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Abstract. Unmanned Aerial Vehicle (UAV) communica-
tion networks are vulnerable to malicious jamming and co-
channel interference, deteriorating the performance of the
networks. Therefore, the exploration of anti-jamming meth-
ods to enhance communication security becomes a significant
challenge. In this paper, we propose a novel anti-jamming
channel selection scheme in a multi-channel multi-UAV net-
work. We first formulate the anti-jamming problem as a Par-
tially Observable Stochastic Game (POSG), where the UAV
pairs with partial observability compete for a limited num-
ber of communication channels against a Markov jammer.
To ensure rapid adaptation to the dynamic jamming environ-
ment, we propose a Meta-Mean-Field Q-learning (MMFQ)
algorithm, which provides a Nash Equilibrium (NE) solution
to the POSG problem. Furthermore, we derive the expres-
sions of the upper bound for the loss function of MMFQ
and prove the convergence of the proposed algorithm. Sim-
ulation results demonstrate that the proposed algorithm can
achieve a superior average reward compared to the bench-
mark algorithms, facilitating throughput enhancement and
resource utilization increase, especially for large-scale UAV
communication networks.

Keywords
Unmanned aerial vehicle (UAV) communication, anti-
jamming, meta-reinforcement learning, mean field

1. Introduction
Unmanned Aerial Vehicles (UAVs) have been recently

applied to various scenarios to improve operational effi-
ciency, enhance situational awareness, reduce risks, and in-
crease capabilities [1–3]. However, UAV communication
links are vulnerable to co-channel interference and malicious
jamming. In this case, a practical and reliable communi-

cation method is essential for real-time data transmission
and security insurance in multi-UAV scenarios. Therefore,
anti-jamming methods are employed in UAV communica-
tion systems to mitigate the effects of malicious jamming.
The traditional anti-jamming methods, such as Frequency
Hopping Spread Spectrum (FHSS) [4], adaptive beamform-
ing [5], adaptive power control [6], and Direct Sequence
Spread Spectrum (DSSS) [7], typically require high band-
width and may not provide multi-UAV coordination.

To address the above challenges, Reinforcement Learn-
ing (RL) has been adopted in the field of anti-jamming com-
munication. The UAVs can adopt model-free RL techniques
to optimize their real-time anti-jamming policies through in-
teraction with complex and unknown environments. For
example, the authors of [8] proposed a Sequential Deep Re-
inforcement Learning Algorithm (SDRLA) that lacks prior
information within a jamming environment. However, the
computer vision used in SDRLA to acquire insights and char-
acteristics about jamming patterns causes an infinite state of
spectrum waterfall, which requires significant computational
resources. To address the problem, an improved deep RL-
based anti-jamming algorithm was proposed in [9], which
substitutes infinite states with the spectrum differences be-
tween adjacent time slots. In addition, a collaborative multi-
agent RL-based anti-jamming algorithm was proposed in [10]
to optimize the quality of service by jointly optimizing the
channel and power allocation for UAVs. Similarly, refer-
ence [11] designed a knowledge-based RL method to deal
with the problem of high-dimensional state space in UAVs
against intelligent jamming. Furthermore, authors in [12]
proposed a multi-agent anti-jamming RL-based method with
partially overlapping channels, i.e., some channels use adja-
cent frequency ranges. There exists a trade-off between the
spectrum utilization efficiency and the anti-jamming perfor-
mance, not only increasing the number of available channels
but also exacerbating more serious interference due to chan-
nel overlap. The aforementioned RL-based approaches tend
to optimize the anti-jamming policy against the stationary
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environment and jamming policy, where the anti-jamming
policy needs to be retrained to adapt to the new task when
the environment or jamming policy changes.

Meta-Reinforcement Learning (Meta-RL) models can
reduce the number of samples required to learn a new task,
such as a new jamming policy or new location of the jam-
mers, by utilizing the prior knowledge of the concerned tasks.
This ability to learn across tasks allows the model to quickly
adapt to new jamming environments after a small amount
of trial and error. As a response to the constraints inher-
ent in existing RL-based studies, Meta-RL has been incor-
porated into communication systems. For example, refer-
ence [13] leveraged Meta-RL to learn the model for digital
twin in industrial Internet of Things (IoT), which improves
the generalization and fast adaptation of the model to a new
environment. Similarly, a meta-based deep RL algorithm
was proposed in [14] to enhance the fast adaptability of the
resource allocation policy for the dynamic vehicle to every-
thing communications. Moreover, Meta-RL was adopted
in such as task offloading of mobile-edge computing en-
vironments [15], real-time scheduling wireless traffic [16],
and load balancing for multi-band downlink cellular net-
works [17], improving the model adaptability across differ-
ent environments or objectives. Despite the advancement of
Meta-RL in communication systems, this technique has not
been studied for anti-jamming communication, especially for
multi-UAV scenarios, failing to consider the relation among
different jamming environments.

In this paper, we propose an adaptive anti-jamming
channel selection algorithm for a self-organized UAV com-
munication network with a massive number of self-interested
and non-cooperative UAV users. Considering the large-scale
scenario, mean-field theory [18] offers an effective mathe-
matical tool to approximate the aggregate behavior of a large
number of strategic agents. In UAV communication systems,
mean-field has been applied to approximate the aggregate be-
haviors of the wireless agents [20], [21]. In addition, a mean-
field-based anti-jamming method was proposed in [22] to
achieve the Nash equilibrium solution of the Markov game
in a large-scale Internet of Things network.

The main contributions of this paper are listed as fol-
lows.

• We consider a UAV anti-jamming network, where the
jammers intend to attack the UAVs’ communication
while the UAV pairs fight for the scarce spectrum ac-
cess opportunity over several channels. Then, the anti-
jamming problem is formulated as a Partially Observ-
able Stochastic Game (POSG), where each UAV pair
can only observe a portion of the network environment.

• We develop the mean-field game for the multi-agent
scenario to further streamline the anti-jamming prob-
lem with numerous UAV pairs, where each UAV pair
simply interacts with the interference from an average
neighbor and the malicious jammer.

• We propose a Meta-RL-based algorithm, named Meta-
Mean-Field Q-learning (MMFQ) to solve the adap-
tive channel selection under varying jamming environ-
ments.

