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Abstract. This paper proposes a method based on image
processing algorithms for ground penetrating radar (GPR) to
locate hidden defects in tunnel linings. Firstly, the fast syn-
thetic aperture focusing imaging (Fast-SAFI) algorithm is
used to accurately identify the morphology of tunnel-lining
defects. Secondly, an iterative algorithm is used to deter-
mine the connected regions on the binary image, exclude
background noise interference, and locate the centroid and
vertices of the correct target connected regions to achieve the
positioning of the depth of tunnel-lining defects. To verify the
feasibility of the proposed positioning algorithm, a verifica-
tion experiment was conducted on the experimental wall of
the China Academy of Railway Sciences. The experimental
results show that the proposed positioning algorithm is reli-
able and rapid for identifying and locating the morphology
and depth of tunnel-lining defects.
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1. Introduction
Tunnel lining is an important component of tunnel engi-

neering. However, it is often subject to geological conditions
and environmental influences, resulting in various hidden de-
fects such as cracks, voids, and disconnections. The hidden
defects in the tunnel lining not only cause serious damage
and instability to the structure of tunnel linings, but may
also cause serious accidents. Therefore, discovering and
solving these potential problems is crucial for the safe oper-
ation of tunnels [1], [2]. Ground penetrating radar (GPR) is
an efficient, anti-interference, and high-penetration tool for
non-destructive testing of underground structures, providing
more guarantees for the safe and scientific construction of
underground engineering [3]. By transmitting electromag-

netic waves and receiving reflection signals, GPR can form
B-scan profiles to interpret and analyze tunnel-lining defects,
and infer their location, morphology, and type [4], [5]. How-
ever, tunnel-lining defects are complex in shape and diverse
in type, and relying solely on manual interpretation is dif-
ficult to accurately identify and locate defects, leading to
problems such as missed diagnosis and misdiagnosis [6]. In
order to improve tunnel safety and reduce inspection costs,
automated detection has become an important means of in-
frastructure inspection and is gradually becoming a trend for
future development [7], [8].

Synthetic Aperture Radar (SAR) is a radar-based imag-
ing technology that can achieve high-resolution imaging of
ground and ocean targets. The SAR uses the synthetic aper-
ture generated by its own motion to form a large aperture
equivalent to the actual aperture, thus improving the imaging
resolution. Through the SAR technology, high-resolution
and high-precision information of ground objects can be ob-
tained, and it is widely used in military, civilian, aerospace,
and other fields. Similar to the SAR radar system, the GPR is
also based on electromagnetic principles and radar equations.
Usually, the GPR systems operate in a single-point transmit-
receive mode, so the synthetic aperture focusing technique
(SAFT) can also be applied to GPR [9]. Because the wave
equations for elastic waves and electromagnetic waves are
similar, the GPR synthetic aperture imaging algorithm is
usually evolved from seismic imaging algorithms [10]. The
purpose and requirements of these two imaging methods are
also very similar. Currently, the main types of migration al-
gorithms for the GPR include frequency-wavenumber migra-
tion, phase-shift migration, Kirchhoff migration, and back-
propagation (BP) algorithm. Frequency-wavenumber migra-
tion uses Fast Fourier Transform (FFT) and is suitable for
fast focusing of single-layer homogeneous media flaws [11].
Phase-shift migration algorithm has high complexity and re-
quires very accurate parameters for wave velocity and layer
thickness, which is not suitable for processing actual ground
penetrating radar data [12]. Kirchhoff migration generates
a large amount of noise during the implementation of GPR
B-scan focusing, which can easily mask the reflected echoes
of underground flaws [13]. Back-projection-based focusing
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method is a time-domain migration algorithm that uses geo-
metric equations for implementation. Compared with other
imaging algorithms, its imaging model is relatively simple
and has strong applicability [14].

The GPR migration algorithms can achieve good imag-
ing results in practical applications. For example, Brad-
ford [15] proposed a reverse-time migration (RTM) algo-
rithm that can handle rugged terrain and varying surface
heights to generate high-fidelity underground structural im-
ages, which has been applied in dune exploration. Gian-
nakis, et al. [16] developed an improved Kirchhoff migration
algorithm to evaluate the internal structure of tree trunks
and detect the degree of decay for locating internal tree dis-
eases. Alani [17] utilized the inverse-time migration imaging
technique to accurately locate diseased areas in the mapped
tree trunk, and the effectiveness of the imaging technique
was demonstrated through simulation and field experiments.
Tanyer [18] proposed a delay-weighted sum algorithm to
study the effect of non-uniform media on the inversion BP
imaging, which effectively improves the imaging quality.

