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Abstract. This study aimed to explore the inversion method 
of soil moisture content by using numerical simulation and 
field detection. The researchers used the early signal ampli-
tude envelope (AEA) method to directly invert soil moisture 
in the shallow part of the soil, which avoided the transmis-
sion error of the Topp formula. The Auto-Regressive Moving 
Average Model (ARMA) was used to calculate the power 
spectrum of radar signals, and the BP neural network was 
used to train the power spectrum of different Gaussian win-
dows, so as to improve the inversion accuracy. According to 
the study, the average error of soil moisture content inverted 
by AEA method was 0.45% in the range of 0–0.41 m, while 
the error of ARMA method in depth range of 0.1–1.0 m was 
less than 1%. The results showed that the combination of the 
two methods can effectively invert the soil moisture content 
within the radar detection range. 
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Ground penetrating radar, AEA, ARMA, soil moisture 
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1. Introduction 
Accurate acquisition of soil water information plays 

an important guiding role in the fields of ecohydrology, soil sci-
ence, engineering geology, and agronomy [1], [2], [3], [4]. 
Ground Penetrating Radar (GPR) is a rapid, non-destructive 
detection technology known for its high resolution and in-
situ capabilities [5]. GPR technology relies on differences in 
dielectric properties of underground materials, with the die-
lectric constant being closely linked to the water content in 
the medium. As a result, GPR is extensively utilized for de-
tecting soil moisture content at the mesoscale [6], [7], [8]. 

In general, the methods of GPR to detect soil moisture 
content can be divided into time domain and frequency do-
main methods. In terms of the time-domain method, the 
most widely used method is the ground wave method. At the 
earliest, people used the common center point method to cal-

culate the dielectric constant of underground media, and 
then used the empirical formula of medium moisture con-
tent. For example, Koyama et al. [9] proposed a method to 
estimate the soil moisture profile in the vertical direction 
from multi-offset radar data, and used the common center 
point method to obtain the dielectric constant and depth of 
the reflected soil layer. Ercoli [10] employed both indoor 
and outdoor studies to estimate the moisture content of two 
extensively exposed sandy soils in central Italy. To deter-
mine the subsoil moisture content in the unsaturated zone, 
they also examined the ground wave’s two-way time travel 
velocity. Since then, the method proposed by Pettinelli [11] 
to use the Average Envelope Amplitude of the early signal 
of the radar wave has been gradually applied to the time-
domain method, which no longer needs to separate the 
ground wave from the radar signal, and directly uses the am-
plitude envelope of the early signal to obtain the dielectric 
constant. By applying the AEA method to extract the aver-
age amplitude envelope of the early signal of the radar wave, 
some researchers [12], [13], [14] were able to acquire soil 
moisture content that was comparable to the Time Domain 
Reflectometer’s detection accuracy. Then the scholars [15], 
[16] combined numerical simulation and field detection 
methods to verify the relationship between the ground wave 
amplitude and soil permittivity, and to demonstrate that the 
AEA method can accurately and reliably invert soil moisture 
content. Calculation of soil permittivity, however, requires 
first determining the ground wave velocity, then the soil 
moisture content according to the Topp formula. In addition, 
the propagation depth of ground waves is limited when the 
amplitude analysis is carried out, so that the detection depth 
of AEA in detecting soil moisture content is relatively 
limited. 

