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Abstract. Brain tumors refer to abnormal cell proliferation 
formed in brain tissue, which can cause neurological dys-
function and cognitive impairment, posing a serious threat 
to human health. Therefore, it becomes a very challenging 
work to full-automaticly segment brain tumors using com-
puters because of the mutual infiltration and fuzzy bounda-
ry between the focus areas and the normal brain tissue. To 
address the above issues, a segmentation method which 
integrates edge features is proposed in this paper. The 
overall segmentation architecture follows the encoder 
decoder structure, extracting rich features from the 
encoder. The first two layers of features are input to the 
edge attention module, and to extract tumor edge features 
which are fully fused with the features of the decoder seg-
ment. At the same time, an adaptive weighted mixed loss 
function is introduced to train the network by adaptively 
adjusting the weights of different loss parts in the training 
process. Relevant experiments were carried out using the 
public brain tumor data set. The Dice mean values of the 
proposed segmentation model in the whole tumor area 
(WT), the core tumor area (TC), and the enhancing tumor 
area (ET) reach 91.10%, 87.16%, and 88.86%, respective-
ly, and the mean values of Hausdorff distance are 3.92, 
5.12, and 1.92 mm, respectively. The experimental results 
showed that the proposed method can significantly improve 
segmentation accuracy, especially the segmentation effect 
of the edge part.  
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1. Introduction 
As a common brain disease, glioma has a high inci-

dence, accounting for about 40% of all brain tumors and 
78% of all malignant brain tumors, which seriously endan-
gers human health [1]. Brain magnetic resonance imaging 
(MRI) is widely used in clinical practice because of its 
advantages such as good soft tissue contrast, multi-

parameter imaging in arbitrary direction, non-injury, and 
non-bone artifacts. In order to better understand the pa-
tient's condition and develop a reasonable treatment plan, 
doctors need to accurately classify the size, shape and 
location of the tumor. However, manually segmentation on 
the location of brain tumors and different focal areas rely-
ing only on doctors is not only time-consuming and labori-
ous, but also requires high diagnostic experience, and is in 
possession of great subjectivity. Automatic segmentation of 
brain tumors by computer technology can significantly 
improve the working efficiency of doctors, with advantages 
such as high efficiency and strong objectivity [2]. 

With the development of deep learning technologies, 
convolutional neural networks (CNNs) have gained good 
image segmentation performance and achieved good re-
sults in the field of medical image segmentation. Xu et al. 
[3] used transfer learning to pre-train network weights on 
ImageNet, then to fine-tune network weights with brain 
tumor images. Since the UNet network was proposed, 
Dong et al. [4] applied the UNet to the segmentation task 
of brain tumors. However, for three-dimensional MRI 
images of brain tumors, because only each slice is taken as 
input by the two-dimensional network, information be-
tween slices could not be extracted. To solve this problem, 
Beers et al. [5] proposed a three dimensional (3D) UNet 
network architecture, in which complete 3D MRI images 
could be directly inputted into the network. Based on the 
extraction of slice information in the image, the 3D convo-
lution kernel is used. Interlayer features can also be ex-
tracted at a deeper level. Due to its good segmentation 
performance, 3D UNet has become the most widely used 
basic model in the field of brain tumor segmentation, and 
some advanced deep learning networks are improved based 
on this network [6–9]. 

In the brain of a patient, there is mutual infiltration 
and blurred boundary between the normal soft tissue and 
the lesion area [10]. Therefore, in the brain MRI, the dif-
ference between foreground and background pixels is 
small, and the edge is fuzzy [11]. However, the edge of 
a lesion is an important feature in medical images, and 
human doctors pay much attention to the edge information 
when reading MRI. Correctly segmented tumor edges can 
reflect the contours and morphological characteristics of 
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tumors, which is crucial for the subsequent formulation of 
treatment plans [12]. Therefore, accurate prediction of 
lesion edge by CNN network has always been the focus 
and difficulty of this research field. At the same time, brain 
tumors are usually small in size, approximately accounting 
for only 1.54% of the whole brain image, and the volume 
of different sub-regions within the tumor is even smaller, 
which makes it difficult for the model to learn enough 
features from fewer positive samples in the training stage, 
and reduces the optimization quality of the model. 

