1 =

𝐸1
𝑡∗1

;
2: 𝑚 = 1.
3: while 𝑚 < 𝑀 do
4: 𝑚 = 𝑚 + 1.
5: find the optimal solutions for 𝑡∗𝑚, 𝑃𝑚,𝑛 , 1 ≤ 𝑛 ≤ 𝑀,

by solving the problem
6: end while
7: The outcome of the algorithm is given by

𝑥∗ ≜ [𝑡∗2 , 𝑡
∗
3 , . . . , 𝑡

∗
𝑀
, 𝑃∗T

2 , 𝑃∗T
3 , . . . , 𝑃∗T

𝑀
]

where 𝑃∗
𝑚 = [𝑃∗

𝑚,1, 𝑃
∗
𝑚,2...𝑃

∗
𝑚,𝑚 ]T.

Algorithm 2 can be interpreted as a greedy approach
that breaks down problems in (8) into a set of subproblems,
represented as (15), and sequentially solves them. The benefit
of Algorithm 2 lies in its ability to achieve low computational
complexity. While the solution obtained through Algorithm 2
is anticipated to be suboptimal for the problem in (8).

To this end, the major complexity of Algorithm 1 lies
in applying the bisection method to derive 𝑡∗1 from (13). As
a result, the complexity can be expressed as the order of
O

(
log2

(
𝜏up−𝜏low

𝜖

))
. BS only needs to carry out 𝑀 − 1 steps

to implement Algorithm 2, where each step is to find the opti-
mal solution to problems described in (15), and the associated
computational complexity is moderate.

4. Numerical Results and Discussion
In this section, the performance of the proposed

CT-Hybrid NOMA scheme is studied. This evaluation is
conducted using MATLAB simulations, as detailed in Ap-
pendix B. The performance of CT-Hybrid NOMA is as-
sessed based on the average latency achieved, which allows
for a comparison with CT-NOMA in terms of information-
theoretic perspectives while considering fading statistics.

The CT-NOMA-based protocol [24] serves as the bench-
mark against which we assess and contrast the CT-NOMA
protocol’s efficacy in diminishing delays. To evaluate the
performance of CT-Hybrid NOMA, simulation settings are
taken from [24] as summarized in Tab. 1.

Figures 3 and 4 illustrate the influence of the maxi-
mum available energy of users on the average latency during
a WFL round.

Parameter Value
CPU cycle frequency ( 𝑓 max

𝑚 ) 1.5 GHz
Bandwidth (𝐵) 1.2 MHz

Path loss coefficient (𝛼) 3.5
Parameter related to the hardware

architecture (𝜁 ) 10−27

Number of users (𝑀) 10 users
Total data samples of 𝑚th user (𝐷𝑚) 0.5 Mbit

Power spectral density (𝑁0) –174 dBm/Hz
Number of CPU cycles required

for the 𝑚th user (𝑐𝑚 ) ∼ U(10, 40)

Distance between 𝑚th user and BS (𝑑𝑚) ∼ U(0, 1000 m)

Tab. 1. Simulation settings.

Fig. 3. Impact of the user’s maximum available energy on la-
tency, with 𝑍 = 0.3 Mbits.

Fig. 4. Impact of the user’s maximum available energy on la-
tency, with 𝑍 = 0.2 Mbits.
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Fig. 5. Impact of the user’s parameter data size on latency, with
maximum energy of the user = 2 joule.

Fig. 6. Impact of the number of users on latency for CT NOMA
protocol.

Analysis of Figs. 3 and 4 reveals the superior perfor-
mance of CT-Hybrid NOMA over CT-NOMA. It’s worth
noting that CT-Hybrid NOMA achieves significantly better
energy efficiency than CT-NOMA while maintaining com-
parable latency levels. In other words, CT-NOMA neces-
sitates more energy to attain the same latency level as CT-
Hybrid NOMA. The latency evaluation for both multiple
access strategies encompasses two distinct data sizes, illus-
trated in Figs. 3 and 4 as 0.2 Mbits and 0.3 Mbits, respectively.
Notably, an increase in data size to 0.3 Mbits corresponds to
higher latency.

Figure 5 shows the influence of the different values of
the data size of users on the average latency during a WFL
round and it shows the superiority of CT-Hybrid NOMA over
CT-NOMA across various users’ data sizes. Figures 3 and 4
demonstrate a latency reduction of approximately 20 ms in
CT-Hybrid NOMA when compared to CT-NOMA. Hybrid
NOMA shows superior performance compared to the NOMA
scheme by effectively utilizing the advantages of both orthog-
onal and non-orthogonal aspects of multiple access.

