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Abstract. This paper presents a novel method for identifica-
tion of the sub-system parameters of a Wiener-Hammerstein
Nonlinear (WHNL) system that is used for modeling RF
Power Amplifier characteristics. The proposed method first
isolates the overall linear system from the memoryless non-
linearity by exploiting the Bussgang decomposition method.
Then, Discrete Fourier Transform (DFT) analysis is used for
the estimation of the inner linear system. Finally, the outer
linear system parameters are updated based on the inner sys-
tem estimation. The estimated systems are then used to model
the target system for an In-Band-Full-Duplex (IBFD) sce-
nario. Performance of Self-Interferene Cancellation (SIC)
has been evaluated under the existence of Signal-of-Interest
(SoI). Error Vector Magnitude (EVM) metric of the SoI is
used to compare with a Half-Duplex (HD) receiver under
various inner linear system parameters. SIC performance
has been examined with respect to the changing power levels
of the SoI and self-interference signal for various delay and
gain values of a practical two-tap inner linear system. The
benefit of modeling the inner linear system has been revealed
by comparing the SIC performance with Hammerstein non-
linear model. The performance has also been compared to
well known black box models such as Generalized Memory
Polynomial (GMP) and Artificial Neural Networks (ANN).

Keywords
Wiener-Hammerstein nonlinear system, digital self-
interference cancellation, in-band full-duplex commu-
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1. Introduction
RF Power Amplifiers (PA) may introduce substantial

amount of nonlinear interference while amplifying the signal
for transmission. PAs are often power-inefficient and need
to be operated near the saturation point to obtain high signal

powers at the output. Therefore, special cooling and me-
chanical techniques are applied in the hardware design of the
devices including PA components, which can sometimes be
met by designing external modules for this purpose. These re-
quirements entail board-to-board or module-to-module con-
nections over cables at the input and output of the PA com-
ponents. Any wired or wireless reflections at the input and
output of these nonlinear devices act as linear systems, which
introduce memory effects in the nonlinear system character-
istics and make the system very hard to identify.

Identification of nonlinear systems with memory effects
has been one of the hottest topics in wireless communications
for the last two decades especially after OFDM based sig-
naling has become widely used in many standards. Having
significant advantages in channel estimation and equalization
compared to single-carrier modulation schemes, OFDM sys-
tems are very popular especially for non-line-of-sight (nLOS)
and frequency selective wireless channel scenarios. How-
ever, these systems significantly suffer from the PA nonlin-
earity due to their multi-carrier nature that introduces high
peak-to-average power ratios and inter-modulation product
terms. The resulting in-band interference causes severe
degradation in the transmit signal quality that inhibits using
high modulation orders. In addition, nonlinearity also intro-
duces out-of-band interference that cause spectral regrowth
and hence failure in meeting the spectral mask requirements.
Linearization of these devices by digital pre-distortion (DPD)
is a popular and practical solution, however performance with
DPD directly depends on the accuracy of the system identi-
fication [1], [2].

Another motivation for the accurate modeling of such
systems has arisen from a rather new but emerging technol-
ogy called in-band full-duplex communication (IBFD) [3].
IBFD requires that transmission and reception occur simulta-
neously using the same frequency resources. The challenge
here is to cancel the transmitted signal, which is distorted
by linear and nonlinear interference, down to the receiver
noise floor so that the desired signal can be received as in
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the traditional half-duplex systems. Since PA nonlinearity
with memory effects constitutes the main source for the self-
interference, accurate modeling of the PA system plays a cru-
cial role in the digital self-interference cancellation (DSIC)
process [4].

Wiener-Hammerstein nonlinear (WHNL) system mod-
eling is widely used in the literature to model PA with mem-
ory effects in the digital base-band, where a memoryless
nonlinear function is located between two cascaded linear
systems [5], [6]. Extraction of the memoryless nonlinear
characteristics is possible by offline processing of the input
and output digital baseband samples of the target system. For
example, in [7], authors exploit a dynamic moving average
method, whereas in [8] an artificial neural network structure,
which is trained by the magnitude and phase of the base-band
samples, is used for this purpose. Spline-based interpolation
is another popular approach that can achieve high accuracy
in modeling the memoryless nonlinear behavior [9].