In recent years, the surge in deep learning has introduced
new approaches to image processing, and Convolutional Neu-
ral Networks (CNN) have become one of the methods for
processing GPR images and performing defect recognition.
For instance, ResNet-50 [19] is adopted to detect the tun-
nel lining structural condition. Rosso, et al. [20] compare
three deep learning models: ResNet-50, EfficientNet-B0,
and ViT. And the detection accuracy was compared with
and without preprocessing. However, an effective localiza-
tion strategy is yet to be proposed. An algorithm combining
Self-Attention Dense Contrastive Learning (SA-DenseCL)
and Mask Region-Convolutional Neural Network (Mask R-
CNN) [21] is also proposed, capable of defect localization
after training.

The existing methods can accurately identify and locate
the morphology and depth of reinforcement but lack a precise
identification and localization method for complex and irreg-
ular disease morphology and depth. To solve the problem
of difficult identification and positioning of the tunnel-lining
disease morphology and burial depth, this paper proposes
a fast synthetic aperture focusing algorithm to determine the
disease morphology, combined with image binarization and
target vertex method to determine the disease burial depth.
The effectiveness of the proposed method is validated by
focusing imaging indicators on simulated and field data.

This paper will introduce the principles of Synthetic
Aperture Focusing Imaging, as well as an enhanced Fast
Synthetic Aperture Focusing Imaging method that is more
effective and suitable for synthetic aperture data in Sec. 2.
Subsequently, the localization method will be discussed in
Sec. 3, encompassing image binarization applied to the im-
ages produced by the Fast-SAFI technique, along with the
target vertex method used for locating the burial depth of the
defects. Section 4 discusses the reliability and complexity of
the algorithm.

2. Pattern Recognition Method

2.1 Synthetic Aperture Focusing Imaging
In the scanning process of the GPR, the detected elec-

tromagnetic waves will generate different travel times during
propagation, causing any scatterer in the B-scan image to be
displayed as a hyperbola. Due to the long tail of the hy-
perbola, the resolution along the synthetic aperture direction
mainly depicts low-resolution features. Therefore, it is chal-
lenging to locate defects in tunnel linings using unfocused
B-scan images, and it is necessary to transform the scat-
tered hyperbolas into a focused image that displays the actual
position, size, and corresponding electromagnetic wave re-
flectivity of underground objects. Therefore, the GPR image-
focusing techniques are commonly used to fold the detected
hyperbolas into a concentrated spot at the vertex, highlighting
the underground targets.

The fundamental principle of the synthetic aperture fo-
cusing technique in the GPR is to transform the imaging of
underground targets into the focusing of the targets. Hyper-
bolas can be focused into smaller points, achieving precise
positioning of underground targets. This can improve the
azimuthal resolution, weaken interference, and provide ac-
curate data. By using the focusing technique, A synthetic
aperture focusing imaging scene model for the GPR data has
been constructed, as shown in Fig. 1. In this scene model, the
detection direction is along the x-axis, and the depth direc-
tion is along the y-axis. The GPR transmitter is at a distance
of ℎ from the lining surface and samples uniformly along the
detection direction to obtain GPR data 𝑠𝑖 (𝑥𝑖 , 𝑡).

Assuming the GPR transmitter is located at point
𝑖 (𝑥𝑖 ,−ℎ) and the electromagnetic waves are reflected at point
𝑃 (𝑥P, 𝑦P) and refracted at point 𝑅 (𝑥R, 0) before being re-
ceived back at point 𝑖, the distance traveled by the electro-
magnetic waves from 𝑃 to 𝑖 can be calculated as follows:

|𝑃𝑅 | + |𝑅𝑖 | =
√︃
𝑦P + (𝑥P − 𝑥R)2 +

√︃
ℎ2 + (𝑥R − 𝑥𝑖)2. (1)

Fig. 1. A synthetic aperture focusing imaging scene model for
the GPR data.