To solve the above problems, researchers have made 
a lot of improvements based on 3D UNet. Zhang et al. [13] 
proposed the attention gate residual U-Net model 
(AGResU-Net), in which the attention gating mechanism is 
used to eliminate irrelevant and noisy features, and further 
to enhance the characteristic expression of tumor region. 
Aboelenein et al. [14] proposed a hybrid two track UNet 
(HTTU-Net), in which the first track focuses on the shape 
and size of tumors, while the second track captures contex-
tual information. The segmentation accuracy of tumor 
margin was improved effectively. Zhang et al. [15] pro-
posed the edge attention Network (ET-NET), which is used 
for two-dimensional (2D) image segmentation of retinal 
blood vessels. Shallow features are inputted into the edge 
supervision module, then the edge prediction results are 
transmitted to the weighted aggregation module, so that the 
edge information can be used more effectively. Lee et al. 
[16] proposed a boundary key point selection method to fit 
the target region with embedded expert knowledge. In this 
method, the key point graph generator is used to effectively 
constrain the selected key points on the structure boundary 
to obtain more accurate segmentation results. Zhou et al. 
[17] proposed a fusion loss function for the brain tumor 
segmentation task, which was composed of cross entropy 
loss and Dice loss. Cross-entropy losses are used to main-
tain stability during training, while Dice losses are used to 
reduce the effects of data imbalances. However, the current 
method has the following problems. First, the superficial 
features of the network are not all related to the edge, and 
the irrelevant features will reduce the ability of the network 
to recognize the tumor edge. Secondly, when fusing edge 
information with semantic segmentation backbone, in the 
most of the above methods fusion strategy is used only in 
full-resolution feature maps, so that edge information is not 
fully utilized in the tumor localization process. At the same 
time, in the current methods loss weighting sum is applied 
when learning multiple tasks, but the weight setting is 
manually set according to experience, and it is not effective 
enough to balance multiple losses. 

Therefore, in this paper a new segmentation frame-
work for brain tumors segmentation of 3D MRI images is 
proposed. Specifically, the ideas behind the development 
model are as follows. First, the shallow features extracted 
from the first two stages of 3D UNet network encoder are 
inputted into the designed edge attention module. The input 
feature map adjusts channel weights internally within the 
edge attention module, and features relevant to edges are 
filtered to generate more accurate edge prediction maps. 

Subsequently, the edge prediction map is fused with de-
coded segments at multiple levels, which, compared to the 
conventional fusion method typically performed only at the 
final level, enables a more effective integration of edge 
information. Finally, a fusion loss function is proposed, 
which is composed of cross entropy loss, Dice loss and 
edge loss. Meanwhile an adaptive weight determination 
method is proposed, and the weights of the three parts are 
adjusted adaptively with the training process using traina-
ble parameters. 

The rest of this paper is organized as follows. In 
Sec. 2, the proposed method is depicted in detail. Experi-
mental implementation and results and are given in Sec. 3. 
Finally, Section 4 concludes the paper.  

2. Method 

2.1 Data Preprocessing 
During the collection of medical images, due to the 

influence of imaging equipment, imaging principle and 
individual differences, the original images generally con-
tain degradation phenomena such as uneven brightness and 
noise [18]. Therefore, before segmentation, the data pro-
vided by brain tumor segmentation (BraTS) need to be pre-
processed, such as bias field correction and standardization, 
to reduce misdiagnosis and to improve diagnostic accuracy. 
In this paper, N4ITK bias field correction method [19] was 
used to remove image inhomogeneity. The examples of 
brain tumor images before and after processing are shown 
in Fig. 1. Since the original data came from different insti-
tutions and were obtained by different scanning instru-
ments, the value range of each group of data would also be 
inconsistent. Z-Score standardization method should be 
used to unify the values of all data into a small range and 
make the values of images present a normal distribution, so 
as to facilitate the numerical calculation of the model in the 
training process. In this study, the four modal images of 
each patient were standardized separately, and the Z-Score 
standardization was shown by 

 
std

−
=

X XX
X

  (1) 

where X denotes a modal image of the patient, X̅ is the 
mean of all voxels of X, and Xstd is the standard deviation 
value of all voxels of X. 

