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Abstract. Coverless image steganography typically ex-
tracts feature sequences from cover images to map informa-
tion. Once the extracted features have high similarity, it is
challenging to construct a complete mapping sequence set,
which places a heavy burden on the underlying storage and
computation. In order to improve database utilization while
increasing the data-hiding capacity, we propose a coverless
steganography model based on low-similarity feature selec-
tion in the DCT domain. A mapping algorithm is presented
based on an 8000-dimensional feature termed CS-DCTR ex-
tracted from each image to convert into binary sequences.
The high feature dimension leads to a high capacity, rang-
ing from 8 to 25 bits per image. Furthermore, scrambling
is employed for feature mapping before building an inverted
index tree, considerably enhancing security against steganal-
ysis. Experimental results show that CS-DCTR features ex-
hibit high diversity, averaging 49.3% complete mapping se-
quences, which indicates lower similarity among CS-DCTR
features. The technique also demonstrates resistance to nor-
mal operations and benign attacks. The information extrac-
tion accuracy rises to 96.7% on average under typical noise
attacks. Moreover, our technique achieves excellent perfor-
mance in terms of hiding capacity, image utilization, and
transmission security.
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1. Introduction
With the development of information security technol-

ogy, researchers have proposed many steganography models
for image, audio, and video files. Among these approaches,
image steganography methods have been mature and widely
used, such as [1–5]. Another type of steganography tech-
nique [6], [7], known as reversible data hiding, offers a way
to recover the original images, making it suitable for medi-

cal and military applications. However, all embedding-based
models convey the secret message by manipulating some
characteristics of cover images. By modifying the cover
images, they make themselves easily suspectable to attack-
ers. Correspondingly, steganalysis for determining whether
an image contains secret information has been widely con-
cerned and developed. Besides some traditional methods,
such as [8–10], there are some deep learning-based schemes,
such as Xu-Net [11] and SR-Net [12].

Considering the aforementioned statistical steganalysis
issue, Zhou et al. [13] proposed a coverless steganography
scheme without any modifications to the cover images. State-
of-the-art steganalysis techniques are ineffective against this
approach. To further improve the robustness against typ-
ical attacks, they developed a novel method [14] in 2016
that uses image features to extract visual keywords based on
the Bag-of-Words (BOW) model. Zheng et al. [15] applied
robust image hashing based on orientation information of
Scale-Invariant Feature Transform (SIFT) [16] feature points
for coverless hiding, which can withstand attacks involving
rotation and scaling. Moreover, it doubles the hiding ca-
pacity compared to the method in [13]. Cao et al. [17]
used the molecular structure images of material (MSIM) as
the cover images, which have a more general average pixel
value. Experiments proved its superiority in hiding capac-
ity. Later, Zhang et al. [18] introduced a discrete cosine
transform (DCT) steganography model that creates a ro-
bust feature sequence by computing the DCT coefficients
of adjacent sub-blocks segmented from an image. Simi-
larly, Liu et al. [19] employed the discrete wavelet trans-
form (DWT) coefficients between the blocks of zigzag scan
to generate feature sequences, which exhibit superior per-
formance in dealing with abrupt signals compared to the
DCT. The problem shared by these two approaches is that
robustness decreases as the number of sub-blocks increases.
Although these methods are more resistant to typical noise
attacks than spatial domain-based ones, they are more vul-
nerable to geometric attacks. Luo et al. [20], therefore, ap-
plied deep learning in coverless steganography by utilizing
Faster Region-Based Convolutional Neural Networks (Faster
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Method Advantages Disadvantages
[13], [14] Simple functional implementation Small hiding capacity and poor robustness
[15] Stronger robustness against rotation & scaling attacks, improved hiding capacity High computational complexity

[17] Further increased capacity Limited by molecular structure images
of material (MSIM)

[18] More robust against noise attacks Fragile to geometric attacks
[19] Ability to handle abrupt signals better than the DCT used in [18] Fragile to geometric attacks

[20–23] More robust against geometric attacks Less robust against noise attacks compared to
frequency domain-based methods

[24, 25] Less database load Small hiding capacity, unnatural image generation,
low detection accuracy

[26] Increased security with styles transfer Low extraction accuracy
[7] Higher security and robustness Small hiding capacity
Ours Low collision rate of the feature sequences and the minimal burden on the database A slightly lower robustness

Tab. 1. Comparison of coverless steganography.

RCNN) to detect objects in cover images. This multi-object
identification produces robust binary sequences that increase
robustness against geometric attacks. Other deep learning-
based coverless steganography exists as well, like [21–23].
These techniques are robust to geometric attacks but less tol-
erant to noise. Furthermore, Liu et al. [24] and Hu et al. [25]
proposed coverless schemes based on Auxiliary Classifier
Generative Adversarial Network (ACGAN) and Deep Convo-
lutional Generative Adversarial Network (DCGAN), respec-
tively. They create stego images using the GAN network,
which can lessen the database load. However, the generated
images are not realistic and natural enough. Based on [25],
Zhang et al. [26] employ CycleGAN to further enhance secu-
rity by adding style transfer to the generated images. Later,
Chen et al. [27] generated stego images using StarGAN [28]
based on the mapping relationship between facial attributes
and secret information. Despite its small capacity, it is ex-
tremely secure and robust. Table 1 displays the benefits and
drawbacks of the aforementioned coverless steganography
based on mapping rules.