In the study of the frequency domain method, Wu [17] 
applied the full waveform inversion of ground penetrating 
radar to soil moisture mapping and accurate irrigation of po-
tato fields. Laurens [18] analyzed the radar signal spectrum 
of concrete with different moisture contents, and found that 
the change of concrete moisture content would lead to elec-
tromagnetic dispersion, and the peak main frequency would 
be shifted. A. Benedetto [3] used GPR frequency domain 
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signals to estimate the water content of different types of un-
saturated soils, and found that when the soil contains clay, 
the spectral shape of the reflected GPR signal changes uni-
formly with the increase of water content, so it is pointed out 
that there is a certain relationship between the change of soil 
water content and the frequency change of radar waves. Sub-
sequently, some researchers [19] combined GPR numerical 
simulation and full waveform inversion methods to explore 
the significant impact of shallow soil moisture stratification 
on radar data. Pongrac [20] used a multiscale triangulation 
filter to process the power spectrum of the GPR response, 
considering the soil conditions as dry, wet, and heterogene-
ous, and using the Relief F algorithm for sorting. However, 
when studying the relationship between the frequency peak 
shift of the GPR spectrum and soil water, it only has a sig-
nificant effect on high-resolution signals, and the GPR 
power spectrum is also affected by low resolution, so it is 
necessary to consider the influence of multiple GPR power 
spectra on soil moisture content. Yang Feng [21] used the 
Auto-Regressive Moving Average Model for the first time 
to study the influence of soil moisture changes on radar 
power spectrum, and this method has been widely used. Re-
searchers like Cui et al. [22] utilized the ARMA power spec-
trum estimation technique to analyze radar data, examining 
sandy soil distribution with varying compaction levels and 
water contents. Subsequently, other scholars [23], [24], [25] 
extracted the radar wave power spectrum on this basis to ac-
curately and quickly predict the soil moisture content of 
loam and clay to verify the reliability of the method. Tang et 
al. [26] further enhanced measurement accuracy by estab-
lishing the ARMA radar dynamic test model. However, 
when using the power spectrum attribute to detect soil mois-
ture content, it is limited by the principle of the algorithm 
[27], which makes the calculation error in the soil depth 
range corresponding to the length of the first rolling half-
time window large, and the inversion of moisture content in 
the shallow part of the ground surface is not accurate 
enough. 

In summary, there is an urgent need to find a method 
to efficiently invert soil moisture content in the entire radar 
detection depth range. Therefore, on the basis of previous 
researches, considering the advantages of AEA and ARMA, 
this paper uses GPR numerical simulation method combined 
with BP neural network to invert the volumetric moisture 
content of soil. In order to test the feasibility of the two meth-
ods for inverting soil moisture content from common offset 
radar data, this field survey provides a new idea for the 
ground penetrating radar to accurately invert soil moisture 
content within its detectable depth range. 

2. Research Methods 

2.1 Study on AEA Inversion Method of Soil 
Moisture Content 
When GPR works, the amplitude of the radar wave is 

affected by the electromagnetic wave properties of the 

surrounding medium, and its amplitude A decreases 
exponentially relative to the initial amplitude A0 with the 
increase of the propagation depth h. Instant (1) 

 0 e hA A α−=  (1) 

where α is attenuation constant, 
r2

σ µα
ε

= ; σ is electrical 

conductivity (S/m), μ is permeability (H/m), εr represents 
relative permittivity. The relative permittivity of water is 81, 
and the soil permittivity is generally 3–25, so the relative 
permittivity is mainly controlled by the moisture content and 
has an obvious influence on the amplitude.  

In order to use the AEA method to invert soil volumet-
ric moisture content, the open-source software GPRMax 
[28] was used to simulate the forward simulation of GPR. 
A two-dimensional uniform moisture content model (Tab. 1 
for model parameters) was established, and two frequency 
antennas were selected to simulate eight groups of soils with 
different moisture contents, in which the soil volumetric soil 
moisture content was 5%, 10%, 15%, 20%, 25%, 30%, 35% 
and 40%, respectively. The forward simulation is carried out 
by using the common offset method, so as to obtain the radar 
profiles corresponding to different soil moisture content. 

The single-channel signal amplitude was extracted 
from the simulated radar profiles of 8 groups of different soil 
moisture contents. Then perform the Hilbert transformation 
according to (2): 
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where x(t) represents raw signal of GPR, h(t) = x(t) / (πt) is 
treated as the real part and H(t) as the imaginary part to con-
struct an analytic signal as (3): 

 ( ) ( ) ( )jf t x t H t= + . (3) 

The amplitude envelope is as follows: 

 ( ) ( ) ( ) ( )2 2E t f t x t H t= = + . (4) 

The GPR single-channel signal was made simpler by 
the positive amplitude envelope that resulted. The average 
amplitude envelope value of the radar wave was then deter-
mined by selecting 20 single-channel data points for each 
group and calculating the amplitude envelope value of the 
first positive half-cycle of the radar wave. 