 
                                        (a)                                 (b) 

Fig. 1.  Bias field correction results: (a) Original image, 
(b) corrected result. 
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Fig. 2. Network architecture. 

2.2 Network Structure Overview 
Figure 2 shows the overview of the proposed brain 

tumor segmentation framework. In the encoder, a convo-
lutional module with a residual structure [20] is used for 
feature extraction. The network consists of four coding 
blocks, each of which corresponds to a feature map of 
different resolution. The choice of a four-stage encoder 
structure is grounded in preliminary analysis and investi-
gation of experimental results. By systematically expe-
rimental comparisons, we have found that the four-stage 
encoder structure yields optimal performance for the given 
task. Fewer stages may result in insufficient model capacity 
to capture complex features and patterns, while more 
stages could escalate computational costs, rendering the 
model cumbersome and impractical. 

The shallow features extracted from the first two cod-
ing blocks are inputted into the edge attention module. The 
edge map of the brain tumor is predicted by the edge atten-
tion module, the shape prior of the segmentation target for 
the segmentation network is provided, and the poor per-
formance of the network in boundary segmentation is im-
proved. In the decoder, three decoding blocks are used to 
locate the tumor according to the extracted features. Before 
each decoding block, a multi-feature fusion module (MFM) 
is used to fuse the feature maps from the encoder, front 
layer and edge attention modules at the feature level. The 
final convolution layer unifies feature graphs with three 
convolution kernel size of 1, corresponding to the three 
segmented sub-regions. 

2.3 Encoder Network 
Using the encoder the low-level and high-level se-

mantic features of the inputted image are extracted succes-
sively. The first three coding blocks are composed of re-
sidual convolution module and downsampling, and the 
fourth coding block has only one residual convolution 
module. The Swin Transformer consists of four stages, as 
shown in Fig. 2. The residual convolution module is shown 
in Fig. 3(b), which consists of two 3 × 3 × 3 convolution 
layers with stride 1 and residual connection. The number of 

 
                                   (a)                                      (b) 

Fig. 3.  The structure schematic of convolution module: 
(a) Convolution module, and (b) residual convolution 
module. 

convolutional kernels in the first layer is 32. After every 
downsampling, the number of convolution kernels doubles. 
After convolution, instance normalization (IN) and leaky 
Relu activation function are adopted. The subsampling 
module is a 3 × 3 × 3 convolution with stride 2. After 4 
encoding blocks, the generated feature map size is 1/8 of 
the inputted image. 

2.4 Decoder Network 
The decoder consists of multi-feature fusion module 

and decoding block. The multi-feature fusion module is 
used to upsample the features from the previous layer, then 
to fuse the features from the coding block and edge atten-
tion module. Upsampling is a 2 × 2 × 2 deconvolutional 
layer with stride 2. According to the extracted features, the 
decoding block relocates the positions of different semantic 
regions. The decoding block is composed of a convolution 
module, as shown in Fig. 3(a), which contains two 
3 × 3 × 3 convolution layers with step size 1. After convo-
lution, case standardization and leaky Relu activation func-
tion are also adopted. The decoding block uses four upsam-
pling operations to convert the low-resolution feature map 
extracted from the coding segment into a high-resolution 
feature map. A 1 × 1 × 1 convolutional layer with stride 1 
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is added to the network as the segmentation layer, and the 
results are sent to the sigmoid layer to obtain the output 
probability graph of the model, and to achieve end-to-end 
segmentation. 

2.5 Edge Attention Module 
In the process of manually segmenting brain tumors 

and their sub-regions, tumor margins provide experts with 
extremely important information. In order to improve the 
deep learning network's attention to edge information, and 
further to improve the segmentation ability of tumor re-
gions, in this paper the ways to supplement more brain 
tumor edge information to the network are studied in 
depth. In order to select the features with edge information, 
the outputted feature maps are visualized by the four en-
coding blocks, as shown in Fig. 4.  

As can be seen from Fig. 4, edge information is con-
sidered to be a low-level shallow feature which is only 
captured at the shallow layer of the network. Therefore, the 
feature maps of the first two levels of the code segment are 
inputted into the edge attention module in order to better 
capture and to utilize these key features. The specific struc-
ture of the module is shown in Fig. 2. In this module, the 
inputted feature graph is first up-sampled to the same size, 
then the number of feature channels is adjusted after the 
convolution of two convolution cores with the size of 1, 
and the channel dimension is finally superimposed. 