In theory, a perfect mapping of secret information is
possible if a large enough number of images are maintained
in the database for coverless steganography. However, fea-
tures extracted from certain images based on existing models
generally share high similarities. Since these images pro-
duce identical feature sequences, it is challenging to build
a complete image database. The image database burden
increases dramatically whenever capacity requirements in-
crease slightly. That is also one of the main reasons for the
limited capacity of coverless steganography.

To improve steganography capacity and image retrieval
efficiency, we propose a coverless scheme based on low sim-
ilarity feature selection. An iterative algorithm is developed
for a high-dimensional rich model based on low-similarity
CS-DCTR features, which exploit the first-order statistics
of quantized noise residuals obtained from decompressed
JPEG images.

The main contributions of this paper are as follows:

1. Accounting for the fact that the collision rate of mapping
sequences would put significant stress on the database,

we develop a recombination technique on the sub-
matrices of residuals obtained from the basic patterns
in the DCT. A new mapping rule is designed to con-
siderably reduce the collision rate of feature sequences,
thus boosting the matching efficiency.

2. In order to improve the security of anti-steganalysis and
lower the transmission load, a scrambling program is
applied to the sequences after feature mapping. We
issue a unique scramble key to each recipient as the
same seed key used for scrambling. After scrambling,
the pseudo-random distribution of sequence values pro-
vides better uniform quantization, increasing the diver-
sity of feature mapping.

The rest of this paper is organized as follows. Section 2
gives the related knowledge and basic tools applied in the
scheme; Section 3 introduces the main idea of the proposed
method; Section 4 provides the experimental results and an-
alysis; Section 5 is the conclusion, where we discuss future
directions.

2. Preliminary

2.1 Notation
The idea of DCTR was first proposed in [29]. We pro-

pose a coverless image steganography method based on the
modified version of DCTR. The notations provided in Tab. 2
are applied to calculate the CS-DCTR feature.

2.2 DCTR Model
DCTR is the first-order statistics of the quantization

noise residual obtained after applying the DCT to the de-
compressed JPEG image. It also can be regarded as a pro-
jection model in the DCT domain. This feature sets have
low dimensionality and computational complexity. The ex-
traction process of DCTR features is shown in Fig. 1. We
first perform an inverse transformation on a selected JPEG
image from the DCT domain to the spatial domain and then
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Fig. 1. Generation process of DCTR components.

Notations Descriptions
W spatial matrix of an image
X DCT coefficient matrix of an image
𝑥𝑢𝑣 elements of X
𝑤𝑖 𝑗 elements of W
𝑆𝑀 secret message
𝐶 cover images
𝐼𝑣 inverted index

𝑆 = 𝑠1 | |𝑠2 | |... | |𝑠𝑚 segmented secret information
𝑆𝐼 = 𝑠𝑖1 | |𝑠𝑖2 | |... | |𝑠𝑖𝑚 the set of stego images
𝐹 = 𝑓1 | | 𝑓2 | |... | | 𝑓𝑚 the CS-DCTR feature vector extracted from a stego image

𝑆𝑄 = 𝑠𝑞1 | |𝑠𝑞2 | |... | |𝑠𝑞𝑚 all sequences mapped from 𝐹

𝑠𝑞𝑖 = 𝑠𝑞1
𝑖
| |𝑠𝑞2

𝑖
| |... | |𝑠𝑞64

𝑖
64 feature sequences extracted from the 𝑖th stego image

𝐵𝑠 = 𝑏𝑠1 | |𝑏𝑠2 | |... | |𝑏𝑠𝑚 the binary sequence before scrambling
SKey = skey1 | |skey2 | |... | |skey𝑒 shuffling keys held by receivers

PKey = pkey1 | |pkey2 | |... | |pkey𝑚 keys with position information

Tab. 2. Notation.

compute the undecimated DCT to obtain its residual matrix.
The matrix coefficients are further truncated and quantized
to obtain a fixed range of values. Thereafter, the processed
matrix is separated and merged into multiple sub-matrices.
Finally, its histogram is calculated.

3. Proposed Work

3.1 CS-DCTR Feature Extraction
For coverless steganography, a cover image, which is

also a natural image, can generate a hidden bitstream accord-
ing to the feature mapping rule. This model is inherently
resistant to steganalysis due to its virtue of not modifying
the content of stego images in any way. We developed the
CS-DCTR, a modified version of DCTR suggested in [29].
The algorithm involves the following steps.

3.1.1Blockwise IDCT
For JPEG images, their spatial-domain data are first de-

compressed without quantization based on inverse discrete
cosine transform (IDCT) before computing the undecimated
DCTR features. The 8× 8 blockwise DCT coefficient matrix
X of a given image is fed into the IDCT algorithm, creating
an output spatial matrix W, whose element 𝑤𝑖 𝑗 is given by

𝑤𝑖 𝑗 =

7∑︁
𝑖=0

7∑︁
𝑗=0

𝑥𝑢𝑣 cos
(2𝑖 + 1)𝜋

16
cos

(2 𝑗 + 1)𝜋
16

(1)

where 𝑥𝑢𝑣 is the element of 8 × 8 blocks of DCT coefficient
matrix X. 𝑐 is a parameter whose value is:

𝑐𝑢 =

{√
2

4 , if 𝑢 = 0;
1
2 , if 𝑢 ≠ 0.

