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Abstract. Accurate identification of jamming patterns is
a crucial decision-making basis for anti-jamming in wireless
communication systems. Current works still face challenges
in fully considering the substantial influence of environmen-
tal noise on identification performance. To address the issue,
this paper proposes an automatic threshold denoising-based
deep learning model. The proposed method aims to mitigate
the impact of noise on recognition performance within the
feature space. Considering the challenges posed by non-
linear transformations in deep denoising, a shallow denois-
ing approach based on deep learning is proposed. By con-
structing a dataset of 12 jamming patterns under noisy con-
ditions, the proposed method exhibits excellent recognition
performance and maintains a low computational cost.
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1. Introduction
Malicious jamming seriously impacts the security and

reliability of wireless communications. The accurate identi-
fication of jamming facilitates the implementation of suitable
countermeasures to mitigate or suppress its impact, thereby
minimizing the negative impact on communication quality.
Traditional research in anti-jamming primarily focuses on
signal processing, yet it encounters intricate challenges in
real-world scenarios. Fortunately, the emergence of machine
learning (ML) provides a promising solution for intelligent
anti-jamming measures [1], [2]. Similarly, ML-based jam-
ming identification has become an indispensable component
of intelligent anti-jamming systems.

Existing ML-based research mainly focused on enhanc-
ing jamming pattern recognition performance under noise-
free conditions [3–7]. Among them, methods based on spec-
tral features have shown excellent performance. A sequence-
based deep reinforcement learning (RL) algorithm without
prior information is proposed, utilizing spectral features as
input and employing convolutional neural networks (CNNs)
to classify jamming patterns [6]. In dealing with open-set
pattern recognition tasks where some jamming patterns lack
training samples, a zero-shot learning-based jamming pat-
tern recognition approach that utilizes spectrogram waterfall
to characterize jamming features has demonstrated effective
performance [7]. Most of the existing researches, conducted
under high signal-to-noise ratio (SNR) conditions, do not
fully consider the impact of noise on jamming pattern recog-
nition. However, in practical applications, the influence of
noise cannot be ignored. Jamming recognition under noisy
conditions is still left to be explored. Consequently, the
need for effective jamming recognition under noisy condi-
tions has become increasingly evident, which is prompting
further research.

In response to these challenges, there has been a grow-
ing research interest in ML-based automatic denoising al-
gorithms recently. These approaches differ from conven-
tional methods by incorporating threshold denoising tech-
niques within deep neural networks (DNNs), enabling more
efficient processing of input features by utilizing trainable
thresholds. Introducing a denoising module into radio fre-
quency (RF) signal recognition network could achieve auto-
matic threshold denoising [8]. Inserting the soft threshold as
a non-linear transformation layer into the deep architecture
would enhance the feature extraction capability for noisy
signals [9]. Adding denoising blocks in the middle layers
of convolutional networks, followed by end-to-end adversar-
ial training could eliminate noise features in the data [10].
In [11] preprocess the fringe pattern and the iterate the IR-
CNN denoiser multiple times in its painting stage to identify
the fringe pattern painting. Authors of [12] use resblocks for
feature encoder firstly, then use U-Net for decomposition, and
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finally use denoising module. A deep neural network based
on denoising which is composed of multiple denoisers mod-
ules interleaved with back-projection modules that ensure the
observation consistencies [13]. The above research mainly
embeds denoising algorithms into each layer or deep layer
of neural networks. However, this kind of approach brings
significant computational overhead, which hinders the utility
of the methods. To address this issue, this paper places the
denoising module in the shallow layers of the network, allow-
ing it to effectively handle noise in the data while maintaining
a relatively low computational cost.

This paper proposes a novel deep learning-based de-
noising method for jamming pattern recognition. Meanwhile,
explore the impact of embedding the denoising module at
different depths of the neural network on recognition perfor-
mance and propose a shallow-layer denoising algorithm. The
main contributions of this paper are as follows:

• A deep learning-based shallow-layer denoising method
is proposed. The proposed method effectively mitigates
noise propagation, preventing its further impact on fea-
ture extraction and classification in the deep network
layers.

