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Abstract. The shipborne High-Frequency Hybrid Sky-
Surface Wave Radar integrates a sky-wave transmitting chan-
nel and a ground-wave receiving channel on a shipborne plat-
form. This hybrid radar system combines a skywave source
with the added flexibility of a far-away shipborne radar.
Ionospheric stratification and height uncertainty introduce
uncertainties in the sky-wave channel, resulting in multiple
measurements of one target. Additionally, the shipborne
platform position is affected by sea state, causing errors in
azimuth accuracy setting and subsequently reducing target
tracking precision. In this paper, we propose for the first time
a target tracking method that combines ionospheric varia-
tions with the motion of a shipborne platform. It introduces
the variational Bayesian method into the multiple detection
mode, which solves the effects of ionospheric altitude error
and orientation error of shipborne platforms due to different
sea states on target tracking. Simulation experiments vali-
date the effectiveness of the proposed method. Therefore, the
proposed method promises advancements in shipborne radar
systems for maritime surveillance applications.
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1. Introduction
The shipborne High-Frequency Hybrid Sky-Surface

Wave Radar (HFHSSWR) represents a novel hybrid prop-
agation mode over-the-horizon radar, combines the capabili-
ties of sky-wave High-Frequency (HF) radar with shipborne
surface-wave HF radar [1], [2]. In this configuration, the
transmitting station, situated inland, emits electromagnetic
waves that are reflected to the target through the ionosphere.
The waves scattered by the target are then captured by the
shipborne receiving station via radiation of surface wave.
While HFHSSWR offers the expansive coverage of sky-wave

HF radar and the flexibility of shipborne surface-wave HF
radar, the intersection of these two systems introduces new
challenges not only in signal processing but also in target
tracking. Current research on shipborne HFHSSWR mainly
focuses on the effects of the ionosphere and shipborne plat-
forms on sea clutter, as well as effective suppression meth-
ods [3], [4]. However, there is relatively limited research in
the area of target tracking. In summary, the issues can be
outlined as follows:

1) Due to the limited size of the antenna array on the
shipborne platform, azimuth measurement errors frequently
surpass 2◦ in magnitude [5]. Accurately quantifying this er-
ror proves challenging due to variations in sea clutter caused
by fluctuating sea states. Moreover, the movement of the
shipborne platform significantly broadens the sea clutter, di-
minishing the likelihood of detecting slow-moving targets
like ships [6]. This leads to low measurement accuracy,
variable measurement error and low detection probability for
radars in this regime;

2) The radar encounters diverse propagation modes in
signal echoes due to ionospheric stratification characteristics.
The unstable ionosphere further exacerbates this complexity,
leading to a phenomenon where the accuracy of target track-
ing is significantly reduced.

Therefore, it is imperative to investigate a target tracking
method tailored to the shipborne HFHSSWR, considering its
inherent challenges of low measurement accuracy, limited
detection probability, and ionospheric virtual height stratifi-
cation perturbations.

The shipborne HFHSSWR and conventional sky-wave
HF radar face similar ionospheric challenges. Insights from
mature multipath data processing methods in sky-wave HF
radar can provide useful guidance. Sky-wave HF radar
techniques are typically categorized into three approaches
concerning the ionosphere’s fixed virtual height: 1) con-
structing trajectories in radar coordinate systems using estab-
lished methods like Probabilistic Data Association (PDA) [7],
Joint Probabilistic Data Association (JPDA) [8], Multiple
Hypothesis Tracker (MHT) [9], and then integrating these
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trajectories in Cartesian coordinates through coordinate con-
version [10]; 2) employing loop iteration and batch process-
ing methods such as Probabilistic Multiple Hypothesis Track-
ing (PMHT) [11] and Distributed Expectation-Conditional
Maximization (DECM) [12]; and 3) Extending traditional
data correlation techniques to multipath conditions by cor-
relating each target propagation mode with measurements,
resulting in methods like Multipath PDA (MPDA) [13], Mul-
tiple Detection JPDA (MD-JPDA) [14], and Multiple Detec-
tion MHT (MD-MHT) [15].

Accurate determination of ionospheric virtual height is
critical in radar tracking issue. Common methods such as
ionospheric statistical models [16], beacons [17], or iono-
spheric height detectors [18] are employed, yet regional con-
straints and the ionosphere’s dynamic nature often yield im-
precise results. To handle the uncertainty associated with
ionospheric virtual height, it is often treated as a random
variable based on prior knowledge and incorporated into the
target tracking process. Among these approaches, the MPDA
for uncertain coordinate registration (MPCR) method [19],
which models variations in ionospheric height as a Gaus-
sian noise distribution, is more applicable. However, in
practical applications, the variance is often inflated to ac-
commodate ionospheric variations, thereby compromising
the accuracy of target state estimation.The multipath data
association method employing adaptive multi-model sets in-
troduces multiple ionospheric height models. However, this
method’s performance heavily depends on the model set se-
lection, and if the chosen set significantly deviates from ac-
tual ionospheric variations, the algorithm’s efficacy dimin-
ishes [20]. The distributed expectation maximization method
jointly estimates ionospheric altitude and target state, primar-
ily addressing fixed ionospheric virtual altitudes, leading to
initial measurement biases and disregarding the ionosphere’s
time-varying nature [12].

It is necessary to take into account the time-varying ef-
fect of the ionospheric height on the radar measurement error
in a nuanced way. The effect of ionospheric height on radar
measurement error varies from location to location, resulting
in a time-varying radar measurement error. The time-varying
effects of ionospheric height variations on radar measurement
error, as well as the problem of sea clutter expansion due to
the motion of the shipboard platform affecting target bear-
ing estimation accuracy, can be effectively modeled using
variational Bayesian inference. The method is widely used
in different fields such as combined navigation [21] and air-
borne radar [22], and is capable of estimating the target state
under time-varying measurement noise conditions, which is
useful in complex operational environments.