(2)

It can also be expressed as
W8 = ATX8A. (3)

where A is the cosine coefficient matrix.

3.1.2Undecimated DCT
For a grayscale image X with size 256 × 256, there

are 64 convolution kernels B𝑘,𝑙 to compute the undecimated
DCT coefficients. The size of a convolution kernel is 8 × 8.
The kernel corresponding to the position (𝑘, 𝑙) in the DCT
domain is denoted as B𝑘,𝑙 , which can be calculated by

B𝑘,𝑙 = B𝑚𝑛
𝑘,𝑙 , 0 ≤ 𝑚, 𝑛 ≤ 7, (4)

B𝑚𝑛
𝑘,𝑙 =

W𝑘W𝑙

4
cos

𝜋𝑘 (2𝑚 + 1)
16

cos
𝜋𝑙 (2𝑛 + 1)

16
(5)

where W0 = 1√
2
,W𝑘 = 1 for 𝑘 > 0.

After all convolution kernel parameters are defined, they
are used to filter residuals. The calculation formulas are de-
termined below.

𝑈 (X) = {R𝑘,𝑙 |0 ≤ 𝑘, 𝑙 ≤ 7}, (6)
R𝑘,𝑙 = X ∗ B𝑘,𝑙 . (7)

where ∗ denotes convolution operation. In order to reduce
the collision rate of features, the stride of the convolution
operation is set to 8. After filtering the original image matrix
R𝑘,𝑙 , we get 64 residual matrices with size 32 × 32.
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3.1.3Quantization and Truncation
To improve the efficiency of computing histogram fea-

tures in DCTR, all residual matrix values must be kept within
a fixed range. The operation consists of three steps, first quan-
tizing all elements of the matrices, then rounding quantized
matrices, and finally changing the element values to the range
[−𝑡, 𝑡] using the truncation function. In order to enhance the
precision of the results, we refrain from rounding the ele-
ments, thereby maintaining their originality. The operation
applied in CS-DCTR is defined as

𝑟 ′ = trunc𝑡
(
|𝑟 |
𝑞

)
(8)

where 𝑟 and 𝑟 ′ are the input and output parameters, respec-
tively. 𝑡 is set to [0, 4], which is the same as DCTR. The value
of 𝑞 depends on the JPEG quantization factor𝑄, which is for-
mulated as (9). Since quantization factors 𝑄 of all images
used in this paper are 75, the 𝑞 is 4.

𝑞 = 8 ×
(
2 − 𝑄

50

)
, 𝑄 ∈ 50, 51, · · · , 99. (9)

3.1.4Recombination
In DCTR, each residual matrix is split and merged in

this procedure based on the phase position. Due to the 8 × 8
size of the cosine coefficient matrix for computing DCT,
an undecimated DCT matrix will be split into 8 × 8 = 64
submatrices. The operation is given as follows:

U𝑘,𝑙

𝑎,𝑏
(𝑖, 𝑗) = U𝑘,𝑙 (𝑖 + 8 × 𝑎, 𝑗 + 8 × 𝑏) (10)

where U𝑘,𝑙 is the undecimated DCT matrix corresponding
to the frequency (𝑘, 𝑙), and the submatrix whose elements
at position (𝑎, 𝑏) in the DCT block is denoted as U𝑘,𝑙

𝑎,𝑏
. The

parameters 𝑘, 𝑙, 𝑎, 𝑏, 𝑖, 𝑗 ∈ {0, 1, 2, · · · , 7} are applied here.

And before creating the histograms, the submatrices
need to be merged further. As mentioned earlier, an undeci-
mated DCT matrix can be split and merged into 64 submatri-
ces. According to the symmetrical properties of projection
vectors, these 64 submatrices can be merged into 25 phase
matrices. Figure 2 describes the merging process. There
is a grid of 8 × 8 representing 64 phases in Fig. 2, where
the same phases are denoted by identical letters and colors.
A derived 5-bin histogram feature from the final merged ma-
trix follows the phase-based merging technique. The split
of an undecimated DCT matrix into 25 merged phase ma-
trices allows for the extraction of a histogram feature with
25 × 5 = 125 bins. Then 64 × 125 = 8000 dimensional
histogram feature can be extracted using the 64 residual
matrices.

Fig. 2. Diagram of phase matrix merging.

However, in our scheme, a residual matrix with a size
of 32 × 32 is obtained by each convolution kernel. After
experimental comparison, we selected some optimal coeffi-
cients for recombination to reduce the similarity of features.
Because in CS-DCTR, the convolution stride is set to 8, its
symmetry no longer exists. But the original algorithm of
merging submatrices in DCTR can be used to reorganize the
residual matrix. At the same time, we combine the original
operation of merging submatrix with the operation of phase
splitting and merging to obtain our reorganization algorithm.