2.2 Study on the Effective Detection Depth of 
the AEA Method 
In order to clarify the effective detection depth of soil 

moisture content detected by AEA method, a model of dry 
and wet layered soil medium with uniform soil moisture 
content in the layer was established, with a size of 2 m × 1 m 
(as shown in Fig. 1). The top green layer of the model was 
air, the layer thickness was 0.4 m, the relative permittivity 
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Antenna 
[MHz] 

The dimensions of the model 
[m × m] 

Transmit and receive antenna 
distance [m] 

Sampling time window 
[ns] 

Grid differential step 
size [m] 

200 4 × 2 0.8 60 0.01 
400 2 × 1 0.4 30 0.005 

Tab. 1. Model parameters. 

 
Fig. 1. Schematic diagram of the two-layer soil model. 

was 1, the volume moisture content of the dry soil layer was 
5%, the volume moisture content of the wet soil layer was 
35%, and the magnetic permeability of all media in the 
model was the same as that of air. The established layered 
model was numerically simulated using the finite difference 
time domain (FDTD) approach. The detection was simulated 
using the common center point method (CMP), with the 
model parameters being identical to those listed in Tab. 1. 

By altering the thickness of the upper layer of soil in-
crementally and running simulations repeatedly, the varia-
tions in ground wave velocity were observed. Through ve-
locity analysis methods, the corresponding ground wave 
velocities for different soil layers were determined. Specifi-
cally, the ground wave velocity changes with the change of 
the upper soil thickness, but with the increasing thickness of 
the upper layer, the ground wave velocity decreases and 
gradually stabilizes under the influence of the lower soil 
layer, that is, as the thickness of the upper layer increases to 
a certain value, the ground wave velocity will no longer be 
affected by the lower soil layer, and the critical value of the 
corresponding upper layer thickness is regarded as the effec-
tive detection depth of the ground wave in the soil [29]. 

The simultaneous wavelength (5), wave velocity (6) 
and Topp empirical formula (7) were used to obtain the cor-
responding wave velocity changes of soil with different 
layer thicknesses, and the relationship between soil moisture 
content and effective detection depth was analyzed. 
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  (7) 
where λ denoted the wavelength (m), c was the speed of light 
propagation in a vacuum (m/s), f stands for frequency (Hz), 
v displays wave velocity (m/s), t was for round-trip travel (s), 
θ characterized soil volumetric moisture content (%). 

2.3 Optimization of Power Spectral 
Attributes 
Using the radar profile data of Sec. 2.1 numerical sim-

ulation, the AR power spectrum model was used to extract 
the radar signal power spectrum and obtain the characteristic 
parameters of the power spectrum attributes. Then, each 
power spectrum attribute parameter was fitted with soil 
moisture content, and the power spectrum attribute parame-
ters were optimized and selected by the cross-correlation al-
gorithm, and the power spectrum attribute parameters that 
were highly correlated with the moisture content and inde-
pendent of each other were selected. 

ARMA(p,q) can be expressed as: 

 
1 1

p q

t t i t i j t j
i j

X c Xε ϕ θ ε− −
= =

= + + +∑ ∑  (8) 

where p and q were the autoregressive order and moving 
average order of the model; φ and θ were undetermined co-
efficients that were non-zero; εt independent error term, i.e., 
white noise WN(0,σ2); Xt was a stationary, normal, zero-
mean time series. It can be rewritten in the lag operator no-
tation [30] as: 
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If φ(L) = 1, then the process of (9) is MA(q), and if θ(L) = 1, 
then Equation (9) was called AR(p), so the autoregressive 
moving average model was divided into three categories: 
AR model, MA model and ARMA model. The AR model 
was a linear equation that can be equivalent to predicting the 
model, so the AR model was selected to extract the power 
spectral attributes of radar signals. 

