
634 X. ZHAO, B. SHI, F. BAI, ET AL., MACHINE-LEARNING-AIDED MASSIVE HYBRID ANALOG AND . . .

Machine-Learning-Aided Massive Hybrid Analog and
Digital MIMO DOA Estimation for

Future Wireless Networks
Xinyi ZHAO 1, Baihua SHI 2, Jiatong BAI 3, Feng SHU 2,3, Yiwen CHEN 3, Xichao ZHAN 3,

Wenlong CAI 4, Mengxing HUANG 3, Qĳuan JIE 3, Yifan LI 2, Jiangzhou WANG 5, Xiaohu YOU 6

1 School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing, 210094, China
2 School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

3 School of Information and Communication Engineering, Hainan University, Haikou, 570228, China
4 National Key Laboratory of Science and Technology on Aerospace Intelligence Control,

Beĳing Aerospace Automatic Control Institute, Beĳing 100854, China
5 School of Engineering, University of Kent, Canterbury CT27NT, United Kingdom

6 National Mobile Communications Research Laboratory, Southeast University, Nanjing, 211189, China

shibh56h@foxmail.com, shufeng0101@163.com

Submitted September 2, 2023 / Accepted October 23, 2023 / Online first November 13, 2023

Abstract. Due to a high spatial angle resolution
and low circuit cost of massive hybrid analog and digital
(HAD) multiple-input multiple-output (MIMO), it is viewed
as a valuable green communication technology for future
wireless networks. Integrating the massive HAD-MIMO with
direction of arrival (DOA) will provide an even ultra-high
performance of DOA measurement, which can the fully-
digital (FD) MIMO. However, phase ambiguity is a chal-
lenge issue for a massive HAD-MIMO DOA estimation. In
this paper, we consider three parts: detection, estimation,
and Cramer-Rao lower bound (CRLB). First, a multi-layer-
neural-network (MLNN) detector is proposed to infer the ex-
istence of emitters. Then, a two-layer HAD (TLHAD) MIMO
structure is proposed to estimate the DOA and eliminate
phase ambiguity using only one time block. Simulation re-
sults show that the proposed MLNN detector is much better
than both the existing generalized likelihood ratio test (GRLT)
and the ratio of maximum eigen-value (Max-EV) to minimum
eigen-value (R-MaxEV-MinEV) in terms of detection prob-
ability. Additionally, the proposed TLHAD structure can
achieve the corresponding CRLB.

Keywords
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nologies, CRLB, multi-layer-neural-network

1. Introduction
The position of a target of interest can be inferred by

using its emitted signal measured at an array of spatially
separated nodes, where the positions of nodes are known.

Actually, source localization has been become one of the cru-
cial issues in many research fields such as robot, mobile com-
munications, radar, sonar, wireless sensor networks, satellite
communications, human-computer interaction, and marine
communications [1–4]. Source localization techniques fall
into the main five categories: direction of arrival (DOA)
in [5], received signal strength indicator (RSSI) in [6], [7],
time of arrival (TOA), time difference of arrival (TDOA),
and frequency difference of arrival (FDOA). Different from
other methods, RSSI may work in both line-of-sight (LOS)
and Non-LOS (NLOS) environments and is insensitive to the
availability of multi-paths. In particular, the remaining four
techniques are more suitable for the LOS scenario. In the
presence of multipaths, their localization accuracies will be
degraded substantially.

With the deep integration of artificial intelligence and
information, communication, and data technologies (ICDT),
some emerging services such as Metaverse and holographic
communication have higher demands for end-to-end infor-
mation processing rates and latency, enabling the integrated
sensing and communication (ISAC) one of the leading trends
of sixth generation (6G) technology. In recent years, with
the emergences of the massive antenna array structure, DOA
estimation, as a traditional field, can provide a ultra-high ac-
curate desired signal direction for beamforming and tracking,
and achieve a higher signal-to-noise ratio at the receiver with
less transmit power compare to conventional small MIMO
receiver [8–10]. As one of the key technologies in the be-
yond fifth generation (B5G) and 6G mobile communication
systems [11], DOA estimation will gradually serve in the
construction of ISAC, and provide a high energy-efficient
green beamforming communication. As the number of an-
tennas tends to large-scale or utra-large-scale, it is possible to
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achieve a localization accuracy of centimeter via DOA. Un-
luckily, this leads to a high circuit cost like massive antennas,
analog-to-digital convertors (ADCs), and radio frequency
links, etc. The corresponding computational complexity is
significantly increased. Hybrid analog and digital (HAD)
MIMO array becomes a natural choice, which can dramat-
ically reduce energy consumption and circuit costs and en-
able a reliable green wireless communication technology to
support future sustainable development of applications such
as Metaverse or Web3.0 [8], [12]. Three high-performance
DOA estimation methods were proposed in [8] for eliminat-
ing phase ambiguity of massive hybrid MIMO systems, and
the Cramer-Rao lower bound (CRLB) was derived. In [12],
a fast ambiguous phase elimination method was proposed to
find the true direction using only two snapshots at the cost
of a slight performance loss. The DOA estimation problem
of sparse array design with non-circular (NC) signals was
investigated in [13]. Furthermore, in [14], the generalized
sparse Bayesian learning algorithm was integrated into the
1-bit DOA estimation. Adopting massive MIMO receive
array with low-resolution ADC, demonstrated a new DOA
estimation scheme in [15].