Figure 3 describes the process of recombination.
A residual matrix is divided into 64 submatrices with the
size of 4 × 4. The 64 submatrices can be merged into 25
submatrices. There is an 8 × 8 grid, which represents the
64 unmerged submatrices. Submatrices with the same letters
represent those who can merge, and accordingly 64 subma-
trices are synthesized into 25 ones.

3.1.5Gaussian Histogram
For the same reason as in Step 3 and as motivated

by [30], we consider substituting a Gaussian histogram for the
traditional histogram. The cumulant of the Gaussian func-
tion is used to model the histogram bins in DCTR, which is
calculated from

ℎg (𝑐) =
1

∥ 𝑋 ∥
∑︁
𝑖, 𝑗

e−
(𝑥𝑖 𝑗 −𝑐)2

𝜎2 (11)

where𝜎 is a parameter that determines the shape of the Gaus-
sian function, and its recommended value is 0.6 in both [30]
and [31] .

3.2 Framework
The initial step of this scheme is to allocate various

shuffling keys to each receiver. After the CS-DCTR fea-
ture extraction of all cover images in the database, they are
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Fig. 3. The recombination process of residual matrices.

converted into binary sequences by a mapping algorithm.
Different scrambled sequences, one for each receiver, are
then produced using the shuffling keys. Once the appro-
priate images are chosen from the inverted indices to serve
as the stego ones, they are sent directly to the recipients
with the position keys without being altered throughout the
steganographic process. After acquiring the stego images,
the receiver computes the CS-DCTR feature of each image
in turn and extracts the correlative binary sequence according
to the position key. The retrieved sequences are subsequently
subjected to the scrambling procedure using his specific shuf-
fling key. Concatenating the scrambled sequences for each
image will finally reveal the secret message. Figure 4 depicts
the entire process of information hiding and extraction.

If a stego image is expected to generate an 𝑛-bit binary
string, in theory, an image database for a coverless scheme
requires at least 2𝑛 images. In other words, the more bits of
information you try to hide, the larger your image database
will be. Receivers should be issued their specific shuffling
keys in advance so they can accurately decipher the secret
message.

3.3 Preprocessing
Under this system, the sender allocates a unique shuf-

fling key in complete secrecy for each receiver previously.
Before transmitting the secret information, extra preprocess-
ing work is required, such as creating scrambled sequences,
establishing inverted indexes, and so on.

3.3.1Feature Sequence Mapping
The time cost will significantly increase due to potential

repetitive extraction operations if feature sequences are only
extracted from those images when they are selected as stego
ones each time. Thus, it makes sense to map all the images
in the database to binary sequences in advance to save time.

The joint determination of 64 submatrices yields
an 8000-dimensional CS-DCTR feature. Accordingly, if the
feature vector extracted from a submatrix is converted to a bi-
nary sequence via a mapping approach, each image will be
mapped to 64 binary sequences. It is an effective way to
reduce the computational burden.

For the 125-dimensional feature vector derived from
each submatrix, we divide it into 25 intervals by summing
five successive bins, which are denoted as sum[𝑖], 1 ≤ 𝑖 ≤ 25.
A sequence of 25 bits will be produced by the formula below.
As the longer the sequence is, the larger the database needs
to be built. Considering the number of images, the value of
steganography capacity 𝑛 can be determined by the user, that
is, the first 𝑛 bits of the sequence are used to hide information.
In our approach, 𝑛 is recommended to [8, . . . , 25].{

𝑠𝑞 [𝑖] =‘1’, if sum[𝑖] ≥ 𝑎𝑣𝑒;
𝑠𝑞 [𝑖] =‘0’, if sum[𝑖] < 𝑎𝑣𝑒;

(12)

where 𝑠𝑞 [𝑖] represents the 𝑖th bit of the binary sequence, and
𝑎𝑣𝑒 denotes the mean of sum. It is worth noting that a carrier
image can theoretically be mapped into 64 feature sequences,
some of which may be identical yet, as illustrated in Fig. 5.
These redundant duplicate sequences will be removed.
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Fig. 4. Block diagram of the proposed coverless image steganography.

Fig. 5. Binary sequence mapping process.
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3.3.2Shuffling Key Distribution
There are many algorithms for shuffling a sequence, and

after considering the randomness and efficiency of the algo-
rithm, the Fisher-Yates Shuffle algorithm is used. Ronald A.
Fisher and Frank Yates were the first to suggest the shuffling
approach known as the Fisher-Yates Shuffle. The basic idea
is to randomly select a number that has not been taken before
from the original array to the new array.

Each receiver uses a unique shuffling key to scram-
ble the signature sequence in the process. After extract-
ing the CS-DCTR feature from each cover image, different
scrambled sequences will be produced using various shuf-
fling keys.There are two ways to provide a user his shuffling
key: one is to issue the key to each recipient manually, and
the other is to enter the user ID into a random function to
generate a shuffling key specifically for the user. Since it is
easier for an attacker to guess the user ID using the exhaustive
method, we consider the first solution more secure.