First, the input was white noise in the model, and the 
difference equations and system functions of the p-order AR 
model were as follows: 
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Attribute category Parameter Definition Formula 

Frequency 
domain attributes 

[MHz] 

The main 
Frequency 

The frequency at which the power spectrum curve achieves its 
maximum value. fmax = fPmax 

Center 
frequency 

The frequency at which the power spectrum energy is half of the 
total energy. fm = f½E  

Frequency of 
the center of 

gravity 

The power spectral amplitude is used as the weights and the 
frequency is the weighted average. 

0
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fP f f
f

P f f

+∞

+∞= ∫
∫

 

Weighted 
power 

frequency 

Reach the frequency at 1/2 of the full band frequency-weighted 
power spectrum. 
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square 

frequency 
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square root. 
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Edge 
frequencies 

A frequency at which the signal power distributed from 0 Hz to 
that frequency is 95 per cent of the total signal power. 

e

0
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f
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Energy attributes 
[dB] 

Band energy The total area of the power spectrum over the bandwidth. 
0

( ) dE P f f
+∞
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Clock energy The amplitude corresponding to the frequency at which the 
power spectrum curve obtains its maximum value. pf max( ( ))E P f=  

Aggregation 
degree attribute 

Power 
spectral 
entropy 

The power spectrum values are summed by multiplying the 
product of their negative logarithms. f

0
( ) log ( )

N

n
H P n P n

=

= −∑  

Standard 
deviation of 
frequency
（MHz） 

The square of the difference between the power spectrum 
frequency and the center of gravity frequency is the weighted 
average, with the power spectrum amplitude as the weight and 

the arithmetic square root. 
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Energy 
distribution 
attributes 

Bandwidth 
energy 

percentage 

The ratio of a single band to the total band power spectrum, 
which has a maximum value of 1 and a minimum value of 0. 

WH

WL

0

( )

( ) d
i

f

i
f f

P f
BEP
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=
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Tab. 2. Power spectrum parameter attributes [25]. 
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The signal Y(n) output by the signal X(n) after being 
processed by the system  H(z)  had the following relation-
ship: 
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Then the power spectrum output of the model was: 
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The relationship between the model parameter ak and 
the autocorrelation function xm(m) of x(n) was as follows: 
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The ground penetrating radar data of the uniform soil 
moisture content model obtained by zero correction were 
carried out to extract the single-channel signal. The optimal 
order was calculated by using the Akaike information crite-
rion [31] to calculate the radar signal power spectrum of 
soils with different moisture contents, as shown in Fig. 2 
(taking 400 MHz as an example), where the abscissa was the 
frequency (MHz) of the GPR power spectrum and the ordi-
nate was the energy (dB). 

It can be seen from Fig. 2 that with the increase of soil 
moisture content, the power spectral energy of the GPR signal 

 
Fig. 2. Radar wave signal power spectrum of different soil 

moisture content at 400 MHz. 

0 200 400 600 800 1000 1200

0

5

10

15

20

25

40

30

20

10

Frequency[MHz]

En
er

gy
[1

0-1
2 dB

]



380 Y. FENG, J. NIE, G. XIE, ET AL., SOIL MOISTURE CONTENT INVERSION BY COUPLING AEA AND ARMA 

 

gradually decreases, and the frequency band distribution 
gradually shifts to the low frequency and gradually gathers. 
Therefore, the higher the soil moisture content, the smaller 
the total energy of the power spectrum of the reflected wave. 

The power spectrum attribute parameters of radar sig-
nals corresponding to various soil moisture contents were 
computed using the power spectrum attribute calculation 
formula (Tab. 2). Also, cross-correlation was adjusted by 
analyzing the relationship in turn between each power spec-
trum attribute parameter and soil moisture content.  