Although various techniques have been successful in
estimating the memoryless nonlinearity, extracting the inner
and outer linear systems is a much more stringent work that
limits modeling performance. A common approach is to
place finite impulse response filter structures to represent the
memory effects. The coefficients are mostly estimated by
using least squares (LS) or gradient search methods. An-
other method is to use black box structures, where base-
band equivalent input/output signal pairs are used for esti-
mating the unknown parameters of the WHNL system. Most
common black box models are Generalized Memory Polyno-
mial (GMP) and Artificial Neural Network (ANN) structures.
GMP is a linear representation of the target system based on
the simplified Volterra Series expansion of the nonlinear sys-
tems with memory. Nonlinear behavior is represented by the
basis functions mostly defined by the power degrees of the
input magnitude. The coefficients are estimated with the LS
method by using the input/output sample pairs. ANN is an-
other popular approach to model such systems as a black box
structure. It has parallel computational blocks called neurons
including activation functions to represent nonlinear behav-
ior of the target system. Delayed samples of the input signal
are fed to the layers of neurons and a weighted sum of the
neuron outputs are collected at the output. The weights are
calculated by back-propagation algorithm over a training pe-
riod using the input/output samples. Although they are very
popular and easy to use as black box models for an unknown
nonlinear system, the performance of these common models
gets saturated even with a high number of coefficients, and
therefore they have limited use for the digital SIC process.

In this paper, a novel approach has been proposed for
the identification of the inner and outer linear system pa-
rameters assuming that the memoryless nonlinear function is
given. Our method first isolates the linear and nonlinear parts
by exploiting the Bussgang decomposition method. Then the
inner linear system is estimated by using the DFT representa-
tion of the system. Finally the outer linear system is updated
accordingly by minimizing the model estimation error.

2. System Model
A general digital baseband representation of a WHNL

system output is given in (1), where 𝜓(·) represents the mem-
oryless NL function, 𝑝 [𝑛] and 𝑞 [𝑛] represent the inner and
outer linear systems, respectively, and 𝑧[𝑛] represents the
receiver noise that is assumed to have white Gaussian distri-
bution (AWGN). Block diagram representation of the system
is shown in Fig. 1.

𝑟 [𝑛] = 𝜓
(
𝑥 [𝑛] ∗ 𝑝 [𝑛]

)
∗ 𝑞 [𝑛] + 𝑧[𝑛] (1)

The output of the memoryless NL function can be rep-
resented as the multiplication of the input samples by the
corresponding gain samples as follows:

𝑏[𝑛] = 𝑎[𝑛]𝑔𝑎 [𝑛] (2)

where 𝑎[𝑛] is the input sequence and 𝑔𝑎 [𝑛] is the time se-
quence specific to the combined effect of the input and the
nonlinearity. Using this, we can rewrite the system equation
as:

𝑟 [𝑛] =

𝑏[𝑛]︷                       ︸︸                       ︷[
(𝑥 [𝑛] ∗ 𝑝 [𝑛])︸           ︷︷           ︸

𝑎[𝑛]

𝑔𝑎 [𝑛]
]
∗ 𝑞 [𝑛] + 𝑧[𝑛] . (3)

Note that, any circularity in time provided at the input is
preserved at the output for the above relation. Hence, un-
der circularity conditions, the analysis can be continued by
taking the 𝑁-point DFT of both sides as in

𝑅[𝑘] = (1/𝑁)
[
(𝑋 [𝑘]𝑃[𝑘]) ⊛

𝑁
𝐺𝑎 [𝑘]

]
𝑄 [𝑘] + 𝑍 [𝑘] (4)

where the capital letters represent the 𝑁-point DFT coef-
ficients of the corresponding time domain signals for the
frequency index 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. In the above expres-
sion, ⊛

𝑁
is the 𝑁-point circular convolution operation and

𝐺𝑎 [𝑘] is the 𝑁-point DFT of 𝑔𝑎 [𝑛]. This expression can be
represented as:

R =
1
𝑁

DQCG𝑎
DPX + Z (5)

where DQ and DP are the diagonal matrices of the Q and P,
which are 𝑁-point DFT coefficient vectors of 𝑞 [𝑛] and 𝑝 [𝑛],
respectively. Similarly R, X, and Z are 𝑁-point DFT vectors
of 𝑟 [𝑛], 𝑥 [𝑛], and 𝑧[𝑛], respectively. CG𝑎

(6) is the circulant
matrix of G𝑎, which is the DFT coefficient vector of the gain
sequence, 𝑔𝑎 [𝑛].