3.3.3 Inverted Index Construction
To improve the search efficiency of cover images, we de-

signed a three-level inverted index tree 𝐼𝑣 for each receiver ac-
cording to their shuffling key. The final scrambled sequences{
𝑠𝑠𝑞𝑖 𝑗

}
, 𝑖, 𝑗 ∈ Z obtained in the previous stage make up the

first-layer elements of 𝐼𝑣. The second-layer components are
the binary sequences

{
𝑠𝑞𝑖 𝑗

}
, 𝑖, 𝑗 ∈ Z obtained after dedu-

plicating the feature sequence mapping results, i.e., before
using the scrambling technique. The third layer comprises
the order numbers of the feature mapping sequences, and
each position subkey pkey𝑖 , 𝑖 ∈ Z corresponds to an image
list. Some feature sequences with the same order number of
various images might be identical. Images mapped to identi-
cal binary sequences at the same ordinal positions according
to (12) will be put into the same list of subkeys. In order to
achieve the complete matching of all binary bits of the hid-
den data, the first layer should be a closure set of 𝑛-bit binary
sequence shift operations, i.e., the number of root nodes is
2𝑛. Therefore, it is necessary to ensure the diversity of the
image library. Figure 6 shows the inverted index structure.

3.4 Coverless Image Steganography
As discussed in previous sections, every receiver has

a unique shuffle key. For the sake of clarity, we use the
example of a receiver named Jack in this part. The same
procedures apply to other receivers. The steganography pro-
cess is taken by selecting cover images based on the inverted
index tree, which consists of the following steps.

1. The sender first converts the secret message into a binary
string and divides it into n-bit information segments. If
the length of the binary message is not divisible by
𝑛, an appropriate number of ’0’s will be added to the
higher bits of the binary string. Thus, we can obtain
a binary string 𝑆 shown below for the secret information
𝑆𝑀 of length 𝐿.

𝑆 = 𝑠1 | |𝑠2 | |...| |𝑠𝑚 (13)

where 𝑚 is represented by

𝑚 =

{
𝐿/𝑛, 𝐿/𝑛 = 0
𝐿/𝑛 + 1, else

(14)

2. For the last information segment 𝑠𝑚 of 𝑆, we find its
equivalent sequence from the first-level index of the
inverted index structure. After that, we trace down
a branch of the root node previously identified at the
first layer until reaching the leaf layer, from which we
pick out an arbitrary position subkey pkey𝑖 , 𝑖 ∈ Z to as-
sign to Jack. If there is a multi-branch scenario during
the search process, we can freely choose a path based on
a random seed until we approach the leaf layer. More
than one image may be found in the image list corre-
sponding to the subkey pkey𝑖 . In this case, the sender
can randomly choose an image that hasn’t been used in
this round of steganography from the image list and add
it to the cover image collection:

𝑠𝑖𝑚 = Match(𝑠𝑚, 𝐼𝑣). (15)

Fig. 6. Inverted index tree 𝐼𝑣, with 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 64 for the third layer.
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3. For the segments 𝑠𝑚−1 to 𝑠1 of 𝑆 in turn, repeat Step 2
until all the secret information segments are success-
fully matched to a stego image. Then a stego image set
is obtained:

𝑆𝐼 = 𝑠𝑖1 | |𝑠𝑖2 | |...| |𝑠𝑖𝑚. (16)

4. All subkeys pkey𝑖 acquired during the loop procedure
must be recorded to create the position key PKey, which
must be sent to Jack along with the stego image set:

PKey = pkey1 | |pkey2 | |...| |pkey𝑚. (17)

For secure data transmission, PKey can be delivered to
Jack in a public-key encryption method at a separate time
than the stego images. Furthermore, it is possible for various
information segments to map to the same stego image during
the image matching process. In this case, we usually choose
an alternative stego image unused before. If we have no other
options in the same image list, we either need to go back to
the node of the preceding layer to search for another branch
again, or we might consider making the image library more
diverse. Algorithm 1 offers a brief explanation of the entire
information hiding process.

Algorithm 1. Coverless image steganography.

Require: Image database: 𝐶; Secret message : 𝑆𝑀; Shuffling key: 𝑆𝑘𝑒𝑦
Ensure: Stego images : 𝑆𝐼 = 𝑠𝑖1 | |𝑠𝑖2 | |... | |𝑠𝑖𝑚; position information :

𝑃𝑘𝑒𝑦 = pkey1 | |pkey2 | |... | |pkey𝑚
𝑃𝑘𝑒𝑦 = 𝑁𝑈𝐿𝐿

𝑟 = length(𝐶 )
for 𝑗 from 1 to 𝑟 do

Extract the CS-DCTR feature: 𝐹 = Extract(𝐶 𝑗 )
Generate the binary sequence: 𝑆𝑄 = Mapping(𝐹 )
Scrambling the sequence via SKey: 𝑆𝑄′

= Scramble(𝑆𝑄)
end for
Construct the inverted index: 𝐼𝑣 = Construct(𝐶, 𝑆𝑄, 𝑆𝑄

′ )
Convert 𝑆𝑀 to binary string 𝑆 : 𝑆 = Convert(𝑆𝑀 )
Divide 𝑆 : 𝑆 = 𝑠1 | |𝑠2 | |... | |𝑠𝑚
for 𝑗 from 𝑚 downto1 do

