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Abstract. The linear sampling method is a simple and
reliable linear inversion technique for determining the mor-
phological features of unknown objects under investigation.
Nevertheless, there are many challenges that this method
depends on the frequency of operation and it is unable to
produce satisfactory results for objects with complex shapes.
This paper proposes a hybrid model, which combines con-
ventional linear sampling method and deep learning for the
reconstruction of mixed boundary objects. In this approach,
the initial approximation of mixed boundary objects derived
from linear sampling method serves as the training data for
the U-Net based convolutional neural network. The net-
work then learns to correlate this approximation with the
corresponding ground truth profiles. Along with the recon-
struction of mixed boundary objects, they are also classified
as dielectric or conductor, and count of each object type
are measured. Furthermore, the low-frequency and high-
frequency characteristics of the linear sampling method are
analyzed, and its limitations are overcome by combining it
with a deep learning approach. The effectiveness of the pro-
posed model is validated using several examples of synthetic
and experimental data. The results demonstrate that the pro-
posed method outperforms the conventional Linear sampling
method in terms of accuracy.
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1. Introduction
Microwave imaging (MI) has great potential for the

detection and precise localization of objects in remote or
inaccessible locations. It is widely applied in various
domains, such as nondestructive testing, geophysical ex-
ploration, biomedical imaging and diagnosis, through-wall
imaging, remote sensing, security checks, and others [1], [2].

Among qualitative microwave imaging methods, Lin-
ear sampling method (LSM) [3] stands out as the simple,
reliable, and effective tool. Furthermore, LSM has demon-
strated successful applications in detecting coated objects,
buried objects, objects concealed behind walls, and even
identifying breast cancer cells [4–9]. In [10], LSM was em-
ployed for microwave breast cancer imaging (MBI) and led
to the development of a device known as "SAFE" (Scan and
Find Early) designed for the early detection of breast can-
cer. Linear sampling method was employed in all of these
works, where the targets were treated as either dielectric or
perfect electric conducting (PEC) objects. In [11], the ana-
lysis of LSM behavior in mixed boundary cases is presented,
taking into account parameters such as operating frequency
and permittivity. The study reported the following findings:
1) Regarding frequency, LSM exhibits dissimilar character-
istics compared to dielectrics and perfect electric conduc-
tors (PEC). Specifically, at low frequencies, linear sampling
method can only detect perfect electric conductor materials
and is unable to detect dielectrics. 2) At very high frequen-
cies, the quality of reconstruction significantly deteriorates.

Deep learning is emerging as a dominant tool for pro-
viding precise and reliable solutions in the field of microwave
imaging, yet maintaining computational efficiency [12–14].
A deep learning-based approach in conjugation with the
Fourier diffraction theorem is proposed in [15] to solve the
inverse scattering problem encountered in quantitative mi-
crowave imaging (MWI). In [16], the orthogonality sampling
method (OSM) is used along with deep learning architecture
called the U-Net to reconstruct the permittivites of the di-
electric objects. In [17], a deep learning-assisted linear sam-
pling method (DLSM) is proposed for the reconstruction of
multi-layered dielectric objects with cylindrical and rectan-
gular cross-sections. So far, this is the only work reported on
LSM with deep learning. In [18], a unified learning-based
approach is introduced to solve inverse scattering problems
(ISPs) with mixed boundary conditions. The scattering be-
havior of hybrid dielectric and perfect electric conductors
(PEC) scatterers is modeled by the T-matrix method. A rough
image of the zero-order T-matrix coefficients for unknown
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scatterers is firstly reconstructed by the back-propagation
method, which is then refined by an attention-assisted pix2pix
generative adversarial network. In [19] A physics-inspired
neural network named APU-Net is designed to solve Inverse
Scattering Problems with mixed boundary conditions. The
input to the APU-Net is derived from the back-propagation
method. A neural network method is used to realize the
alternate iterative update of parameters, thus separating the
reconstruction of the PEC part from the DIE part.