• A dataset that involves twelve typical jamming patterns
under various jamming-to-noise ratios (JNRs) is con-
structed. This dataset can be used to evaluate the per-
formance of the proposed method in jamming pattern
recognition under noisy conditions.

• The proposed method achieves better performance and
lower computational cost. Extensive experimental
validation confirms the effectiveness of the proposed
method, demonstrating its capability for jamming pat-
tern recognition tasks under noisy conditions.

2. System Model
The constructed system model in this paper is illustrated

in Fig. 1. The network architecture encompasses convolu-
tional blocks, threshold denoising modules, a flatten layer
and fully connected layers. The convolutional block com-
prises convolutional layers, batch normalization layers and
max pooling layers. Convolutional layers perform convolu-
tion operations by element-wise multiplication and summa-
tion between input feature maps and learned convolutional
kernels, and this process extracts diverse-scale local features
from input data. The max pooling layers select the maximum
value within pooling regions as the output, reducing the size
of the output feature maps. The flatten layers transform the
feature maps into one-dimensional vectors. The proposed
threshold denoising module comprises one-dimensional con-
volutional layers, fully connected layers and a soft threshold
calculation module that can handle the impact on feature
activations within the feature space.

Fig. 1. System model.

As the number of parameters and layers in deep net-
works increases, they can learn more complex features. How-
ever, this heightened complexity also makes them more sus-
ceptible to the influence of noise in the data. Furthermore,
deep networks introduce higher computational complexity
and parameter counts than shallow networks, demanding
more computational resources and time during training.
Therefore, this paper introduces a shallow denoising ap-
proach, as illustrated in Fig. 1. A threshold denoising module
is introduced after the first convolutional block, the primary
objective is to minimize the model’s parameter counts and
computational complexity.

The reasonable selection of thresholds is a pivotal factor
in achieving effective feature denoising. Many deep learning-
based denoising models resort to global average pooling for
threshold computation across each feature channel. However,
distinct positions within feature maps encompass diverse in-
formation, and treating them uniformly with a single thresh-
old yields suboptimal outcomes [8]. Therefore, this paper
considers setting different thresholds for different positions
on the feature map. When extracting a threshold for a spe-
cific position within the feature map, calculate the mean value
of that position along the feature channel. Due to different
feature channels having different importance to feature ex-
traction, weighted averages are introduced to assign weights
to different feature channels.

Taking the weighted average along the feature channels
at specfic positions on the feature map can be expressed as
follows:

Z𝑎 = 𝛽1𝑔(x𝑎1 ) + · · · + 𝛽 𝑗𝑔(x𝑎𝑗 ) + · · · + 𝛽𝑛𝑔(x𝑎𝑛) (1)

where 𝑛 represents the number of feature channels, Z𝑎 de-
notes the weighted average value at different feature channels
position 𝑎, 𝛽 𝑗 is the weight of channel 𝑗 , 𝑔(x𝑎

𝑗
) is used to com-

pute the mapping of input data at position 𝑎 on the j-th feature
channel, and x𝑎

𝑗
represents the feature value at the position 𝑎

of the j-th feature channel, where 𝛽1 + · · · + 𝛽 𝑗 + · · · + 𝛽𝑛 = 1.
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To compute the weights as described above, this pa-
per employs the embedded Gaussian function to compute the
weights, as described in [8]:

𝛽 𝑗 =
∑︁𝑛

𝑗=1
softmax(Wkx 𝑗 ). (2)

Substituting (2) into (1) yields:

Z𝑎 =
∑︁𝑛

𝑗=1
𝜌(Wkx 𝑗 )𝑔

(
x𝑎𝑗

)
(3)

where 𝜌 (·) represents the function of softmax, 𝑔

(
x𝑎
𝑗

)
=

Wvx𝑎
𝑗
, Wv is used to capture the relationships between dif-

ferent positions of the feature map and can be implemented
using a 1 × 1 convolution.