Match the stego image 𝑠𝑖 𝑗 : 𝑠𝑖 𝑗 = Match(𝑠 𝑗 , 𝐼𝑣)
Record the position information : 𝑃𝑘𝑒𝑦 = pkey 𝑗 | |𝑃𝑘𝑒𝑦

end for
Connect all stego images : 𝑆𝐼 = 𝑠𝑖1 | |𝑠𝑖2 | |... | |𝑠𝑖𝑚
return 𝑆𝐼 and PKey

3.5 Information Extraction
After Jack receives the stego image set and PKey via

public channels separately, he can extract accurate data.
However, some compensatory measures must be considered
in light of potential threats such as geometric distortion and
additive noise. The geometric matching algorithm uses some
calibration information attached to the stego images to return
a distance of the position, angle, and bounding rectangle be-
tween the reference and the distorted images. A simple Gaus-
sian filter is used to suppress the minor additive noise. The
steps of secret information extraction are given as follows.

1. After receiving the stego image set 𝑆𝐼, the images are
first corrected to restore spatial synchronization. The
CS-DCTR feature 𝐹 are then extracted from the cor-
rected stego images:

𝐹 = 𝑓1 | | 𝑓2 | |...| | 𝑓𝑚. (18)

2. Each element 𝑓𝑖 of 𝐹 is mapped to 64 binary sequences
by the feature mapping algorithm described earlier. 𝑆𝑄
represents the concatenation of all sequences mapped
from 𝐹. And 𝑠𝑞𝑖 is the 64 sequence sets mapped
from 𝑓𝑖:

𝑆𝑄 = 𝑠𝑞1 | |𝑠𝑞2 | |...| |𝑠𝑞𝑚, (19)

𝑠𝑞𝑖 = 𝑠𝑞1
𝑖 | |𝑠𝑞2

𝑖 | |...| |𝑠𝑞64
𝑖 (20)

where 0 < 𝑖 ≤ 𝑚.

3. For 𝑠𝑞1, select the sequence 𝑏𝑠1 of the corresponding
position based on pkey1:

𝑏𝑠1 = Select(𝑠𝑞1, pkey1). (21)

4. Scramble 𝑏𝑠1 according to the shuffling key SKey held
by Jack. A scrambled sequence 𝑠1 will be obtained,
which is the secret information segment hidden in this
stego image:

𝑠1 = Scramble(𝑏𝑠1, SKey). (22)

5. For the segments 𝑠𝑞2 to 𝑠𝑞𝑚 and pkey2 to pkey𝑚 in
turn, repeat Step 3 until secret message segments are
successfully extracted from all stego images. Concate-
nate all segments of 𝑆 and remove the extra ’0’ added
on its higher bits to get the final secret message 𝑆𝑀:

𝑆 = 𝑠1 | |𝑠2 | |...| |𝑠𝑚. (23)

According to the above description, the data extraction
process can be summarized as Algorithm 2.

Algorithm 2. Secret message extraction.

Require: Stego images : 𝑆𝐼 = 𝑠𝑖1 | |𝑠𝑖2 | |... | |𝑠𝑖𝑚; position information :
PKey = pkey1 | |pkey2 | |... | |pkey𝑚

Ensure: Secret message : 𝑆𝑀
for 𝑗 from 1 to 𝑚 do

Extract the CS-DCTR feature in 𝑠𝑖 𝑗 : 𝑓 𝑗 = Extract(𝑠𝑖 𝑗 )
Generate the binary sequences : 𝑠𝑞𝑖 = 𝑠𝑞1

𝑖
| |𝑠𝑞2

𝑖
| |... | |𝑠𝑞64

𝑖
Find the correct sequence via PKey : 𝑏𝑠 𝑗 = Select(𝑠𝑞1, pkey1 )
Scramble 𝑏𝑠 𝑗 via SKey : 𝑠 𝑗 = Scramble(𝑏𝑠 𝑗 , SKey)

end for
Contact 𝑠𝑖 to 𝑆 : 𝑆 = 𝑠1 | |𝑠2 | |... | |𝑠𝑚
Convert 𝑆 to 𝑆𝑀

return 𝑆𝑀
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4. Experiments and Analysis
Experimental environment: AMD R7-4800U CPU @

1.80 GHz and 16.00 GB RAM. All experiments are com-
pleted in Pycharm and MATLAB R2021a.

Data set: BOSSbase 1.01 contains 10,000 grayscale
images in PGM format. All images in BOSSbase are set
to 512 × 512 in size. For convenience, some preprocessing
steps were taken before conducting the experiments. Firstly,
all images in BOSSbase were resized to 256 × 256 by the
cubic linear interpolation algorithm. Furthermore, all im-
ages were converted to JPEG format with a quality factor
of 75. COCO2017 is a large-scale dataset that contains more
than 330000 images, of which 220000 are labeled, with 1.5
million objects, 80 object categories, and 91 stuff categories.

4.1 Hiding Capacity
Most coverless steganography techniques have lower

capacity than conventional methods, which is mainly due to
the image feature mapping mechanism. In this scheme, the
CS-DCTR feature extracted from each image can produce
64 𝑛-bit mapping sequences, and any value from 8 to 25
can be used for 𝑛. As a result, the optimal hiding capac-
ity of our approach is 𝑛 bits per stego image. Nevertheless,
a higher hiding rate implies the requirement for a larger image
database with more than 2𝑛/64 images in theory.