Due to the adoption of eigenvalue decomposition,
the computational complexities of the above matrix-
decomposition-based DOA estimators are high. A novel
deep-learning framework of achieving super-resolution chan-
nel estimation and DOA estimation was proposed in mas-
sive MIMO systems in [16]. In [9], a low-complexity deep-
learning based DOA estimator with uniform circular arrays
(UCA) was proposed for the massive MIMO systems with
much lower computational complexity than conventional
maximum likelihood (ML) method. Afterwards, in [17],
a novel estimating signal parameter via rotational invariance
techniques (ESPRIT) method and a machine learning frame-
work were proposed to improve the accuracy of DOA mea-
surements for the HAD structure. Due to its ultra-high pre-
cision of angles using a massive or ultra-massive MIMO, the
positioning based on the angle of arrival (AOA) can reach
a high-performance localization accuracy. For exmaple,
in [18], a geometric center AOA localization method was
proposed utilize single base station, which can achieve the
CRLB. By estimating the DOA was given to achieve the
associated CRLB by forming a polygon of intersecting mul-
tiple estimated DOA lines. The final source position is the
center of this polygon. Aiming at the indoor localization,
the paper [19] proposed a fifth generation (5G) signal based
localization method by employing the estimates of the AoA
and the time of flight, which can achieve a centimeter-level
localization accuracy. In [20], the authors presented an im-
proved polarity representation to uniformly use the AOA the
localization of a signal source, regardless of whether it is
a near or far.

To the best of our knowledge, there is no work about
the deep learning based detection. In addition, existed DOA
estimation methods for the HAD structure need multi time
block to adjusting analog phase shifters. Thus, we integrate

the deep learning into detector and come up with a novel
HAD structure to eliminate angle ambiguity. In addition, we
propose a multi-layer-neural-network (MLNN) based detec-
tor and a two-layer DOA estimator for HAD structure. In
addition, we present performance of HAD architecture with
low-resolution ADCs.

The remainder of this paper is organized as follows.
Section 2 describes the system model of designed heteroge-
neous hybrid MIMO structure. In Sec. 3, a MLNN based
detector is proposed. In addition, We proposed a two-layer
DOA estimation method for HAD structure in Sec. 4. Then,
the performance is analyzed in Sec. 5. Furthermore, we sum-
marize existing challenging problems in Sec. 6. Finally, we
draw conclusions in Sec. 7.

2. System Model
As shown in Fig. 1, a sub-connect HAD structure is

considered. The signal is transmitted from a far-field emitter
and impinges the uniform linear array (ULA). The ULA is
equipped with 𝑀 antennas, 𝑀s subarrays. Next, every subar-
ray has 𝑀a antennas. Referring to [8], for the 𝑚sth subarray,
the signals are added after passing the analog phase shifters.
Thus, the received baseband signals can be given by

y(𝑛) = VH
Aa(𝜃0)𝑠(𝑛) + w(𝑛) (1)

where w(𝑡) ∼ CN(0, I𝑀 ) is the independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN)
and 𝑠(𝑡) is the signal. a(𝜃0) is the steering vector

a(𝜃0) =
[
ejΨ𝜃0 (1) ejΨ𝜃0 (2) · · · ejΨ𝜃0 (𝑀 )

]T
(2)

where

Ψ𝜃0 (𝑚) = 2𝜋 sin 𝜃0
𝑑𝑚

𝜆
, 𝑚 = 1, 2, · · · , 𝑀 (3)

where 𝜆 is the wavelength of the carrier wave, 𝜃0 is the DOA,
𝑑𝑚 is the distance from the 𝑚th antenna to the reference
point of the array and 𝑀 is the number of antennas. VA is
the analog beamforming (AB) matrix, which is expressed as

VA =


VA,1 0 · · · 0

0 VA,2 · · · 0
...

...
. . .

...