During the training process, parameters are optimized
by minimizing the loss function, and the threshold update
obeys the same principle. However, it is crucial to choose
an appropriate initial threshold. If the threshold at a spe-
cific position exceeds the absolute value of the feature at that
position, the feature will be directly set to zero, thereby af-
fecting further optimization. To obtain an appropriate initial
threshold, the authors in [8] multiply normalize Z𝑎 with the
mean value of each position on the feature map, which can
be expressed as follows:

Z𝑎′ = 𝜎

(∑︁𝑛

𝑗=1
𝜌(Wkx 𝑗 )Wvx𝑎𝑗

)
·
∑𝑛

𝑗=1 x𝑎
𝑗

𝑛
(4)

where 𝜎 (·) represents the normalization function, Z𝑎′ ∈
Rℎ×𝑤×1, the algorithm proposed for threshold denoising is
shown in Algorithm 1.

The above process calculates the thresholds for differ-
ent positions in the feature map, obtaining a set of threshold
maps with the same width and height as the input feature
map. Subsequently, the computed threshold maps are em-
ployed to perform threshold computation on each feature
channel. Due to the distinct importance of various feature
channels in classification tasks [14], utilizing a single thresh-
old map for all feature channels is inappropriate. Therefore,
this paper considers applying global average pooling to each
feature map, utilizing fully connected layers to capture cross-
channel correlations, finally, employing the sigmoid function
for normalization. The process can be summarized as fol-
lows:.

p = 𝜎

(
FC

(∑𝑀
𝑖=1 x𝑖

𝑀

))
(5)

where 𝑀 represents the number of positions on the feature
map, FC represents the fully connected operation for captur-
ing inter-channel interaction relationships, p ∈ R1×1×𝑛. The
threshold at a specific position of the feature map is defined
as:

Z𝑎′′ = 𝜎

(∑︁𝑛

𝑗=1
𝜌(Wkx 𝑗 )Wvx𝑎𝑗

)
·
∑𝑛

𝑗=1 x𝑎
𝑗

𝑛
· p. (6)

As the increasing of network depth, noise features pre-
sented in data have been activated with network propagation
and transmitted to deeper network layers. It would increase
model parameters as well as computational complexity and
even have detrimental effects on the recognition task. To ad-
dress these issues, this paper introduces a denoising module
in the shallow layer of the neural network. Therefore, the
threshold at feature map position a can be defined as:

Z𝑎′′

low = 𝜎

(∑︁𝑛

𝑗=1
𝜌(Wkx 𝑗 )Wvx𝑎𝑗

)
low
·
∑𝑛

𝑗=1 x𝑎
𝑗

𝑛
· plow (7)

where low represents shallow denoising.

3. Experimental Results

3.1 Setup
This paper conducts simulation experiments based on

12 types of jamming patterns, as shown in Fig. 2. The
power of the jamming signals is set to 0 dBm. The base-
band signals are shaped using a root-raised cosine filter with
a roll-off factor 0.5. An 8PSK modulation scheme is em-
ployed, with a sampling frequency of 2000 MHz and a range
of 600–920 MHz. Each jamming pattern generates 200 data
sets, resulting in total of 2400 data sets. The training set
comprises 70% of the data, while the remaining 30% is used
for testing.

All the network models were implemented on a com-
puter with Windows 10 Professional (64-bit) operating sys-
tem, using an NVIDIA RTX 3080 GPU. The implementation
was done using Tensorflow 2.6.0 and Keras 2.6.0 frameworks.
The Adam optimizer was employed with an initial learning
rate of 0.001, and the learning rate was reduced by 10% ev-
ery 30 epochs. The training process involved a total of 150
iterations. The model structure and parameters are shown in
Tab. 1.

Network Layer Activation Channel
num Parameters

Convolutional
block 1

Con2v Relu 4 Kernel:5
BN - - -

Con2v Relu 4 Kernel:5
Maxpooling - - Stride:2

Threshold
denoising block

Con1v Softmax 1 Kernel:5
Con1v Sigmoid 1 Kernel:1

Fc - - -

Convolutional
block 2

Con2v Relu 8 Kernel:5
BN - - -

Con2v Relu 8 Kernel:5
Maxpooling - - Stride:2

Convolutional
block 3

Con2v Relu 16 Kernel:5
BN - - -

Con2v Relu 16 Kernel:5
Maxpooling - - Stride:2

Tab. 1. Model structure and parameters.
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Fig. 2. Spectral waterfall plots of 12 jamming modes.