RADIOENGINEERING, VOL. 33, NO. 1, APRIL 2024 113

When the focal point 𝑃 is located at point 𝑖, the delay
of data 𝑠𝑖 (𝑥𝑖 , 𝑡) can be expressed as follows:

𝑇P =
2
√︃
𝑦2

P + (𝑥P − 𝑥R)2

𝑣
+

2
√︃
ℎ2 + (𝑥R − 𝑥𝑖)2

𝑐
, (2)

𝑣 =
1

√
𝜀2

(3)

where 𝑐 represents the speed of light, and 𝑣 represents the ve-
locity of electromagnetic waves within the lining. According
to Snell’s law, the incident angle 𝜃1 and the refracted angle
𝜃2 can be expressed as follows:

sin 𝜃1
sin 𝜃2

=
𝑐

𝑣
=

√
𝜀2√
𝜀1

. (4)

According to (4) and considering coordinate transfor-
mations, a fourth-order polynomial equation with respect to
the horizontal coordinate 𝑥P of the focusing point 𝑃 can be
derived as follows:

𝑧2
P + (𝑥P − 𝑥R)2

(𝑥P − 𝑥R)2 × (𝑥R − 𝑥𝑖)2

ℎ2 + (𝑥R − 𝑥𝑖)2 =

√
𝜀2√
𝜀1

. (5)

The abscissa 𝑥P of the focusing point 𝑃, which can be ob-
tained based on (5), is substituted into (2) to obtain the time
delay 𝑇P.

After collecting 𝑁 data points at each focal point from
the aperture, the amplitude of the reconstructed image points
can be obtained using the concept of "delay-and-sum". This
algorithm adds the signals at the focal points, effectively
combining the signals from multiple scattered points and
improving the imaging quality.

2.2 Fast Synthetic Aperture Focusing Imaging
Due to the larger number of aperture channels and dif-

ferent baseline channel counts of the focusing points involved
in the computation below the image, the data cannot be pro-
cessed further. To improve the applicability of synthetic
aperture data, a fast synthetic aperture focusing Imaging
(Fast-SAFI) algorithm based on delay-and-sum averaging is
proposed to address the issue of varying baseline channel
counts during data processing. This greatly improves the
efficiency of GPR synthetic aperture focusing imaging. The
specific improvement method is as follows:

1. Simplify the calculation of reflection points using the
Johansson approximation formula [22]. This simpli-
fies the reflection point formula into a linear judgment
formula, where only half of the reflection points and
delays at each focal point need to be calculated, and
the other half can be obtained through horizontal sym-
metry to reduce computational costs.

2. Simplify the calculation of the delay matrix. The GPR
data is represented by a matrix [𝑀 × 𝑁], with each
channel containing sampling points as focusing points

and a channel spacing of Δ𝑥. Assuming that a fo-
cusing point on a certain channel is 𝑃 (𝑥P, 𝑦P), the
number of channels in the synthetic aperture is 𝑛, the
reflection point coordinate matrix is QP (𝑥𝑖 , ℎ), and
the delay matrix is n′. In addition, focusing points
at the same depth have the same number of reflection
points QP (𝑥𝑖 + Δ𝑥, ℎ), and the delay matrix n′ is also
the same. Let the delay matrix of one channel be the
same as that of the other 𝑁 − 1 channels. Therefore,
only three parameters, namely the distance between the
transmitter and the surface h, the number of sampling
points, and the dielectric constant of the lining, are
required to calculate the delay matrix for each channel.

3. Encapsulate the delay matrix groups for all channels
into a "cell" and store it as a whole on the computer,
avoiding the need to calculate the delay matrix for each
focal point. This greatly reduces the computational
workload and significantly improves the calculation
speed, making it suitable for GPR data processing.

The input for the fast synthetic aperture focusing tech-
nique (Fast-SAFI) algorithm is the GPR B-scan matrix
s = [𝑀 × 𝑁], with an inter-scan distance of Δ𝑥 and a time
sampling interval of Δ𝑡. The transmitter height above the
interface is ℎ. The sampling interval in the subsurface layer
is Δ𝑦, and the relative dielectric constant of the subsurface
layer is 𝜀. The flowchart of the Fast-SAFI algorithm is shown
in Fig. 2.