The novelty of the paper lies in the proposed hybrid
model, which combines conventional LSM and deep learn-
ing to reconstruct mixed boundary objects. deep learning
is also employed to elevate the capabilities of linear sam-
pling method reconstruction by addressing its limitations,
such as its inability to reconstruct dielectrics at low frequen-
cies (200 MHz) and significant deterioration in reconstruc-
tion quality at very high frequencies (8 GHz) are also ad-
dressed using deep learning. Further investigation involves
classifying objects as either perfect electric conductors or
dielectric and determining the number of PEC and dielec-
tric objects within the area of interest. The proposed deep
learning-assisted LSM for the reconstruction of mixed bound-
ary objects is validated using various examples of synthetic
and experimental data, namely ’FoamMeExt’, provided by
the Fresnel Institute [20]. The results demonstrate that the
proposed method outperforms state-of-the-art reconstruction
techniques in reconstructing mixed boundary objects.

This paper is organized as follows. The problem for-
mulation is covered in Sec. 2, LSM algorithm is briefed in
Sec. 2.1 and deep learning based linear sampling method for
inverse problem of mixed boundary objects is discussed in
Sec. 2.2. Comparison with the related method is discussed
in Sec. 2.3. Thereafter, numerical results for various testing
examples are reported in Sec. 3.1 for 3 GHz. The comparison
of results is done in Sec. 3.2. The low frequency and high
frequency characteristics of LSM is discussed in Sec. 3.3
and 3.4 respectively. As a final point in the result section,
the classification of PEC / dielectric is reported in Sec. 3.5.
Finally, Section 4 contains the concluding remarks.

2. Problem Formulation
The typical two-dimensional scalar electromagnetic

scattering issue [21] is taken into consideration for numerical
simplicity. As depicted in Fig. 1, the dielectric and perfect
electric conductors objects have been placed in a domain Ω.
The objects dimensions along the z-axis are taken to be in-
finite. The Π and 𝜃 represents the domains of PEC and
dielectric objects respectively. The permittivity and the per-
meability of the dielectric objects are 𝜖 and 𝜇 respectively.
These objects are surrounded by a background medium of
permittivity 𝜖b and permeability 𝜇b. When the objects are
exposed to a TM-polarized wave emitted by a transmitting
antenna (Tx), the integral forms of the equations for the total
field and scattered field can be expressed as [22]:
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The Cartesian coordinates of the object domain and
measurement domain are given by 𝑟

′
= (𝑥′

, 𝑦
′ ) = 𝑡

′ and
𝑟 = (𝑥, 𝑦), respectively. Γ is the measurement domain and
𝜔 is the angular frequency. 𝑢inc, 𝑢scat, and 𝑢 are the incident
field, scattered field and total field, respectively. 𝐼c represents
the impressed conduction current density associated with the
boundary conditions of PEC. 𝐼p represents the polarization
current density and is related to the properties of dielectric
objects by

𝐼p = j𝜔(𝜖 − 𝜖b)𝑢 = j𝜔𝜖b𝜒𝑢 (3)

where 𝜒 = (𝜖r − 1) is the contrast function and 𝜖r is the rela-
tive permittivity given by 𝜖r = 𝜖/𝜖b . Here, all electric fields
and induced current densities have only one component, i.e.,
the component along the longitudinal direction of the objects
(𝑧) and may be considered as scalar quantities. 𝐺 is the
scalar Green’s function for the homogeneous background,
defined as:
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where 𝐻
(2)
0 (.) is the Hankel function of second kind and

zeroth order and 𝑘b is the wave number.