• We prove the convergence and the fast adaptation per-
formance of the proposed algorithm. Specifically, we
derive that the objective function of MMFQ is bounded
in the presence of task variability and the convergence
errors decrease as task similarity increases. We fur-
ther evaluate the distance between the output generated
by RL and the optimized model of adaptation theo-
retically, which indicates that greater task similarity
improves the performance of the MMFQ algorithm.
The simulation results demonstrate that compared to
the benchmark algorithms, the proposed algorithm con-
verges more quickly and achieves a greater throughput.

The remainder of the paper is structured as follows.
The system model is introduced in Sec. 2. We formulate
the channel competition among the UAV pairs as a POSG in
Sec. 3. Section 4 describes the mean field Q-learning method
for multi-UAV scenarios. Section 5 describes the Meta-RL
algorithm MMFQ for multiple tasks. Section 6 presents the
convergence analysis and fast adaptation performance eval-
uation of MMFQ. Section 7 shows the experimental results.
Finally, we conclude our work in Sec. 8.

2. System Model
Figure 1 shows the proposed UAV communication net-

work, where a UAV pair consists of a UAV transmitter and
a UAV receiver. Each UAV pair competes for the avail-
able spectrum resources while avoiding interference from
both the jammers and other UAV pairs. Denote the set
of UAV pairs as N = {1, · · · , 𝑛, · · · , 𝑁}, the set of chan-
nels asM = {1, · · · , 𝑚, · · · , 𝑀}, and the set of jammers as
J = {1, · · · , 𝑗 , · · · , 𝐽}.

UAV pair

jammer

Transmission link of UAV pairs Co-channel interference

Malicious jamming Maximum sensing range of UAV

Fig. 1. The UAV anti-jamming network with 𝑁 UAV pairs and
𝐽 malicious jammers, where each UAV pair consists of
a UAV transmitter and a UAV receiver. For a typical
UAV receiver, it is subject to malicious interference from
jammers and co-channel interference from other UAV
transmitters.
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For the 𝑛-th UAV pair, denote the transmit power of the UAV
transmitter as 𝑃𝑛, and the channel selection action in 𝑡-th
time slot as 𝑎𝑛 (𝑡) ∈ M. The transmit power of jamming
signals at the 𝑗-th jammer is 𝑃 𝑗 , and its channel selection
action is denoted as 𝑔 𝑗 (𝑡) ∈ M, which operates according
to an independent Markov process, i.e., the jammer follows
a state transition matrix to determine which channel to select
the next time.

We assume the scenario where the positions of UAVs
are time-varying following a Gaussian Markov model [23],
and the receivers are restricted to a certain range of their
corresponding transmitters. Therefore, the moving velocity
𝑣𝑛 (𝑡) and direction 𝜃𝑛 (𝑡) of the UAV transmitter 𝑛 in 𝑡-th
time slot is respectively expressed as

𝑣𝑛 (𝑡) = 𝑘1𝑣𝑛 (𝑡 − 1) + (1 − 𝑘1) 𝑣̄𝑛 +
√︃

1 − 𝑘2
1𝜑𝑛 (1)

and

𝜃𝑛 (𝑡) = 𝑘2𝜃𝑛 (𝑡 − 1) + (1 − 𝑘2) 𝜃𝑛 +
√︃

1 − 𝑘2
2𝜓𝑛 (2)

where 0 ≤ 𝑘1, 𝑘2 ≤ 1 denote the memory coefficient of
the velocity and direction, respectively. 𝑣𝑛 (𝑡) is related to
average velocity 𝑣̄𝑛 and the randomness of the velocity 𝜑𝑛.
𝜃𝑛 and 𝜓𝑛 denote the average direction and the randomness
of the direction, respectively. 𝜑𝑛 and 𝜓𝑛 follow Gaussian
distributions.

As shown in Fig. 2, we consider a time-slotted frame-
work for the UAV communication network. All the UAVs
update their locations according to (1) and (2) at the start
of each time slot, and all the UAV transmitter performs
wideband spectrum sensing across all accessible channels.
Following that, the UAV transmitter determines the chan-
nel access decision, utilizing the historical information of
the previous time slots and the present spectrum sensing ob-
servation. After that, each UAV transmitter transmits data
on the selected channel. Ultimately, each UAV transmit-
ter broadcasts its channel selection to its neighbors in the
present time slot and receives an acknowledgment (ACK) or
non-acknowledgment (NACK) signal from its UAV receiver.
Furthermore, the jammer network is also time-slotted, but
not necessarily synchronized with that of the UAV network.

jammer

UAV

time
slot t slot t+1

…

…

spectrum sensing

decision making

data transmission

acknowledgement

Fig. 2. Transmission slot structure of UAV user and jammer.

For a typical UAV pair, besides the malicious interfer-
ence from the jammers, there exists co-channel interference
primarily depending on the distance between the typical UAV
pair and the interfering user pair. We define the neighbor of
the 𝑛-th UAV pair as that if the interference at the 𝑛-th UAV
receiver from the 𝑖-th UAV transmitter exceeds a pre-defined
threshold 𝐼th, i.e.,

E
[
𝑃𝑖ℎ𝑖,𝑛 (𝑡)𝑑−𝜆𝑖,𝑛

]
≥ 𝐼th (3)

where ℎ𝑖,𝑛 (𝑡) represents the channel fading gain, 𝑑𝑖,𝑛 denotes
the distance between the 𝑖-th UAV transmitter and the 𝑛-th
UAV receiver, and 𝜆 is the path loss coefficient. We further
define the neighbor set of the 𝑛-th UAV pair as

N (𝑛) =
{
𝑖 |𝑖 ∈ N\𝑛, 𝑑𝑖,𝑛 ≤ 𝑑th

}
(4)

where 𝑑th =
(
𝑝0E

[
ℎ𝑖,𝑛 (𝑡)

]
/𝐼th

) 1
𝜆 is the neighbor distance

threshold with 𝑃𝑖 fixed as 𝑝0.