3.2 Performance Analysis
When recognizing jamming patterns, there is no deny-

ing that the noise environment presents a realistic and intri-
cate challenge. The noise environment adds complexity to
the model’s input data and can obscure the recognition of
jamming patterns, making it even more challenging. How-
ever, complexity issues should be considered when employ-
ing deep learning methods for addressing jamming pattern
recognition problems. DNNs typically require a significant
amount of computational resources during training. Ad-
ditionally, as the number of model parameters increases,
the computational complexity escalates, potentially limiting
the feasibility in resource-constrained environments. Con-
sequently, a balance must be struck between the number of
parameters, computational complexity and performance to
ensure that the model can achieve both effectiveness and ac-
curacy in practical applications within noisy environments.
Therefore, this paper investigates the impact of placing vary-
ing numbers of denoising modules at different network layers
on recognition performance. Furthermore, it evaluates the
number of parameters setting different quantities of denois-
ing modules at distinct network layers and comprehensively
considers the corresponding computational complexity.

Table 2 demonstrates the computational costs of various
models in the experiments. When introducing different num-
bers of DM after the same Conv.Block, as the DM increases,
the training parameters and FLOPs also increase. Further-
more, when an equal number of DM is introduced cross

Model Trainable
parameters FLOPs

Without denoising module 0.593M 92.561M
The proposed method 0.649M 93.002M

Add 1 DM after the second Conv.Block 0.621M 92.994M
Add 1 DM after the third Conv.Block 0.607M 92.990M

Add 1 DM after each Conv.Block 0.691M 93.864M
Add 2 DM after the first Conv.Block 0.705M 93.443M

Add 2 DM after the second Conv.Block 0.649M 93.426M
Add 2 DM after the third Conv.Block 0.621M 93.419M

Add 2 DM after each Conv.Block 0.788M 95.166M
Add 3 DM after the first Conv.Block 0.760M 93.884M

Add 3 DM after the second Conv.Block 0.677M 93.859M
Add 3 DM after the third Conv.Block 0.635M 93.848M

Add 3 DM after each Conv.Block 0.886M 96.468M
*DM denote Denoising Module

Tab. 2. The computational costs of various models in the exper-
iments.

the first, second and the third Conv.Block, the training pa-
rameters and FLOPs show a downward trend, the algorithm
proposed in this paper exhibits a slightly higher parameter
counts compared to add 1 DM after the second and the third
Conv.Block.

Figure 3 displays the recognition rates achieved by
adding different DM after various Conv.Blocks and the ad-
vanced algorithm DRSN [9]. In Fig. 3(a) and (d), the recog-
nition rates are compared when two and three DM are added
to each Conv.Block, respectively. It can be observed from the
figures that the proposed model is superior to other models.
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(a) Add 2 DM after different Conv.Blocks (b) Add different DM after each Conv.Block

(c) Add 1 DM after different Conv.Blocks (d) Add 3 DM after different Conv.Blocks

Fig. 3. The recognition accuracy with different DM added after different Conv.Blocks.

In Fig. 3(b), the recognition rates are compared when 1, 2,
and 3 DM are added after each Conv.Block, along with the
proposed model and a scenario without DM and DRSN. It
is evident from the graph that the proposed model achieves
the highest recognition rate. As shown in Fig. 3(c), at 8 dB
and 9 dB, the recognition rate is slightly higher when adding
one DM after the third Conv.Block than the proposed model.
However, both models’ recognition rates differ by 2.3% and
0.9% at these JNRs. Nevertheless, at other JNRs, the perfor-
mance of the proposed model surpasses the others. The shal-
low DM proposed in this paper balances parameter counts,
computational complexity, and recognition performance, en-
suring that it can effectively address the challenges posed
by noisy environments without excessively taxing computa-
tional resources.