In this study, to address the multipath effects caused
by ionospheric stratification in shipborne HFHSSWR radar,
we introduced a multi-detection model. This model was
employed to form fused measurements using the multipath
information, thereby enhancing the actual detection proba-
bility of targets. To address unknown and time-varying iono-
spheric virtual heights caused by the shipborne platform’s

motion and inaccurate azimuth error parameter settings, we
proposed using variational Bayes to analyze the fused mea-
surements’ noise covariance matrix based on the MPCR
method. This enables more precise state estimation and ef-
fectively enhances the target tracking capability of shipborne
HFHSSWR. The study unfolds in the following manner: Sec-
tion 2 models the shipborne HFHSSWR and delineates the
associated challenges; Section 3 introduces a multipath tar-
get tracking method grounded in variational Bayesian infer-
ence; and Section 4 conducts rigorous simulations to validate
the efficacy of the proposed method. Finally, the paper en-
capsulates the research outcomes, summarizing the valuable
insights garnered throughout the study.

2. Modelling
In this section, we present the target motion model and

the measurement model of the shipborne HFHSSWR. Ad-
ditionally, we delve into a detailed discussion regarding the
impact of ionospheric virtual height on radar measurements.

2.1 Target Motion Model
The state of the target in the 2 Dimensional (2D) Carte-

sian coordinate system at moment k is X(𝑘) = [𝑥𝑘 𝑦𝑘 ¤𝑥𝑘 ¤𝑦𝑘],
where 𝑥𝑘 and ¤𝑥𝑘 denote the position and velocity on the
𝑥-axis, and 𝑦𝑘 and ¤𝑦𝑘 represent the position and velocity on
the 𝑦-axis, respectively. The motion model of the target is
then expressed as:

X(𝑘) = FX(𝑘 − 1) + v(𝑘) (1)

where the state transfer matrix F as:

F =


1 𝑇s 0 0
0 1 0 0
0 0 1 𝑇s
0 0 0 1

 (2)

where𝑇s is the sampling time interval, and v(𝑘) is the process
noise with covariance Q(𝑘):

Q(𝑘) =


𝑇4

s 𝜎
2
v /4 0 𝑇3

s 𝜎
2
v /2 0

0 𝑇4
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2
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v 0
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v /2 0 𝑇2

s 𝜎
2
v

 (3)

where 𝜎v is the process noise variance in the form of accel-
eration.

2.2 Measurement Model
In this paper, the radar observation model is shown in

Fig. 1.
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Fig. 1. Measurement model of shipborne HFHSSWR.

The 3 Dimensional (3D) Cartesian coordinate system is
defined with the transmitter serving as the origin𝑂 and is ap-
proximated within a planar model. In this system, the 𝑥-axis
indicates the east direction, the 𝑦-axis represents the north
direction, and the 𝑧-axis signifies the sky direction. Within
this framework, the state of the shipborne platform 𝑅 in the
coordinate system is denoted as [𝑥r 𝑦r ¤𝑥r ¤𝑦r], while the state
of the target 𝑇 is expressed as [𝑥t 𝑦r ¤𝑥r ¤𝑦r]. The distance be-
tween the transmitter and the receiver is denoted as 𝑑, and the
heights of the 𝐸 and the 𝐹 ionospheres are respectively indi-
cated by ℎE and ℎF. Furthermore, the transmitter-target path
length is represented as 𝜌. The angle 𝜓 and 𝜙 respectively
represent the angles between the paths from the transmitter to
the receiver and from the receiver to the target, and between
the paths from the transmitter to the target and from the re-
ceiver to the target. Lastly, 𝐴𝑧 signifies the angle between
the receiver method on the shipborne platform and the path
from the target to the receiver. It is noteworthy that all angles
in this paper are positive, following a clockwise rotation, and
fall within the range [0, 2𝜋).

The vector between the target and the transmitter is
denoted as ®𝑣, with 𝜃TR representing the angle between the
positive 𝑥-axis direction and ®𝑣. Furthermore, 𝜃vR signifies
the angle between the bow direction and the positive 𝑥-axis,
and 𝜃R represents the angle between the line connecting the
transmitter and the target and the positive 𝑥-axis. Radar
signals propagate in two single-hop modes: 𝐸-layer reflec-
tions and 𝐹-layer reflections, each with probabilities of detec-
tion denoted as 𝑝E

d and 𝑝F
d , the radar measurement model is

Z(𝑘) = [𝑅𝑔, 𝐷, 𝐴𝑧], encompassing radial distance, Doppler
velocity, and azimuth. Notably, the false ionospheric height
influences radial distance and Doppler velocity but not az-
imuth angle, rendering the azimuth angle consistent for both
propagation modes:

𝐴𝑧 = 𝜃vR + 𝜃vR − 𝜋/2. (4)

The radial distances for the two propagation modes are:

𝑅𝑔𝑚 =

√︃
𝑥2

t + 𝑦2
t + 4ℎ2

𝑚

+
√︃
(𝑥r − 𝑥t)2 + (𝑦r − 𝑦t)2, 𝑚 = 𝐸, 𝐹.

(5)

For convenience in subsequent derivations, we have de-
fined two intermediate variables:

𝑟0 =

√︃
(𝑥r − 𝑥t)2 + (𝑦r − 𝑦t)2,

𝑟1 =

√︃
𝑥2

t + 𝑦2
t + 4ℎ2

𝑚, 𝑚 = 𝐸, 𝐹.

(6)

Similarly, the Doppler velocities in both modes of prop-
agation are:

𝐷𝑚 =
𝑥t ¤𝑥t + 𝑦t ¤𝑦t√︁

𝑥t2 + 𝑦t2 + 4ℎ2
𝑚

+ (𝑥r − 𝑥t) ( ¤𝑥r − ¤𝑥t) + (𝑦r − 𝑦t) ( ¤𝑦r − ¤𝑦t)√︃
(𝑥r − 𝑥t)2 + (𝑦r − 𝑦t)2

.
(7)

2.3 Effects of the Ionosphere
As shown in Sec. 2.2, similar to the modeling in sky-

wave over-the-horizon radar, we approximate the ionosphere
as a mirror and simplify our study by assuming the iono-
spheric height as a random variable. Additionally, it can be
observed that the virtual height of the ionosphere is an impor-
tant parameter in the coordinate transformation. Shipborne
HFHSSWR distance and Doppler velocity in both propaga-
tion modes are affected by the height of the ionosphere, taking
the 𝑚th ionosphere as an example, at this time, the 𝑚th iono-
sphere height error is Δℎ𝑚, 𝑚 = 𝐸, 𝐹, and the distance can
be reconstructed as:

𝑅̃𝑔𝑚 =

√︃
𝑥t2 + 𝑦t2 + 4(ℎ𝑚 + Δℎ𝑚)2

+
√︃
(𝑥r − 𝑥t)2 + (𝑦r − 𝑦t)2.

