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Abstract. This paper proposes a deep neural network 
(DNN)-based approach for radiation pattern synthesis of 8 
elements phased array antenna. For this purpose, 181 points 
of a desired radiation pattern are fed as input to the DNN 
and phases of array elements are extracted as the outputs. 
Existing DNN techniques for radiation pattern synthesis are 
not directly applicable to higher-order arrays as the dataset 
size grows exponentially with array dimensions. To over-
come this bottleneck, we propose novel and efficient meth-
ods of generating datasets for DNN. Specifically, by lever-
aging the constant phase-shift characteristic of the phased 
array antenna, dataset size is reduced by several orders of 
magnitude and made independent of the array size. This has 
considerable advantages in terms of speed and complexity, 
especially in real-time applications as the DNN can imme-
diately learn and synthesize the desired patterns. The per-
formance of the proposed methods is validated by using an 
ideal square beam and an optimal array pattern as reference 
inputs to the DNN. The results generated in MATLAB as well 
as in CST, demonstrate the effectiveness of the proposed 
methods in synthesizing the desired radiation patterns. 
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networks, active electronically scanned array, phased 
array, array pattern, Computer Simulation Technology 

1. Introduction 
Beam scanning is a signal processing technique com-

monly used in Active Electronically Scanned Array (AESA) 
antennas [1] to steer the main lobe of the radiation pattern 
towards a specific direction while reducing the energy radi-
ated in unwanted directions. The practical utilization of 
AESA antenna systems spans both space and ground appli-
cations, starting from radars [2], to satellite communication 
[3], to data links [4] and 5G networks [5] to provide high-
speed data connectivity. Beam scanning can be performed 
mechanically by adjusting the direction of the array to a spe-
cific direction, or it can be achieved electrically [1‒4]. Elec-

trical beam scanning involves adjusting the phase of the sig-
nals at each antenna element to achieve constructive 
interference in the desired direction and destructive interfer-
ence in other directions. Beam scanning is conventionally 
done using numerical techniques which give the excitation 
phases to move the beam in the desired direction. However, 
the conventional methods for synthesizing radiation patterns 
in AESA antennas are often computationally intensive and 
time-consuming, making them challenging to implement in 
real-time critical applications [6]. In the domain of antenna 
arrays, machine learning has been successfully applied for 
antenna design and pattern synthesis, failure diagnosis of 
microstrip patch antenna array, and antenna selection as well 
as the direction of arrival estimation [7‒16]. With the emer-
gence of machine learning techniques, a paradigm shift has 
occurred in radiation pattern synthesis. Machine learning ap-
proaches offer significant advantages, as they enable the 
training and testing of models using multiple data points 
without the need for repetitive computations. Once trained, 
these models can be readily implemented on embedded sys-
tems or microcontrollers [17], providing a practical and 
efficient solution for radiation pattern synthesis. 

The advancement in machine learning techniques has 
revolutionized the field, offering a more accessible and scal-
able approach to performance enhancement of antenna ar-
rays. The neural network (NN)-based techniques such as 
convolutional neural networks (CNN) [12], [13] and deep 
neural networks (DNN) [18‒20] have been developed for 
antenna array pattern synthesis to optimize the radiation pat-
terns for specific purposes. In the realm of radiation pattern 
synthesis, previous research efforts have focused on 2D syn-
thesis using CNN architecture. CNN, known for its expertise 
in image processing tasks due to its ability to automatically 
learn spatial features from data, has been used to process 3D 
geometry and antenna array features. By employing CNN, 
researchers have optimized antenna array element excitation 
and phase weighting to achieve desired radiation patterns, 
such as beamforming, null steering, sidelobe reduction, re-
flect arrays and 2D pattern synthesis. 