For a PEC, induced currents exist solely along the
boundary (𝜕Π), while in the case of dielectrics, these cur-
rents are distributed throughout the entire dielectric region
(Θ). If 𝑟 ∈ 𝜕Π, then 𝑢 becomes zero, whereas 𝑢 is nonzero
if 𝑟 ∈ Θ and it is related to 𝐼p by (3). Hence, equations (1)
and (2) need to be solved to compute 𝑢scat at different receiver
(Rx) positions within Γ. This process can be accomplished
using the method of moments (MoM) [23], which involves
the initial discretization of the integral equations, followed
by the solution of a system of linear equations to determine
the unknown values (𝐼c, 𝐼p, 𝑢scat). Further mathematical in-
tricacies can be referenced in [22]. In the proposed method,
24 transceivers are used and located uniformly on a circu-
lar measurement domain of 0.6 m radius. Furthermore, the
domain of investigation (DOI) measuring 20 cm × 20 cm is
discretized to 40 × 40.

2.1 Linear Sampling Method
The LSM offers an estimation of the target’s support

by addressing an auxiliary linear inverse problem, instead of
the nonlinear problem presented in (1) and (2). In the con-
text of the aforementioned scenario, this auxiliary problem
is represented as [3]:
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Fig. 1. Two-dimensional measurement configuration.
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where 𝐺 is the point source, 𝑟s ∈ Ω denotes a point of an ar-
bitrary grid that samples the region under test Ω, 𝜉 is the
unknown to be determined, the objects are illuminated by
an incident field from a direction 𝜃i, the scattered fields are
measured at a far-field distance 𝑟 and F : 𝐿2 (Γ) → 𝐿2 (Γ)
is the far-field operator [21].

In order to estimate the support of the scatterers, the
auxiliary linear equation (5) needs to be solved for each
value of 𝑟s. According to the linear sampling method, the

solution, in the form of energy
𝜉 (𝑟s)

2
, remains bounded

if 𝑟s corresponds to the scatterer support and becomes un-
bounded otherwise [3]. In this context, ∥·∥ represents the
standard 𝐿2-norm. Consequently, equation (5) is considered
ill-posed [24] and requires regularization to ensure a sta-
ble solution. Further mathematical intricacies can be ref-
erenced in [3], [25]. The final form of the regularized so-
lution, employing the singular value decomposition (SVD)
technique [1], can be expressed as follows:𝜉 (𝑟s)

2
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where 𝜆𝑛 and 𝜇𝑛 are singular values and left singular vector
of F , respectively. 𝜉 is the vector of unknowns, vector 𝑓

is the farfield pattern radiated by the point source located at
𝑟s, 𝑁 is the total number of nonzero singular values, and 𝛼

is a regularization parameter. Therefore, the support of the

scatterer is found by plotting
𝜉 (𝑟s)

2
over the investigating

domain. In the standard implementation of linear sampling
method, 𝛼 is estimated for each 𝑟s using generalized dis-
crepancy principle [3]. To enhance computational efficiency,
previous studies in [6,9,26,27] have demonstrated that a sin-
gle regularization parameter can be applied to all sampling

points. A smaller rho (optimized regularization parameter)
value typically results in a smoother reconstruction, as it im-
poses stronger regularization, effectively suppressing noise
but potentially sacrificing fine details of the object. On the
other hand, a larger rho value allows for a more faithful re-
construction of intricate features but may lead to increased
sensitivity to noise in the data. In this research, this param-
eter is computed based on physics-based criteria, as detailed
in [6], eliminating the need for information about the noise
level present in the measured data. Regularization parameter
is set as 𝛼 = 0.0001𝜆1, where 𝜆1 is the leading singular value.

2.2 Deep Learning Assisted Linear Sampling
Method for Inverse Problem of Mixed
Boundary Objects

Deep learning has emerged as one of the most effec-
tive techniques for solving regression and classification chal-
lenges in recent years. These results have encouraged re-
searchers to use deep learning to address a range of chal-
lenges, including inverse problems. Deep learning tech-
niques, compared to traditional iterative methods based on
optimization, are significantly faster and yield higher-quality
images [28]. Motivated by the results of our previous research
on applying linear sampling method and deep learning to re-
construct PEC objects [29], a similar U-Net architecture [30]
as shown in Fig. 2 is used to improve LSM’s reconstruction
performance, especially for objects with mixed boundaries
and complex shapes. Convolutional layers and max-pooling
layers make up the encoder portion of the U-Net. These lay-
ers gradually decrease the spatial dimensions while increas-
ing the number of feature maps. The decoder part consists of
convolutional layers followed by upsampling layers, which
upsample the feature maps to the original input resolution
while decreasing the number of channels. Better reconstruc-
tion is aided by the merging of low-level and high-level fea-
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Fig. 2. Architecture details of U-Net for the proposed model.