The signal-to-interference plus noise ratio (SINR)
threshold at the UAV receiver is denoted as 𝜒, and if the
actual channel capacity at the UAV receiver is larger than
the threshold, the reception of the signal is successful and
an ACK is returned to the UAV transmitter. Then, the achiev-
able throughput at the 𝑛-th UAV pair in 𝑡-th time slot is ex-
pressed as

𝐷𝑛 (𝑡) =
{
𝐵𝜏trlog2 (1 + 𝜒), if SINR ≥ 𝜒

0, if SINR < 𝜒
(5)

with
SINR =

𝑃𝑛𝑑
−𝜆
𝑛,𝑛

𝐼𝑛 (𝑡) + 𝐽𝑛 (𝑡) + 𝑁𝑛
(6)

where 𝐵 denotes the channel bandwidth, 𝜏tr is the duration of
data transmission, 𝑑𝑛,𝑛 represents the distance between the
transmitter and receiver for the 𝑛-th UAV pair, and 𝑁𝑛 is the
noise power. In addition, 𝐼𝑛 (𝑡) and 𝐽𝑛 (𝑡) respectively denote
the interference received from all other UAV transmitters and
jammers, which can be given by

𝐼𝑛 (𝑡) =
∑︁
𝑖∈N\𝑛

𝑃𝑖ℎ𝑖,𝑛 (𝑡)𝑑−𝜆𝑖,𝑛 (𝑡) 𝑓 (𝑎𝑖 (𝑡), 𝑎𝑛 (𝑡)) (7)

and
𝐽𝑛 (𝑡) =

∑︁
𝑗∈J

𝑃 𝑗ℎ 𝑗 ,𝑛 (𝑡)𝑑−𝜆𝑗,𝑛 (𝑡) 𝑓
(
𝑔 𝑗 (𝑡), 𝑎𝑛 (𝑡)

)
(8)

where 𝑑𝑖,𝑛 denotes the distance between the 𝑖-th UAV trans-
mitter and the 𝑛-th UAV receiver,𝑑 𝑗 ,𝑛 denotes the distance
between the 𝑗-th jammer and the 𝑛-th UAV receiver, and 𝑓 (·)
is an indicator function that describes the co-channel event
of the two nodes of 𝑥 and 𝑦, i.e.,

𝑓 (𝑥, 𝑦) =
{
1, if 𝑥 = 𝑦
0, if 𝑥 ≠ 𝑦 . (9)

For each UAV pair 𝑛, it aims to optimize its channel
selection that maximizes the long-term expected achievable
rate, i.e.,

max
𝑎𝑛 (𝑡 ) ∈M,∀𝑡

E

[ ∞∑︁
𝑡=0

𝛾𝑡𝐷𝑛 (𝑡)
]

(10)

where 𝛾 ∈ [0, 1) is a discount factor, meaning the immediate
achievable rate is more important than the future.
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3. Non-Cooperative UAV Network in
Anti-Jamming Game
In this paper, we formulate the anti-jamming prob-

lem as a POSG, where self-interested each UAV pair has
partial observation of the jammers’ channels and locations.
POSG can be modeled as the tuple Γ ≜ (N , 𝑆, 𝐴, 𝑂, 𝑃,R):
where N is the set of UAV pairs, 𝑆 denotes the state space,
𝐴 = 𝐴1× . . .× 𝐴𝑁 is the joint action set of all UAV pairs, and
𝑂 = 𝑂1 × . . . × 𝑂𝑁 is the joint observations set of all UAV
pairs. 𝑃 : 𝑆×𝐴 ×𝑆 → [0, 1] denotes the unknown transition
probability between states after actions, and R : 𝑆 × 𝐴 → R
is the reward function. We define the corresponding elements
in detail as follows.

• State 𝑠𝑡 : The condition of the overall network environ-
ment, including the positions of the UAVs and jammers,
and the jammers’ selected channels in the previous time
slot.

• Observation o𝑛𝑡 : The information observed by the
𝑛-th UAV pair in 𝑡-th time slot, denoted as o𝑛𝑡 =[
𝐹𝑛
𝑡−1, 𝐶

𝑛
𝑡−1, 𝐺

𝑗 ,𝑛
𝑡

]
where 𝐹𝑛

𝑡−1 is an ACK/NACK sig-
nal, indicating the previous transmission is success or
outage, 𝐶𝑛

𝑡−1 is the jammed channels sensed in the pre-
vious time slot, and 𝐺 𝑗 ,𝑛

𝑡 is the distance between the
UAV pair and the jammer. Specifically, 𝐹𝑛

𝑡−1 ∈ {0, 1}
where 0 signifies the communication failed for the
𝑛-th UAV pair, i.e., the SINR at the UAV receiver is
lower than the threshold 𝜒, and 1 indicates success-
ful communication. Moreover, it holds that 𝐶𝑛

𝑡−1 =[
𝑗𝑛
𝑡−1 (1), . . . , 𝑗

𝑛
𝑡−1 (𝑚), . . . , 𝑗

𝑛
𝑡−1 (𝑀)

]
. If the channel𝑚

is jammed by the jammer, 𝑗𝑛𝑡 (𝑚) is set to 1, and 0 other-
wise. In addition, 𝐺 𝑗 ,𝑛

𝑡 =

[
𝑑
𝑗1 ,𝑛𝑡
𝑡 , 𝑑

𝑗2 ,𝑛𝑡
𝑡 , 𝑑

𝑗1 ,𝑛𝑟
𝑡 𝑑

𝑗2 ,𝑛𝑟
𝑡

]
where 𝑑 𝑗1 ,𝑛𝑡𝑡 and 𝑑 𝑗2 ,𝑛𝑡𝑡 denote the distance between the
jammers and the UAV transmitter, 𝑑 𝑗1 ,𝑛𝑟𝑡 and 𝑑 𝑗2 ,𝑛𝑟𝑡 de-
note the distance between the jammers and the UAV
receiver. The joint observation of the UAV network is
denoted as o𝑡 =

[
o1
𝑡 , o2

𝑡 , . . . , o𝑁𝑡
]
.

• Action 𝑎𝑛𝑡 : The channel selected by UAV pair 𝑛 in 𝑡-th
time slot, 𝑎𝑛𝑡 ∈ A𝑛 = {1, . . . , 𝑀}. The joint action set
of the UAV swarm is defined as a𝑡 =

[
𝑎1
𝑡 , 𝑎

2
𝑡 , . . . , 𝑎

N
𝑡

]
.

• Reward 𝑟𝑛𝑡 : The reward received by the 𝑛-th UAV pair

in 𝑡-th time slot, is defined as 𝑟𝑛𝑡 =
𝑡∑
𝑡=0
𝛾𝑡𝐷𝑛 (𝑡), where

𝐷𝑛 (𝑡) was given in (5) and 𝛾 is the discount factor
same as in (10). The system reward is defined as
r𝑡 =

[
𝑟1
𝑡 , 𝑟

2
𝑡 , . . . , 𝑟

𝑁
𝑡

]
.