Table 3 displays a capacity comparison with a few state-
of-the-art techniques. These techniques include two mapping
approaches [18], [19] utilizing image transform-domain coef-
ficients, which best represent the optimal frequency-domain
mapping rule, a pixel-feature-based mapping method [13],
which represents the conventional rule-based steganogra-
phy, and a mapping method [20] based on image object
category information, which serves as the quintessential
semantically-driven mapping rule. Among them, The tech-
niques [13, 18, 19] turn out to perform poorly. The method
of [20] enables any object detected in an image to be matched
to a 6-bit string, allowing each image to be mapped to a string
of 6 × 𝑚 bits according to the 𝑚 objects it contains. How-
ever, most images in the database only have 1 ∼ 3 detectable
objects, resulting in a general hiding capacity of 6 ∼ 18 bits.

As shown in Tab. 3, it is clear that the proposed solution
has better hiding capacity under the assumption of affordable
image library storage. Moreover, a dynamic parameter 𝑛

varying from 8 to 25 renders a flexible way as a tradeoff
between the storage overhead and transmission security.

Methods Capacity [bits/image]
Zhou’s [13] 8
DCT [18] 1 ∼ 15
DWT [19] 1 ∼ 15
RCNN [20] 6 × 𝑚

Ours 8 ∼ 25

Tab. 3. The capacity of schemes.

Image number 1000 2000 3000
Inverted index construction efficiency

[s/image] 0.020 0.019 0.016

Tab. 4. The efficiency of index contruction.

Image number 400 800 1200
Image matching efficiency [s] 0.063 0.110 0.173

Information extraction efficiency [s] 3.393 3.995 4.694

Tab. 5. The efficiency of images matching.

4.2 Time Efficiency
This section offers an experimental evaluation of the

computational performance of the proposed method. The
metric analysis demonstrates the algorithm’s efficiency in
providing fast and reliable stego image processing.

There are three main components that make up the time
consumption: 1. Time spent on inverted index construc-
tion, which is tested to determine how long it will take to
develop the database’s index structure. Preprocessing steps
such as feature extraction, feature representation, and index
construction are parts of the process. 2. The time over-
head for image matching, which is examined to measure the
time taken to match a given query image with images in the
database. The matching speed is assessed by varying the
length of the secret information, ensuring a thorough evalua-
tion of the algorithm’s computational efficiency. 3. The time
cost of information extraction, focusing on the time required
to extract the hidden information from the stego images. This
covers the decoding process, feature analysis, and informa-
tion recovery.

From Tabs. 4 and 5, it can be observed that our ap-
proach significantly reduces the time required to construct
the inverted index, with each image taking no more than 0.02
seconds. This is due to the remarkable efficiency of image
feature extraction and binary sequence mapping. Further-
more, information hiding is also incredibly effective owing
to the inverted index. However, because of the additional fea-
ture extraction process, information extraction takes slightly
longer to complete.

4.3 Feature Similarity
Since the feature sequences extracted from some images

are identical, it is challenging to build a complete database to
enable full mapping of hidden data. Low feature similarity
reduces the collision rate of image matching results, which
has a beneficial impact on the size of the image database.
Here, we evaluate the feature similarity of several approaches
based on the number of binary sequences generated from the
image sets under various conditions of hiding capacity. Test
images were selected from Bossbass 1.01 and COCO2017.
The evaluation metric is given by

𝑃 =
𝑀

𝑇
× 100% (24)
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Database Number of image Capacity [bits/image] Ours Zhou’s [13] DCT [18] DWT [19]
Bossbase 2048 11 52.2% 43.4% 45.0% 44.5%

8192 13 50.1% 40.0% 40.7% 41.2%
COCO 2048 11 50.4% 45.1% 43.8% 47.1%

8129 13 48.3% 39.7% 40.3% 43.5%
65536 16 45.6% 37.3% 36.2% 38.1%

Tab. 6. Feature similarity of various schemes.

Attack Parameters Bossbase COCO Pixel [13] SIFT [15] DCT [18]
Gaussian noise The mean 𝑢: 0, the variances 𝑞: 0.001 94.1% 94.7% 95.8% 65.6% 95.4%

Salt and pepper noise The mean 𝑢: 0, the variances 𝑞: 0.001 98.7% 98.0% 99.0% 90.8% 99.2%
Speckle noise The mean 𝑢: 0, the variances 𝑞: 0.01 95.3% 96.4% 96.6% 74.4% 96.2%

Median filtering The window size: 3 × 3 98.7% 97.1% 99.6% 88.4% 99.4%
Mean filtering The window size: 3 × 3 94.5% 96.2% 98.8% 73.6% 95.8%

Gaussian filtering The window size: 3 × 3 96.6% 95.8% 99.8% 92.6% 100%
Scaling The scaling ratios: 3 99.2% 98.6% 99.6% 95.2% 100%

Tab. 7. The robustness of attack.

where 𝑇 is the total number of images in the database, and
𝑀 is the number of binary sequences successfully extracted
from all images. The larger the value of 𝑃, the lower the
feature similarity is.