(8)

And the Doppler velocity:

𝐷̃𝑚 =
𝑥t ¤𝑥t + 𝑦t ¤𝑦t√︃

𝑥t2 + 𝑦t2 + 4(ℎ𝑚 + Δℎ𝑚)2

+ (𝑥r − 𝑥t) ( ¤𝑥r − ¤𝑥t) + (𝑦r − 𝑦t) ( ¤𝑦r − ¤𝑦t)√︃
(𝑥r − 𝑥t)2 + (𝑦r − 𝑦t)2

.

(9)

The error of the ionospheric height for the distance at
this point is:

Δ𝑅𝑔𝑚 = 𝑅𝑔𝑚 − 𝑅̃𝑔𝑚

=
−4Δℎ (2ℎ + Δℎ)√︃

𝑥t2 + 𝑦t2 + 4(ℎ𝑚 + Δℎ𝑚)2 +
√︃
𝑥t2 + 𝑦t2 + 4(ℎ𝑚)2

.

(10)

And the Doppler velocity:

Δ𝐷𝑚 = 𝐷𝑚 − 𝐷̃𝑚

=
−Δ𝑅𝑚 (𝑥t ¤𝑥t + 𝑦t ¤𝑦t)√︃

𝑥t2 + 𝑦t2 + 4(ℎ𝑚)2
√︃
𝑥t2 + 𝑦t2 + 4(ℎ𝑚 + Δℎ𝑚)2

.

(11)
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Equations (10) and (11) reveal that the impact of iono-
spheric altitude error on radial distance and Doppler velocity
isn’t solely dependent on ionospheric altitude and its error.
It’s intricately linked to the target’s position and velocity
information in the coordinate system. Consequently, even
if the ionospheric altitude error remains constant, the radar
measurement error is still time-varying. Ionospheric heights
are typically detected using an ionosonde. However, due to
objective factors, ionosondes may only be deployed in avail-
able regions. For areas without an ionosonde, prior values
are determined based on historical data from the ionospheric
model. We adopt the approach from reference [19], where
the ionospheric altitude model is structured as a Gaussian
distribution. The mean value of the 𝑚th layer of the iono-
sphere is denoted as ℎ̂𝑚, and the variance is represented as
𝜎𝑚. Subsequently, the measurement conversion equation can
be formulated as follows:

Z𝑚 (𝑘) = H
(
X (𝑘) ; ℎ̂𝑚, 𝜎𝑚

)
+ w𝑚 (𝑘) (12)

where w𝑚 (𝑘) is zero-mean non-Gaussian noise, at which
point the measurement noise can be rewritten as:

R𝑚 (x (𝑘) ; 𝜇̂) = cov (w𝑚 (𝑘)) = Rs + R𝑚
cr (𝑘) (13)

where Rs is the measurement noise, R𝑚
cr (𝑘) is the ionospheric

random perturbation noise, R𝑚
cr (𝑘) = H𝑚

h (𝑘) 𝜎2
𝑚

(
H𝑚

h (𝑘)
)T

,
H𝑚

h (𝑘) is derived under the planar measurement model of
shipborne HFHSSWR already established above:

H𝑚
h (𝑘) = dZ

dℎ
=


2ℎ𝑚
𝑟0
0

− 𝑥t𝑣𝑥t+𝑦t𝑣𝑦t
2𝑟03

 . (14)

The derived R𝑚 using the aforementioned method is
equivalent to extending the Gaussian measurement noise Rs
to non-Gaussian measurement noise based on the provided
ionospheric altitude model. This expansion widens the gate
range, ensuring that abrupt shifts in measurement values
caused by ionospheric altitude transformations fall within
the gate range. However, this approach raises two crucial
issues:

1) To ensure that measurement points affected by abrupt
ionospheric altitude changes fall within the gate range, the set
variance 𝜎𝑚 of ionospheric virtual height is typically larger
than the actual variance. However, due to the fluctuation
in ionospheric virtual height, part of the time experiences
a smaller variance than the set virtual height variance. This
variation impacts the accurate estimation of the target state
under changing ionospheric altitudes;

2) The actual variation in ionospheric virtual height
does not precisely align with the Gaussian distribution, lead-
ing to disparities between the R𝑚 formed by the aforemen-
tioned method and the actual error matrix. This mismatch
further impacts the estimation of the target state during fluc-
tuations in ionospheric height.

Therefore, it is imperative to account for scenarios
where the impact of ionospheric virtual height on the mea-
surement noise matrix is unknown. Addressing this uncer-
tainty is essential for enhancing tracking accuracy in the
aforementioned context.

3. Data Association Methods Based on
Variational Bayesian Inference
The target tracking method proposed in this paper is

structured in two steps: In the initial phase, measurements
are selected utilizing the established model and an extended
gate; the subsequent step involves the fusion of measurement
traces. A measurement group is constructed for the fused 𝐸

and 𝐹 layer measurement traces. The variational Bayesian
method is employed to reason about the error covariance
matrix, leading to a significant enhancement in tracking ac-
curacy.

3.1 Measurement Group Construction
The shipborne HFHSSWR employs a hybrid coordinate

system for target tracking. Prior to data correlation, it is es-
sential to predict the target state and establish the correlation
gate by selecting measurements within the gate. This aspect
of HFHSSWR involves deriving the method for selecting
measurements.