tures made possible by the skip connections between relevant
encoder and decoder levels. More details about the U-Net
architecture used in this work can be found in [17], [29].

Let 𝐼 𝑖g represent the ground truth of the 𝑖th mixed bound-
ary object. The 𝑖th reconstructed result from the U-Net is rep-
resented as 𝐼 𝑖p. U-Net is trained to reconstruct the groundtruth
𝐼 𝑖g, given the initial guess obtained from the reconstruction
by linear sampling method. The loss function 𝐿 is defined as
the mean squared error between the predicted result 𝐼 𝑖p and
the ground truth 𝐼 𝑖g:

𝐿 =
1
𝑁

𝑖=𝑁∑︁
𝑖=1

𝐼 𝑖p − 𝐼 𝑖g
2 (7)

where 𝑁 is the number of training examples.

The loss function 𝐿 is minimized with respect to the
parameters of the U-Net model. Weights and biases of the
U-Net are updated using backpropogation and an Adam op-
timization algorithm. By training the U-Net using the LSM
reconstruction as input and groundtruth object profiles as
output, the network learns to improve the LSM reconstruc-
tions and produce more accurate results. This integrating
combines the strengths of both LSM and deep learning tech-
niques for better reconstruction of mixed boundary objects.

The U-Net is trained using 4550 mixed boundary ob-
jects with various shapes, such as circular cylinders, rect-
angles, L-shape, and U-shape. The scattered field of these
objects is computed by using 24 transceivers. The recon-
struction obtained by linear sampling method is used as the
training input, and the original profile serves as the label to
train the U-Net. The DOI is discretized into 40 × 40 pixels.
The detection domain is presumed to have a background of
free space, with the contrast function set to zero.

The network is trained with the mean square error
(MSE) as a loss function, and the parameters are tuned us-
ing the adaptive moment estimation (Adam) optimizer with
a learning rate of 0.0001. Convolutional neural network
(CNN) is trained for 60 epochs with 130 iterations per epoch

and a batch size of 35. In addition, 0.5 dropout regularization
is used to prevent over-fitting. Elapsed time for training is
169 minutes 2 seconds in a personal computer with CPU:
12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz and 16 GB
RAM. The U-Net learns the relationship between input and
output by updating network’s weight matrix and bias. The
trained U-Net is tested for various unknown mixed boundary
objects. As the background of DOI is assumed to be free
space, negative values in the reconstructed results are set to
zero during post-processing. The next section discusses the
various test results.

2.3 Comparison with Related Method
In [18], a unified learning-based approach is intro-

duced to solve inverse scattering problems (ISPs) with mixed
boundary conditions. The proposed model differs from the
one proposed in [18] in several ways. Firstly, the proposed
model consists of a U-Net CNN, whereas [18] used a genera-
tive adversarial network (GAN). GAN consists of two neural
networks contesting with each other in a game. Given a train-
ing set, this technique learns to generate new data with the
same statistics as the training set. However, as GANs are
composed of two networks, each with its loss function, they
are inherently unstable. Secondly, the input to the U-Net is
derived from the linear sampling method, while [18] used
the roughly reconstructed result back-propagation method.
Thus, the proposed model differs from [18]. Thirdly, the
proposed model is trained using basic circular and rectangu-
lar cylinders, whereas in [18], MNIST digits are used along
with random circles incorporated into each digit for train-
ing. Therefore, our model has learned the relationship better.
Fourthly, in [18], the relative errors of PEC and dielectric
scatterers are separately defined by dividing the reference
profile into two parts. However, in the proposed model, the
reconstruction error is quantified differently. Here, it is char-
acterized as the ratio between the number of misclassified
pixels and the total number of pixels, providing a distinct
approach to measuring error.
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3. Results and Discussion
The imaging setup consists of a square investigation