2.4 Rolling Spectrum Profiling Technique 
In order to obtain the soil moisture content at different 

depths, a Gaussian window was added to the radar signal 
[21] to analyze the spectral local characteristics of the corre-
sponding signals of the soil at different depths. The function 
of the window property satisfied the condition of (15): 

 ( ) ( ) ( )2, .G tg t L Rω ω ∈  (15) 

In the formula, g(t) was the window function, G(ω) was the 
Fourier transformation of g(t). g(t) was selected to meet the 
following relationships: 

 ( ) ( )4 2.g t G ω∆ ∆ ≥  (16) 

When the g(t) is the Gaussian function, the equal num-
ber is established. It can be seen that the Gaussian window 
is the best window for local analysis. 

 
Fig. 3. Flow diagram of BP neural network inversion of soil 

moisture content. 
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At this point, the power spectrum of the radar signal in 
each time window can be obtained. 

2.5 BP Neural Network Inverts Soil Moisture 
Content 
BP neural networks have powerful learning, memory, 

fault tolerance, nonlinearity, and adaptive capabilities, 
which can achieve input-to-output mapping by repeatedly 
learning large amounts of data. The networks used in this 
study are mainly divided into input layer, hidden layer and 
output layer. When the input layer samples propagate for-
ward in the neural network, the obtained output value is 
compared with the expected output, so that the error is con-
tinuously back propagated, thereby changing the connection 
weight between the neurons in the hidden layer. The output 
of the final input sample through the neural network is con-
sistent with the actual output. The inversion process is 
shown in Fig. 3. 

3. Results and Analysis 

3.1 The Results of the AEA Method 
The reciprocal envelope of the early signal amplitude 

of the ground wave corresponding to the soil moisture con-
tent of the eight groups with different soil moisture content 
was fitted to the soil volume moisture content, and the re-
sults were shown in Fig. 4. Considering the influence of dif-
ferent frequency antennas, the amplitude envelope values of 
200 MHz and 400 MHz antenna signals were normalized. 
Equation (18) is the fitting relation. It can be seen from the 
figure that there was an obvious linear relationship between 
the reciprocal envelope of the early signal amplitude and the 
soil moisture content. 

 
Fig. 4. Fitting relationship between the reciprocal envelope of 

radar wave amplitude and soil volume moisture content 
after normalization. 
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3.2 The Effective Depth Detection Result 
The velocity analysis of the radar profiles collected by 

the 200 MHz and 400 MHz antennas was carried out 
sequentially. The propagation velocity of the ground wave 
in different layers of soil thickness was calculated (Fig. 5). 
It can be seen from Fig. 5 that when the upper soil was dry, 
with the increase of the thickness of the dry soil layer, the 
ground wave velocity increased first and then smoothly. 
When the upper soil layer is wet, the thicker the wet soil 
layer, the ground wave velocity decreased first and then sta-
bilized. The ground wave velocity corresponding to the 
400 MHz antenna reaches equilibrium first, indicating that 
the larger the antenna, the shallower the effective detection 
depth. The effective detection depths of the 200 MHz an-
tenna in the dry and wet soil model were 0.41 m and 0.20 m, 
and the effective detection depth of the 400 MHz antenna in 
the dry and wet soil was 0.24 m and 0.13 m. 

According to (5), the wavelength of the ground wave 
corresponding to the soil detected by the antenna at different 
frequencies is calculated, and the effective detection depth 
and wavelength are linearly fitted to obtain h = 0.46λ + 0.046 
(R2 = 0.9859). Combined with (7) to fit the relationship be- 

 

 
Fig. 5. Propagation velocity curves of ground waves in the 

double-layer soil model when the thickness of the upper 
soil changes. 

 
Fig. 6. Relationship between the effective detection depth of 

ground wave and different soil moisture content. 

tween soil volume moisture content and the effective detec-
tion depth of ground waves, it is represented as Fig. 6, with 
the increasing soil moisture content, the effective detection 
depth of ground waves decreases exponentially. It can also 
be seen that soil moisture content was an important factor 
affecting the ground wave signal. 