Denote 𝜋𝑛 : 𝑂 → Ω (𝐴𝑛) as the channel selection pol-
icy for the 𝑛-th UAV pair, whereΩ (𝐴𝑛) is the set of probabil-
ity distributions on the action space 𝐴𝑛. 𝛑𝑡

Δ
=
[
𝜋1
𝑡 , . . . , 𝜋

𝑁
𝑡

]
is the joint policy of all UAV pairs in 𝑡-th time slot. Each

UAV pair learns to find an optimal policy
(
𝜋𝑛𝑡

)∗ to maximize
its own long-term expected reward. Due to the co-channel
interference, the joint policy 𝛑𝑡 of all UAV pairs determines
the optimization of long-term expected reward for the 𝑛-th
UAV pair. Therefore, the value function 𝑉 of the 𝑛-th UAV
pair can be defined as the expected cumulative discounted
reward under the joint policy 𝛑𝑡 , i.e.,

𝑉𝑛𝛑𝑡

(
o𝑛𝑡

)
= 𝑉𝑛

(
o𝑛𝑡 , 𝛑𝑡

)
=

𝑇∑︁
𝑡=0

𝛾𝑡E𝛑𝑡 , 𝑝

[
𝑟𝑛𝑡 |𝑜𝑛0 = 𝑜, 𝜋𝑡

]
(11)

where 𝑜 is the initial observation, 𝑝 is the transition probabil-
ity, and 𝛾 ∈ [0, 1) is a discount factor. The joint observation
o𝑡 is commonly assumed as a mapping of the environment
states 𝑠. Alternatively, the observation o𝑡 obtained in state
𝑠 follows a certain probability distribution. Therefore, the
actual environmental state 𝑠 conforms to a posterior distri-
bution based on the observed o𝑛𝑡 when all UAV pairs obtain
a joint observation o𝑡 . Then, the objective function of each
UAV pair is expressed as(

𝜋𝑛𝑡
)∗

= arg max
𝜋𝑛𝑡

𝑉𝑛
(
o𝑛𝑡 , 𝜋𝑛𝑡

)
. (12)

The NE of the POSG can be defined as the joint pol-
icy 𝛑∗𝑡

Δ
=

[ (
𝜋1
𝑡

)∗
, . . . ,

(
𝜋𝑛𝑡

)∗] , such that for all 𝑜 ∈ 𝑂,
𝑛 ∈ 1, · · · , 𝑁 and all valid 𝜋𝑛𝑡 , it satisfies with

𝑉𝑛𝛑∗𝑡

(
o𝑛𝑡

)
= 𝑉𝑛(𝜋𝑛𝑡 )∗ ,(𝛑−𝑛𝑡 )∗

(
o𝑛𝑡

)
≥ 𝑉𝑛

𝜋𝑛𝑡 ,(𝛑−𝑛𝑡 )∗
(
o𝑛𝑡

)
(13)

where
(
𝛑−𝑛𝑡

)∗ Δ
=

[ (
𝜋1
𝑡

)∗
, . . . ,

(
𝜋𝑛−1
𝑡

)∗
,
(
𝜋𝑛+1𝑡

)∗
, . . . ,

(
𝜋𝑁𝑡

)∗]
represents the joint policy of all UAV pairs except the 𝑛-th
UAV pair. For a POSG of 𝑁 UAV pairs, there is at least one
stable NE solution [24].

4. Mean Field Q-Learning for Solv-
ing the Large-Scale Anti-Jamming
Game
In the context of a large-scale non-cooperative UAV

communication network, addressing the Nash equilibrium of
the POSG poses significant challenges due to its high com-
putational complexity. To mitigate this issue, we employ
mean-field game theory to streamline the POSG framework.
Each UAV pair interacts with the collective interference gen-
erated by the entire population of jammers and other UAV
pairs, integrating individual behaviors with aggregate effects.
Subsequently, the population dynamics are updated based on
the channel access policies learned by each UAV pair.

According to the value function defined in (11), the Q-
value function (𝑄𝑛𝜋 : 𝑆 × 𝐴1 × · · · × 𝐴𝑁 → R) of the 𝑛-th
UAV pair under the joint policy 𝛑𝑡 can be given in

𝑄𝑛
(
o𝑛𝑡 , a𝑡

)
= 𝑟𝑛𝑡

(
o𝑛𝑡 , a𝑡

)
+ 𝛾E𝑝

[
𝑉𝑛𝛑𝑡

(
𝑜𝑛𝑡+1

) ]
(14)

where 𝑜𝑛
𝑡+1 denotes the observation in the next time slot. We

can express the value function of local observation o𝑛𝑡 in
terms of the Q-value function as
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𝑉𝑛𝛑𝑡

(
o𝑛𝑡

)
= Ea𝑡∼𝛑𝑡

[
𝑄𝑛

(
o𝑛𝑡 , a𝑡

) ]
. (15)

The dimension of the joint actions a𝑡 scales linearly with
the number of UAV pairs, significantly increasing computa-
tional complexity within large-scale networks. Furthermore,
learning the Q-function 𝑄𝑛

(
o𝑛𝑡 , a𝑡

)
becomes impractical for

individual UAV pairs due to the absence of information re-
garding the other non-cooperative UAV pairs. To address
this challenge, we propose a decomposition strategy for the
Q-function by using pairwise local interactions among neigh-
boring UAV pairs, i.e.,

𝑄𝑛
(
o𝑛𝑡 , a𝑡

)
=

1
𝑁𝑛

∑︁
𝑖∈N(𝑛)

𝑄𝑛
(
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎𝑖𝑡

)
(16)

where N(𝑛) is the neighboring UAV transmitters set for the
𝑛-th UAV pair, given in (4), 𝑁𝑛 = |N (𝑛) | is the number of
neighbors.

The action of the 𝑛-th UAV pair 𝑎𝑛𝑡 is a discrete variable
representing the index of channels as stated in Sec. 2. There-
fore, we denote the one-hot action 𝑎𝑖𝑡 of each neighbor as

𝑎𝑖𝑡 = 𝑎̄
𝑛
𝑡 + 𝛿𝑎𝑛,𝑖𝑡 (17)

where 𝑎̄𝑛𝑡 is the average action of all the neighbors for the
𝑛-th UAV pair, given by 𝑎̄𝑛𝑡 = 1

𝑁𝑛

∑
𝑖

𝑎𝑖𝑡 , and 𝛿𝑎𝑛,𝑖𝑡 is a small

fluctuation.