However, not all shallow feature maps are associated 
with edge information. Some irrelevant features may affect 
the edge attention module's prediction of the edge graph. 
Therefore, it is necessary to input the superimposed feature 
map into the channel attention module and to process it. In 
the channel attention module a structure similar to the 
squeeze and excitation (SE) attention module is used [21], 
which can judge the importance of each channel so as to 
obtain the attention weights of each channel in the feature 
map, enabling the network to ignore irrelevant features when 

 
Fig. 4.  The outputted feature maps of four encoders. 

 
Fig. 5. The framework of channel attention module. 

predicting the edge map. The specific module structure is 
shown in Fig. 5. 

First, a global average pooling layer is used to com-
press the feature map, and its calculation process is shown 
by 

 sq
=1 =1 1
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where C, H, W and D represent the number of channels, 
height, width and depth of the feature map, respectively. 

Then feature excitation is used to adaptively recali-
brate the channel relationship, and to generate the channel 
dimension attention weight matrix. The weight calculation 
process of the C channel is described by 

 1 0ex ( ( ( ( ))))F W W inputσ δ=  (3) 

where σ and δ respectively represent sigmoid and ReLU 
activation functions.
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∈  respectively 
represent two fully connected layers, where r is the hy-
perparameter used for dimensionality reduction, which is 
set to 8 in this experiment. 

Finally, the output weight matrix is multiplied by the 
channel dimension of the original feature graph, and the 
feature graph after the channel weight correction is ob-
tained. 

Subsequently, the processed feature maps are inputted 
into the convolution module. The feature map is transferred 
into two branches, the first of which takes it as the super-
vised prediction image and optimizes the network by calcu-
lating the loss value against the standard edge image. 
When getting the standard edge image, Sobel operator is 
used to extract the edge. The second branch fuses it with 
the feature map in the decoder to provide more edge infor-
mation for the split network. 

2.6 Multi-feature Fusion Module 
In order to merge edge features with semantic features 

extracted from UNet network more effectively, a multi-
feature fusion module is proposed in this paper. At each 
resolution level of the decoding path, multi-feature fusion 
module is used to fuse features from the front layer, jump 
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Fig. 6.   The framework of multi-feature fusion module. 

connections from the encoder, and edge attention module 
to improve the representation ability of the model. The 
specific structure is shown in Fig. 6. First, the features of 
the front layer are up-sampled so that they have the same 
scale as the other two features. Then the channel dimension 
is spliced. Next, in order to better fuse these features and to 
reduce the number of parameters, 3D convolution with 
convolution kernel size of 1 is used for feature fusion. 
Finally, the fused feature map is used as the output. 

2.7 Adaptive Weighted Hybrid Loss Function 
Binary cross entropy (BCE) loss is widely used in 

medical image segmentation tasks to measure the differ-
ence between the two distributions by calculating the cross 
entropy between the model prediction and the ground truth 
(GT) label for each pixel in the image. However, since the 
proportion of foreground region in medical images is much 
smaller than that of background region, a serious data im-
balance phenomenon exist. This loss function is calculated 
based on cross entropy, and it will pay more attention to 
categories with a large number of samples, resulting in 
poor prediction effect for categories with a small number 
of samples. Dice loss measures the prediction effect of the 
model by calculating the overlap between the prediction 
results and the real labels, and encourages the model to 
segment a few categories more accurately. As a result, Dice 
loss has a certain relieving effect on the imbalance of med-
ical images in categories. The cross entropy loss function 
and Dice loss function are shown in (4) and (5) respectively, 
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where N represents the number of voxels of MRI data input 
to the model, yi represents the true category of pixel i, and 
pi,c 

 represents the probability that the model predicts the i-th 
voxel as the true category c of that voxel. 