More recently, researchers have found ways to im-
prove the radiation patterns for a highly coupled antenna ar-
ray with inter-element spacing being 0.28λ, where λ is the 
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wavelength. These NN-based methods are trained on various 
input radiation patterns to determine the complex antenna 
weights for individual array elements. In this line of work, 
the authors in [18] used DNN for a 4-element antenna array 
to synthesize a radiation pattern that follows an ideal pattern. 
The results showed that the DNN-based method was accu-
rate and flexible as the patterns of the four-element antenna 
array were almost perfectly following the ideal pattern. De-
spite the performance gain, there are some major drawbacks 
in [18] as the approach used to generate the dataset for DNN 
is not scalable and requires a tremendous amount of training 
even for a small array of just 4 elements. The training dataset 
size grows exponentially with increasing the array size, 
making it impractical for higher-order antenna arrays. This 
motivated us to further extend this work to different array 
structures and array sizes without increasing the computa-
tional complexity of DNN by limiting the size of the training 
dataset. By extending the scope of investigation to larger ar-
rays, we aim to uncover new insights and advancements in 
1D radiation pattern synthesis, contributing to the existing 
body of knowledge in this field. 

In this work, we introduce new approaches to generate 
datasets for training the DNN architecture for radiation pat-
tern synthesis that overcomes the limitations of previous 
work [18] and extends it to higher-order linear phased ar-
rays. In our work, we consider a phased-array antenna com-
prising 8 elements (though the approach can be extended to 
higher orders) and propose three different methods to en-
counter the problem of dataset size. The first method is 
based on restricting the range of phases to 180° thereby lim-
iting the dataset to tractable size. Although this approach 
provides satisfactory results in terms of main beam scan-
ning, it cannot synthesize the desired sidelobes. To over-
come this, we devise another method that uses randomly 
generated phases with some correlation structure to form the 
dataset. The correlation is necessary as the DNN cannot 
learn the relationship between input and output from com-
pletely unstructured and independent data. It is shown that 
by randomly varying the phases over the full range from  
–180° to 180° better performance can be achieved with 
a smaller dataset size. The third method generates the dataset 
based on the constant phase difference between array ele-
ments instead of taking all combinations of phases of each 
element. This approach has clear advantages as the phases 
of individual elements are trivially known if the phase-shift 
is known and hence there is no sense of taking all the possi-
ble combinations of the phases of each element as is done in 
[18]. Hence, by leveraging the constant phase shift between 
array elements, this method can reduce the size of the dataset 
by several orders of magnitude. This is extremely crucial for 
the DNN, especially in real-time scenarios as the DNN can 
readily learn and synthesize the desired array patterns. 

The main contributions of our work are summarized as 
follows: 

• A novel DNN-based architecture is presented that 
could synthesize the radiation pattern for higher order 
linear phased array antenna. 

• Three methods are proposed to generate datasets for 
training the DNN model with much smaller dimensions 
compared to existing methods making them feasible 
for higher-order arrays. This distinguishes our work 
from [18] which does not apply to higher-order arrays. 

• Validation of the proposed DNN-based method is car-
ried out using both MATLAB and electromagnetic 
simulator CST with ideal square wave and optimal ar-
ray pattern. The radiation patterns synthesized using 
DNN followed the desired patterns in beam scanning 
of the main lobe as well as the sidelobes. 

The remainder of the paper is organized as follows. 
Section 2 presents the mathematical model and the array 
structure of 8 elements linear phased array as implemented 
in CST, Section 3 describes the DNN framework for synthe-
sizing antenna patterns, Section 4 presents proposed dataset 
generating strategies for DNN model, Section 5 describes 
validation setup for the proposed datasets, Section 6 presents 
numerical results and discussions, and finally, we conclude 
the paper in Sec. 7.  

2. System Model  
The radiation pattern of antenna arrays can be con-

trolled and steered in different directions by adjusting the 
complex weights fed to the individual array elements. The 
complex weights of array elements form an array factor 
which is a function of the position of antennas in the array 
and the complex weights. In the case of AESA antennas with 
N elements, the array factor can be written as [21]: 
 ( )exp jnAF W ψ= ,  (1) 

where ( ) ( )02 1 cosn dψ π θ= − − , (2) 

and ( )exp jnW A ϑ= . (3) 

Here n ∈ [1,N] is the element number, d is the inter-element 
spacing, ψ is the relative phase between the elements of the 
array, θ0 is the scan angle of the main beam, A is the ampli-
tude (which is set to 1 in case of the uniformly excited 
phased array) and 𝜗𝜗 is the input phase. The numerical ap-
proach for beam scanning can be derived from (1). Specifi-
cally, assuming ψ = 0 in the direction of main beam, equa-
tion (2) can be rewritten as: 