CG𝑎

△
=


𝐺𝑎 [0] 𝐺𝑎 [𝑁 − 1] . . . 𝐺𝑎 [1]
𝐺𝑎 [1] 𝐺𝑎 [0] . . . 𝐺𝑎 [2]
...

...
. . .

...

𝐺𝑎 [𝑁 − 1] 𝐺𝑎 [𝑁 − 2] . . . 𝐺𝑎 [0]


. (6)

Fig. 1. Wiener-Hammerstein nonlinear model.
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2.1 Estimation of the Overall Linear System
In order to identify the system parameters, we utilize

the Bussgang Theorem [10], [11] to find out the input-output
relation of the 𝜓(·) function. According to this theorem, the
cross-correlation of the input and output of a memoryless NL
system, when excited by a stationary Gaussian random pro-
cess, is proportional to the input auto-correlation function by
a scale factor which depends on the memoryless NL function
and input distribution. That is,

𝑅𝑏𝑎 [𝑙] = 𝐾𝜓,𝑎 · 𝑅𝑎𝑎 [𝑙], (7)
𝐾𝜓,𝑎 = E{𝜓′ (𝑎)}

where 𝑅𝑏𝑎 [𝑙] and 𝑅𝑎𝑎 [𝑙] represent the cross-correlation and
auto correlation functions of time difference index, 𝑙, respec-
tively. E{.} is the expectation operation with respect to input
signal distribution, and 𝜓′ (𝑎) is the first order derivative with
respect to the input, 𝑎[𝑛]. In other words, by using this the-
orem, the output of the nonlinearity can be decomposed into
its fully correlated and uncorrelated components as follows:

𝑏[𝑛] = 𝐾𝜓,𝑎 · 𝑎[𝑛] + 𝜙[𝑛] (8)

where 𝜙[𝑛] is the uncorrelated signal component. By using
this property, the system can be expressed as follows:

𝑟 [𝑛] = 𝐾𝜓,𝑥︸︷︷︸
Scalar

·(𝑥 [𝑛] ∗ 𝑝 [𝑛] ∗ 𝑞 [𝑛]︸        ︷︷        ︸
△
=ℎ[𝑛]

)

+ 𝜙[𝑛] ∗ 𝑞 [𝑛]︸        ︷︷        ︸
uncorrelated with x[n]

+ 𝑧[𝑛]︸︷︷︸
AWGN

. (9)

Here, we define ℎ[𝑛]△=𝑝 [𝑛]∗𝑞 [𝑛] as the overall linear system.
Then, DFT representation of the above expression is

𝑅[𝑘] = 𝐾𝜓,𝑥𝑋 [𝑘]𝐻 [𝑘] +Φ[𝑘]𝑄 [𝑘] + 𝑍 [𝑘] (10)

for 𝑘 = 0, 1, . . . , 𝑁 − 1. Assuming that the input is a zero-
mean stationary Gaussian process, the correlation of the re-
ceived vector with the input vector yields

E{𝑅[𝑘]𝑋∗ [𝑘]} = 𝐾𝜓,𝑥𝐻 [𝑘]E{|𝑋 [𝑘] |2}
+ E{Φ[𝑘]𝑋∗ [𝑘]}︸             ︷︷             ︸

0

𝑄 [𝑘] + E{𝑍 [𝑘]𝑋∗ [𝑘]}︸             ︷︷             ︸
0

. (11)

Exciting the system by uncorrelated input sequences at each
iteration, 𝑖, we propose a sub-optimum estimator for the over-
all linear channel as:

�̂� [𝑘] =

𝑛∑
𝑖=1
𝑅[𝑘] (𝑖)𝑋∗ [𝑘] (𝑖)

𝑛∑
𝑖=1

|𝑋 [𝑘] (𝑖) |2
. (12)

Note that the complex scale factor, 𝐾𝜓,𝑥 , is assumed to be
unity for this estimator. Resulting gain and phase offset for
the overall linear system estimator based on this assumption
is left to be compensated in the last stage of the estimation
process, where the outer linear system parameters are updated
adaptively as explained in Sec. 2.3.