In the segmentation network of fused edge attention 
proposed in this paper, the weighted sum of three loss 
functions is used, and the total loss function is shown in 
(6). The three loss functions are respectively the cross 
entropy loss function of the segmentation region, the Dice 
loss function of the segmentation region, and the cross 
entropy loss function of the edge. The cross entropy loss of 
the segmentation region (LBCE) measures the classification 
accuracy of the prediction. The Dice loss of the seg-

mentation region (LDice) is a measure of how similar the 
predicted split region is to the real label. The cross entropy 
loss of the edge (LEdge) is used to measure the difference 
between the edge prediction graph and the real edge label: 

 total 1 BCE 2 Dice 3 Edge= .L L L Lα α α+ +   (6) 

By weighting the three losses, the importance of the 
three loss functions can be balanced according to the task 
requirements and data characteristics. At the same time, the 
weight of the loss affects the training effectiveness of the 
model. However, in previous studies, the weight loss was 
simply set manually by experience or selected by simple 
comparative experiments, which would consume a lot of 
computing resources, and make it difficult to determine the 
best weight combination. To solve the above problems, in 
this paper an adaptive weighting method is proposed, 
which introduces trainable weight parameters into the loss 
function, sets α1, α2 and α3 as trainable parameters, updates 
the weights by backpropagation and optimization algo-
rithm, and adaptively learns the optimal value of the 
weights according to the characteristics of the training data. 

However, in the process of optimization of network 
parameters in backpropagation algorithm, simply using 
linear sum of losses to learn the weight will cause the 
weight α to rapidly converge to zero. Therefore, by experi-
mental verification, in this paper a penalty factor α is added 
to the loss function, which punishes the optimization direc-
tion making α decaying rapidly. Finally, the adaptive 
weighted hybrid loss function proposed in this paper is 
shown in (7), which is smooth and differentiable, and the 
task weight will not converge to zero: 

 
3

final 1 BCE 2 Dice 3 Edge
1= .
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L L L Lα α α
α
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3. Experimental Results and Analysis 
In order to verify the effectiveness of the proposed al-

gorithm in brain tumor segmentation task, a series of com-
parative experiments were designed to observe the influ-
ence of different algorithms on the experimental results, 
and to analyze the reasons. The experimental environment 
of this study was installed on a Baode server with 12 GB 
GPU, 1 TB hard disk capacity, 32 GB RAM and Win-
dows 10 operating system. The software platform used was 
PyTorch1.9, Python3.7 and related Python function libraries. 

3.1 Data Set and Experimental Settings 
In this paper, the BraTS2019 and BraTS2020 public 

training dataset [22], [23] was adopted to train and test the 
model. The BraTS2019 included 335 cases of brain glio-
mas, including 76 cases of low-grade gliomas and 259 
cases of high-grade gliomas. The BraTS2020 included 369 
cases of brain gliomas, including 76 cases of low-grade 
gliomas and 293 cases of high-grade gliomas. Each case 
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Fig. 7.  Four modal MRI images and physician-labeled brain 

tumor image of a patient. 

contains T1-weighted MRI (T1), T1-weighted MRI with 
contrast enhancement (T1ce), T2-weighted MRI (T2), 
fluid-attenuated inversion recovery (Flair) and a ground 
truth label manually segmented by experts, which is shown 
in Fig. 7. 

The experiment uses 5-fold-cross-validation to divide 
the BraTS2019 and BraTS2020 data set according to 4 : 1. 
The size of the input image block is 64 × 128 × 128 voxels. 
The network is optimized by Adam optimizer. The initial 
learning rate of the weight of the network model is 3e–04, 
the initial learning rate of the weight of the loss function is 
1e–06, the weight decay rate is 1e–05, the dropout rate is 
0.5, and the batch size is 2. The maximum number of 
epochs is 400, and the early stop method is used to end the 
training process.  

The basic process of the experiment was as follows. 
Step 1 is that bias field correction and standardized pre-
processing were performed on MRI images in BraTs2019 
dataset. The second step is to perform basic data enhance-
ment on the pre-processed MRI images, such as translation, 
flipping, rotation, mirroring, etc. The default usage proba-
bility of each operation is 0.3. In the third step, Sobel oper-
ator is used to get the edge supervised label image. The 
fourth step is to use the processed data to train the pro-
posed fusion edge attention mechanism model. The fifth 
step is to test the performance of the model using test data 
and evaluate the segmentation results. 