 ( )0coskdψ θ β= − + , (4) 

 ( )0  coskdβ θ⇒ =  (5) 

where k = 2π/λ and β is the progressive phase shift between 
array elements. By utilizing the numerical method, a radia-
tion pattern representing the desired scan angle can be ob-
tained. For instance, if we want the main beam to steer at 
120°, we would obtain the progressive phase shift of –90° 
from (5). It should be noted that the numerical method of 
beam scanning provides a benchmark for evaluating the per-
formance of the DNN model to be presented later. 
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2.1 AESA Antennas Full-Wave Model 
The radiation pattern of a phased array depends heavily 

on the geometry and arrangement of the individual antenna 
elements within the array. We consider an 8-element linear 
phased-array antenna placed in xy-plane and the radiation 
pattern is produced in the z-plane. The broadside of the array 
is observed at 90°. Figure 1(a) represents the CST model of 
1 × 8 patch antenna array for the simulation of radiation pat-
terns corresponding to the input signal of the antenna ele-
ment. The substrate used is RT5880 with a dielectric con-
stant of 2.2 and a thickness of 1.575 mm. The dimensions of 
an individual antenna element are shown in Fig. 1(b).  
The operating frequency of the AESA antenna is 10 GHz  
(X-band) and the inter-element spacing of 0.5λ is consid-
ered. The simulation is performed on CST, a commercial 
three-dimensional EM simulator. 

3. DNN-Based Modeling  
This section presents a comprehensive and detailed ar-

chitecture of DNN designed for pattern synthesis in the an-
tenna array. The DNN provides a powerful method for gen-
erating the phases for desired radiation patterns in array 
antennas. DNN uses various layers, optimizers, and an accu-
racy checker to generate accurate radiation patterns. 

3.1 Architecture of DNN 
The DNN is a type of neural network organized into 

multiple layers of interconnected nodes or neurons. Typi-
cally, it consists of an input layer, multiple fully connected 
hidden layers and an output layer. The deep architecture of 
DNN allows it to learn complex data patterns from input 
data. 

The architecture of the proposed DNN model is shown 
in Fig. 2 which is designed to meet the specific requirements 
of the pattern synthesis task that allows an accurate and ef-
ficient radiation pattern generation. There are 181 neurons 
in the input layer corresponding to a specific angle point 
ranging from 0° to 180° in the radiation pattern synthesis. 
The input layer of the neural network receives individual 
data points associated with angles as inputs and allows the 
network to capture the complete pattern information. 

The DNN uses a sequence of 8 interconnected hidden 
layers, boosting the network's ability to understand complex 
patterns and correlations within data. Each successive hid-
den layer represents a reduction of 20 neurons, promoting 
a gradual reduction in the dimensional representation of the 
network. Specifically, the first hidden layer has 160 neurons, 
the second layer has 140 and the last hidden layer has 20 
neurons. 

 
(a) 

 
                                  
 
 
 
 
 
 

 
 

     (b) 

Fig. 1.  (a) AESA antennas in CST full-wave simulator; 
(b) enlarged view of individual antenna elements. All 
dimensions are in mm. 

 
Fig. 2. Architecture of the DNN. 
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We use a rectified linear unit (ReLU) activation func-
tion in each layer of DNN architecture. This activation func-
tion is commonly employed in deep learning models for its 
ability to capture complex patterns effectively and introduce 
non-linearity into the network. The output layer of DNN cor-
responds to phases of the antenna array elements. For the  
8-element phased array antenna considered in our work, the 
output layer shows 7 neurons corresponding to phases of ar-
ray element 2 up to 8. The phase of element 1 is taken as 
a reference and is set to 0°, while the amplitudes are all set 
to unity. The mean squared error (MSE) is used to measure 
the average squared difference between the predicted and 
target values. It shows whether the network can accurately 
predict the desired radiation pattern. The Adam optimizer is 
also used to update the weights of the network during the 
training process.  