Prediction of the target state, at this time the target state
of the one-step prediction value is:

X (𝑘 |𝑘 − 1 ) = FX (𝑘 − 1) . (15)

According to (4)–(7), X (𝑘 |𝑘 − 1 ) can be converted
into the measured one-step prediction value Z𝑚 (𝑘 |𝑘 − 1 ) =
[𝑅𝑔𝑚, 𝐷𝑚, 𝐴] in the radar coordinate system, and the gate
can be established with Z𝑚 (𝑘 |𝑘 − 1 ), as the centre to estab-
lish the gate, the 𝑚th mode gate:

G𝑚 (𝑘 + 1) =
[z (𝑘) − Z𝑚 (𝑘 |𝑘 − 1)]′ S𝑚 (𝑘)−1 [z (𝑘) − Z𝑚 (𝑘 |𝑘 − 1)]

(16)
where z (𝑘) is the 𝑘-moment measure and S𝑚 (𝑘) is the new
interest covariance of the 𝑚th mode:

S𝑚 (𝑘) = H𝑚 (𝑘) P (𝑘 |𝑘 − 1) H′
𝑚 (𝑘) + R𝑚 (𝑘) (17)

where P (𝑘 |𝑘 − 1) is the one-step prediction of the target
state error covariance at moment 𝑘 , with P (𝑘 − 1|𝑘 − 1) as
the state error covariance at moment 𝑘 − 1:

P (𝑘 |𝑘 − 1) = FP (𝑘 − 1|𝑘 − 1) F′ + Q (𝑘) . (18)

In (17), H𝑚 (𝑘) is:

H𝑚 =
dZ
dX′ =


𝐻11 0 𝐻13 0
𝐻21 𝐻22 𝐻23 𝐻24
𝐻31 0 𝐻33 0

 , (19)
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

𝐻11 =
𝑥t
𝑟0
− 𝑥r−𝑥t

𝑟1
, 𝐻13 =

𝑦t
𝑟0
− 𝑦r−𝑦t

𝑟1
,

𝐻22 =
𝑥t
𝑟0
− 𝑥r−𝑥t

𝑟1
, 𝐻24 =

𝑦t
𝑟0
− 𝑦r−𝑦t

𝑟1
,

𝐻21 =
𝑦2

t ¤𝑥t−𝑥t𝑦t ¤𝑦t+4ℎ2
𝑚 ¤𝑥t

𝑟3
0

− (𝑦r−𝑦t )2 ( ¤𝑥r− ¤𝑥t )−(𝑥r−𝑥t ) (𝑦r−𝑦t ) ( ¤𝑦r− ¤𝑦t )
𝑟3

1
,

𝐻23 =
𝑥2

t ¤𝑦t−𝑥t𝑦t ¤𝑥+4ℎ2
𝑚 ¤𝑦t

𝑟3
0

− (𝑥r−𝑥t )2 ( ¤𝑦r− ¤𝑦t )−(𝑥r−𝑥t ) (𝑦r−𝑦t ) ( ¤𝑥r− ¤𝑥t )
𝑟3

1
,

𝐻31 =
𝑦r−𝑦t
𝑟2

1
, 𝐻33 =

𝑥t−𝑥r
𝑟2

1
.

(20)

The total gate range is then the concatenation of the
individual propagating gates:

G (𝑘) =
⋃
𝑚

G𝑚 (𝑘). (21)

For shipborne HFHSSWR, take 𝐸-layer gate and
𝐹-layer gate as an example, at this time the relationship be-
tween the measurement and the gate is shown in Fig. 2.

The measures falling into the 𝐸-layer gate at moment
𝑘 are 𝑧1, 𝑧2, and those falling into the 𝐹-layer gate are 𝑧2,
𝑧3, then groups of measures can be formed depending on the
choice of measures, and 𝑞(𝑞 <= 𝑛) measures can be selected
to be associated with 𝑛 = 2 propagation modes from 𝑞(𝑘) = 3
measures, where the 𝐸-layer association is 𝑧E and the 𝐹-layer
association is 𝑧F.

1) When one measurement is associated, the measure-
ment group is: 𝑧E = 𝑧1, 𝑧E = 𝑧2, 𝑧F = 𝑧2, 𝑧F = 𝑧3;

2) When two measurements are associated, the
measurement group is: 𝑧E = 𝑧1, 𝑧F = 𝑧2, 𝑧E = 𝑧2, 𝑧F = 𝑧3,
𝑧F = 𝑧2, 𝑧F = 𝑧3.

Measurement groups can be defined according to 𝜑

and 𝑛𝜑 , and the measurement group 𝑧𝜑,𝑛𝜑
represents the

𝑛𝜑th measurement group that selects 𝜑 measurements, when
𝜑 = 1 and 𝑛𝜑 = 1, at this time, the measurement group
𝑧𝜑,𝑛𝜑

represents [𝑧1 (𝑘)] and constructs the relevant events
as 𝜃𝜑,𝑛𝜑

(𝑘), 𝑛𝜑 = 0 for no measurements originating from
the target,and when there are 𝜑 measures originating from
the target, 𝑛𝜑 = 1, 2, · · · , 𝐶𝜑

𝑞
𝑘

where 𝐶𝜑

𝑚(𝑘 ) denotes the num-
ber of combinations to select 𝜑 out of the 𝑞𝑘 measurement
traces.

Fig. 2. Schematic diagram of a gate.