3.2 Evaluation Metrics 
Using the segmentation algorithm the WT, TC and 

ET regions from the patient's multimodal MRI image will 
be segmented. WT contains TC, and TC contains ET, and 
the three regions present a hierarchical nested topology. In 
this paper, Dice coefficient, sensitivity, specificity and 95% 
Hausdorff distance are used to evaluate the segmentation 
performance of the model for the three regions, in which 
Dice coefficient is the main evaluation index, and 

Hausdorff distance is mainly used to evaluate the segmen-
tation accuracy of the model for tumor boundaries. Sensi-
tivity, also known as recall rate, can show the degree of 
influence of loss function on segmentation results. The 
expressions of the three indicators are respectively shown 
in (8)–(11): 
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where P denotes the tumor area predicted by the model. T 
correspondingly is the real tumor area. P0 represents the 
background area predicted by the model. T0 represents the 
real background area. ∧ represents a logical ‘and’ opera-
tion, and |⋅| represents the size of sets. The a is the point on 
the surface A of the region T, and b is the point on the sur-
face B of the region P. The function d(⋅) is used to calcu-
late the distance between the points a and b. 

3.3 Ablation Experiments 

3.3.1 Ablation of Different Modules 

To demonstrate the effectiveness of adding modules 
to the proposed method, ablation experiments were per-
formed on the baseline model 3DUNet on the BraTs2019 
dataset. And the addition of edge attention (EA) mecha-
nism and multi-feature fusion module (MFM) respectively 
were tested. The effectiveness of EA, MFM and the adap-
tive weighted hybrid Loss (AWL) function are shown in 
Tab. 1. 

As can be seen from Tab. 1, after the edge attention 
module is added to the 3DUNet model, all its indicators are 
improved, especially the Dice score of the ET region is 
increased by 3.93%, while the Mean Hausdorff of the three 
subregions is significantly reduced, which indicates that 
after adding prior knowledge of edge importance to the 
model.  The model learns  more features to distinguish the 

 

Models 
Mean Dice (%) Mean Sensitivity (%) Mean Hausdorff (mm) 

WT TC ET WT TC ET WT TC ET 

UNet(base) 89.79 85.13 80.90 94.08 85.46 80.77 13.61 7.47 5.45 

UNet+EA 90.54 86.97 84.83 92.43 89.45 86.28 6.15 5.64 3.79 

UNet+EA+MFM 90.07 86.64 86.79 92.78 88.12 87.42 4.74 5.86 3.65 

UNet+EA+AWL 90.43 87.47 85.67 91.38 86.43 84.27 6.37 5.07 3.44 

Proposed 91.10 87.16 88.86 94.50 93.17 88.86 3.92 5.12 1.92 

Tab. 1.  Performance comparison of different improvements. 
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region near the edge, which improves the segmentation 
accuracy. After the multi-feature fusion module is used, the 
edge information is fused with the reference semantic seg-
mentation network at the feature level, which improves the 
application effect of the features. The training process of 
the model is optimized by using the proposed adaptive 
weighted mixed loss idea in the loss function. When the 
three improvements are used at the same time, the model 
can effectively combine the advantages of the three im-
provements, and can achieve excellent results on all indica-
tors, which shows that the improvements of edge attention 
module, multi-feature fusion module and adaptive 
weighted hybrid loss function are feasible and very effec-
tive. 

3.3.2 Ablation of Edge Attention Module 

In order to demonstrate the role of edge attention 
module and channel attention during the model prediction 
process, a series of comparative experiments on the 
BraTs2019 dataset were conducted, comparing the baseline 
model 3DUNet, the channel-enhanced edge attention mod-
ule (CEEA), and the non-channel-enhanced edge attention 
module (NCEA). The experimental results are shown in 
Fig. 8. 

As shown in Fig. 8(a) and 8(d), the 3DUnet network 
was accurate in predicting the gross tumor region without 
marginal supervision, but lacked more powerful recogni-
tion ability in the marginal region, resulting in large false 
positive areas. As shown in Fig. 8(b) and 8(e), after adding 
the idea of edge supervision, the model learned more edge-
related features and guided the segmentation network, thus 
limiting the segmented tumor region and significantly 
reducing the false-positive region. As shown in Fig. 8(c) 
and 8(f), after adding channel weights in the edge attention 
module and redistributing ideas, the model's prediction of 
tumor edge is significantly more accurate, and the segmen-
tation of tumors by the guiding model is also the closest to 
the results labeled by experts. 