Step 1: Calculate the delay matrix for all columns of GPR
data, looping through 𝑀 columns.

Step 2: Calculate the number of synthetic aperture channels
𝑁_number + 1 and the synthetic aperture length 𝑙.

Step 3: Determine if the number of channels at the point is 1.
If the number of channels is 1, the delay matrix at the
point is set to 𝐴p. Otherwise, set 𝑁_number/2 as the
number of times to move the data channel above the
focusing point to the left and right, looping through
𝑁_number/2.

Step 4: Using 𝑁_number/2 values, calculate the reflection
point and assign values to the delay matrix from the
center to both ends, obtaining the delay matrix 𝐴p.

Step 5: Package the delay matrix as an "A cell" and store it
in the computer.

Step 6: Read in the other 𝑁 − 1 data channels of the GPR
B-scan matrix s = [𝑀 × 𝑁], loop through rows, and
use "A cell" for looping.

Step 7: Find the corresponding delay matrix for the focusing
point and find the values of each synthetic aperture
channel 𝐵.

Step 8: Sum the delayed matrix elements of 𝐵 and take the
average to obtain the imaging result of the focusing
point.

Step 9: Inversion imaging of GPR defects.
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Fig. 2. The flowchart of the Fast-SAFI algorithm.

As a reference, the input GPR B-scan matrix s[𝑀, 𝑁]
corresponds to the image shown in Fig. 6(b), and the output
GPR B-scan data I[𝑀, 𝑁] corresponds to the image shown
in Fig. 7(b).

3. Localization Method

3.1 Binarization
After applying the Fast-SAFI technique, the pixel en-

ergy distributed on the hyperbolic curve can be summed up at
the real location of the subsurface anomaly. However, when
the image is shifted, background information still causes sig-
nificant interference to the target, so it is necessary to fur-
ther enhance the difference between the target and the back-
ground. In this regard, image binarization methods can be
used to segment the target and the background for more ac-
curate target positioning. This step can effectively reduce the
impact of noise, improve the accuracy of subsurface anomaly
location, and facilitate further research and analysis.

Image binarization is an image processing technique
that simplifies and separates the image, and there are vari-
ous threshold selection methods, including bimodal method,
maximum inter-class variance method, maximum entropy
thresholding, and iterative method. Each method has its
unique advantages and applicable scope, and the most suit-
able method should be selected based on actual situations for
image binarization.

The bimodal method [23] begins by converting the in-
put image to grayscale. It then constructs a histogram of
pixel intensities. The algorithm identifies two peaks in the
histogram, representing the foreground and background in-
tensities, and selects a threshold value that separates these
two modes. Maximum inter-class variance method [24]
computes the histogram of the input grayscale image. It
iteratively evaluates the variance between two classes (fore-
ground and background) for different threshold values and
selects the threshold that maximizes this inter-class variance.
Maximum entropy thresholding [25] calculates the entropy
of the binary image for different threshold values. It seeks the
threshold that maximizes the entropy, indicating the highest
information content. This balance between object and back-
ground regions is achieved by maximizing the uncertainty in
the image.

The basic idea of the iterative method is to first select
an initial threshold value, and then use this threshold to sepa-
rate the image into two parts: the target and the background.
The average grayscale values of these two parts are then cal-
culated. The average of these two values is used as the new
threshold, and the process is repeated until the new threshold
is equal to or only slightly different from the previous itera-
tion’s threshold. In other words, the convergence condition
of the iteration is met. The advantage of the iterative method
is that it can adaptively select thresholds for images with dif-
ferent grayscale distributions. Moreover, since this method
only relies on the statistical information of the image itself
and does not require human intervention, it has good robust-
ness. The flowchart of the iterative threshold algorithm is
shown in Fig. 3, and the specific steps of the process are as
follows:

Step 1: Initialization. Set the threshold value 𝑇0 for all pix-
els in the focused GPR B-scan to an initial value,
𝑇0 = 0.6 × (𝑔max + 𝑔min), where 𝑔max represents the
maximum gray value in the image, while 𝑔min repre-
sents the minimum gray value in the image.