3.3 The Results of ARMA Combined with BP 
Neural Network 
Table 3 shows the correlation coefficients between the 

GPR power spectrum attribute parameters and the soil 
moisture content. 

The power spectrum attribute with a large correlation 
coefficient greater than 0.9 with moisture content is selected 
for cross-correlation calculation, and the cross-correlation 
relationship is shown in Fig. 7. 

From Fig. 7, the attribute parameters with a correlation 
value greater than 0.98 and a significant positive correlation 
at the level of 0.01 are selected to optimize the dimensional-
ity reduction of the attribute parameters. Finally, the main 
frequency, center frequency, frequency of the center of grav-
ity, band energy, standard deviation of frequency, band 
energy share 0–200 MHz, band energy share 200–300 MHz 
were selected as the power spectrum attribute parameters of 
the 200 MHz antenna, and the main frequency, frequency of 
the center of gravity, standard deviation of frequency, edge 
frequencies, band energy, band energy share 0–400 MHz, 
band energy share 400–600 MHz were selected as the power 
spectrum attribute parameters of the 400 MHz antenna. 

According to the effective detection depth and for-
mation electromagnetic wave velocity obtained by the AEA 
method, the effective time window was calculated. The 
Gaussian window length was determined by increasing the 
formation velocity and the maximum measurable depth by 
30% of the time window. The rolling spectrum profile tech-
nique was used to intercept GPR signals within a range  
of about 20 ns, with a window length of 2 ns and a depth of 
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Power spectrum 
properties R200 R400 

Power spectrum 
properties R200 R400 Power spectrum 

properties R200 R400 

Main frequency 
[MHz] 0.93 0.92 Standard deviation 

of frequency[MHz] 0.93 0.94 Band energy share 
0–200 MHz 0.97 0.88 

Center frequency 
[MHz] 0.91 0.97 Edge frequencies 

[MHz] 0.92 0.91 Band energy share 
0–400 MHz 0.88 0.96 

Frequency of the 
center of gravity 

[MHz] 
0.93 0.95 Band energy share 

0–100 MHz 0.83 0.6 Band energy share 
0–600 MHz 0.83 0.84 

Band energy 
[MHz] 0.98 0.99 Band energy share 

100–200 MHz 0.89 0.92 Band energy share 
200–400 MHz 0.89 0.57 

Clock energy 
[MHz] 0.86 0.85 Band energy share 

200–300 MHz 0.91 0.19 Band energy share 
400–600 MHz 0.84 0.96 

Power spectral 
entropy [MHz] 0.88 0.89 Band energy share 

300–400 MHz 0.9 0.82 Band energy share 
100–600 MHz 0.75 0.4 

Weighted power 
spectrum 

frequency [MHz] 
0.64 0.76 Band energy share 

400–500 MHz 0.91 0.92 Band energy share 
200–500 MHz 0.82 0.74 

Root mean square 
frequency [MHz] 0.76 0.97 Band energy share 

500–600 MHz 0.75 0.84 / / / 

Tab. 3. Correlation coefficient between power spectrum attribute parameters and moisture content. 

      
Fig. 7. Cross-correlation of power spectrum attribute parameters (200 MHz left, 400 MHz right). 

Notes:  
(1)~(10) indicates the main frequency, center frequency, frequency of the center of gravity, band energy, standard deviation of frequency, band energy share 
0–200 MHz, band energy share 200–300 MHz, edge frequencies, band energy share 300–400 MHz, band energy share 400–500 MHz of the 200 MHz 
frequency antenna in turn;  
1)~11) indicates the main frequency, center frequency, frequency of the center of gravity, band energy, standard deviation of frequency, root mean square 
frequency, edge frequencies, band energy share 100–200 MHz, band energy share 400–500 MHz, band energy share 0–400 MHz, band energy share  
400–600 MHz of the 400 MHz frequency antenna in turn. 