4. Dataset Generation for DNN  
The performance of DNN strongly depends on the da-

taset used for training. The dataset is generated by extracting 
the radiation patterns of antenna array which are acquired by 
changing the phases of excitations given to antenna ele-
ments. For this purpose, the radiation pattern is extracted on 
a linear scale and the phases are normalized to unity. The 
first element of the array is set to reference by fixing its 
phase to 0°. The phases of each of the other antenna elements 
were varied and a corresponding forward radiation pattern 
of the array is extracted that consists of 181 points of radia-
tion pattern (0° to 180°). A similar approach is used in [18], 
where the radiation patterns were acquired by varying the 
phase of each antenna from 0° to 360° with a step size of 
20°. Hence, the number of cases per antenna was 19, and for 
the considered 4-element array, the size of the dataset was 
1 × 193 = 6,859. The validation dataset (which has to be dif-
ferent from the training dataset) was also generated simi-
larly, but varying the phase from 10° to 130° with a step size 
of 40°. This resulted in 4 cases per antenna with a validation 
dataset size of 1 × 43 = 64. The datasets so generated have 
shown to achieve fairly accurate results for various desired 
patterns as the DNN was able to learn the radiation patterns 
accurately [18]. 

The major problem with the above approach is that it 
is not scalable to higher-order antenna arrays, and is also in-
efficient for AESA antennas which is the focus of this work. 
This is because the size of the dataset grows exponentially 
by adding more elements to the array. For instance, if we 
take an antenna array of 8 elements, the dataset size would 
grow to 1 × 197 = 893,871,739, which is prohibitively large 
making it intractable to use. The large dataset is difficult to 
generate or store and also results in increased complexity 
and processing time during training and testing of DNN. 

Secondly, the previous approach is inefficient for 
AESA antennas, because a sizeable number of entries in the 
dataset would be redundant or meaningless, and as such, do 
not contribute to the learning process of DNN. The fact is 
that phased array antennas are characterized by constant 

phase shifts between array elements which is not exploited 
as yet. Next, we demonstrate that by leveraging the constant 
phase difference characteristic of a phased array antenna, 
a significant improvement in terms of dataset size reduction 
and the learning process can be achieved. 

4.1 Proposed Methodology for Dataset 
Reduction 
To overcome the drawbacks of the previous approach, 

we propose three different methods to generate the dataset 
[22] more efficiently. Each of these methods is discussed be-
low in detail.  

Method 1: This is the most trivial approach, where we 
use higher phase increments from Δθ = 20° to Δθ = 36°, 
which gives 11 cases for each antenna and the dataset size 
of 1 × 117 = 19,487,171 for 8 elements array. Clearly, the da-
taset size is still too large for all practical purposes. To fur-
ther reduce it, one can restrict the phases to 0° to 180° in-
stead of the full range of 0° to 360°, which would yield the 
size of 1 × 67 = 279,936 entries. We can see that the dataset 
[22] size becomes quite tractable. However, we will see later 
that this method suffers from performance degradation due 
to phase restriction and large phase increments. Further, this 
method would not be scalable to higher-order arrays, as it is 
just a modification of the previous method [18] and is unable 
to completely solve the problem. 

Method 2: In this method, we generate the phase val-
ues randomly, instead of varying with a constant phase in-
crement of Δθ = 36° as suggested in Method 1. Specifically, 
we generate 200,000 uniformly distributed phase values be-
tween –180° to +180°, but normalized to ±1. However, it is 
observed that the DNN model cannot learn the relationship 
between input patterns and output phases due to the com-
pletely random and unstructured nature of phase values. To 
overcome this, we introduce correlation between the phases 
of array elements by multiplying the dataset of random 
phases with N-dimensional matrix K½, where the matrix K 
is referred to as the phase correlation matrix of the array an-
tenna. Due to the constant phase shift between array ele-
ments in a phased array antenna, the phases of individual el-
ements are highly correlated. Using this fact, the correlation 
matrix is constructed such that all diagonal entries are set to 
1 and all off-diagonal entries are set to 0.9. After multiplica-
tion, a new dataset [22] with correlated phases is obtained 
and the corresponding radiation patterns are extracted and 
used for training the DNN model. It should be noted that 
a fairly large dataset should be generated to improve the per-
formance, especially in higher-order arrays. 