The comparison results are shown in Tab. 6. We ran-
domly selected 2048 and 8192 images from Bossbase1.01
in the first group of experiments with a hiding capacity of
11 and 13 bits, respectively. For the second group of ex-
periments, 2048, 8192, and 65536 test images were selected
from COCO2017 with hiding rates of 11, 13, and 16 bits per
image, respectively. The findings presented in Tab. 6 indicate
that, in the case of two different databases, the similarity of
CS-DCTR features, which are extracted from our proposed
coverless steganography scheme, is lower compared to those
obtained from other coverless steganography schemes at dif-
ferent bit capacities.

This observation shows that our CS-DCTR feature ef-
fectively minimizes collisions among images and is superior
to other coverless steganography schemes. This demonstrates
the potential of our method in reducing the database load, as it
not only effectively hides secret information but also reduces
the computational and storage requirements for databases
processing large amounts of image data.

4.4 Robustness
Stego images may be subject to innocent or malicious

attacks during transmission, resulting in the loss of image
content and destruction of features. To ensure the algorithm’s
robustness and effectivity, we introduced some typical geo-
metric attacks indicated in Tab. 7.

For most approaches, any change in image pixels may
affect the accuracy of information extraction, so the robust-
ness of steganography methods is determined by the accuracy
of information extraction from images. The calculation for-
mula is defined as

𝑅 =
𝑆𝑀c
𝑆𝑀o

× 100% (25)

where 𝑆𝑀c is the length of the correctly extracted secret
message, and 𝑆𝑀o is the total length of the original message.

Extensive experiments were performed, such as Recur-
sive Set of Transformations (RST) and additive noise, to test
the detection accuracy against attacks. In detail, we subjected
the images to four types of geometric attacks, including cen-
ter cropping, edge cropping, rotation, and translation, as well
as seven types of noise attacks, including Gaussian noise,
salt and pepper noise, speckle noise, median filtering, mean
filtering, Gaussian filtering, and scaling. These noise attacks
with different parameters are depicted in Fig. 7.

Table 7 summarizes the performance of various attack
parameters on Bossbase and COCO, with evaluations con-
ducted on the COCO dataset for the other four methods.
Our method achieves relatively good anti-noise performance.
General noise attack has little effect on the CS-DCTR fea-
tures, reflecting its anti-interference ability. However, the
effectiveness of our method is relatively low when encoun-
tering geometric attacks, which may result in some alterations
or loss of some image features, seriously destroying the in-
tegrity of CS-DCTR features.

Although the robustness on some metrics is not opti-
mal compared with previous approaches, our method still
shows good overall performance. Considering the transmis-
sion characteristics of information hiding techniques, our
method concentrates study on database storage efficiency
while maintaining resilience against typical attacks. This
approach achieves a good balance between robustness and
resource utilization. Particularly when confronted with noise
attacks, our method achieves an average robustness of 96.7%
on both Bossbase and COCO.

4.5 Security
Existing steganalysis models identify the presence of

secret information by examining changes in the statistical
properties of images. Since the coverless image steganog-
raphy presented in this research does not modify the cover
images, existing steganalyzers cannot detect anomalies from
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Fig. 7. Various types of noise attack.

stego images. Meanwhile, the outstanding hiding rate perfor-
mance reduces the image load during transmission, further
lowering the risk of raising suspicion in attackers. Moreover,
we assign a unique shuffling key to each receiver that needs
to be transmitted in advance to address the uneven image
matching and improve security against steganalysis. Even if
the stego images arouse the attackers’ suspicion, they cannot
extract the secret message without the key.

5. Conclusions
In this research, a low-similarity CS-DCTR feature

mapping approach is developed to increase database retrieval
efficiency. The idea of coverless steganography guarantees
both the inherent resistance of our system to steganalysis tools
and the confidentiality of sensitive information. An attacker
will never be able to read the secret message unless he obtains
the key only known to the sender and receiver. Experiments
show that the ideal value range of hiding bits of 𝑛 per im-
age in this scheme is 8, · · · , 25, considering both robustness
and hiding capacity. However, the capacity of coverless sys-
tems, whether conventional or deep learning-based, is still
significantly lower than that of embedding steganography.
Therefore, more study is needed to address the capacity issue
with coverless steganography.

6. Future Scope
With the development of security technology, complex

steganography will provide more possibilities to serve vari-
ous application scenarios. Database optimization is one of
the primary issues, regardless. As is well known, for cover-
less steganography, the larger the number of hidden bits 𝑛,
the more images are deserved in the database. If 𝑛 is too
large, it is almost impossible to collect enough images for the
database. We may think of a way to make the length of the
data hidden in each cover image variable rather than fixed to
increase the message capacity based on a subsequence gen-

eration technique. The secret information segments can then
adaptively match subsequences of any length.

Furthermore, geometrical attacks are another issue that
must be overcome to improve the robustness of steganogra-
phy systems. The problem of using an optimal distortion
compensation mechanism to restore spatial synchronization
for the data detector remains open. Future research should
hopefully result in robustness against more varieties of visual
distortions, including geometric transforms, contrast adjust-
ments, and other lossy compressions.
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