Step 2: Segmentation. Compare the grayscale value of each
pixel in the focused GPR B-scan with the initial
threshold value 𝑇0. If the grayscale value is less
than 𝑇0, mark it as background; otherwise, mark it
as foreground.

Step 3: Update the threshold value. Calculate the average
grayscale values of the foreground and background
pixels, and use the average of these values as the new
threshold 𝑇h.

Step 4: Convergence judgment. Compare the difference be-
tween the new threshold value 𝑇h and the previous
threshold value 𝑇0. If the difference is less than the
predetermined threshold, the algorithm converges
and outputs the final segmentation result. Other-
wise, return to Step 3 and continue the iteration.
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Step 5: Input the GPR B-scan after iterative thresholding.
The final result is a black and white binary image,
which is convenient for subsequent processing and
analysis.

In order to discuss the convergence of the iterative
method, the grayscale values of all 𝑛 pixels can be rear-
ranged into a sorted list in ascending order {𝑥1, 𝑥2, . . . , 𝑥𝑛}.
By comparing each value with 𝑇0, the list can be divided into
two parts. The average values of these two parts𝑈𝑘1 , 𝑉𝑘1 can
then be computed:

𝑈𝑘1 =
1
𝑘1

𝑘1∑︁
𝑖=1

𝑥𝑖 , (6)

𝑉𝑘1 =
1

𝑛 − 𝑘1

𝑛∑︁
𝑗=𝑘1+1

𝑥 𝑗 (7)

where 𝑘1 represents the number of pixel points with grayscale
values less than the threshold 𝑇0.

Fig. 3. The flowchart of the iterative threshold algorithm.

Then, the new threshold 𝑇h, referred to as 𝑇1, can be
obtained:

𝑇1 =
1
2

(
𝑈𝑘1 +𝑉𝑘1

)
. (8)

Obtaining the threshold 𝑇𝑎 after 𝑎 iterations is straight-
forward:

𝑇𝑎 =
1
2

(
𝑈𝑘𝑎 +𝑉𝑘𝑎

)
(9)

where 𝑘𝑎 represents the number of pixel points with grayscale
values lower than the threshold 𝑇𝑎−1.

The convergence criteria |𝑇𝑎 − 𝑇𝑎−1 | can be expanded
as follows:

|𝑇𝑎 − 𝑇𝑎−1 | =
1
2

����� 1
𝑘𝑎

𝑘𝑎∑︁
𝑖=1

𝑥𝑖 +
1

𝑛 − 𝑘𝑎

𝑛∑︁
𝑗=𝑘𝑎+1

𝑥 𝑗 −
1

𝑘𝑎−1

𝑘𝑎−1∑︁
𝑖=1

𝑥𝑖

− 1
𝑛 − 𝑘𝑎−1

𝑛∑︁
𝑗=𝑘𝑎−1+1

𝑥 𝑗

�����.
(10)

The experiments indicate that when the initial value is
set as 𝑇0 = 0.6× (𝑔max +𝑔min), for the B-Scan images used in
this experiment, 𝑘1 > 𝑘2 > · · · > 𝑘𝑎, and it can be observed
that |𝑇1−𝑇0 | > |𝑇2−𝑇1 | > |𝑇𝑎−𝑇𝑎−1 | ≥ 0, which means that
the sequence |𝑇𝑛 − 𝑇𝑛−1 | converges.Therefore, the iterative
method used to binarize images in this experiment is proven
to be feasible.

After comparing the four different threshold selection
methods mentioned above, the results are shown in Fig. 4.
It was found that the iterative method had the best perfor-
mance in binarizing the four offset images. The binarized
image processed by the iterative method presented white
areas similar to the focused cluster of the original image,
while the background outside the white areas was very clean
with no obvious small color blocks. On the contrary, the
other three threshold methods yielded poor results, with the
target and background not completely separated and many
large color blocks appearing, which may lead to a mis-
judgment in choosing the target. Specifically, the results
obtained using the Maximum Entropy thresholding method
exhibit significant information loss regarding the target ver-
tices, leading to a considerable localization error. There-
fore, the iterative method was chosen as the thresholding
method for image binarization.