Assume that 𝑄𝑛
(
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎𝑖𝑡

)
is second-order derivable

with respect to the action 𝑎𝑖𝑡 , we perform the Taylor expansion
for (16) as follows

𝑄𝑛 (𝑜𝑛, a) = 1
𝑁𝑛

∑︁
𝑖

𝑄𝑛
(
𝑜𝑛, 𝑎𝑛, 𝑎𝑖

)
=

1
𝑁𝑛

∑︁
𝑖

[
𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛)

+ ∇𝑎̄ 𝑛𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛) 𝛿𝑎𝑛,𝑖

+ 1
2
𝛿𝑎𝑛,𝑖∇2

𝑎̃ 𝑛,𝑖𝑄
𝑛
(
𝑜𝑛, 𝑎𝑛, 𝑎̃𝑛,𝑖

)
𝛿𝑎𝑛,𝑖

]
= 𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛)

+ ∇𝑎̄ 𝑛𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛)
[

1
𝑁𝑛

∑︁
𝑖

𝛿𝑎𝑛,𝑖

]
+ 1

2𝑁𝑛
∑︁
𝑖

[
𝛿𝑎𝑛,𝑖∇2

𝑎̃ 𝑛,𝑖𝑄
𝑛
(
𝑜𝑛, 𝑎𝑛, 𝑎̃𝑛,𝑖

)
𝛿𝑎𝑛,𝑖

]
(18)

= 𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛) + 1
2𝑁𝑛

∑︁
𝑖

𝑅𝑛𝑜𝑛 ,𝑎𝑛
(
𝑎𝑖
)

≈ 𝑄𝑛 (𝑜𝑛, 𝑎𝑛, 𝑎̄ 𝑛) (19)

where 𝑅𝑛𝑜𝑛 ,𝑎𝑛
(
𝑎𝑖
)
= 𝛿𝑎𝑛,𝑖 · ∇2

𝑎𝑛,𝑖
𝑄𝑛

(
𝑜𝑛, 𝑎𝑛, 𝑎̃𝑛,𝑖

)
· 𝛿𝑎𝑛,𝑖 ,

represents the remainder of the Taylor polynomial with
𝑎̃𝑛,𝑖 = 𝑎̄ 𝑛 + 𝜎𝑛,𝑖𝛿𝑎𝑛,𝑖 and 𝜎𝑛,𝑖 ∈ [0, 1]. According to (17),∑
𝑖

𝛿𝑎𝑛,𝑖 = 0 in (18), and thus the second term is eliminated.

In addition, it can be proved that 𝑅𝑛𝑜𝑛 ,𝑎𝑛
(
𝑎𝑖
)

is a small fluc-
tuation near zero when 𝑄𝑛

(
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎𝑖𝑡

)
is a linear function.

Therefore, the Taylor expansion can be approximated as the
first term in (18).

With the mean-field approximation, the pairwise inter-
action 𝑄𝑛

(
𝑜𝑛, 𝑎𝑛, 𝑎𝑖

)
among the 𝑛-th UAV pair and its all

neighbors is streamlined to the interaction between the 𝑛-th
UAV pair and a virtual UAV pair, where the virtual UAV pair
is an average effect of all neighbors of the 𝑛-th UAV pair.
And Equation (19) is defined as the mean-field Q-function.

5. Meta-Reinforcement Learning for
Fast Adaptation to Multiple Tasks
We consider the jamming environment, i.e., the location

of the jammer, changing in a three-dimensional grid space,
which represents different tasks for the UAV anti-jamming
communication. Conventional RL primarily aims at train-
ing agents to obtain an optimal policy for addressing a single
predefined task, i.e., the fixed location of jammers for the pro-
posed system, which encounters limitations when it comes
to effectively dealing with multiple similar tasks. Meta-RL,
which applies meta-learning to RL problems, offers agents
a solution to the fast adaptation to the new tasks. By lever-
aging the power of Meta-RL and employing algorithms like
Model-Agnostic Meta-Learning (MAML) [25], the agents
can efficiently attain and transfer knowledge among numer-
ous interconnected tasks, improving their adaptability and
performance in various environments. Therefore, the UAV
pairs can quickly adapt to the new jamming environment and
obtain the optimal policy with the Meta-RL-based algorithm
when the jammers’ locations change.

In this paper, we propose the MMFQ framework, which
is a Meta-RL-based algorithm that combines meta-learning
and mean-field Q-learning. As shown in Fig. 3, MMFQ
consists of two distinctive phases: the training phase and
the adaptation phase. The training phase aims to train the
model parameters to obtain the optimal anti-jamming pol-
icy with mean-field Q-learning across sampled tasks. In the
adaptation phase, the model intends to adapt to a new jam-
ming environment with quick parameter adjustment based
on the model parameters obtained during the training phase.
MMFQ offers a model that undergoes fine-tuning when in-
troduced to novel tasks through a gradient-based mean-field
Q-learning approach. The objective of MMFQ lies in iden-
tifying model parameters that are responsive to variations in
these tasks, thereby enabling minor parameter adjustments
to yield significant enhancements. Therefore, we present the
initial model by parameter vector 𝜃 and the optimal model
trained by a meta-learner with parameter vector 𝜃∗.
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Fig. 3. MMFQ framework with a training phase and an adaptation phase, where users learn the meta-model through different training tasks in the
training phase and update the model parameters during the adaptation phase with new tasks.

When implementing mean-field with the model 𝜃 in
the MMFQ framework, Equation (19) can be represented as
𝑄𝑛

(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎̄𝑛𝑡

)
, where 𝜃𝑛𝑡 denotes the model parameter of

the UAV pair. Then, the UAV pair obtains a policy according
to the output of the model, i.e.,

𝜋𝑛𝑡 (𝑎𝑛𝑡 |o𝑛𝑡 , 𝑎̄𝑛𝑡 ) =
exp

(
−𝑏𝑄𝑛

(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎̄𝑛𝑡

) )∑
𝑎𝑛
′

𝑡 ∈A𝑛

exp
(
−𝑏𝑄𝑛

(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛

′
𝑡 , 𝑎̄

𝑛
𝑡

) ) (20)

where 𝑏 is the Boltzmann constant.