2.2 Estimation of the Inner LTI System: 𝒑[𝒏]

Having an estimator for the overall linear system,
�̂� [𝑘]=̃𝑃[𝑘]𝑄 [𝑘], and the knowledge of the memoryless NL
system, 𝜓(·), our first goal is to identify the DFT representa-
tion of the inner LTI system, 𝑃[𝑘]. Since the nonlinearity is
located in between the linear systems, �̂� [𝑘] and 𝜓(·) cannot
be directly used in our system equation (4), because 𝑃[𝑘] and
𝑄 [𝑘] are not resolved, and𝐺𝑎 [𝑘] is not known. However, in
order to exploit the 𝜓(·) function, we assume that the original
signal has passed through it and obtain the following:

𝜓(𝑥 [𝑛]) = 𝑥 [𝑛]𝑔𝑥 [𝑛],
Ψ𝑥 [𝑘] = (1/𝑁) (𝑋 [𝑘] ⊛

𝑁
𝐺𝑥 [𝑘]),

𝚿𝑥 =
1
𝑁

CG𝑥
X

(13)

where, 𝑔𝑥 [𝑛] is the time sequence that depends on the in-
put, and 𝐺𝑥 [𝑘] is the corresponding DFT coefficients for
𝑘 = 0, 1, . . . , 𝑁 − 1. The last equality represents the linear
algebraic representation where CG𝑥

is the circulant matrix
obtained by the𝐺𝑥 [𝑘] values similar to the one shown in (6).
With the above assumption an error is introduced that can be
defined as:

CGΔ
= CG𝑎

− CG𝑥
(14)

where CGΔ
is the circulant matrix for the difference vector,

𝐺Δ [𝑘] = 𝐺𝑎 [𝑘] − 𝐺𝑥 [𝑘] for 𝑘 = 0, 1, . . . , 𝑁 − 1. Replac-
ing CG𝑎

= CG𝑥
+ CGΔ

and DQ = DĤD−1
P in the system

equation (5), we get

D−1
P CG𝑥

DPX + D−1
P CGΔ

DPX + 𝑁 ·D−1
Ĥ Z︸                         ︷︷                         ︸

△
=E∈C𝑁×1

= 𝑁 ·D−1
Ĥ R︸    ︷︷    ︸

△
=V∈C𝑁×1

.

(15)

Here we have grouped the noise and error terms together and
renamed as E ∈ C𝑁×1 vector. Similarly the known vector
term on the right-hand-side is renamed as V ∈ C𝑁×1. Then
equation (15) can be rewritten as

D−1
P

[
G𝑥 ⊛𝑁

DPX
]
+ E = V (16)

where G𝑥 is the DFT coefficient vector of the 𝑔𝑥 [𝑛] sequence
defined in (13). Focusing on the 𝑘 th row of the vector equa-
tion (16) gives

𝑃[𝑘]−1PT {
𝑋 [ 𝑗]𝐺𝑥

[
((𝑘 − 𝑗))𝑁

]}𝑁−1
𝑗=0︸                              ︷︷                              ︸

△
=M𝑘 ∈C𝑁×1

+𝐸 [𝑘] = 𝑉 [𝑘]
(17)
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where (·)T is the vector transpose and ((·))𝑁 is the modulo
operation with respect to 𝑁 . Note that, although the newly
defined M𝑘 ∈ C𝑁×1 is a known vector, equation (17) is
not sufficient alone for solving 𝑃[𝑘]’s due to the unknown
P ∈ C𝑁×1 vector. However, multiple observations of the
system output for uncorrelated X vectors will provide a so-
lution. Let the system be excited by 𝐿 (𝐿 ≥ 𝑁) such input
sequences, then equation (17) can be extended as

𝑃[𝑘]−1PT [
M(1)
𝑘
, . . . ,M(𝐿)

𝑘

]︸                 ︷︷                 ︸
△
=M𝑘 ∈C𝑁×𝐿

+
[
𝐸 [𝑘] (1) , . . . , 𝐸 [𝑘] (𝐿)

]︸                         ︷︷                         ︸
△
=E𝑘 ∈C1×𝐿

=

[
𝑉 [𝑘] (1) , . . . , 𝑉 [𝑘] (𝐿)

]︸                         ︷︷                         ︸
△
=V𝑘 ∈C1×𝐿

.