Method 3: This turns out to be the most efficient 
method as it takes advantage of constant phase shifts be-
tween antenna elements in a phased array antenna. Since the 
phases of individual array elements can be trivially obtained 
from the phase shift values, it makes no sense to vary them 
in the phased array antenna. Hence, in this method, the da-
taset is generated by varying only the phase shift rather than 
the phases of individual array elements as done previously. 
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Specifically, to generate the dataset, the phase of antenna 1 
is fixed to 0° as before, but now the phase-shift, is varied 
from 0° to 360° with phase increments of Δθ. This gives 
a total of (360°/Δθ + 1) entries for the phase shift as well as 
the dataset. Here, it is worth comparing the dataset size with 
the previous approaches, e.g. [18]. Assuming the phase in-
crements of Δθ for each array element from 0° to 360°, the 
dataset size can be calculated as (360°/Δθ + 1)N − 1 which 
grows exponentially with the array size N. Hence, the dataset 
size of the proposed method is independent of the array size 
N and is reduced by a factor of (360°/Δθ + 1)N − 2 which is 
almost an order N reduction. As an example, if we use a con-
stant phase increment of Δθ = 2°, the proposed method 
yields a dataset size of 181 dimensions. As compared to the 
other two methods the dataset created is extremely small and 
it takes only a few seconds to train the DNN model. The 
phases of individual array elements can be simply found 
from the phase shift values by using: 

 ,    0,1, 2 1.n n n Nϑ θ= ∆ = … −  

After the dataset [22] has been generated, it is fed to 
the DNN model which learns the relationship between the 
input radiation pattern and the output phases. Once the 
model is trained, a desired radiation pattern is fed as the in-
put to the DNN and the output phases are extracted. 

5. Verification Inputs to DNN  
To validate the DNN model's performance, two differ-

ent methods of validation of the neural network are used: 

• Validation using ideal square wave; 

• Validation using optimal beam scanning. 

Note that, unlike the optimal beam scanning, the ideal 
square wave pattern is unrealistic and cannot be generated 
by any antenna array. The DNN model processes the given 
input patterns and generates phases based on the learned re-
lationships between the two. It is important to note that the 
DNN model is specifically trained using linearly scaled pat-
terns, so the inputs were provided in linear scale. To facili-
tate comparison and analysis, the output patterns are con-
verted into the decibel (dB) scale. 

5.1 Validation using Ideal Square Pattern 
To validate the performance of the trained DNN model, 

a known ideal square wave pattern is generated as shown in 
Fig. 3. This pattern is specifically designed to have maxi-
mum amplitude within the range of ±10° around the desired 
scan angle (70° here). By feeding this ideal square wave pat-
tern into the trained DNN model, the corresponding output 
phases are extracted. 

The extracted phases are then independently verified 
using established electromagnetic simulation tools such as 
MATLAB and CST. These tools allowed for the generation 
of radiation patterns based on the extracted phases, which 

 
Fig. 3. Validation using square input. 

are then compared to the ideal square wave pattern. The ob-
jective of this verification process is to ensure that the result-
ing radiation pattern exhibits the desired behavior, with the 
main beam confined within the boundaries of the ideal 
square wave. 

5.2 Validation using Optimal Pattern 
The optimal method of beam scanning employs a real-

istic radiation pattern and serves as a benchmark for evalu-
ating the performance of the DNN model. This method de-
termines the progressive phase shift β, required for 
achieving a specific desired scan angle, θ0 by using (5). Fig-
ure 4 shows a radiation pattern generated by this method 
with the main beam directed at 70°. This pattern serves as 
an additional input to the DNN model for verification purposes. 

6. Numerical Results and Discussion  
We present numerical results for an 8-element phased 

array antenna to validate the performance of the proposed 
DNN method by using an ideal square wave pattern and an 
optimal pattern, discussed in the previous section, as refer-
ence inputs to DNN. The patterns synthesized by DNN will 

 
Fig. 4. Validation using optimal pattern. 
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be compared with the reference patterns to ascertain the ef-
ficacy of the proposed methods. 