0.1 m for each segment. A total of 480 sample data of soil 
moisture content samples at different depths in eight groups 
of simulation experiments were selected as the training set 
of neural network. Initially, the input layer nodes, hidden 
layer nodes, and output layer nodes were 7, 7, and 1 respec-
tively to build the network. The training set was used to train 
the built network, and finally the number of implied layers 
and nodes in the implied layer was determined to be 3 layers, 
6 nodes, and the learning efficiency was 0.1, and the best 

effect was achieved when the training time was 1000 times. 
The data obtained from the simulation was returned to the 
original order of magnitude using the trained model. The 
output showed the error between the true value and the an-
ticipated value. 

Figure 8 shows the comparison of the predicted and 
measured moisture content of the BP neural network, the 
average absolute errors of the 200 MHz and 400 MHz 
antennas predicted and the actual moisture content were 
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Fig. 8. Comparison of neural network prediction and actual soil 

moisture content (200 MHz above, 400 MHz below). 

1.042% and 0.73%, and the root mean square error (RMSE) 
is 0.013 and 0.016, respectively. 

Figure 9 shows the regression analysis results of the BP 
neural network output at 200 MHz and 400 MHz. The cor-
relation coefficients between the predicted and actual mois-
ture content were 0.9254 and 0.9635, respectively, indicat-
ing that the method based on the combination of power 
spectral attribute parameters and BP neural network could 
reflect the nonlinear relationship between the power spectral 
attribute parameters of GPR and soil moisture content. 

4. Field Measurement and Verification 
In order to verify the validity of the numerical simula-

tion results, the excavation profile of the Daliuta mining area 
(Fig. 10) was selected, and the surface soil was mainly 
eolian sand roadbed, and the 200 MHz frequency radar an-
tenna was selected for detection. Samples were taken every 
50 cm in the direction of the survey line and every 10 cm  
in depth using a ring knife. The mass moisture content of the 

 

 
Fig. 9. Ground penetrating radar neural network outputs 

regression lines (200 MHz above, 400 MHz below). 

 
Fig. 10. Excavation profile site. 

soil sample was measured by drying method in the labora-
tory, and then the soil volume moisture content was calcu-
lated according to the bulk density. 

Firstly, the collected radar data was processed by zero-
ing, signal denoising and one-dimensional filtering. The 
early signal position was shown in Fig. 11, and the actual 
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single-channel waveform was transformed by Hilbert trans-
form. The time window range corresponding to the first pos-
itive half cycle was read, the amplitude envelope was calcu-
lated, and the average amplitude envelope inverse value was 
obtained. The soil moisture content of the profile was calcu-
lated by using the conclusion in the numerical simulation (18). 

Figure 12 was a comparison between the measured soil 
moisture content and the moisture content inverted by the 
AEA method. The absolute error is less than 0.9%, and the 
average error was 0.45%. 

According to h = 0.095 × exp[0.51/(θ + 0.29)] (θ is the 
soil volume moisture content, h is the effective detection 
depth), the effective detection depth of the AEA method was 
calculated for each measurement point and the mean value 
was taken. The results showed that the AEA method can 
reach an effective detection depth of 0.41 m, and the calcu-
lated results were shown in Tab. 4. 

The ARMA method was used to calculate the radar sig-
nal power spectrum. Then the radar signal power spectrum 
attribute parameters were calculated, and the correlation be-
tween them and soil moisture content and the independence 
between the attributes were analyzed. The rolling profile 
technique was used to segment according to the AEA effec-
tive detection depth. The preferred power spectrum attribute 
parameters for this field measurement verification were the 
main frequency, center frequency, frequency of the center of 
gravity, band energy, standard deviation of frequency, band 
energy share 0–200 MHz, band energy share 200–300 MHz. 