Fig. 7. Impact of the number of users on latency for CT Hybrid
NOMA protocol.

Fig. 8. Impact of the number of users on latency with
𝑍 = 0.3 × 106 and 𝐸max

𝑚 = 2 joules.

Figures 6–8 show the impact of the number of users
on latency. As the number of users increased, we observed
a noticeable increase in latency for both the CT NOMA-based
protocol and the CT Hybrid NOMA-based protocol. Interest-
ingly, our results indicate that the CT Hybrid NOMA-based
protocol consistently outperforms the CT NOMA-based pro-
tocol under all conditions. This suggests that the hybrid
approach may offer better performance and lower latency as
the user grows.

5. Conclusion
In this paper, a novel hybrid NOMA has been proposed

to optimize the WFL Compute-then -Transmit(CT) protocol,
accompanied by the formulation of a multi-objective opti-
mization problem. Multi-objective optimization problem
has been formulated to minimize the total communication
round trip delay of users in WFL. Furthermore, in this pa-
per, the SIC decoding order is solely based on the user’s
distance from the BS. Low-complexity SCA has been pro-



600 P. KAVITHA, K. KAVITHA, HYBRID NOMA FOR LATENCY MINIMIZATION IN WIRELESS FEDERATED LEARNING . . .

posed to solve multi-objective optimization problems. De-
spite the high complexity involved in solving the optimization
problem for implementing Hybrid NOMA in the Compute-
then-Transmit (CT) protocol to optimize WFL, it is apparent
that CT-Hybrid NOMA can reduce latency compared to CT-
NOMA. This reduction in latency can significantly speed up
the training process, which is a crucial necessity for effec-
tively integrating WFL in 6G.

The low-complexity SCA method has been introduced
to resolve non-convex optimization challenges within WFL.
Deep Reinforcement Learning (DRL) is a promising path to
further advance optimization. By utilizing DRL, resource
management and decision-making in WFL systems have ac-
cess to a powerful toolkit that can effectively solve complex
problems. The goal of this convergence is to provide solu-
tions to complex problems that are both nearly optimal and
computationally feasible. This approach allows for practical
and manageable resolutions to be achieved.
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Appendix A: Derivation for the
Optimum Value of 𝒕1 in (13)

From (12),

𝑍 = 𝑡1𝐵 log2

[
1 + 𝐴1

𝑡1𝑁0𝐵

]
. (A1)

𝑦e𝑦 = 𝑤 can be solved for 𝑦. Now, 𝑦 =

W−1 (𝑤) where W. is Lambert 𝑊 function (source
https://en.wikipedia.org/wiki/Lambert_W_function).

(A1) can be written as

𝑍 =
𝑡1𝐵

ln 2
loge

[
1 + 𝐴1

𝑡1𝑁0𝐵

]
. (A2)

From (A2),

1 + 𝐴1
𝑡1𝑁0𝐵

= e
𝑍 ln 2
𝑡1𝐵 . (A3)

Assume 1 + 𝐴1
𝑡1𝑁0𝐵

= 𝑥, after some manipulations, we got

−𝑥𝑍𝑁0 ln 2
𝐴1

e−
𝑥𝑍𝑁0 ln 2

𝐴1 = −𝑍𝑁0 ln 2
𝐴1

2− 𝑍𝑁0
𝐴1 . (A4)

Consider the right hand side of (A4) as 𝑎1 i.e.,
− 𝑍𝑁0 ln 2

𝐴1
2− 𝑍𝑁0

𝐴1 = 𝑎1 and using Lambert 𝑊 function the so-
lution to the above equation is given as

−𝑥𝑍𝑁0 ln 2
𝐴1

= W−1 (𝑎1). (A5)

The optimal value of 𝑡1 can be obtained from above as

𝑡∗1 = − 𝑍 ln(2)𝐴1
𝐵 (𝑍𝑁0 ln(2) +W−1 (𝑎1)𝐴1)

. (A6)