(a) (b) (c) (d) (e)

Fig. 4. Comparison of the effects of four threshold selection algorithms; (a) Fast-SAFI method image for binarization; (b) Bimodal method;
(c) Maximum inter-class variance method; (d) Maximum entropy thresholding method; (e) Iterative method.
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(a) (b) (c) (d) (e)

Fig. 5. Result of each processing step of the localization algorithm; (a) The original image; (b) Fast-SAFI method; (c) Iterative method; (d) De-
termining the vertex position; (e) Regressing to the original image.

3.2 Depth Estimation
After binary thresholding the image, the target region

is presented as white, while the background is black. To
accurately locate the target, it is necessary to obtain the co-
ordinate information of the white region. For this purpose,
the connected regions need to be determined, the centroid
position needs to be calculated, and the buried depth of the
underground disease can be estimated.

In order to distinguish between the black and white
regions in the binary image, they need to be labeled. How-
ever, when using the iterative method to process the image,
there may be small and disconnected white regions that affect
the selection of the target position. To solve this problem,
all independent white connected regions were labeled, and
a different index value was assigned to each closed white
connected region for differentiation. After determining the
target connected region, the centroid of this region needs to
be calculated. By utilizing the coordinates of all pixels, the
centroid position and height information of the bright cluster
can be obtained, which helps to better understand the shape
and features of the target region.

The horizontal and vertical coordinates of the centroid
are shown below:

𝑋c =
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖 , (11)

𝑌c =
1
𝑛

𝑛∑︁
𝑖=1

𝑦𝑖 (12)

where 𝑛 represents the total number of pixels in the white
connected region, 𝑥𝑖 represents the horizontal coordinate of
pixel 𝑖, and 𝑦𝑖 represents the vertical coordinate of pixel 𝑗 .

By calculating the minimum vertical coordinate 𝑦min
and the maximum vertical coordinate 𝑦max of the white con-
nected region, the height 𝐻 of the white connected region is
obtained:

𝐻 = 𝑦max − 𝑦min. (13)

The vertex of the white connected region is located at
a height 𝐻/2 above the centroid. The expression for the
coordinates of the vertex position is shown below:

𝑋top = 𝑋c, (14)

𝑌top = 𝑌c + 𝐻/2. (15)

After obtaining the coordinates of the vertex of the white
connected region, the vertex is fitted to the extracted hyper-
bolic curve target to observe the accuracy of the vertex posi-
tioning. Figure 5 shows the results of each processing step of
the proposed localization algorithm. The results show that
the proposed algorithm can accurately locate the red localiza-
tion point on the vertex of the hyperbolic curve, effectively
solving the problem of vertex localization of tunnel-lining
diseases.

4. Results and Discussions

4.1 Performance Evaluation
To evaluate the performance of algorithms, parameters

such as Integrated Sidelobe Ratio (ISLR), Signal to Clutter
Ratio (SCR), and computational speed are integrated.

The ISLR is defined as the ratio of the total energy
within the sidelobes to the peak energy of the main lobe:

ISLR = 10log10

( ∫
−3 dB 𝐼d𝑥′d𝑦′∫ +∞

−∞ 𝐼d𝑥′d𝑦′
∫
−3 dB 𝐼d𝑥′d𝑦′

)
. (16)

The SCR is also a key parameter for evaluating the qual-
ity of focusing ability. It can be defined as the ratio of the
received target signal power to the received clutter power, as
shown below:

SCR = 10log10

(
𝑃target

𝑃total𝑃target

)
. (17)

where 𝑃target is the received target signal power, and 𝑃total is
the total power of the image.

4.2 Pattern Recognition Results
In order to verify the effectiveness of the Fast-SAFI

imaging algorithm, tunnel-lining models were established
and the BP algorithm was used as a comparative algorithm
to analyze the focusing imaging effects of three types of dis-
eases: cracks, voids, and delamination. Tunnel-lining disease
models and their corresponding forward images are shown in
Fig. 6.
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Tunnel-lining models Methods Time [s] SCR [dB] ISLR [dB]

Crack BP 10.11 –13.18 –10.25
Fast-SAFI 5.63 –9.24 –7.23

Void BP 9.61 –8.61 –12.56
Fast-SAFI 4.19 –6.30 –9.01

Delamination BP 9.86 –7.12 –15.41
Fast-SAFI 4.53 –5.26 –10.02

Tab. 1. Performance of the focusing algorithm on different models.