(18)

For each 𝑘 index, the least squares (LS) estimate for the term
(𝑃[𝑘]−1PT) ∈ C1×𝑁 can be obtained as

( �
𝑃[𝑘]−1PT)LS = V𝑘M†

𝑘
(19)

where M†
𝑘
∈ C𝐿×𝑁 is the pseudo-inverse, MH

𝑘
(M𝑘MH

𝑘
)−1,

of M𝑘 with MH
𝑘

denoting the Hermitian transpose. Letting
the estimation error vector be 𝛅LS ∈ C1×𝑁 , equation (19) can
be written as

𝑃[𝑘]−1PT + 𝛅LS = V𝑘M†
𝑘
. (20)

Taking the average of both sides over the vector entries, we
get

𝑃[𝑘]−1 1
𝑁

𝑁−1∑︁
𝑖=0

𝑃[𝑖]︸        ︷︷        ︸
F−1 {P}

��
𝑛=0

+𝛅LS = V𝑘M†
𝑘

(21)

and

𝑃[𝑘]−1𝑝 [0] + (𝛅LS) = (V𝑘M†
𝑘
) (22)

where (·) represents the averaging operation over the terms
of a vector. Note that P is the DFT coefficient vector, hence,
averaging over the entries of P gives the inverse DFT of P at
𝑛 = 0, that is, 𝑝 [0]. This helps us extract the target 𝑃[𝑘]’s
alone for all 𝑘 . Equation (22) can be interpreted as an esti-
mation problem where 𝑃[𝑘] is to be estimated over a single
observation, V𝑘M†

𝑘
, under an additive noise, (𝛅LS), with un-

known statistics. Since 𝑝 [0] is the main tap of the inner
linear system that represents the direct path to the memory-
less nonlinearity, it can be normalized to 𝑝 [0] = 1 during the
estimation of 𝑃[𝑘]’s. Under these assumptions, the estimator
for the inner memory parameters can simply be obtained as

�̂�[𝑘] =
[
(V𝑘M†

𝑘
)
]−1

. (23)

Fig. 2. Update for the outer linear system.

2.3 Estimation of the Outer LTI System: 𝒒[𝒏]

Having the estimate of the inner LTI system, coefficients
of the outer LTI system are updated to match the desired sys-
tem output as shown in Fig. 2.

Time domain analysis of the update process is given
in (24)–(26) as

𝜓(𝑥 [𝑛] ∗ 𝑝 [𝑛])︸             ︷︷             ︸
�̂�[𝑛]

∗𝑞 [𝑛] + 𝑒[𝑛] = 𝑟 [𝑛],
(24)

B̂q̂ + e = r, (25)

B̂(𝑖) (q̂(𝑖) + 𝚫q(𝑖+1) ) = r(𝑖) ,

B̂(𝑖)𝚫q(𝑖+1) = r(𝑖) − B̂(𝑖) q̂(𝑖)︸           ︷︷           ︸
e(𝑖)

,

𝚫q(𝑖+1) = [B̂(𝑖) ]†e(𝑖)

(26)

where B̂ represents the convolution matrix of �̂�[𝑛], whereas
q̂, e, and r represent vector forms for the estimated filter
coefficients, error signal, and received signal, respectively.
In (26), 𝑖 shows the iteration number and [.]† represents the
pseudo-inverse operation. This update process initially sets
q̂(0) vector as the estimated coefficient values from the previ-
ous step by using F −1{Ĥ/P̂} relation, where Ĥ and P̂ are the
estimated DFT coefficient vectors of the overall and inner lin-
ear systems, respectively, and F −1{·} represents the inverse
DFT operation. Then, the coefficient vector is updated by Δq
so that e is forced to be a zero-vector for the next iteration
iteration.

3. Verification by Simulation
The proposed method has been evaluated using MAT-

LAB simulation environment in an IBFD communication
scenario as shown in Fig. 3. In order to evaluate the estima-
tion performance, a target WHNL system has been obtained
with a sample set of the inner and outer linear system pa-
rameters (Tab. 1), and a Saleh type memoryless nonlinear
function [12] (Tab. 2). During the simulations, it has been
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Fig. 3. IBFD simulation scenario.

Channel Tap Level [dB] Delay (× 𝑇s)
1 (main) 0 0.05

𝑝[𝑛] 2 –11 2.17
3 –20 5.33
1 (main) 0 0.23

𝑞 [𝑛] 2 –7 1.87
3 –13 6.73

Tab. 1. Linear channel parameters.