Denote the maximum Q-value output by the model as
𝑄̂𝑛

(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎̄𝑛𝑡

)
. The UAV pair 𝑛 is trained by minimizing

the following loss function, given by

𝐿
(
𝜃𝑛𝑡

)
=

(
𝑟𝑛𝑡 + 𝛾max

𝑎𝑛𝑡

𝑄̂𝑛
(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎̄𝑛𝑡

)
−𝑄𝑛

(
𝜃𝑛𝑡 ; o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑎̄𝑛𝑡

) )2
. (21)

As described in Algorithm 1, MMFQ consists of a train-
ing phase and an adaptation phase. In the training phase,
we sample different tasks T ∼ 𝑝 (𝜏), i.e., different loca-
tions of jammers, and the jammers are distributed in a three-
dimensional gridded space with the set of 𝑝 (𝜏). We suppose
a task T𝑥 ∈ T is extracted for each episode, and there can be

task repetition for different episodes. First, each UAV trans-
mitter obtains the current observation o𝑛𝑡 and the average
action 𝑎̄𝑛, and selects a channel 𝑎𝑛𝑡 underlying 𝜃𝑛𝑡 according
to (20). Then, each UAV pair communicates on the selected
channel to acquire the reward 𝑟𝑛𝑡 and a new observation o𝑛

𝑡+1.
Therefore, a new average action 𝑎̄𝑛𝑡 can be calculated. Sub-
sequently, each UAV stores the array

〈
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , o𝑛𝑡+1, 𝑎̄

𝑛
𝑡

〉
to

the experience pool until the pool is full. Next, we update
model parameters with the collected data. We draw a small
batch of arrays denoted as D, and evaluate ∇𝜃𝐿T𝑥 (𝜃) using
D with (21). Following this, the initial model 𝜃 is updated
into meta model 𝜃meta as

𝜃meta ← 𝜃 − 𝛼∇𝜃𝐿T𝑥 (𝜃) (22)

where 𝛼 is the learning rate.

In the adaptation phase, we first extract new tasks as
Tnew ∼ 𝑝 (𝜏), which differs from the encountered tasks
in the training phase. Similarly, each UAV pair obtains〈
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , 𝑜𝑛𝑡+1, 𝑎̄

𝑛
𝑡

〉
in a manner parallel to the training

phase, and then selects the communication channel 𝑎𝑛𝑡 us-
ing 𝜃meta. We denote the new batch of arrays as D′. Then,
we evaluate ∇𝜃𝐿T𝑥 ′ (𝜃) with D′ according to (21). When 𝐾
episodes are finished, we adapt the meta-model 𝜃meta to the
final model 𝜃∗ by the following function

𝜃∗ ← 𝜃 − 𝛽∇𝜃
∑︁
T𝑥 ′
𝐿T𝑥 ′ (𝜃meta) (23)

where 𝛽 is the meta-adaptation step size.
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Algorithm 1. Meta mean field Q-learning.
Input: the learning rate 𝛼, the meta-adaptation step size 𝛽.
Output: the channel selection policy 𝛑𝑛

∗ .
Initialize: the model parameters 𝜃

Training phase:
Sample tasks as T ∼ 𝑝 (𝜏 ) .
for 𝑘 = 0→ (𝐾 − 1) do

Sample a task T𝑥 ∈ T and reset the UAV communication network.
for 𝑡 = 0→ (𝐸 − 1) do

Each UAV transmitter obtains o𝑛𝑡 and 𝑎̄ 𝑛, and selects the com-
munication channel 𝑎𝑛𝑡 .

Each UAV communicates over its selected channel and receives
the reward 𝑟𝑡 and a new observation o𝑡+1.

Each UAV transmitter calculates a new average action 𝑎̄ 𝑛 and
stores the trajectory

〈
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , o𝑛𝑡+1, 𝑎̄

𝑛
𝑡

〉
to the experience pool.

if Experience pool is full then
Draw a small batch of samples

〈
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , o𝑛𝑡+1, 𝑎̄

𝑛
〉

from
the experience pool denoted as D.

Evaluate ∇𝜃𝐿T𝑥 (𝜃 ) using D and (21).
Update 𝜃meta ← 𝜃 − 𝛼∇𝜃𝐿T𝑥 (𝜃 ) .

end if
end for

end for
Return 𝜃meta
Adaptation phase:
Sample tasks as Tnew ∼ 𝑝 (𝜏 ) .
for 𝑘 = 0→ (𝐾 − 1) do

Sample a task T𝑥 ′ ∈ Tnew.
for 𝑡 = 0→ (𝐸 − 1) do

Repeat step 6)–8) using 𝜃meta.
if Experience pool is full then

Draw a small batch of samples
〈
o𝑛𝑡 , 𝑎𝑛𝑡 , 𝑟𝑛𝑡 , o𝑛𝑡+1, 𝑎̄

𝑛
𝑡

〉
from

the experience pool denoted as D′.
Evaluate ∇𝜃𝐿T𝑥 ′ (𝜃 ) using D′and (21).

end if
end for

end for
Update 𝜃∗ ← 𝜃 − 𝛽∇𝜃

∑
T𝑥 ′ 𝐿T𝑥 ′ (𝜃meta ) .

Return 𝜃∗

6. Theoretical Analysis of MMFQ

6.1 Convergence Analysis
The Q-function of each UAV pair is visited infinitely

open for update, and the reward is bounded by a constant.
In addition, the UAV pair’s policy is Greedy with the Boltz-
mann policy, where the Q-function is in the limit as the
temperature decays to zero. Therefore, we can prove that the
proposed algorithm converges in the training phase, i.e., the
joint policy 𝛑𝑡

Δ
=

[
𝜋1
𝑡 , . . . , 𝜋

𝑛
𝑡

]
converges to the Nash equi-

librium 𝛑∗𝑡
Δ
=

[ (
𝜋1
𝑡

)∗
, . . . ,

(
𝜋𝑛𝑡

)∗] within the finite update
episodes [24].