3.2 Fusion of Measurement Groups
The conditional probability that the measure group

𝑧𝜑,𝑛𝜑
originates from the target, as described in Sec. 3.1, is:

𝛽𝜑,𝑛𝜑
(𝑘) = 1

𝑐
𝑝

(
Z𝑘

��𝜃𝜑,𝑛𝜑
(𝑘) , 𝑞 (𝑘) , 𝜑,Z𝑘−1

)
× 𝑝

(
𝜃𝜑,𝑛𝜑

(𝑘)
��𝑞 (𝑘) , 𝜑,Z𝑘−1

) (22)

where 𝑐 is the normalisation factor and Z𝑘 denotes the cumu-
lative set of confirmed measurements up to the 𝑘th moment.
The above equation can be split into a probability density
function and a conditional probability calculation at the rel-
evant time, where the probability density function is:

𝑝

(
Z𝑘

��𝜃𝜑,𝑛𝜑
(𝑘) , 𝑞 (𝑘) , 𝜑,Z𝑘−1

)
=


G(𝑘 )−𝑞 (𝑘)+𝜑

𝑃G
𝑁

(
v𝜑,𝑛𝜑

(𝑘) ; 0, S𝜑,𝑛𝜑
(𝑘)

)
,

𝑛𝜑 = 1, · · · , 𝐶𝜑

𝑞 (𝑘 )
G(𝑘)−𝑞 (𝑘 ) , 𝑛𝜑 = 0

(23)

where 𝑃G is the gate coefficient, 𝑁 (•) denotes the likeli-
hood function, v𝜑,𝑛𝜑

(𝑘) and S𝜑,𝑛𝜑
(𝑘) are the new interest

and new interest covariance of the measurement group z𝜑,𝑛𝜑
,

respectively, where v𝜑,𝑛𝜑
(𝑘) is:

v𝜑,𝑛𝜑
(𝑘) =


(
z1 (𝑘) − Z1 (𝑘 |𝑘 − 1)

) ′
...(

z𝜑 (𝑘) − Z𝜑 (𝑘 |𝑘 − 1)
) ′

 , (24)

S𝜑,𝑛𝜑
(𝑘) = H𝜑,𝑛𝜑

(𝑘) P (𝑘 |𝑘 − 1) H𝜑,𝑛𝜑
(𝑘)′

+ R𝜑,𝑛𝜑
(𝑘)

(25)

where H𝜑,𝑛𝜑
(𝑘) =

[
H1 (𝑘) , · · · ,H𝜑 (𝑘)

] ′ (26)

and R𝜑,𝑛𝜑
(𝑘) is:

R𝜑,𝑛𝜑
(𝑘) =


R1 (𝑘) 0 · · · 0

... R2 (𝑘) · · · 0

...
...

. . .
...

0 0 · · · R𝜑 (𝑘)


. (27)

Then the conditional probability of the event in question is:

𝑝

(
𝜃𝜑,𝑛𝜑

(𝑘)
��𝑞 (𝑘) , 𝜑,Z𝑘−1

)
=

1
𝑞 (𝑘 )

𝑃D𝜑 𝑃G𝑢(𝑞 (𝑘 )−𝜑)∑ 𝑞 (𝑘)
𝜑=1 𝑃D𝜑 𝑃G𝑢(𝑞 (𝑘 )−𝜑)+(1−𝑃D𝑃G )𝑢(𝑞 (𝑘 ) )

,

𝑛𝜑 = 1, · · · , 𝐶𝜑

𝑞 (𝑘 )
(1−𝑃D𝑃G )𝑢(𝑞 (𝑘 ) )∑ 𝑞 (𝑘)

𝜑=1 𝑃D𝜑 𝑃G𝑢(𝑞 (𝑘 )−𝜑)+(1−𝑃D𝑃G )𝑢(𝑞 (𝑘 ) )
,

𝑛𝜑 = 0

(28)

where 𝑢 (•) is the probability mass function of the number
of false measurements, and 𝑃D𝜑

is the probability that the
target 𝜑 propagation modes are all able to be detected, when
the total probability that the target is detected is:

𝑃D =

𝜑max∑︁
𝜑=1

𝑃D𝜑
. (29)
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This effectively enhances the target detection probabil-
ity. Assuming the detection probability for a single path is
0.6, integrating the detection probabilities from two paths
yields a discovery probability of 0.84, which is an improve-
ment of 0.24 over the detection probability of a single path.

For the measure group z𝜑,𝑛𝜑
, if there is a propaga-

tion path not associated with the measure value, the pre-
dicted value of the one-step measure is used as the measure
value, otherwise the associated measure is used directly as
the measure value, forming a reconstructed measure group
z̃𝜑,𝑛𝜑

, and according to the reconstructed measure group and
the conditional probability of obtaining the fusion measure
group:

Z̃ (𝑘 |𝑘) =
∑︁

𝜑max
𝜑=1

∑︁𝐶
𝜑

𝑚(𝑘)
𝑛𝜑=1 𝛽𝜑,𝑛𝜑

(𝑘) z̃𝜑,𝑛𝜑
. (30)

3.3 Variational Bayesian Inference
In the Kalman filtering method, measurement noise co-

variance is typically modeled as zero-mean Gaussian dis-
tributed noise, with the target state estimated using the mini-
mum mean square approach. In practical environments, due
to the potential for sea clutter to obscure the target caused
by sea conditions and ship motion, the azimuth measurement
error is often set to a larger value to maintain trajectory con-
tinuity. As discussed in Sec. 2.3, the effect of ionospheric al-
titude on the target can be incorporated into the time-varying
measurement noise covariance, so we can associate the er-
rors in the radar measurements with the errors in the iono-
spheric altitude variations in a unified measurement error
matrix, which can be approximated by using the measure-
ments to approximate this measurement error matrix. This
allows us to comprehensively consider the effects of time-
varying azimuth error and ionospheric height on the actual
processing. By adjusting the parameters in the processing,
including ionospheric height error and azimuth setting error,
we ensure the continuity of the target trajectory. The vari-
ational Bayes method is employed to approximate the true
measurement noise covariance matrix. In this section, we
employ variational Bayesian inference on this measurement
error matrix. By doing so, we obtain a covariance approxi-
mation that closely aligns with the actual measurement noise.
This technique significantly enhances the accuracy of target
state estimation.