For training purposes, the datasets generated by using 
three proposed methods, are each split into 80% training and 
20% reserved for testing. Each of the training methods is 
validated on two arbitrary scan angles, 70° and 120°, and 
outputs are verified using CST and MATLAB. 

Figures 5–7 show training and validation loss curves 
for each of the three proposed methods. Method 1 exhibited 
a loss of 0.0471 and the testing loss was 0.0503. For 
Method 2, the training and testing losses were 0.0165 and 
0.0187, and for Method 3 it was just 0.0006 and 0.0008, re-
spectively. The convergence of curves in these figures indi-
cates that the DNN model was able to learn the radiation pat-
terns using datasets generated by each method. 

6.1 Validation of Proposed Methods 
After training the DNN model using the dataset gener-

ated by Method 1, an ideal square wave and an optimal array 
pattern are given as inputs to the DNN and output phases are 
extracted. These output phases are used to obtain the output 
radiation patterns in both MATLAB and CST simulator.  

 
Fig. 5. Loss curve of the proposed Method 1. 

 
Fig. 6. Loss curve of the proposed Method 2. 

Figures 8 and 9 present the overlaid results of all three meth-
ods using ideal square wave as input where the main beam 
was set to 120°. The solid blue line represents the ideal 
square pattern, which any antenna array cannot generate. 
The dotted red line shows the results of Method 1, and the 
dashed line and dash-dotted line show results for Method 2  

 

Fig. 7. Loss curve of the proposed Method 3. 

 
Fig. 8. MATLAB array pattern plots for square wave input at 

120° to the DNN model. 

 
Fig. 9. CST array pattern plots for square wave input at 120° to 

the DNN model. 
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Fig. 10.  MATLAB array pattern plots for square wave input at 

70° to the DNN model. 

 
Fig. 11. CST array pattern plots for square wave input at 70° to 

the DNN model. 

and Method 3, respectively. These results show that all the 
proposed methods can achieve the desired pattern with their 
main beams confined to square wave input. 

Similar results are obtained when the main beam is 
shifted to 70° as shown in Figs. 10 and 11. As expected, 
Method 3 achieves the best performance as the sidelobes are 
lower than the other methods. Of these methods, Method 1, 
which is a slight modification of the existing method [18], 
has the worst performance and also uses the largest dataset 
size. 

The optimal patterns are also given as the input to the 
DNN, and the output phases obtained by using each of the 
proposed methods are verified. The optimal radiation pattern 
was generated using (1)–(5) with scanning of the main beam 
at 120° and 70°. The results for all methods are shown over-
laid in Figs. 12–15 using both MATLAB and CST. 

As observed in Figs. 12–15, the patterns of the DNN 
obtained phases using Method 1 do not follow the optimal 
pattern, especially in the sidelobes where the deviation is 
more pronounced. It is because of the restricted phase range 
(0° to 180°) considered in the dataset for the training in 
Method 1. Nevertheless, the output radiation pattern does 
follow the main beam of the desired pattern. 

 
Fig. 12.  MATLAB array pattern plots for optimal input at 120° 

to the DNN model. 

 
Fig. 13. CST array pattern plots for optimal input at 120° to the 

DNN model. 

 
Fig. 14. MATLAB array pattern plots for optimal input at 70° to 

the DNN model. 

As observed in these figures, Method 2 which uses ran-
domly generated phases with strong correlation, produced 
remarkably good results as both the ideal patterns and the 
optimal patterns are successfully followed by the DNN. This 
is due to the inclusion of the full range of phases from 0° to 
360° during dataset generation which was lacking in Method 1. 
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Fig. 15. CST array pattern plots for optimal input at 70° to the 

DNN model. 

By allowing a wider spectrum of phase combinations used 
in Method 2, DNN can better capture the complex relation-
ships and nuances of antenna array radiation patterns. The 
results presented in Figs. 12–15 confirm the ability of DNN 
to accurately synthesize realistic radiation patterns that are 
consistent with desired specifications. Hence, this method of 
randomly generated phases proves to be effective for achiev-
ing beam scanning. 