Appendix B: MATLAB Code for
Mathematical Model

Listing 1. Code for algorithm.
% CPU cycle frequency for the mth user
f_max=1.5*10^9;
B=1.2*10^6; % bandwidth
a=3.5; %path loss coefficient
% parameter related to the hardware architecture
c_tow=10^-27;
% Number of users
N=10;
% Data size of mth user
Dn=0.5*10^6;
%the power spectral density (=174dBm)

No=-174;
% conversion from dBm to magnitude
No=10^(No/10)/1000;
%The no. of cycles for the n=th user
%local model training
cn=randi([10,40],1,N);
% diatance of nth user
dn=randi([0,1000],1,N);
% Channel coefficient
hn=1/sqrt(2)*(randn(1,N)+j*randn(1,N));
hn=sort(abs(hn));
nn=1;
Z=0.3*10^6; % Data Size
En_max=2;
[dn,index_d]=sort(dn);
% Block of codes to find tow_low value
for n=1:N

c1(n)=cn(n)*Dn/f_max;
c2(n)=sqrt(c_tow*(cn(n)^3)*(Dn^3)/En_max);
g(n)=(hn(n)^2)*(dn(n))^-a;

end
a1=max(c1);
a2=max(c2);
tow_low=max(a1,a2);
% Block of lines to find t1 following algorithm 1
tow_dilt=0.05;
tow_m=tow_dilt;
[g,index]=sort(g,’descend’);
%calling sub function t_tow_dilt
t_tow_dilt=abs(calculate_t1(g(1),cn(index(1)),En_max,
tow_m,Z,c_tow,Dn,No,B));
tow_up=tow_dilt+t_tow_dilt;
e=0.002;
ss=1;
while tow_up-tow_low>e
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tow=tow_m;
%calling sub function t_tow_m
t_tow_m=abs(calculate_t1(g(1),cn(index(1)),En_max,

tow,Z, c_tow,Dn,No,B));
tow=tow_up;

%calling sub function t_tow_up
t_tow_up=abs(calculate_t1(g(1),cn(index(1)),En_max,

tow,Z,c_tow,Dn,No,B));
T_m=tow_m+t_tow_m;
T_up=tow_up+t_tow_up;
if T_m<T_up

tow_up=tow_m;
else

tow_low=tow_m;
end
tow_m=(tow_up+tow_low)/2;

end
tow_optimal=tow_up;
% calling sub function for calculating optimal t1 value
t1=abs(calculate_t1(g(1),cn(index(1)),En_max,
tow_optimal,Z,c_tow,Dn,No,B));

% sub function to calculate t1
function t1=calculate_t1(g1,cn1,En_max,tow,Z,c_tow,Dn,No,B)
EE1=(En_max-(c_tow*(cn1^3)*(Dn^3)/(tow^2)));
zn=Z;
num=-zn*log(2)*EE1*g1;
bn=-(2^(-zn*No/(EE1*g1)))*zn*No*log(2)/(EE1*g1);

W=lambertw(-1,bn);
den=B*((zn*No*log(2))+(W*EE1*g1));
t1=num/den;
% Energy of users not exceeding maximum value
for i=1:N

EE(i)=En_max-(c_tow*(cn(index(i))^3)*(Dn^3)/(tow_optimal^2));
end
p=[];
p(1,1)=EE(1)/t1;
p(2,1)=p(1,1)*(g(1)^2)/(g(2)^2);
p(2,2)=((p(1,1)*((g(1))^2))+(p(2,1)*((g(2)^2))))/((g(2))^2);
t2_low=0.00001;
t2_up=t1-0.1*t1;
t2=calculate_t2(t1,t2_low,t2_up,p,EE,Z,g,No,B);
% Sub function to calculate t2 time
function t2=calculate_t2(t1,t2_low,t2_up,p,EE,Z,g,No,B)
R21=B*log2(1+(p(2,1)*g(2)/(p(1,1)*g(1)+(No*B))));
R22=B*log2(1+(p(2,2)*g(2)/(No*B)));
C1=t1*R21+t2_low*R22;
C2=t1*p(2,1)+t2_low*p(2,2);
while C1<=Z&&C2>=EE(2)&&t2_low<t2_up

t2_low=t2_low+((t2_up-t2_low)*rand(1));
R21=B*log2(1+(p(2,1)*g(2)/(p(1,1)*g(1)+(No*B))));
R22=B*log2(1+(p(2,2)*g(2)/(No*B)));
C1=t1*R21+t2_low*R22;
C2=t1*p(2,1)+t2_low*p(2,2);

end
t2=t2_low;