The inverse gamma distribution is taken to update the
measurement noise covariance, at which time the measure-
ment noise covariance matrix R̃ (𝑘) and the target state
X (𝑘 |𝑘 ) are both estimated measurements, at which time the
posterior probability given by the fused set of measurements
can be approximated as:

𝑝

(
X (𝑘 |𝑘 ) , R̃ (𝑘) |Z̃𝑘

)
≈ 𝑞 (X (𝑘 |𝑘 )) 𝑞

(
R̃ (𝑘)

)
. (31)

In order to maximize the degree of approximation, the
KL dispersion needs to be minimised, both:

arg min ∫ 𝑞 (X (𝑘 |𝑘 )) 𝑞
(
R̃ (𝑘)

) 𝑞 (X (𝑘 |𝑘 )) 𝑞
(
R̃ (𝑘)

)
𝑝
(
X (𝑘 |𝑘 ) , R̃ (𝑘) |Z̃𝑘

) .
(32)

According to the literature [16] the optimal solution
of (32) can be obtained as:

log 𝑞 (𝜃) = 𝐸Θ−𝜃

[
log 𝑝

(
Θ,Z𝑘

)]
+ 𝑐𝜃 (33)

where Θ
Δ
=
{
X (𝑘 |𝑘 ) , R̃ (𝑘)

}
and 𝐸Θ−𝜃 [•] denotes the ex-

pectation of the parameters other than the parameter 𝜃, and 𝑐𝜃
is a constant term containing 𝜃. However, 𝑞 (X (𝑘 |𝑘 )) and
𝑞
(
R̃ (𝑘)

)
are coupled to each other, and thus Equation (33)

can be solved iteratively:

𝑝

(
Θ,Z𝑘

)
= 𝑝

(
R̃ (𝑘)

��Z𝑘−1
)
𝑝

(
Z𝑘−1

)
× 𝑝

(
Z (𝑘)

��X (𝑘 |𝑘 ) , R̃ (𝑘)
)
𝑝

(
X (𝑘 |𝑘 )

��Z𝑘−1
)
.

(34)

At this time, the inverse gamma distribution is adopted
as the conjugate prior distribution of the variance of the
Gaussian distribution [23], at this time, the probability dis-
tribution function of R̃ (𝑘) consists of 𝛼−

𝑘
, 𝛽−

𝑘
, at this time,

R̃ (𝑘) = diag
(
R̃1 (𝑘) , R̃2 (𝑘) , · · · , R̃𝑖 (𝑘) , · · · , R̃𝑑 (𝑘)

)
, 𝑑

is the number of dimensions of R̃ (𝑘), and according to the
fusion of quantitative measurement group in Sec. 3.2, it can
be obtained that 𝑑 is 6:

Inv − Gamma
(
R̃𝑖 (𝑘)

)
=(

𝛽−
𝑘,𝑖

)𝛼−
𝑘,𝑖

Γ

(
𝛼−
𝑘,𝑖

) (
R̃𝑖 (𝑘)

)−𝛼−
𝑘
−1 exp

(
−

𝛽−
𝑘,𝑖

R̃𝑖 (𝑘)

)
,

Γ (𝛿) =
∫ ∞

0
𝑔𝛿−1e−𝑔d𝑔,

(35)

𝑝

(
Θ,Z𝑘

)
= 𝑁

(
Z (𝑘) ; H (𝑘) X (𝑘 |𝑘 ) , R̃ (𝑘)

)
×

𝑑∑︁
𝑖=1

Inv − Gamma
(
R̃𝑖 (𝑘)

��𝜎−
𝑘,𝑖 , 𝛽

−
𝑘,𝑖

)
× 𝑁 (X (𝑘 |𝑘) ; X (𝑘 |𝑘 − 1 ) ,P (𝑘 |𝑘 − 1))
× 𝑝

(
Z𝑘−1

)
,

(36)

log 𝑝

(
Θ,Z𝑘

)
=

𝑑∑︁
𝑖=1

−0.5(Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ))2R̃𝑖 (𝑘)−1

−
𝛽−
𝑘,𝑖

R̃𝑖 (𝑘)
−
(
𝛼−
𝑘,𝑖 +

3
2

)
log R̃𝑖 (𝑘)

− 0.5𝜛TP (𝑘 |𝑘 − 1)𝜛 + 𝑐Θ,

(37)

and
𝜛 = X (𝑘 |𝑘 ) − X (𝑘 |𝑘 − 1 ) . (38)
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When the parameter 𝜃 = R̃𝑖 (𝑘), the joint solution
of (38) and (33) can be obtained:

log 𝑞
(
R̃𝑖 (𝑘)

)
=

𝑑∑
𝑖=1

−0.5𝐸
(
(Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ))2

)
R̃𝑖 (𝑘)−1

− 𝛽−
𝑘,𝑖

R̃𝑖 (𝑘 )
+
(
𝛼−
𝑘,𝑖

+ 3
2

)
log R̃𝑖 (𝑘)

−0.5𝐸
(
𝜛TP(𝑘 |𝑘 − 1)−1𝜛

)
+ 𝑐Θ.

(39)

The simplification can be obtained:

log 𝑞
(
R̃𝑖 (𝑘)

)
=

𝑑∑︁
𝑖=1

−0.5𝐸
(
(Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ))2

)
R̃𝑖 (𝑘)−1

+
(
𝛼−
𝑘,𝑖 +

1
2
+ 1

)
log R̃𝑖 (𝑘) + 𝑐R̃𝑖 (𝑘 ) .

(40)

According to (40) the 𝜃 after recursive parameter
𝑞
(
R̃𝑖 (𝑘)

)
is still an inverse gamma distribution, at this point:

𝛼𝑘,𝑖 = 𝛼−1
𝑘,𝑖 +

1
2

𝛽𝑘,𝑖 = 𝛽−𝑘,𝑖

+ ((Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ))𝑖)2

+ (H (𝑘) P (𝑘 |𝑘 ) H′ (𝑘))𝑖

(41)

and

𝑞
(
R̃𝑖 (𝑘)

)
= Inv − Gamma

(
R̃𝑖 (𝑘) ;𝛼𝑘,𝑖 , 𝛽𝑘,𝑖

)
. (42)

When the parameter 𝜃 = X (𝑘 |𝑘), the joint solution
of (37) and (33) can be obtained:

log 𝑞 (X (𝑘 |𝑘 ))

=
𝑑∑
𝑖=1

−0.5(Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ))2𝐸
(
R̃𝑖 (𝑘)−1

)
−𝐸

(
𝛽−
𝑘,𝑖

R̃𝑖 (𝑘 )

)
+
(
𝛼−
𝑘,𝑖

+ 3
2

)
𝐸
(
log R̃𝑖 (𝑘)

)
−0.5𝜛T𝐸

(
P(𝑘 |𝑘 − 1)−1

)
𝜛 + 𝑐𝑋 (𝑘 |𝑘 ) .