0 0 · · · VA,𝑀s


(4)

where

VA,𝑚s =
1

√
𝑀a

[
ej𝜔𝑚s ,1 ej𝜔𝑚s ,2 · · · ej𝜔𝑚s ,𝑀a

]T (5)

is the AB vector of the 𝑚sth subarray.
The detection problem can be written as a binary prob-

lem {
𝐻0 : y(𝑛) = w(𝑛),
𝐻1 : y(𝑛) = VH

Aa(𝜃0)𝑠(𝑛) + w(𝑛). (6)

Thus, generalized likelihood ratio test (GLRT) is given by

𝑇GLRT =
𝑝(𝑦 |𝐻1)
𝑝(𝑦 |𝐻0)

𝐻1
≷
𝐻0

𝛾GLRT. (7)
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Fig. 1. System model.

3. Proposed Multi-Layer Neural
Network Detector for Multi-Emitter
Since the turn of the twentieth century, direction-finding

using MIMO receive array has been investigated extensively
so far. The research efforts focused mainly on DOA measure-
ment methods, CRLB, and array calibration etc. To the best
of our knowledge, there are few research works on passive
emitter detection. Similar to radar, an active way of finding
direction and range, it is also mandatory for passive direction-
finding to infer whether the emitter exists or not before per-
forming DOA estimation operation. For example, when there
exists no emitter, a DOA measurement operation is directly
conducted. Obviously, this will output the direction angle of
a virtual emitter, result in a form of false alarming, and waste
the computational amount at MIMO receiver.

To achieve a high detection performance of emitter
and trigger the next step: DOA measurements, a high-
performance detector was proposed to infer the existence of
multi-emitter from the eigen-space of sample covariance ma-
trix of receive signal vector [21]. Here, the sampling covari-
ance of receive signal vector was first computed, and its EVD
was performed to extract all its eigenvalues. The test statistic
is defined, as the ratio of maximum eigen-value (Max-EV)
to minimum eigen-value, called R-MaxEV-MinEV. Their
closed-form expressions were presented and the correspond-
ing detection performance was given. As shown in [21],
the proposed R-MaxEV-NV method performs much better
than the traditional generalized likelihood ratio test (GLRT)
method with a fixed false alarm probability in terms of re-
ceiver operating characteristic curve (ROC).

To improve the ROC performance, a multi-input single-
output (MISO) binary classification of MLNN is proposed
in this article. Here, all the eigenvalues of the covariance
matrix of the received signal is used as the input signal of
the MLNN. A gradient descent algorithm is used to train the
neural network. The output of the neural network is a value in
the interval [0,1] and an appropriate threshold is determined
by the ROC. When the output of the network is less than the
threshold, it means that the emitter does not exist and returns
to the previous step, and when the output of the network is
greater than the threshold, it means that the emitter exists
and continues speculation. The training set is constructed by
Monte Carlo simulation, and only one neuron is needed for
the output layer.

Figure 2 sketches the block diagram of the passive emit-
ter detection system based on MLNN. Firstly, a set of sample
vectors is collected within one time block, and the corre-
sponding covariance matrix is estimated. Secondly, an eigen-
decomposition (EVD) is made on the estimated covariance
matrix to obtain all its eigenvalues, which are used as the
input signal of MLNN.

The total MLNN training process is divided into three
stages. In the first stage, the training data is used to learn the
MLNN activation function, and the activation functions of
each layer is optimized, including Sigmoid, Tanh, Rectified
linear unit, etc., to explore the optimal activation function
configuration. Note that the sigmoid function is adopted in
the ouput layer. In the second stage, the appropriate network
depth and the number of neural units in each hidden layer are
attained. The main purpose of the hidden layer is to extract
channel features, such as clutter and noise co-square matrix.
Finally, after determining the network depth and the number
of neurons per layer, the random gradient method is applied
to minimize the variance and obtain all the weighted coeffi-
cients of the MLNN, in order to avoid under fitting and over
fitting, the amount of data in the training set is 5–10 times
the total number of weighted coefficients. Finally, the above
MLNN is directly applied to the massive MIMO receiver to
test its false alarm and detection probability performances.
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Fig. 2. Proposed MLNN detector.

Below, the practical detection performance simulation
is conducted to evaluate the detection probability of the three
detection methods. System parameters are shown in Tab. 1.
We employ a PC to do simulation, which is equipped with
AMD Ryzen 5900X and NVIDIA RTX4070TI. In addition,
Python and Tensorflow are adopted to design and process
MLNN. The MLNN has one input layer, four hidden layer
and one output layer. The number of neurons are 32, 256,
256, 128, 64, and 2, respectively. In addition, the ReLU func-
tion is chosen as the activation function in hidden layers. The
network is trained offline by employing about 106 randomly
generated training data. The size of the batch and epoch are
respectively set as 500 and 50. Average run time is about
0.0586 second 1.