domain of side 20 cm × 20 cm. Mixed objects are recon-
structed using the noisy scattered field. MATLAB’s Deep
Learning toolbox is used to build the U-Net architecture.
The proposed scheme is tested for various test images. Here
24 transceivers are used, which are located uniformly on a cir-
cular measurement domain of 0.6 m radius. The operating
frequency is 3 GHz. The scattered field of synthetic data have
been corrupted with additive Gaussian noise at the level of
a signal-to-noise ratio (SNR) of 30 dB.

To quantify the reconstruction error, the error is defined
as the ratio of the number of misclassified pixels to the total
number of pixels [31].

Computation of error is described as follows: Let
𝐼g (𝑥, 𝑦) and 𝐼r (𝑥, 𝑦) be the ground truth image and recon-
structed image, respectively. Based on the threshold𝑇e, these
images are mapped to 𝐼gmap and 𝐼rmap binary images [31] such
that:

𝐼gmap (𝑥, 𝑦) =
{

1 if 𝐼g (𝑥, 𝑦) > 𝑇e,

0 if 𝐼g (𝑥, 𝑦) ≤ 𝑇e,
(8)

𝐼rmap (𝑥, 𝑦) =
{

1 if 𝐼r (𝑥, 𝑦) > 𝑇e,

0 if 𝐼r (𝑥, 𝑦) ≤ 𝑇e.
(9)

If the pixel value is greater than the threshold value 𝑇e,
then that pixel belongs to a scatterer. A misclassified pixel is
either outside the scatterer, satisfying condition (9), or inside
the scatterer, not satisfying the condition (9). The threshold
𝑇e is defined as:

𝑇e = min(𝐼rmap (𝑥, 𝑦)) + 𝑆e (max(𝐼rmap (𝑥, 𝑦)
− min(𝐼rmap (𝑥, 𝑦)). (10)

The scaling parameter 𝑆e is set to 0.5 as defined in [32].
Now, the error is defined as [17]:

Error =
∑𝑁T

𝑛=1 (𝐼rmap − 𝐼gmap)
𝑁T

(11)

where 𝑁T is the total number of pixels.

The proposed scheme is tested for the various mixed
objects and the reconstruction results for some representa-
tive examples are shown in Figs. 3–7. The error for these
examples is presented in Tab. 1. The results reveal that the
proposed method outperforms the LSM algorithm in recon-
structing high-quality images.

3.1 The Reconstruction Results at 3 GHz
Example 1: In this example, a PEC cylinder of radius

2 cm centered at origin and two dielectric strips of 𝜖r = 1.5
are considered. Each dielectric strip has length (horizontally)
and breadth (vertically) of 14 cm and 2 cm, respectively, and
is separated from the PEC object’s center by 6 cm, as shown in
Fig. 3(a). The reconstruction by linear sampling method and
proposed method is shown in Fig. 3(b) and 3(c) respectively.
The reconstruction error for LSM is 0.8150, whereas for the
proposed method, it is significantly reduced to 0.0519. The
results demonstrate that the CNN outperforms LSM recon-
struction in terms of the shape, location, and size of the ob-
jects. linear sampling method fails to accurately reconstruct
the edges of the objects, and this issue worsens, especially at
the edges facing PEC objects.

Example 2: In this study, a PEC cylinder of radius
2 cm centred at (6 cm, 6 cm) along with an L-shape dielec-
tric object is taken, as shown in Fig. 4(a). Each arm of the
L-shape has length and breadth of 14 cm and 3 cm, respec-
tively. The reconstruction by linear sampling method and
proposed method is shown in Fig. 4(b) and 4(c) respectively.
The reconstruction error for LSM and proposed method is
0.7731 and 0.0638 respectively. It can be observed from the
results that the LSM fails to accurately detect the location
and size of dielectric L-shape objects, whereas CNN recon-
structs both dielectric and PEC objects with accurate shape,
size, and location. Although CNN reconstruction does not
precisely match the original profile, its reconstruction quality
is much better than that of LSM as shown in error Tab. 1.