Next, we prove the loss function is bounded in the meta-
adaptation phase. The parameters of model 𝜃 are adapted
across new jamming policies T𝑥 ′ ∈ Tnew, and the objective of
the meta-adaptation phase can be described as

min
∑︁
T𝑥 ′
𝐿T𝑥 ′ (𝜃meta). (24)

For the sake of illustration, we denote
∑
T𝑥 ′ 𝐿T𝑥 ′ (𝜃meta)

as 𝐿 (𝜃meta) and make the following assumptions about the
loss function 𝐿 (𝜃) [26]. Assume the loss function 𝐿 (𝜃) is
𝜇-strongly convex and 𝐻-smooth, which is:

Assumption 1 The loss function 𝐿 (𝜃) is 𝜇-strongly con-
vex and 𝐻-smooth, and there is a constant 𝐵 satisfied with
∥∇𝐿 (𝜃)∥ ≤ 𝐵. The Hessian of 𝐿 (𝜃) is 𝜌-Lipschitz.

Assumption 2 There exists constants 𝛿 and 𝜎 such that

∇𝐿𝑥 (𝜃) − ∇𝐿𝑦 (𝜃)

 ≤ 𝛿, 

∇2𝐿𝑥 (𝜃) − ∇2𝐿𝑦 (𝜃)


 ≤ 𝜎.

Assumption 1 is typical in machine learning, which
guarantees that the loss function 𝐿 (𝜃) is smooth and
bounded. Moreover, the Hessian smoothness of the loss
function enables the characterization of the meta-adaptation
objective function. Assumption 2 indicates the similarity be-
tween different tasks. 𝛿 and 𝜎 can be adjusted over a large
range, and smaller constants show higher task similarity, and
vice versa.

To prove the convergence of MMFQ, we first analyze
the boundary properties of the loss function 𝐿 (𝜃). Then, we
discuss the influence of task similarity on convergence.

Lemma 1 Suppose that the assumptions above hold. When
𝛼 ≤ min

(
𝜇

2𝜇𝐻+𝜌𝐵 ,
1
𝜇

)
, 𝐿 (𝜃meta) is 𝑝-strongly convex and

𝑞-smooth, where 𝑝 = 𝜇(1 − 𝛼𝐻)2 − 𝛼𝜌𝐵> 0 and 𝑞 =

𝐻 (1 − 𝛼𝐻)2 + 𝛼𝜌𝐵.

Proof 1 See Appendix A.

Lemma 1 demonstrates the objective function of meta-
adaptation 𝐿 (𝜃meta) is smooth and bounded as well as the
loss function 𝐿 (𝜃) when the learning rate 𝛼 is satisfied with
the value condition.

Theorem 1 Suppose that the assumptions above hold. There
exists the following expression.

∇𝐿T𝑥 (𝜃meta) − ∇𝐿 (𝜃meta)



 ≤ 𝛿 + 𝛼𝐶 (𝐻𝛿 + 𝐵𝜎 + 𝜏)
where 𝐶 is a constant, and 𝜏 = 𝛿𝜎.

Proof 2 See Appendix B.

Theorem 1 establishes that with the assumption of bounded
variance of the gradient and Hessian of 𝐿 (𝜃), it is possi-
ble to derive an upper bound on the objective function for
meta-adaptation when faced with task variability.

According to the illustration above, the new theorem
about the convergence of MMFQ can be obtained as follows.
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Theorem 2 Suppose that Assumption 1 and Assumption 2
hold, and the learning rate 𝛼 and adapting step size 𝛽 are
satisfied with 𝛼 ≤ min

(
𝜇

2𝜇𝐻+𝜌𝐵 ,
1
𝜇

)
and 𝛽 < min

{
1

2𝑝 ,
2
𝑞

}
.

We have

𝐿
(
𝜃𝐸

)
− 𝐿 (𝜃∗) ≤ 𝜉𝑛𝐸

[
𝐿
(
𝜃0) − 𝐿 (𝜃∗)] + (1−𝛼𝜇)𝐵1−𝜉𝐸0 ℎ(𝐸0)

where 𝜉 = 1 − 2𝛽𝑝(1 − 𝛽𝑞

2 ), ℎ (𝑥)
Δ
= 𝛼′

𝛽𝑞
(1 + 𝛽𝑞)𝑡−(𝑛−1)𝐸

−𝛼′ [𝑡 − (𝑛 − 1)𝐸], and 𝛼′=𝛽 [𝛿+𝛼𝐶 (𝐻𝛿+𝐵𝜎+𝜏)].

Proof 3 See Appendix C.

From Theorem 2, we observe that ℎ (𝑥) increases with
𝛿, which represents the convergence impact of task similarity
and update steps 𝐸0, i.e., for a given time 𝐸 , higher task simi-
larity and smaller update steps leading to a lower convergence
error.

6.2 Fast Adaptation Performance Evaluation
The adaptation performance of MMFQ for different

jamming environments depends on the size of the sample
data and the task similarity. The distance between the output
model of reinforcement learning 𝜃meta and the optimal model
of meta-learning 𝜃∗ is assumed to be bounded by 𝜁 , which
represents the convergence error. Furthermore, we define
the average loss over different sample tasks in the adaptation
phase as 𝐿𝜏 (𝜃) over the task distribution 𝑝 as

𝐿𝜏 (𝜃)
Δ
= E𝜏∼𝑝𝑙 (𝜃,T𝑥) . (25)

Denote 𝐿𝑎 (𝜃) as the sample average approximation of
𝐿𝜏 (𝜃). Define 𝜒 = 𝜃meta − 𝛼∇𝐿𝑎 (𝜃meta) and 𝜒∗ =

arg min 𝐿T (𝜃) = 𝜃∗𝑎 − 𝛼∇𝐿𝜏
(
𝜃∗𝑎

)
. Then we can derive the

following theorem that characterizes the impact of task sim-
ilarity on adaptive performance.

Theorem 3 For any 𝜁 > 0, there exists a positive constant
𝐶𝑎 and 𝑛 = 𝑛 (𝜁) satisfying the following expression with
probability at least

(
1 − 𝐶𝑎𝑒−𝐾𝑛

)
,

∥𝐿𝜏 (𝜒) − 𝐿𝜏 (𝜒∗)∥ ≤ 𝛼𝐻𝜁 + 𝐻 (1 + 𝛼𝐻) 𝜁
+ 𝐻 (1 + 𝛼𝐻) ∥𝜃∗ − 𝜃𝑎∗∥ .

Proof 4 See Appendix D.