3.3.3 Ablation of Loss Function 

In order to prove the validity of the loss function pro-
posed in this paper, ablation experiments were conducted 
on the BraTs2019 data set for each part of the loss func-
tion, and the experimental results are shown in Tab. 2. 

In Tab. 2, the training effects of the model are com-
pared using the single loss function, the average weighted 
sum, and the proposed adaptive weighted mixed loss. 
These automatic weights can converge to similar optimal 
values during training iterations. Throughout the entire 
training process, the final task weights may vary. For our 
final model, at the end of training, the three parts of the 
loss were weighted in a ratio of 2.6 : 6.3 : 1.06, respective-
ly. As can be seen from Tab. 3, the accuracy of training 
model using mixed loss function is significantly higher 
than that of single loss. For example, the average segmen-
tation accuracy can be improved by 5.31% only using 
simple linear average. Especially for small targets in TC 

 
Fig. 8.  Heat map comparison of experimental results on 

prediction of (a) baseline model, (b) CEEA, (c) NCEA, 
(d) ground truth, (e) edge with NCEA, and (f) edge 
with CEEA. 

region and ET region, the improvement amplitude is larger, 
which indicates that the fusion of cross entropy loss and 
dice loss effectively improves the segmentation effect of 
the model on small volume targets. After adding edge loss, 
the model improves the importance of edge features in the 
learning process under supervised conditions, and the seg-
mentation effect of edge parts is significantly improved. 
When using the determined weights, the model cannot 
adjust the weights of each part in real time according to the 
training effect, so the performance is poor. When the train-
able parameter is used to determine the weight, the model 
will reduce the weight of part with high loss, so as to avoid 
the parameter adjustment with too large step in the wrong 
direction. When the three-part adaptive weighted loss func-
tion is used, the model achieves the best segmentation 
effect. 

3.4 Results Comparison of the Advanced 
Models 
To demonstrate the effectiveness of the proposed al-

gorithm, we first compared it with 7 state-of-the-art CNN 
methods on the BraTs2019 dataset, including 2DUNet 
[10], 3DUNet, Attention Unet [24], UNet++ [7], ET-Net 
[15], Point-unet [25], and TransBTS [26]. For the fairness 
of comparison, all the results of different models are the 
best ones obtained by optimization. And the same data 
preprocessing and training steps are used. The experi-
mental results are shown in Tab. 3 and Tab. 4. Best results 
are highlighted in bold. 

As can be seen from the experimental results in 
Tab. 3, on the BraTs2019 dataset, the average Dice scores 
of the model proposed in this paper are as high as 91.10%, 
87.16% and 88.86%, respectively, which are 1.31%, 2.03% 
and 7.96% higher than that of the baseline model 3DUNet. 
This shows that the improved network architecture can 
effectively improve the ability of the model to divide the 
TC region and the ET region, especially for the small ET 
region. It is worth noting that due to the addition of the 
boundary attention module, the model pays more attention 
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to boundary-related features, which greatly improves the 
boundary perception measure Hausdorff, which is signifi-
cantly better than other methods. As can also be seen from 
Tab. 4, the proposed model also demonstrates excellent 
performance, particularly on the Hausdorff distance, which 
indicates that the proposed method is highly effective in 
edge constraints. 

Figures 9 and 10 show the segmentation results using 
models such as 3DUNet compared to labeled images. It can 
be found from Fig. 9 and Fig. 10 that the fuzzy boundary 
between the lesion area and the healthy voxels often leads 
to errors in the model's classification of voxels near the 
boundary. Using the guidance of boundary attention, the 
model pays more attention to distinguishing the features of 

the boundary, which is more in line with the habit of man-
ual annotation by experts, and also significantly improves 
the segmentation accuracy, making the segmentation result 
closer to the real label. 