AM-AM Characteristics AM-PM Characteristics

𝑓AM (𝑥 ) = 𝛼· |𝑥 |
1+𝛽 · |𝑥 |2 𝑓PM (𝑥 ) = 𝛼· |𝑥 |2

1+𝛽 · |𝑥 |2

(𝛼 = 1.20, 𝛽 = 0.05) (𝛼 = 0.2, 𝛽 = 10)

Tab. 2. Saleh model for memoryless nonlinearity (input power
normalized to | |x | |2 = 1).

assumed that analog SI cancellation has already been done
so that the SI signal power level is reduced down to the
practical analog-to-digital converter dynamic range. It has
also been assumed that WHNL system characteristics don’t
change in the time period of estimation and SoI receiving
processes. The base-band sampling frequency has been set
to 61.44 Msps and the delay values have been chosen to be
fractional in terms of the sampling period, 𝑇s � 16.27 ns, to
simulate the reflections in the analog domain. Please note
that delay values that are integer multiples of 𝑇s usually lead
to better performance yet do not reveal the performance in
real operation. OFDM signals with FFT size (𝑁) of 256
have been used for the channel estimation and SI cancella-
tion steps.

3.1 Calibration
In the first stage of the simulations, the system shown

in Fig. 3 has been calibrated over the SI signal without any
SoI component by setting switch-1 as as open. During this
process, the inner and outer linear systems are estimated over

the SI channel by applying the equations (12)–(23). Figure 4
shows the target and the estimated linear system parameters
obtained by this process. Using these estimation results and
the memoryless nonlinear function, WHNL system model
has been extracted. In the following stages SoI is injected
by setting switch-1 closed and the receiver performance is
compared to a traditional half-duplex communication sce-
nario where SoI is solely received either in a separate time or
frequency band without any SI signal component on it.

3.2 IBFD Communication Performance by SI
Power
In the second stage of the simulations, randomly gener-

ated OFDM-based transmit signals have continuously been
passed through the original system and the estimated model.
Similarly, randomly generated OFDM-based SoI component
existed on the receiver. SI cancellation has been done by
adaptively subtracting the model output from the received
signal. The performance of the proposed digital SI cancella-
tion (DSIC) method has been measured with the error-vector-
magnitude (EVM) metric of the SoI by the formula

EVMSoI =
1
𝑆max

√︄
1
𝑁sc

∑︁
𝑖∈𝐼

��𝑋SoI [𝑖] − �̂�SoI [𝑖]
��2 (27)

where 𝑋SoI are the message symbols, �̂�SoI are the estimated
symbols, 𝐼 is the set of nonzero subcarriers, 𝑁sc is the total
number of nonzero subcarriers, and 𝑆max is the maximum
amplitude on the constellation diagram of SoI depending on
the modulation order. In order to examine the DSIC per-
formance under various SI power levels, an example IBFD
scenario has been built. In this scenario, the average power
of SoI is kept at a constant level at −69 dBm and receiver
noise power is set to −74 dBm. Under these circumstances,
EVM of the SoI has been measured as −12.3 dB for the
half-duplex case where no SI signal existed. This value has
been set as the target for the proposed DSIC process. Fig-
ure 5 depicts DSIC performance for such a scenario under
two different residual SI signal power levels remained after
analog cancellation stages. In Fig. 5(a), residual SI signal
with 0 dBm power can only be reduced down to −66 dBm,
making the IBFD communication impractical with −2.4 dB
EVM value. On the other hand, a better analog cancellation
giving 20 dB decrease in the SI power (Fig. 5(b)) can achieve
the target EVM value with only 0.63 dB loss compared to
the half-duplex communication. As shown in the figures, the
proposed method can achieve up to 66 dB digital cancellation
performance and can reduce the residual SI signal down to
noise floor provided that effective analog cancellation steps
are applied. Figure 6 shows that the SI power dramatically
affects the DSIC performance and needs to be kept as low as
possible for an acceptable EVM loss compared to half-duplex
communication.