Example 3: In this study, a dielectric cylinder of ra-
dius 3 cm centered at (6 cm, –6 cm) along with an U-shape
PEC object is taken, as shown in Fig. 5(a). The U-shape
object has width and height of 13.5 cm and 5 cm, respec-
tively. The reconstruction by linear sampling method and
proposed method is shown in Fig. 5(b) and 5(c) respectively.
The reconstruction error for LSM is 0.7775, and for the pro-
posed method, it is 0.0181. Observations from the results are
similar to Example 1.

Error for LSM reconstruction Error for deep learning assisted LSM reconstruction
Example 1: 2 horizontal dielectric - 1 circular PEC 0.8150 0.0519
Example 2: L shape dielectric - 1 circular PEC 0.7731 0.0638
Example 3: 1 circular dielectric - U shape PEC 0.7775 0.0181
Example 4: 8 circular dielectric - 1 circular PEC 0.7156 0.0106
Example 5: Fresnel experimental data 0.4994 0.0175

Tab. 1. Error for various LSM reconstruction and deep learning assisted LSM reconstruction.
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(a) (b) (c)

Fig. 3. Reconstruction result for Example 1 at 3 GHz: (a) Original profile, (b) LSM reconstruction, (c) CNN reconstruction.

(a) (b) (c)

Fig. 4. Reconstruction result for Example 2 at 3 GHz: (a) Original profile, (b) LSM reconstruction, (c) CNN reconstruction.

(a) (b) (c)

Fig. 5. Reconstruction result for Example 3 at 3 GHz: (a) Original profile, (b) LSM reconstruction, (c) CNN reconstruction.

(a) (b) (c)

Fig. 6. Reconstruction result for Example 4 at 3 GHz: (a) Original profile, (b) LSM reconstruction, (c) CNN reconstruction.
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(a) (b) (c)

Fig. 7. Reconstruction result for Example 5 at 3 GHz: (a) Original profile, (b) LSM reconstruction, (c) CNN reconstruction.

Example 4: In this example, eight dielectric cylin-
ders and a PEC cylinder of radius 2 cm each are considered.
The cylinders are positioned as shown in Fig. 6(a) The top-
left dielectric is centered at (–7 cm, 7 cm), the top-middle
dielectric is centered at (0 cm, 7 cm), the top-right dielec-
tric is centered at (7 cm, 7 cm), the middle-left dielectric
is centered at (–7 cm, 0 cm), the middle-right dielectric is
centered at (7 cm, 0 cm), bottom-left dielectric is centered
at (–7 cm, –7 cm), the bottom-middle dielectric is centered
at (0 cm, –7 cm), the bottom-right dielectric is centered at
(7 cm, –7 cm), and the PEC is centered at origin. The recon-
struction by LSM and proposed method is shown in Fig. 6(b)
and 6(b) respectively. The reconstruction error for LSM is
0.7156, whereas for the proposed method, it is significantly
reduced to 0.0106. The results illustrate that, with a greater
number of objects, non linearity increases due to multiple
scattering effects, and reconstruction by LSM deteriorates,
whereas convolutional neural network reconstruction does
not depend on the number of objects, and its reconstruction
quality is very good.

Example 5: The proposed method is further validated
for experimental data, namely ’FoamMetExt’ provided by
the Fresnel Institute [20]. It comprises a combination of
PEC cylinder with a diameter 2.85 cm and a foam cylin-
der with a diameter of 8 cm as shown in Fig. 7(a). The
relative permittivity of the foam is 𝜖r = 1.45. The exper-
imental test configuration involves a total of 8 transmitters
and 241 receivers. The transmitting and receiving antennas
were positioned at a distance of 1.67 meters from the centre
of the imaging domain. The reconstruction by linear sam-
pling method and proposed method is shown in Fig. 7(b)
and 7(c) respectively. The reconstruction error for LSM and
proposed method is 0.7731 and 0.0638 respectively. Similar
to synthetic examples, the reconstruction of CNN is improved
compared to LSM.