Parameters Values
Number of antennas in the array (𝑀) 64

Number of antennas in the subarray (𝑀a) 4
Signal to noise ratio (SNR) –20 dB
Number of snapshots (𝑁 ) 200

Tab. 1. Values of simulation parameters.
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Fig. 3. ROCs under three different detection methods.

Figure 3 plots the ROCs for the proposed MLNN detec-
tor with conventional GLRT [22] and R-MaxEV-MinEV as
performance benchmarks. It can be seen from Fig. 3 that the
detection performance of the proposed MLNN detector for
multi-emitter is much better than existing GLRT for a fixed
false alarm probability (FAP). Additionally, the R-MaxEV-
MinEV is slightly better than GRLT in terms of detection
probability given a small FAP.

4. Proposed Two-Layer HAD
Structure
A HAD MIMO receiver is very suitable for DOA mea-

surements due to its low circuit cost and power consump-
tion at the expense of some performance loss, especially for
large-scale or ultra-large-scale scenario [8], [9]. The major
drawback of HAD is that there exists phase ambiguity. This
means the DOA measurement method using HAD is made
up of two steps: forming a set of candidate solutions by
conventional DOA estimators like Root-MUISC and elimi-
nating spurious solutions in such a set to find the true direc-
tion angle in [8], [12]. In [8], three high-performance DOA
measurement methods were proposed and the correspond-
ing CRLB was also derived. Among them, the best one is
the HAD-Root-MUISC, which can achieve the hybrid CRLB
with a lower-complexity than others. However, they require
𝑀+1 snapshots to implement one-time DOA estimate, where
𝑀 is the number of antennas per subarray. This results in
a large processing delay. To reduce this delay, an improved
fast HAD-Root-MUSIC method was proposed in [12], where
the analogy phase alignment was divided into multiple sub-
groups, and the analog beamforming of the sub-arrays of each
sub-group was arranged at a candidate angle in a time block
to eliminate the ambiguity of the phase. Compared with [8],
it needs only two snapshots to find the true direction angle of
emitter at the cost of a little performance loss.

1Parts of the models, data and codes that support the study are available from the corresponding author upon reasonable request.
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Fig. 4. Proposed two-layer HAD structure.
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Does it exist an one-snapshot DOA measurement
method? To address this problem, a two-layer HAD receive
structure is proposed in Fig. 4. The total receiver consists
of three parts: a HAD on the left-top corner, a fully-digital
(FD) on the left-bottom-left corner, and a combiner on the
right side. The first part of HAD is to generate a set of
candidate solutions by using some traditional methods like
Root-MUSIC, which is shown as

ΘHAD = {𝜃𝑖 , 𝑖 ∈ {1, 2, · · · , 𝑀}} . (8)

The second part of FD is to estimate the true solution, 𝜃FD,
which will be adopted to remove the spurious solutions in
candidate set. The final part combiner is to combine the two
true solutions to output an improved solutions.

𝜃 = 𝜔HAD𝜃HAD + 𝜔FD𝜃FD. (9)

The choice of the weight coefficients of this combiner will
affect the resulting performance of the two-layer structure. In
order to achieve a good performance, they are chosen to be
proportional to the corresponding CRLBs, which is given by

𝜔HAD =
𝜎D

𝜎D + 𝜎HAD
, 𝜔D =

𝜎HAD
𝜎D + 𝜎HAD

. (10)
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Figure 5 plots the curves of RMSE versus SNR of the
proposed method with existing method and the CRLB as per-
formance benchmarks. From this figure, it is seen that the
proposed method can achieve the corresponding CRLB and
performs better than existing methods HAD-Root-MUSIC
and FHAD-Root-MUSIC in [8], [12]. This is mainly due to
the fact that the proposed structure using a FD sub-structure to
replace the corresponding HAD substructure. The proposed
structure actually is a mixture of FD and HAD. Obviously, in-
creasing the portion of FD in the total structure will improve
the RMSE performance of estimating. Therefore, compare
with conventional HAD structure and medthods, proposed
structure and method are more suitable in most applications.

To evaluate the impact, Figure 6 plots the curves of
RMSE versus the proportion of FD of the proposed struc-
ture for three different SNRs (–10 dB, 0 dB, and 10 dB) with
the corresponding CRLBs as performance benchmarks. Ob-
serving this figure, we find that the proposed structure still
can achieve the two-layer HAD CRLB for 𝜂 ≥ 25%. In ad-
dition, the RMSE of proposed methods could approach the
corresponding CRLB for all SNR. It means that the appro-
priate proportion of FD can be selected for the performance
requirements of different scenarios.
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To sum up, proposed structure and method not only
eliminate the phase ambiguity in one time block, but also
have better performance.