Figure 4 presents the confusion matrix of classification
results at a JNR of 8 dB when using the shallow denoising
approach. SJ_I, SJ_II, SJ_III, SJ_IV, CJ_I, CJ_II, CJ_III,
CJ_IV, DSJ_I, DSJ_II, DSJ_III and DSJ_IV respectively

represent sweep jamming I, sweep jamming II, sweep jam-
ming III, sweep jamming IV, comb sweep jamming I, comb
sweep jamming II, comb sweep jamming III, comb sweep
jamming IV, double sweep jamming I, double sweep jam-
ming II, double sweep jamming III, double sweep jamming
IV. The colour bar indicates that the darker the colour, the
higher the recognition rate. Results demonstrate that in ad-
dition to SJ_I, SJ_II, SJ_III, SJ_IV, and CJ_IV, all others
can achieve a high recognition rate, that is because SJ can
only observe information on one frequency point, while DSJ
have multiple frequency points compared to SJ. Although
CJ has a frequency point, CJ_I, CJ_II, and CJ_III have wide
bandwidth. CJ_IV has the same bandwidth as SJ, causing
CJ_IV to be mistakenly identified as SJ, resulting in a low
recognition rate. Figure 5 shows the loss and accuracy of the
training set at JNR = 8 dB.

In summary, the analysis of classification accuracy,
computational complexity, and parameter quantity can
demonstrate the effectiveness of shallow denoising methods.
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Fig. 4. The confusion matrix for shallow denoising at a JNR
of 8 dB.

(a) The loss curve of the proposed method

(b) The accuracy curve of the proposed method

Fig. 5. Loss and accuracy results of the proposed method.

4. Conclusion
A practical jamming recognition algorithm is expected

to perform well under noisy conditions. In response to this
issue, this paper innovatively proposes a shallow denoising
method based on deep learning. This method achieves auto-
matic feature denoising by reducing the activation of noise
in the feature space. A comprehensive experimental analysis
further verified the effectiveness of the proposed method. It is
worth noting that the proposed method performs better under
low JNR conditions than the comparative method. The ex-
perimental results demonstrate that the proposed method has
specific practical value. At the same time, machine learning-
based noise processing methods are a promising research
direction.

Acknowledgments
The work is supported by the National Natural Sci-

ence Foundation of China (U22B2002, No. 61971439) and
the National Key Laboratory of Wireless Communications
Foundation under Grant IFN20230207.

References

[1] LIU, X., XU, Y. H., JIA, L. L., et al. Anti-jamming communications
using spectrum waterfall: A deep reinforcement learning approach.
IEEE Communications Letters, 2018, vol. 22, no. 5, p. 998–1001.
DOI: 10.1109/lcomm.2018.2815018

[2] XIAO, L., LU, X. Z., XU, T. W., et al. Reinforcement learning-based
mobile offloading for edge computing against jamming and interfer-
ence. IEEE Transactions on Communications, 2020, vol. 68, no. 10,
p. 6114–6126. DOI: 10.1109/tcomm.2020.3007742

[3] SHAO, G. Q., CHEN, Y. S., WEI, Y. S. Convolutional neural
network-based radar jamming signal classification with sufficient
and limited samples. IEEE Access, 2020, vol. 8, p. 80588–80598.
DOI: 10.1109/access.2020.2990629

[4] WANG, Y. F., SUN, B., WANG, N. Recognition of radar
active-jamming through convolutional neural networks. The Jour-
nal of Engineering, 2019, vol. 2019, no. 21, p. 7695–7697.
DOI: 10.1049/joe.2019.0659

[5] QU, Q. Z., WEI, S. J., LIU, S., et al. JRNet: Jamming recog-
nition networks for radar compound suppression jamming signals.
IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 12,
p. 15035–15045. DOI: 10.1109/tvt.2020.3032197

[6] LIU, S. Y., XU, Y. F., CHEN, X. Q., et al. Pattern-aware intelli-
gent anti-jamming communication: A sequential deep reinforcement
learning approach. IEEE Access, 2019, vol. 7, p. 169204–169216.
DOI: 10.1109/access.2019.2954531

[7] HAN, H., LI, W., FENG, Z. B., et al. Proceed from known to un-
known: Jamming pattern recognition under open-set setting. IEEE
Wireless Communications Letters, 2022, vol. 11, no. 4, p. 693–697.
DOI: 10.1109/lwc.2021.3140145

[8] CHEN, Y. F., ZHU, L., YAO, C. H., et al. Global context-based thresh-
old strategy for drone identification under the low SNR condition.
IEEE Internet of Things Journal, 2023, vol. 10, no. 2, p. 1332–1346.
DOI: 10.1109/jiot.2022.3205065