4. Summary 
Precise segmentation of brain MRI images is of great 

significance to guide clinical diagnosis and surgical plan-
ning, and automatic segmentation technology can greatly 
alleviate the adverse effects of manual segmentation, which 
is time-consuming and labor-intensive, and depends on the 
subjective cognition of doctors. In this paper, an effective 

 

Loss 
Weights distribution Mean Dice (%) Mean Hausdorff (mm) 

LBCE LDice LEdge WT TC ET WT TC ET 

Only LBCE 1 0 0 86.36 81.26 79.64 9.46 7.46 7.41 

Only LDice 0 1 0 85.41 82.89 81.46 12.46 14.56 11.58 

LBCE & LDice 1 1 0 88.11 85.69 86.79 8.16 7.99 6.87 

Unweighted sum  1 1 1 89.16 86.48 87.54 5.15 5.93 3.36 

Experience tuning 2 3 2 90.37 86.64 86.79 4.74 5.86 3.65 

Two loss automatic 
weighting 

√ √ - 90.87 87.24 86.34 7.86 9.02 4.46 

√ - √ 89.12 85.56 86.41 5.46 7.56 2.47 

- √ √ 87.64 85.48 87.57 7.96 6.48 7.46 

Proposed √ √ √ 91.10 87.16 88.86 3.92 5.12 1.92 

Tab. 2.  Experimental results using different loss functions. 
 

model 
Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean Hausdorff (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

2DUNet 88.16 82.85 79.94 92.36 86.24 80.56 99.84 99.93 99.94 16.35 11.27 9.16 

3DUNet 89.79 85.13 80.90 94.08 87.46 80.77 99.84 99.94 99.95 13.61 7.47 5.45 

Attention Unet 88.98 82.36 81.23 91.45 86.45 76.57 99.85 99.94 99.95 14.12 10.17 8.53 

UNet++ 90.27 84.06 79.55 94.23 85.77 80.41 99.88 99.95 99.95 10.21 9.72 6.78 

ET-Net 90.78 86.39 84.73 92.54 89.46 86.15 99.86 99.95 99.96 6.57 5.49 3.19 

Point-unet 91.61 87.07 86.42 91.61 87.94 87.18 99.89 99.96 99.96 9.16 7.13 8.75 

TransBTS 91.15 86.43 86.47 92.41 94.92 86.39 99.88 99.95 99.96 6.57 9.16 6.65 

Proposed 91.10 87.16 88.86 94.50 93.17 88.86 99.88 99.96 99.96 3.92 5.12 1.92 

Tab. 3.  Comparison of segmentation results of different model on BraTs2019. 
 

model 
Mean Dice (%) Mean Sensitivity (%) Mean Specificity (%) Mean Hausdorff (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

3DUNet 85.45 82.87 78.86 91.15 85.72 79.86 99.82 99.93 99.93 18.34 10.53 10.04 

Point-unet 89.34 85.34 83.37 89.46 85.61 85.37 99.86 99.95 99.94 13.25 9.23 9.52 

TransBTS 89.04 84.16 83.94 88.31 89.32 85.42 99.85 99.95 99.95 7.34 9.14 9.37 

Proposed 90.23 84.04 85.67 92.50 90.43 85.11 99.85 99.94 99.96 5.25 8.94 6.16 

Tab. 4.  Comparison of segmentation results of different model on BraTs2020. 
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Fig. 9.  2D visualization of segmentation results of different algorithms. 

 
Fig. 10.  3D visualization of segmentation results of different algorithm. 

segmentation algorithm of 3D brain tumor based on fusion 
of edge attention mechanism is proposed. The network 
generally follows the encoder-decoder structure, in which 
the features are extracted by the first two encoding block, 
and are inputted into the edge attention module to predict 
the tumor edge. Then the above prediction from encoder is 
connected the prediction from the decoder for feature fu-
sion. Finally, the proposed adaptive weighted hybrid loss 
function is used to adjust the weight of the three-part loss 
adaptively and to train the network, which can avoid too 
much adjustment in the wrong direction during the training 
process. The test results of BraTs2019 data set show that 
the average Dice value of the algorithm in WT, TC and ET 
regions can reach 91.10%, 87.16% and 88.86%, respective-
ly, which proves the feasibility and effectiveness of the 
method. Our code is available at 
https://github.com/tianhengyi/EFUNET. 
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