5. Performance Analysis of HAD-
MIMO DOA Measurments with
Low-Resolution ADCs
As the number of antennas goes to large-scale in mas-

sive MIMO receiver, the number of ADCs increases accord-
ingly. High-resolution ADCs means high cost and energy
consumption. Adopting low-resolution ADCs is a promising
solution to reduce the circuit cost and power consumption in
future wireless communications. Low-resolution structure
has attracted many attentions. By resorting to the compres-
sive sensing, the DOA estimation with 1-bit ADCs was solved
as a sparse recovery problem. The multiple signal classifi-
cation (MUSIC) method can be directly utilized to perform
DOA estimation with 1-bit ADCs. However, to the best of
our knowledge, the performance loss was not derived and an-
alyzed due to the use of low-resolution ADCs. Thus, in [15],
the authors proposed a performance loss factor to evaluate
the performance loss in massive MIMO systems with low-
resolution ADCs. By employing the additive quantization
noise mode (AQNM), the closed-form CRLB expression was
derived. Based on that, a new performance loss factor was
defined. It is shown that the performance loss factor is related
to SNR and number of quantization bits. Additionally, it is
also verified that all subspace-based methods can be used in
low-resolution ADC architecture without any modification.

Figure 7 plots the performance loss versus the num-
ber of quantization bits for different SNRs. The simulation
parameters are also chosen as Tab. 1. It is obvious that per-
formance loss decreases as the number of quantization bits
increases. In addition, the performance loss is a decreasing
function of SNR. If we set 1 dB loss as an acceptable loss,
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Fig. 7. Performance loss versus number of quantization bits with
𝑁 = 32 and 𝑀 = 128 for different SNRs.

2-bit ADCs are suitable in the low SNR region. However,
as the SNR increases, it is better to adopt 3-bit ADCs in the
medium SNR region. It is recommended to adopt 4 ∼ 5 bit
ADCs in the high SNR region. Furthermore, ADCs with
𝑏 > 5 only achieve a trivial performance gain over those with
lower-resolution.

In conclusion, adopting low-resolution ADCs could de-
crease the circuit cost and energy consumption. When rec-
ommended quantization bit is selected, the performance loss
is negligible according our analysis.

6. Open Challenging Problems
However, there are still several important open problems

arising in DOA estimation field using massive HAD-MIMO
summarized as follows:

1. As the number 𝑁 of antennas tends to large-scale
or ultra-large-scale, the computational complexities of
emitter detections and DOA measurements increase as
a function of 𝑁3. For example, 𝑁 = 1000, its com-
plexity reaches up to 109 FLOPs. Thus, there is a large
demand for low-complexity emitter detectors and DOA
estimators in the case of large-scale.

2. For multi-emitter scenario, only detection is not suf-
ficient. Obviously, a further task is to infer the num-
ber of passive emitters using deep learning methods.
This will be very helpful for aiding the next step DOA
measurement.

3. DOA estimation using ultra-massive MIMO systems
could achieve an ultra-high precision of angles, which
could pave the way to the AOA localization. How
to use multiple estimated AOAs to realize a high-
performance and low-complexity localization from ge-
ometric aspect? There are two ways: using multiple
distributed massive receive MIMO arrays or dividing
a ultra-massive array into several subarrays. Each array
or subarray makes an independent DOA measurement,
and the measured DOAs are used to form several in-
tersection points. The key is how those intersection
points are explored to form a high-precision geometric
intersection localization method of achieving the corre-
sponding CRLB.

7. Conclusions
In this article, a MLNN-based detector was proposed

to improve the emitter detection performance. Subsequently,
a DOA estimation algorithm with a TLHAD structure was
proposed, which achieves the elimination of phase ambi-
guity in a single snapshot and makes a significant reduc-
tion on a DOA measurement time delay. Furthermore,
a low-cost framework of DOA estimation combining low-
resolution ADCs and large-scale HAD MIMO system was
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also reviewed, which strikes a good balance between per-
formance and circuit cost. Finally, potential challenges of
DOA estimation for massive or utra-massive MIMO systems
were discussed, and several new open important issues were
presented. Thus, considering its low-cost-circuit and high
performance, massive HAD DOA measurement may become
a promising green communication technology for many fu-
ture applications like Metaverse, Web3.0 and the ISAC of
beyond 5G/6G, etc.
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