Deep learning models [33], such as U-Net, excel in
learning hierarchical representations of data through multi-
ple layers of abstraction, enabling them to detect sharp edges

in objects effectively. In contrast, LSM relies on explicit
mathematical representations to model the scattering phe-
nomenon, which may not encompass all complexities, thus
limiting its performance. Additionally, deep learning models
inherently operate in a non-linear fashion, allowing them to
capture complex relationships between input and output data
more effectively. This capability makes them well-suited for
segmenting and reconstructing objects with intricate shapes.
Conversely, LSM typically relies on linear approximations or
assumptions about the scattering process, potentially result-
ing in inaccuracies, particularly in scenarios where non-linear
effects are significant.

3.2 Comparison of Results
Quantitatively the proposed method is compared with

recent study [18]. While acknowledging potential disparities
in the datasets employed for training and testing between our
method and theirs, we identified a commonality in the ex-
perimental data, particularly the Fresnel’s experimental data
’FoamMetEx.’ Through our analysis, we determined that the
error associated with our proposed method for the considered
experimental data is 0.0175. By comparison, in the afore-
mentioned study [18], the reported errors for PEC and dielec-
tric materials are 0.1718 and 0.1005, respectively, at 3 GHz.

3.3 Low Frequency Characteristics of Linear
Sampling Method

The reconstruction quality of the LSM is dependent
on the frequency of operation. In this section, analysis is
conducted at a low frequency of 200 MHz for various ex-
amples, as illustrated in Fig. 8. In the first example, a PEC
cylinder of radius 2.5 cm centered at origin and two dielec-
tric strips are considered. Each dielectric strip has length
(horizontally) and breadth (vertically) of 2 cm and 12 cm,
respectively, and is separated from the PEC object’s center
by 6.0 cm, as shown in Fig. 8. The second and third exam-
ples, as shown in Fig. 8, are the same as Examples 3 and 4
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8. Reconstruction results at 200 MHz. Original profiles in first column. The second column is LSM reconstruction and CNN reconstruction
is in third column.

at 3 GHz, respectively. The reconstructions obtained using
LSM and the proposed method is shown in the second and
third columns of Fig. 8. The limitation of LSM can be ob-
served from the result, as it fails to detect dielectric at lower
frequencies. However, the proposed method reconstructs
both dielectric and PEC objects.

3.4 High Frequency Characteristics of Linear
Sampling Method

In this section, high frequency characteristic of linear
sampling method is analyzed. For this purpose, three exam-
ples are considered as shown in Fig. 9. The first example
comprises of a PEC cylinder with radius 2 cm centered at
origin and two dielectric strips. Each dielectric strip has
length (horizontally) and breadth (vertically) of 2 cm and
12 cm, respectively, and is separated from the PEC object’s

center by 6.5 cm, as shown in Fig. 9. The second and third
examples, as shown in Fig. 9, are the same as Examples 3
and 4 at 3 GHz, respectively. The reconstructions obtained
using LSM and the proposed method is shown in the second
and third columns of Fig. 9. It can be observed from the re-
sults that, at higher frequencies, the quality of reconstruction
is more deteriorated by LSM, whereas convolutional neural
network is able to reconstruct even at higher frequencies.

3.5 Classification of Objects
As discussed in Sec. 3.2, the linear sampling method

(LSM) can detect only perfectly electric conducting (PEC)
objects at low frequencies, such as 200 MHz. However, at
higher frequencies, such as 3 GHz, LSM can detect both
dielectric and PEC objects, as noted in Sec. 3.1. These
characteristics of conventional LSM are utilized in object
classification, as illustrated in Fig. 10.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Reconstruction results at 8 GHz. Original profiles in first column. The second column is LSM reconstruction and CNN reconstruction is
in third column.