328 C. H. YAO, Y. LI, Y. F. CHEN, ET AL., AN INTELLIGENT DENOISING METHOD FOR JAMMING PATTERN RECOGNITION . . .

[9] ZHAO, M. H., ZHONG, S. S., FU, X. Y., et al. Deep resid-
ual shrinkage networks for fault diagnosis. IEEE Transactions
on Industrial Informatics, 2020, vol. 16, no. 7, p. 4681–4690.
DOI: 10.1109/tii.2019.2943898

[10] XIE, C. H., WU, Y. X., VAN DER MAATEN, L., et al. Feature denois-
ing for improving adversarial robustness. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). Long Beach
(CA, USA), 2019, p. 501–509. DOI: 10.1109/CVPR.2019.00059

[11] PENG, G. Z., CHEN, W. J. Fringe pattern inpainting based on dual-
exposure fused fringe guiding CNN denoiser prior. Optica Applicata,
2022, vol. 52, no. 2, p. 179–193. DOI: 10.37190/oa220203

[12] ZHANG, X. Y., MANZI, M., VOGELS, T., et al. Deep compositional
denoising for high-quality Monte Carlo rendering. Computer Gaphics
Forum, 2021, vol. 40, no. 4, p. 1–13. DOI: 10.1111/cgf.14337

[13] DONG, W. S., WANG, P. Y., YIN, W. T., et al. Denoising prior
driven deep neural network for image restoration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019, vol. 41, no. 10,
p. 2305–2318. DOI: 10.1109/TPAMI.2018.2873610

[14] HU, J., SHEN, L., ALBANIE, S., et al. Squeeze-and-excitation
networks. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2020, vol. 42, no. 8, p. 2011–2023.
DOI: 10.1109/TPAMI.2019.2913372

About the Authors . . .

Changhua YAO received his B.S. degree in Automation
from Zhejiang University in 2005 and Ph.D. degree in Com-
munications and Information Systems from PLA University
of Science and Technology in 2016. He was a post doctor at
PLA University of Science and Technology in 2017–2019.
He is now a professor at the School of Electronic and Informa-
tion Engineering, Nanjing University of Information Science
and Technology. His research interests focus on intelligent
unmanned swarm, smart wireless networks, electromagnetic
spectrum antagonism.

Yang LI received the B.S. degree from Shangqiu Normal
University in 2020, Shangqiu, China, where she is currently
pursuing a master’s degree with the School of Electronic and
Information Engineering, Nanjing University of Information
Science and Technology. Her research interests include deep
learning and pattern recognition.

Yufan CHEN (corresponding author) received the B.S. de-
gree from the Army Engineering University of PLA, Nanjing,
China, in 2018, where he is currently pursuing the Ph.D. de-
gree with the Institute of Communications Engineering. His
current research interests include OOD detection, open-set
recognition and drone identification.

Kaixin CHENG received the Ph.D. degree in Cyberspace
Security from the College of Communications Engineering,
Army Engineering University of PLA, Nanjing, China in
2022. Her research interests include communication net-
work security, spectrum behavior sensing and artificial intel-
ligence.

Appendix A: Algorithm 1
Algorithm 1. Threshold denoising algorithm.

Input:
Input feature map: x;
Number of feature channels: n;
Leachable parameters: Wk , Wv;

Output:
Threshold at position 𝑎: Z𝑎;
sum2 ← 0
for 𝑗 = 1→ 𝑛 do

sum1 ← 0
for 𝑚 = 1→ 𝑛 do

sum1 ← sum1 + exp(Wkx𝑚 )
end for
sum2 = sum2 +

exp(Wkx 𝑗 )
sum2

·Wvx 𝑗

end for
Feature value at position 𝑎 of feature map 𝑗: 𝑥𝑎

𝑗
;

Feature value at position 𝑖 of the feature map: 𝑥𝑖 ;
avg1 ← 0
avg2 ← 0
for 𝑗 = 1→ 𝑛 do

avg1 ← avg1 + 𝑥𝑎𝑗
end for
for 𝑗 = 1→ 𝑀 do

avg2 ← avg2 + 𝑥𝑖
end for
Z𝑎 ← Sigmoid(sum2 ) ∗ avg1

n ∗ Sigmoid( avg2
M )