According to the effective detection depth obtained by 
the AEA method, the radar signal corresponding to 20 ns 
was intercepted by the rolling spectrum profile technology, 
the time profile was converted into the power spectrum 
profile, and the corresponding power spectrum attribute 
parameters were calculated. The power spectrum attribute 
parameters of different measurement points and different 
depths of the excavation profile were selected as the test 
sample set, and the neural network parameters were adjusted 
during the continuous training process, and the number  
of hidden layers and nodes of the neural network were deter-
mined to be 3 layers, 10 nodes, learning efficiency of 0.15 
and 30,000 training times, respectively. The power spectrum 
attribute parameters that were not involved in the training 
were used to invert the soil moisture content, and compared 
with the measured soil moisture content, the error (Fig. 13) 
and the network output regression line (Fig. 14) were 
analyzed. 

The analysis showed that the error in the shallow range 
of 0–10 cm was greater than 1%, and the accuracy of  
10–90 cm improved with the increase of depth, all less than 
0.7%. Indicating that the inversion effect of soil moisture 

 
Fig. 11. Radar waveform of the excavation profile. 

 
Fig. 12.  Comparison of measured moisture content and soil 

moisture content inverted by AEA method. 

 
Fig. 13. Error analysis of soil moisture content inversion by ra-

dar power spectrum combined with BP neural network. 

 

Measurement point number 1 2 3 4 5 6 7 8 9 

H [m] 0.38 0.43 0.41 0.41 0.37 0.41 0.40 0.41 0.42 

Average value [m] 0.41 

Tab. 4. Effective detection depths corresponding to different soil moisture contents. 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

So
il 

vo
lu

m
et

ric
 m

oi
st

ur
e 

co
nt

en
t[%

]

Measurement point number

 Soil moisture content inverted by AEA method
 Actual moisture content
 Absolute error

0-1
0

10
-20

20
-30

30
-40

40
-50

50
-60

60
-70

70
-80

80
-90

90
-10

0
0.2

0.4

0.6

0.8

1.0

1.2

So
il 

vo
lu

m
et

ric
 m

oi
st

ur
e 

co
nt

en
t[%

]

Depth[cm]



RADIOENGINEERING, VOL. 33, NO. 3, SEPTEMBER 2024 385 

  

 
Fig. 14. Outdoor verification of GPR power spectrum combined 

with BP neural network output regression line. 

content was better in this depth range. When the depth con-
tinues to increase to 90–100 cm, the absolute error showed 
a tendency to increase again, but does not exceed 1%. The 
overall results of the network output regression line analysis 
showed that the ARMA method combined with the BP neu-
ral network could successfully invert the soil moisture con-
tent in the range of 10–100 cm of the excavation profile. 

5. Conclusions 
In this paper, the methods of AEA and ARMA for in-

verting soil moisture content in the depth range that can be 
detected by ground penetrating radar were studied. By car-
rying out GPR numerical simulation and field measurement, 
the soil moisture content at different depths was inverted, 
and the following conclusions were drawn: 

There was an obvious linear relationship between the 
reciprocal envelope of the early signal amplitude of GPR 
and the soil moisture content, and the relationship 
(y = 2.540x – 0.007719 (R2 = 0.987)) between the early 
signal amplitude of AEA and the soil moisture content was 
given to reduce the error of secondary transmission.  
The relationship between the effective detection depth  
and the soil moisture content was as follows:  
200 MHz:  h = 0.095 × exp[0.51/(θ + 0.29)]  (R2 = 0.999); 
400 MHz:  h = 0.068 × exp[0.38/(θ + 0.26)]  (R2 = 0.999). 

The combined ARMA method and BP neural network 
successfully inverted the soil moisture content at different 
depths in the field radar detection profile. The prediction ac-
curacy in the shallow part of the first Gaussian window 
range was insufficient, and the error of soil moisture content 
inversion at the rest of the depths was less than 1.0%. 

The experimental results showed that the AEA method 
is suitable for the detection of soil moisture content near the 
surface, while the ARMA method was suitable for the detec-
tion of soil moisture content in the middle and deep layers. 
Based on this, the AEA method and the ARMA method can 
complement each other's strengths, and the coupling of the 

two methods can invert the soil moisture content in the 
whole GPR detection depth range.  
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