Object detection is performed using the "regionprops"
function in MATLAB, based on a threshold value. This
threshold value is calculated as 60% of the mean value of
the reconstruction result. Objects with an area of fewer than
15 pixels are discarded. Labeling is accomplished using the
"rectangle" function in MATLAB. The classification results
are presented for three examples in Figs. 11–13.

Example 1: In this example, three dielectric cylinders
and a PEC cylinder of radius 3 cm each are considered. The
cylinders are positioned as shown in Fig. 11(a). The top-left
dielectric is centered at (–5 cm, 5 cm), the top-right dielectric
is centered at (5 cm, 5 cm), the bottom-right dielectric is cen-
tered at (5 cm, –5 cm), and the bottom-left PEC is centered
at (–5 cm, –5 cm). The linear sampling method reconstruc-
tion at 200 MHz with labeling is shown in Fig. 11(b). As
discussed in Sec. 3.2, at this frequency, LSM can detect only
PEC and labeled in red color. For the same profile, the
LSM reconstruction at 3 GHz is fed to trained convolutional

neural network (CNN) and the output of CNN with labeling
is shown in Fig. 11(c). The CNN output detects four objects.
The object closest to the LSM reconstruction at 200 MHz is
PEC, while the remaining objects are dielectric. The count
of the objects is shown in Fig. 11(d).

Example 2: The geometry of Example 2 (3 GHz re-
sults) as depicted in Fig. 12(a) is considered. The reconstruc-
tions obtained using LSM at 200 MHz with labeling and the
proposed method with classification is shown in Fig. 12(b)
and 12(b), respectively. The count of the objects is shown in
Fig. 12(d).

Example 3: The geometry of Example 3 (3 GHz re-
sults) as depicted in Fig. 13(a) is considered. The reconstruc-
tions obtained using LSM at 200 MHz with labeling and the
proposed method with classification are shown in Fig. 13(b)
and 13(c), respectively. The count of the objects is shown in
Fig. 13(d).
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Fig. 10. Process used to classify the mixed boundary objects.

(a) (b)

(c) (d)

Fig. 11. Classification result for Example 1: (a) Original profile, (b) LSM reconstruction at 200 MHz and labeling, (c) CNN reconstruction at
3 GHz and labeling (red color for PEC and yellow color for dielectric), (d) screen shot of the MATLAB console to display the number
of objects.
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(a) (b)

(c) (d)

Fig. 12. Classification result for Example 2: (a) Original profile, (b) LSM reconstruction at 200 MHz and labeling, (c) CNN reconstruction at
3 GHz and labeling (red color for PEC and yellow color for dielectric), (d) screen shot of the MATLAB console to display the number
of objects.

(a) (b)

(c) (d)

Fig. 13. Classification result for Example 3: (a) Original profile, (b) LSM reconstruction at 200 MHz and labeling, (c) CNN reconstruction at
3 GHz and labeling (red color for PEC and yellow color for dielectric), (d) screen shot of the MATLAB console to display the number
of objects.
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4. Conclusion
This paper presents a novel approach for reconstruct-

ing mixed boundary objects using a deep learning-assisted
linear sampling method. The employed architecture is the
U-Net, where the LSM provides an initial estimate that is
input to the convolutional neural network for further refine-
ment. In order to train the network, various mixed objects
in the shapes of circular cylinders, rectangles, L-shapes, and
U-shapes are generated. After that, a variety of examples,
including synthetic and experimental datasets, are used to
test the trained model. The LSM limitations like its inability
to detect dielectric objects at low frequency and quality of
reconstruction deteriorates significantly at very high frequen-
cies, is addressed by deep learning assisted linear sampling
method. Finally, classification of objects is demonstrated
through various examples. Future works in this direction is
to explore the 2-D-TE and 3-D cases of illumination.
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