(43)

According to (42):

𝐸

(
R̃𝑖 (𝑘)−1

)
=

𝛽
𝑘,𝑖

𝛼
𝑘,𝑖

. (44)

Then Equation (43) can be rewritten as:

log 𝑞 (X (𝑘 |𝑘 )) = 𝜐T⌢

R(𝑘)−1𝜐

− 0.5𝜛TP(𝑘 |𝑘 − 1)−1𝜛 + 𝑐X(𝑘 |𝑘 ) ,
(45)

𝜐 = Z (𝑘) − H (𝑘) X (𝑘 |𝑘 ) , (46)
⌢

R (𝑘) = diag
(
𝛽𝑘,1/𝛼𝑘,1, · · · , 𝛽𝑘,𝑖/𝛼𝑘,𝑖 , · · · , 𝛽𝑘,𝑑/𝛼𝑘,𝑑

)
.

(47)
Collating (39)–(47) yields single-step variational

Bayesian inference:

X (𝑘 |𝑘) = X (𝑘 |𝑘 − 1)

+ P (𝑘 |𝑘 − 1) H(𝑘)T
(
H (𝑘) P (𝑘 |𝑘 − 1) H(𝑘)T

)−1
𝜐,

(48)

P (𝑘 |𝑘) = P (𝑘 |𝑘 − 1)

− P (𝑘 |𝑘 − 1) H(𝑘)T
(
H (𝑘) P (𝑘 |𝑘 − 1) H(𝑘)T

+
⌢

R (𝑘)
)−1

H (𝑘) P (𝑘 |𝑘 − 1) .
(49)

When performing the 𝑛th iteration, X (𝑘 |𝑘 − 1 ) and
P (𝑘 |𝑘 − 1 ) can be replaced with the values X𝑛−1 (𝑘 |𝑘) and
P𝑛−1 (𝑘 |𝑘) obtained in the 𝑛−1st iteration.Also to inherit the
parameter values given in the previous moment, set 𝜌 as the
forgetting factor, then:

𝛼𝑘+1,𝑖 = 𝜌𝛼𝑘,𝑖 , 𝛽𝑘+1,𝑖 = 𝜌𝛽𝑘,𝑖 . (50)

3.4 Algorithmic Process
Based on the measurements composed in Sec. 3.2 and

the principle of Variational Bayes in Sec. 3.3, the algorithm
flow of the shipborne HFHSSWR data correlation method
based on variational Bayesian inference proposed in this pa-
per is shown below.

Algorithm 1. Proposed multi-detection-variate Bayesian.

Input:
X (𝑘 − 1 |𝑘 − 1 ) , P (𝑘 − 1 |𝑘 − 1 ) , Rs, 𝜎E, 𝜎F, 𝜌, Z (𝑘 )
𝛽𝑘−1,𝑖 , 𝛼𝑘−1,𝑖 , 𝑖 = 1, · · · , 𝑑
Output:
X (𝑘 |𝑘 ) , P (𝑘 |𝑘 ) , 𝛽𝑘,𝑖 , 𝛼𝑘,𝑖 , 𝑖 = 1, · · · , 𝑑
Predict: Using (15) and (18), get X (𝑘 |𝑘 − 1 ) and P (𝑘 |𝑘 − 1 ) . Us-
ing (4)–(7) to obtain the quantitative predictions in the 𝐸 and 𝐹 propa-
gation modes.
Formation of Measurement Group: According to the set ionospheric
altitude error 𝜎E and 𝜎F, the gate in 𝐸 propagation mode and 𝐹 propa-
gation mode is formed by using (16), and the measurement point traces
falling into the gate are formed into measurement groups.
Fusion of Measurement Groups: The fusion of the measurement sets
according to (22)–(30) yields the fused measurement set Z̃ (𝑘 |𝑘 ) and
constructs the measurement transformation matrix bcd for the combina-
tion of 𝐸 and 𝐹 propagation mode measurements.
Initialization: X0 (𝑘 |𝑘 ) = X (𝑘 |𝑘 − 1 ) , P0 (𝑘 |𝑘 ) = P (𝑘 |𝑘 − 1 ) ,
𝛼
𝑘,𝑖

= 0.5 + 𝜌𝛼
𝑘−1,𝑖 , 𝛽𝑘,𝑖 = 𝜌𝛽

𝑘−1,𝑖 , 𝑖 = 1, · · · , 𝑑. Let 𝑁 be the
maximum number of iterations.
for 𝑛 = 1 : 𝑁 do

⌢

R
𝑛

(𝑘 ) = diag
(
𝛽
𝑘,1/𝛼𝑘,1, 𝛽𝑘,2/𝛼𝑘,2, · · · , 𝛽𝑘,𝑑/𝛼𝑘,𝑑

)
Using (48)–(50) based on the value of 𝑛− 1st to X𝑛 (𝑘 |𝑘 ) , P𝑛 (𝑘 |𝑘 ) ,
𝛽𝑛
𝑘,𝑖

if 𝑛 < 𝑁 then
Reconstruction of the 𝐸 and 𝐹 measurement matrices 𝑅 is per-
formed:
RE (𝑘 ) = diag

(
𝛽
𝑘,1/𝛼𝑘,1, · · · , 𝛽𝑘,𝑑/2/𝛼𝑘,𝑑/2

)
,

RF (𝑘 ) = diag
(
𝛽
𝑘,𝑑/2+1/𝛼𝑘,𝑑/2+1, · · · , 𝛽𝑘,𝑑/𝛼𝑘,𝑑

)
.