270 S. YESIL, A. O. YILMAZ, IDENTIFICATION OF THE LINEAR SYSTEMS OF THE WIENER HAMMERSTEIN . . .

-100 -50 0 50 100

256-point DFT Frequency index

-10

-5

0

5

P
o

w
e

r 
(d

B
-u

n
it
le

s
s
)

(n
o

rm
a

liz
e

d
 t

o
 r

m
s
=

1
)

-5 0 5 10

Time index

0

0.5

1

M
a

g
n

it
u

d
e

 (
u

n
it
le

s
s
)

(n
o

rm
a

liz
e

d
 t

o
 r

m
s
=

1
)

-5 0 5 10

Time index

0

0.5

1

M
a

g
n

it
u

d
e

 (
u

n
it
le

s
s
)

(n
o

rm
a

liz
e

d
 t

o
 r

m
s
=

1
)

Fig. 4. Linear channel characteristics and estimation results.
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Fig. 6. EVM loss compared to half-duplex receiver versus resid-
ual SI power after analog SIC.

3.3 IBFD Communication Performance by In-
ner Linear System Parameters and SoI
Power
The performance of the proposed method has also been

examined under varying inner linear system parameters of
the target WHNL system. Figure 7 gives the performance
results for different delay and gain values of the second tap of
a two-tap inner linear system. In Fig. 7(a), the delay is fixed
to 1.5×𝑇s and the gain is changed from −1 dB to −15 dB. In
Fig. 7(b), the gain is set to 7 dB less than the main tap and
the delay is changed from 0.1 × 𝑇s to 2.9 × 𝑇s. In both fig-
ures, the horizontal axis shows the increasing SoI power. It
has been observed that EVM performance decreases with the
increasing delay and power of the second tap, which result in
severe in-band frequency selective channel effects. Note also
that the performance decreases as the SoI power increases.
This is because the SoI signal introduces an uncorrelated in-
terference for the proposed estimation processes. The effect
of SoI and an iterative approach to cancel the SI under SoI
contamination is examined more comprehensively in [13].

3.4 IBFD Communication Performance Com-
parison by Hammerstein Model

The effect of the inner linear system has been exam-
ined in Fig. 8 by giving a comparison between the proposed
method (Fig. 8(b)) with the Hammerstein model (Fig. 8(a)),
where the inner linear system is ignored but the outer linear
system is estimated adaptively. The contours in the figures
represent the EVM metric values of the models for a 2-tap in-
ner linear system. The horizontal and vertical axes represent
the increasing delay and power of the 2nd tap with respect
to the main tap, respectively. The rectangular regions in
both figures represent the practical delay and power levels for
a real PA hardware setup. The EVM performance improve-
ment by estimating the inner linear system is highlighted in
this region. As seen in Fig. 8(a), Hammerstein model suffers
from the inner linear system even for very low delay and gain
values and EVM value deviates significantly in this region.

However, in Fig. 8(b), the proposed model behaves much
more robustly and gives acceptable EVM values comparable
with the half-duplex case even for the upper-right corner of
the rectangular region showing more drastic delay and gain
values.

3.5 Performance Comparison by Black Box
Models
The proposed method has been compared to SI cancella-

tion results obtained by the two well known black box system
models, namely generalized memory polynomial (GMP) and
neural networks (NN). GMP model [14] function and pa-
rameter estimation procedure is given in (28a) and (28b),
respectively.

ΨGMP (𝑥𝑛) =
𝐾∑︁
𝑘=0

𝐿∑︁
𝑙=−𝐿

𝑀∑︁
𝑚=−𝑀

𝛼𝑘,𝑙,𝑚𝑥𝑛−𝑙 |𝑥𝑛−𝑙−𝑚 |𝑘 , (28a)

𝛂 = (ΦHΦ)−1ΦH𝚿x. (28b)

Here, 𝚿x ∈ C𝑁×1 represents the output vector of
the NL system excited by the input vector x =

Δ

[𝑥0𝑥1 . . . 𝑥𝑁−1]T. 𝛂 ∈ C𝑃×1 is the parameter vector
with 𝑃 =

Δ (𝐾 + 1) (2𝐿 + 1) (2𝑀 + 1). 𝚽 ∈ C𝑁×𝑃 is the
range space matrix, columns of which form the basis vec-
tors obtained by computing 𝑥𝑛−𝑙 |𝑥𝑛−𝑙−𝑚 |𝑘 for each 𝑘 ∈
{0, 1, . . . , 𝐾}, 𝑙 ∈ {−𝐿, . . . , 𝐿}, and 𝑚 ∈ {−𝑀, . . . , 𝑀}.
The variables for the GMP model have been chosen as 𝐾 = 3,
𝐿 = 5, and 𝑀 = 4 during the simulations (396 coefficients).
As for the neural network model, Real Valued Time Delay
Neural Network (RVTDNN) structure has been used [15].
Delayed samples of the real and imaginary components of
the input sequence are fed in parallel to the input layer of
the network. Linear combinations of these parallel inputs are
then level-shifted by a bias parameter and exposed to a non-
linear activation function at each neuron of the hidden layer,
which form the second stage of the network. Finally, the out-
puts of these neurons are again linearly combined and biased
to give the real and imaginary components of the desired
signal as summarized in (29):