Method SCR [dB]
Fast-SAFI −5.26
HSA −12.48
PSA −10.40
𝜔-kA −9.92
BPA −9.01

Tab. 2. Comparison of SCR for different methods.

(a)

(b)

Fig. 6. (a) Tunnel-lining disease models. (b) Their correspond-
ing forward images.

(a)

(b)

Fig. 7. The results of the focusing algorithm; (a) BP algorithm;
(b) Fast-SAFI algorithm.

For cracks, voids, and delamination diseases, both the
BP algorithm and the Fast-SAFI algorithm can improve the
visibility and recognition of the diseases. The results of the
focusing algorithm are shown in Fig. 7.

As shown in Fig. 7(a), the BP algorithm can refine and
clarify the edge and texture features of the defects, making
them more visible and recognizable. In addition, the BP
algorithm can optimize and adjust the background around
the defects to highlight their contours and features, thereby
improving the identification of the defects. However, the
BP imaging algorithm may face some difficulties in handling
complex voids, and delamination defects. This is because
the shape and size of the voids, and delamination defects are
irregular and usually accompanied by local color and bright-
ness changes. These problems may cause some distortion
and misjudgment in the BP imaging algorithm when dealing
with voids, and delamination defects.

As shown in Fig. 7(b), the Fast-SAFI algorithm has cer-
tain advantages over the BP algorithm in processing cavity
and void defects. Void defects are focused into an approx-
imate circular shape, which can better estimate their burial
depth. Delamination defects are difficult to identify their
approximate shape due to significant fluctuations in the sur-
rounding dielectric constants caused by their proximity to the
surrounding rocks. However, after the Fast-SAFI algorithm,
the reflection signal on the surface of Delamination defects
is clear, which can determine the approximate burial depth
and depth range.

Table 1 summarizes the processing time, Signal-to-
Clutter Ratio (SCR), and Integrated Side Lobe Ratio (ISLR)
performance of the two proposed algorithms in simulated
tunnel-lining models. Compared with the BP algorithm, the
Fast-SAFI algorithm has faster computation time, strong clut-
ter suppression ability, and excellent anti-interference ability.

Table 2 illustrates the comparison between the Fast-
SAFI algorithm and existing B-Scan imaging methods, such
as HSA, PSA, 𝜔-kA, and BPA [26]. It can be observed that
Fast-SAFI outperforms the existing methods in terms of the
SCR metric.

4.3 Localization Results
Firstly, the Fast-SAFI algorithm is used to determine the

true location and shape of the underground defects. Next, im-
age binarization technique is applied to determine the target
connected area. By calculating the coordinates of all pixels,
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the centroid position, vertex position, and height information
of the defects can be obtained. Ultimately, the automatic
localization of the shape and burial depth of tunnel-lining
defects is achieved.

The complexities of the four mentioned image bina-
rization methods above, namely, bimodal method,maximum
inter-class variance method, maximum entropy thresholding,
and iterative method are all 𝑂 (𝑛). Now represent them in-
dividually as 𝑂 ( 𝑓 (𝑚)), 𝑂 (𝑔(𝑚)), 𝑂 (ℎ(𝑚)), and 𝑂 (𝑦(𝑚))
to compare their complexities, where 𝑚 represents the side
length of the input image

𝑓 (𝑚) ≈ 2𝑚2, (18)
𝑔(𝑚) ≈ 2𝑚2 + 2552, (19)
ℎ(𝑚) ≈ 2𝑚2 + 2552, (20)
𝑦(𝑚) ≈ (𝑖 + 2) × 𝑚2 (21)

where 𝑖 represents the number of iterations.

Therefore, it can be observed that, within a certain range
of input image dimensions, the complexity of the bimodal
method and the iterative method with fewer iterations is more
competitive than the complexity of the maximum inter-class
variance method and the maximum entropy thresholding.

When processing images with an input size of 465×465
using MATLAB 2020b on a computer with a 12th Gen
Intel®Core™i5-12490F CPU, although the iterative method
is more time-consuming, it is still within the same order of
magnitude as the other three methods. Table 3 compiles the
average processing time for individual images when using
the four mentioned binarization methods on the same set of
GPR B-Scan images. In this project, the use of the iterative
method as the image binarization technique, although more
time-consuming compared to the other three methods, has
minimal impact on the system’s overall performance due to
its small computational scale. However, it offers superior
target detection capabilities and background noise suppres-
sion, ultimately enhancing the accuracy of defect localiza-
tion. Therefore, it appears to be a feasible choice.