The fusion of the measure sets according to (22)–(30) yields the
fused measure set Z̃ (𝑘 |𝑘 )

end if
end for
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4. Simulation
In order to verify the performance of the above pro-

posed method, simulation is carried out under the shipborne
HFHSSWR, and the state of the shipborne platform is set to
[10 km, 1 m/s, 1300 km, 55 m/s], the initial state of the tar-
get is [100 km, 1 m/s, 1450 km, 4 m/s], the radar detects the
clutter at a range of [0, 200 km] on the 𝑋-axis and [1300 km,
1500 km] on the 𝑌 -axis, and the clutter is poisson distributed
in number and uniformly distributed in position, with an ex-
pected number of clutter per square kilometer of 0.001 per
scanning period. And for the shipborne platform and the tar-
get due to the instability of the state of the movement of the
noise in the form of the 𝑋-axis acceleration and the 𝑌 -axis
acceleration, which are both consistent with the Gaussian
distribution with the mean square deviation of 0.001 m/s2.
In this case, each detection cycle has an accumulation time
of 40 s, generating a total of 100 coherent integration time
(CIT), and the detection probability of each propagation path-
way is set to 0.6.

There are 𝐹 and 𝐸 layers in the ionosphere, and the
height of the ionosphere in the 𝐹 layer of the set algorithm
is 260 km, and the height of the ionosphere in the 𝐸 layer is
100 km, the setting of these parameters is consistent with the
literature [19]. And at this time, the height of the ionosphere
is set as Fig. 3.

The distance error is 1 km, the Doppler error is 0.5 m/s,
and the azimuth error is 2◦. The method in literature [19]
is used as comparison algorithm, at which time the height
error in layer 𝐸 is 10 km, and the height error in layer 𝐹 is
40 km. And 200 Monte Carlo simulations are performed and
the results depicted in Figs. 4–7.

The results demonstrate that the proposed multiple de-
tection variational bayesian PDA (MD-VB-PDA) method ex-
hibits faster convergence compared to the MPCR method in
scenarios where ionospheric height is inaccurately set. More-
over, after convergence, the accuracy significantly improves,
with enhancements exceeding 10% observed in both 𝑋-axis
and 𝑌 -axis positions and velocities. This outcome substanti-
ates the effectiveness of the proposed method outlined in this
paper.

Fig. 3. Ionospheric height setting.

Fig. 4. RMSE comparison for 𝑋-axis positions.

Fig. 5. RMSE comparison for 𝑋-axis velocity.

Fig. 6. RMSE comparison for 𝑌 -axis positions.

Fig. 7. RMSE comparison for 𝑌 -axis velocity.
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Fig. 8. RMSE comparison for 𝑋-axis positions.

Fig. 9. RMSE comparison for 𝑋-axis velocity.

Fig. 10. RMSE comparison for 𝑌 -axis positions.

Fig. 11. RMSE comparison for 𝑌 -axis velocity.

Similarly, considering the challenge of azimuth error
resulting from diverse sea clutter conditions in real detection
environments, the algorithm’s azimuth error was set at 3◦ in
the aforementioned context. Employing the same method-
ology, 200 Monte Carlo runs were executed, and the results
depicted in Figs. 8–11.

As shown in Figs. 8–11, it can be seen that the method
proposed in this paper can improve the performance by more
than 15% compared with the traditional method of MPCR
when there is a difference between the set azimuthal error
and the real azimuthal error and the ionospheric height is
inaccurate, and it can effectively overcome the problem of
degradation of tracking accuracy of the shipborne high fre-
quency hybrid-surface wave radar due to the ionospheric
perturbation and the change of the sea state. The MPCR
method models the ionospheric height with a fixed mean and
variance, introducing errors from ionospheric height varia-
tions into the measurement noise. This amplifies the gating
during target tracking predictions, ensuring that the mea-
surements detected by the radar fall within the gating range.
Additionally, the azimuth measurement error is considered
a constant, leading to an incorrect measurement error covari-
ance matrix R𝑚. This affects the Kalman gain and results
in decreased convergence speed and target estimation ac-
curacy in the MPCR method. The proposed MD-VB-PDA
method is conceptually similar to the MPCR method used in
skywave over-the-horizon radar for ionospheric height mod-
eling. Based on the derived high-frequency radar detection
system model, MD-VB-PDA method calculates the impact of
ionospheric height variations on measurement errors. Then,
we utilize a multi-detection mode to form fused measure-
ments within the gating range. Using these measurements
formed from different paths, the variational Bayes method
is employed to approximate the true measurement noise co-
variance matrix

⌢

R. By incorporating a measurement error
covariance matrix

⌢

R closer to the real situation into the fil-
tering process, the Kalman gain is brought closer to the real
value, achieving faster convergence speed and higher target
accuracy.

5. Conclusion
The shipborne HFHSSWR encounters severe degrada-

tion. This is due to the combined influence of the stratified
and unstable ionosphere, as well as the movement of the ship-
borne platforms. As a result, the precision of target trajec-
tories is impacted.This study introduces a novel approach to
address this issue, presenting a multi-detection mode tracking
method based on variational Bayesian method. For the first
time, this method tackles accuracy degradation arising from
inaccurate ionospheric height and azimuthal measurement er-
rors caused by sea state. The research begins with an analysis
of the impact of ionospheric height error on target tracking
within the established shipborne HFHSSWR model, lead-
ing to the derivation of a measurement conversion formula.
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Subsequently, the variational Bayesian method is integrated
into the multi-detection mode. Through measurement fusion
and iteration in this mode, the error matrix affected by iono-
spheric altitude error is updated. Simulation data processing
validates the effectiveness of the proposed method, demon-
strating its ability to enhance target tracking accuracy even
when ionospheric altitude and orientation errors are inaccu-
rately set, the present method is able to improve the tracking
accuracy by more than 15%.

This study primarily focuses on single-target tracking
under inaccurate ionospheric height and azimuth settings, but
there are still some issues that require further investigation.
Firstly, extensive research has shown that ionospheric state
parameters are spatially correlated, which will aid in subse-
quently refining the channel model based on the ionospheric
model to enhance target tracking capabilities. Secondly, en-
larging the gating size may lead to the target entering a multi-
target tracking scenario. Future research will mainly address
the influence of the ionospheric model on target tracking
and multi-target tracking. Error analysis experiments will be
conducted using actual measurement data to provide more
comprehensive empirical support.
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