Note that the dataset generated using Method 3 yielded 
significantly better results than the other two methods as 
evident from Figs. 12–15. Not only do the radiation patterns 
synthesized by DNN using this method follow the desired 
pattern almost perfectly, but that do with a significantly 
smaller dataset of 181 points. The reason is that the dataset 
generated with Method 3 is most consistent with the phased-
array antenna structure considered in this paper. Unlike 
other methods, the dataset in this case exploited the constant-
phase shift between array elements, resulting in phases of 
individual elements being equally apart. Hence, the DNN 
was able to quickly learn the inherent relationships between 
the excitation phases and the resulting radiation patterns.  

The results are also summarized in Tab. 1, which 
shows the phases of the optimal array pattern and the learned 
phases using the DNN model along with the dataset size of 
each method. The phases of the 8-element array obtained 
using Method 3 are quite close to the original phases of the 
input patterns, which shows the superiority of Method 3 over 
other methods. 

The results obtained highlight the potential advantages 
of practical implementation of DNN in real-world applica-
tions. Because the reduced or small dataset size and fast 
training time make it possible to deploy trained DNNs in 
time-sensitive applications or environments where computa-
tional resources are limited. 

7. Conclusion 
A deep neural machine learning network is designed 

for the pattern synthesis of 8-element AESA antennas for 
which the previous approaches are not applicable due to the 
prohibitively large datasets. Three methods for generating 
the dataset are proposed to address this problem, which re-
sults in tractable dataset size for an 8-element array. The first 
method, which is based on existing approaches proved to be 
useful only for main beam scanning and not the overall ra-
diation pattern. The second method uses random but corre-
lated phases to build a dataset of tractable size. When vali-
dated, the patterns created by the output phases were close 
to the reference patterns. Lastly, we devised another novel 
approach by exploiting the constant-phase characteristic of 
the phase-array antenna, where the dataset size was tremen-
dously reduced. This proves to be simple and most efficient 
as it can be easily adapted to phased-array antennas of higher 
orders. We conclude that this is the best method for phase-
array antennas as it outperforms other methods in terms of 
both the dataset size and pattern synthesis. The future work 
is the natural extension to amplitude-phase weights estima-
tion to control more array parameters (side lobe level and 
nulls). 

 

Input pattern Reference phases  
using equation (5) 

Phases (DNN)  
using Method 1 

(dataset size: 279,936) 

Phases (DNN)  
using Method 2 

(dataset size: 200,000) 

Phases (DNN)  
using Method 3 

(dataset size: 181) 

Square wave  
at 120° - 0, 187.2, 175.2, 66.8, 7,  

174.8, 150.7, 104.7 
0, 273.8, 151.5, 54.7, 300.1, 

208.1, 142.4, 123.5 
0, 244.3, 535.8, 810.2, 1032.8, 

1312.5, 1560, 1847.1 

Square wave  
at 70° - 0, 80.5, 168.7, 170.6, –148.3, 

7.2, –0.5, 134.2 
0, 60, 132, 170, 238.9,  

291.7, 357.9, 237.5 
0, 58.9, 108.9, 192.3, 225.6, 

297, 358, 413 

Optimal pattern 
at 120° 

0, –90, –180, –270, –360, 
–450, –540, –630 

0, 153.9, 129.6, 60.2, –7.54,  
–158.5, 162.5, 86 

0, –118.2, 152.5, 50, –5,  
–91.9, 163.5, 90 

0, 270.1, 533.9, 803.7, 1071, 
1344.5, 1610.5, 1878.4 

Optimal pattern 
at 70° 

0, 61.5, 123, 184.5, 246, 
307.5, 369, 430.5 

0, 38.6, 154.8, 174.5, –166.1, 
–20.1, 13.1, 85.5 

0, 63.4, 128.9, –138.8, –78.6,  
–8.3, 23.7, 77.6 

0, 62.3, 125.4, 191.4, 245.7, 
310.7, 372.3, 435.2 

Tab. 1. Output phases (degree) of the machine learning-based DNN model for 8-element AESA antennas. 
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