ΨNN (xIN) = WOL · 𝜓(WHL · xIN + bHL) + bOL (29)

where xIN =
Δ [ℜ(x) ℑ(x)]T for the input vector defined as

x =
Δ [𝑥𝑛+𝑀 . . . 𝑥𝑛 . . . 𝑥𝑛−𝑀 ]. NN has 𝑀 input delay elements

both in the positive and negative time axis, and 𝐻 neurons in
the hidden layer. WOL ∈ R2×𝐻 and WHL ∈ R𝐻×(4𝑀+2)

represent the weight matrices, whereas bOL ∈ R2×1 and
bHL ∈ R𝐻×1 represent the bias vectors for the output and hid-
den layers, respectively. Hyperbolic tangent sigmoid func-
tion, 𝜓(𝑥) = (1 − e−2𝑥)/(1 + e−2𝑥), has been used as the
nonlinear activation function inside the hidden layer neu-
rons. The coefficient estimation process used the Levenberg-
Marquardt back-propagation algorithm. The size of the NN
structure has been set by choosing 𝐻 = 18 and 𝑀 = 4 dur-
ing the simulations (380 coefficients). Figure 9 shows the
SI cancellation performance of these two black box models
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(a) DSIC performance compared to HD receiver for a fixed second-tap
delay of 1.5 × 𝑇s, where 𝑇s is the sampling period
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(b) DSIC performance compared to HD receiver for a fixed second-tap
gain ratio of −7 dB

Fig. 7. IBFD EVM loss with respect to inner linear system parameters under increasing SoI power levels.
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(a) EVM loss by Hammerstein model (memoryless nonlinearity followed by outer
memory)
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(b) EVM loss by Wiener-Hammerstein model (inner memory estimated by the
proposed method)

Fig. 8. Contour plots of the EVM loss compared to HD communication under the effect of gain and delay parameters of the inner system.
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Fig. 9. Comparison with black box and Hammerstein models under two different residual SI power levels after analog SIC.
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compared to the proposed algorithm under to SI analog can-
cellation levels. It can be observed that GMP and RVTDNN
models can only cancel the SI signal about 40 dB, whereas
the proposed method suppress the SI signal about 65 dB for
this scenario. Although GMP and NN models have inner and
outer memory registers to imitate the target WHNL system,
they suffer from the lack of memoryless nonlinear function.
GMP uses linear combination of polynomial basis functions
and neural network tries to fit the target system by nonlin-
ear activation functions operating in parallel. Although the
proposed method assumes to have the memoryless nonlinear
function, comparison with the Hammerstein model indicates
that superiority in cancellation performance is mainly due to
the estimation of the inner memory coefficients.

4. Conclusion
This paper presents a contribution for the identification

problem of the nonlinear PA devices affected by linear sys-
tems with memory. A novel method has been proposed for
estimating the linear components of the Wiener-Hammerstein
nonlinear system that is widely used for modeling such sys-
tems. In this method, the overall linear system has first been
derived and obtained by exploiting the Bussgang Decompo-
sition method. Then, a novel analytical approach by using
DFT technique has been applied to estimate the inner linear
system coefficients. Finally, the outer linear system has been
estimated in an adaptive manner to compensate with the am-
plitude and phase offsets introduced in the earlier stages of
the identification process.

The proposed model has been verified by simulations
by using OFDM based calibration and test signals under
stringent linear and nonlinear system parameters. The per-
formance limits of the proposed model has been examined
under increasing residual self interference power leves and
existence of the signal-of-interest. The importance of the
inner memory effects has been emphasized by comparing
the proposed technique with the Hammerstein model. SI
cancellation performance has also been compared to well
known GMP and NN black box models. Up to 65 dB of
digital SI cancellation ratio with the proposed method has
been recorded, whereas the performance of the black box
methods had saturated around 40 dB of cancellation ratio.
This study will be continued by including the memoryless
nonlinearity extraction stage and modeling a real PA device
on hardware.
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