In order to validate the feasibility of the proposed algo-
rithm for identifying the morphology and locating the depth
of tunnel-lining defects, field experiments were conducted
using the railway institute’s experimental wall as the test
object. In the GPR B-scan image, a total of four target pre-
diction boxes were generated. Among them, the hyperbolic
target features in boxes 1, 2 and 3 were very clear and could
be easily identified with the naked eye. However, the hy-
perbolic features in the selected area of box 4 was not very
obvious, making it difficult to determine whether there was
a defect target through manual judgment. Nonetheless, un-
der the assumption that box 4 was not a false detection, the
proposed localization algorithm was used to locate the defect
targets in the regions selected by these four boxes, as shown
in Fig. 8.

Algorithm Average execution time [s]
Bimodal 1.1055 × 10−9

Maximum variance 4.2597 × 10−9

Maximum entropy 3.9132 × 10−9

Iterative 6.4041 × 10−9

Tab. 3. Algorithm execution times.

Fig. 8. GPR B-scan image of field data.

Fig. 9. The results of the localization algorithm for the four tar-
get regions.

In the Fast-SAFI images of boxes 1, 2, and 3, irregular
diseases are clearly restored into circular targets, which can
effectively distinguish the target from the background. The
results of the localization algorithm for the four target regions
are shown in Fig. 9.

However, in box 4, there are no obvious hyperbolic fea-
tures and it is difficult to distinguish between the target and
the background. This may be because there are interference
anomalies such as broken stones in the area where boxes 2
and 3 are located, and there are diseases in the area. After
the Fast-SAFI algorithm is processed, multiple clutter energy
points are formed, which further increases the possibility of
misidentification in box 4. The focusing result can also serve
as a reference for judging the existence of underground dis-
eases.
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Fig. 10. The localization results of the regression of the original
image.

After processing with the localization algorithm, the ex-
act positions of each target within their respective bounding
boxes have been determined. Figure 10 shows the localiza-
tion results of the regression of the original image, with the
target vertices of each bounding box marked as solid red dots.
Overall, including one suspected false positive, all targets had
a depth of greater than or equal to 0.5 meter.

In theory, this system can be deployed as a real-time
system on GPR vehicles, the minimum driving speed com-
patible with the system can be expressed by the following
equation:

𝑉min =
𝐿

𝑇 + 𝑘𝑡
(22)

where 𝐿 is the detection length per image, 𝑇 is the maximum
average time required for imaging and detecting defects, 𝑘 is
the number of defects, and 𝑡 is the maximum average time
for detecting defect locations. Since in practical scenarios,
𝑡 is very small, the term 𝑘𝑡 is significantly smaller than 𝑇 .
Therefore, the above equation can be approximated as

𝑉min ≈ 𝐿

𝑇
. (23)

The system proposed in this paper theoretically can be
integrated as a real-time system and operate on GPR vehicles
traveling at speeds of approximately 20 km/h.

5. Conclusions
In this paper, we have proposed a method for identifying

the morphology and depth of tunnel-lining defects for GPR
data. The method uses the Fast-SAFI algorithm to achieve
high-resolution focused imaging, and iteratively estimates
the vertex position of the defect using target localization es-
timation method, thereby obtaining the true shape and depth
of the defect. Although using the iterative method for im-
age binarization incurs higher computational time, from the
perspective of the entire system, this additional time can be
almost negligible. Moreover, the benefits it brings are clearly
evident. The processing results from the field measured data

show that our method is more stable and convenient, which
can meet engineering requirements. Through the applica-
tion of this method, the problem of inaccurate positioning
of tunnel-lining defects in shape and depth can be effectively
solved, providing a feasible solution for engineering practice.

Our work still has some limitations, and in the future,
we will continue to improve the accuracy of localization and
the lightweight nature of the algorithm. We will also explore
the integration of relevant deep learning models to further
optimize the system into a real-time solution, better meeting
the requirements of practical detection.
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