The difference in performance between the output of the
training phase and the optimal model is upper bounded by
∥𝜃∗ − 𝜃𝑎∗∥, which demonstrates that higher task similarity
leads to better performance. The difference among tasks,
i.e., the jammers’ location, exactly satisfies the higher task
similarity.

7. Experimental Results
In this section, we first comprehensively and com-

paratively evaluate our proposed algorithm against sev-
eral state-of-the-art algorithms, i.e., Mean-Field Q-learning
(MFQ) [19], Probabilistic Q-learning (PQ) [27], and Inde-
pendent Q-Learning (IQL) [28], all with the same simulation
design. MFQ lacks an adaptation phase compared to the
proposed algorithm and requires complete retraining of the
model when the jamming environment changes. PQ and IQL
are different Q-learning without mean-filed theory. Specif-
ically, PQ allows the UAV to choose a channel based on
probability distributions instead of the maximum Q-value,
whereas IQL learns and updates regardless of the influence
of other UAVs’ behavior on its decisions. We then verify the
effect of variations in the number of training and adaptation
tasks on performance. The simulation results demonstrate
the MMFQ converges faster and achieves higher throughput
and faster adaptation to new tasks.

Experimental settings: Consider the initial environ-
ment with 100 UAV pairs, i.e., 200 UAVs, and 2 jammers.
The number of available channels is 80. In the adaptation
phase, 𝜃meta are tested for sample tasks after 200 episodes, and
each episode contains 2000 steps. In addition, MMFQ con-
tains a training phase with episodes and steps being parallel
to the adaptation phase. All the experiments were executed
on Pycharm with Python 3.8, and Torch 1.6 was adopted as
the neural network framework. To demonstrate the conver-
gence of the algorithm in a visible way, the learning rate 𝛼
and the adaptation rate 𝛽 are both set as 0.01. The discount
factor 𝛾 = 0.95. The other experimental settings are listed in
Tab. 1, which were set according to commonly actual scenar-
ios [29–31].

Convergence performance: Figure 4 plots the exper-
imental results of the mean reward for different numbers of
episodes. First, we observe that the proposed algorithm con-
verges before the 40th episode, attaining a final mean reward
value of approximately 0.9. Although the MFQ converges at
approximately the 40th episode, the MMFQ has a significant
increase at the 10th episode and is smoother after conver-
gence. Therefore, MMFQ can converge faster and yield a su-
perior mean reward with the adaptation phase when it comes
to new tasks. Second, it can be seen that MMFQ outperforms
MFQ, MFQ outperforms PQ, and PQ outperforms IQL, in-
dicating that MMFQ takes advantage of both mean-field and
meta-learning, enhancing its capacity to select the spectrum
more effectively.

Parameter Value
Transmit power of UAV (𝑃i) 23 dBm

Transmit time of one time slot (𝑇trans) 0.98 s
Channel bandwidth (𝐵) 1.5 MHz

Jamming power (𝑃j) 23 dBm
Noise power (𝑁n) –114 dBm

The maximum distance within a UAV pair (𝑑𝑛,𝑛) 50 m
The threshold distance of neighbors (𝑑th) 100 m

Tab. 1. Parameter settings.
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Fig. 7. The mean reward of different algorithms varies with the
number of UAV.

Performance in each episode: Figure 5 illustrates the
variation trend of loss values in the communication system
during each episode with 2000 steps. First, we can figure out
that the slope of the MMFQ trajectory achieves maximum
value earlier than other algorithms, and the decline trajecto-
ries of other algorithms are smoother. Second, we find that
MMFQ can reach a lower final loss value at each episode,
enabling the MMFQ to converge faster and ultimately gain
a higher average reward than PQ and IQL. Since MMFQ en-
ables the meta-model to yield significant improvement with
minor adjustments, accelerating the process of convergence
under a new jamming environment.

With different spectrum resources: Figure 6 shows
the obtained mean reward with different spectrum resources,
where the horizontal coordinate represents the ratio of chan-
nels to UAVs, i.e., an increase in the number of channels.
The number of UAVs is fixed at 200, and the number of avail-
able channels increases gradually from 40 to 240. We can
notice that where the quantity of available channels does not
comprehensively match the number of UAVs, the growth ten-

dency of the mean reward achieved by MMFQ lies between
linear and exponential growth until the number of channels
exceeds the number of UAVs. In contrast, the mean reward
for the benchmark algorithms is growing slowly, which indi-
cates that the proposed algorithm offers UAVs an enhanced
capability to effectively coordinate spectrum resources while
mitigating the risk of co-channel interference.

With different number of users: Figure 7 plots the
experimental results of the mean reward for different num-
bers of UAVs (10, 30, 50, and 100). The number of channels
is accordingly set to one-half of the number of UAVs. We
can observe that the advantage of the proposed algorithm be-
comes more apparent as the number of users increases. When
the number of users is 10 and 20, PQ and MFQ perform
slightly better than MMFQ. While the number of users rises
to 100, MMFQ significantly outperforms the benchmark al-
gorithms in terms of mean reward. The experimental results
demonstrate that MMFQ can achieve better performance in
large-scale communication systems.
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Throughput analysis: Figure 8 shows the regression
of the throughput achieved by the system under various al-
gorithms. First, we can observe that the slope of the re-
gression curve for MMFQ, MFQ, PQ, and IQL are 0.175,
0.1, 0.065, and 0.035 respectively, appearing as a greater
boost in throughput and a higher ultimate value by utilizing
MMFQ. In contrast, the benchmark algorithms have a rela-
tively smooth and slow increase in throughput. Obviously,
with the assistance of training tasks, the agent can lever-
age the training result to adjust the meta-model more effec-
tively. Second, we notice that the data points of MMFQ are
more discrete than the benchmark algorithms, indicating the
throughput is unstable in the initial part of the adaptation
phase. The larger fluctuations, however, ultimately higher
values, demonstrate that MMFQ can leverage the model to
adapt to new tasks more effectively.

Adaptation performance: The experiments conducted
before all with the same task setting for MMFQ, i.e., 30 train-
ing tasks and 30 adaptation tasks. MFQ, IQL, and PQ are
without training tasks and directly processing with new tasks.
To further evaluate the adaptive performance of MMFQ, we
conduct different task settings for MMFQ as shown in Tab. 2.
Note that the IQL and PQ have similar comparison effects for
MMFQ, therefore we compare the adaptation performance
with MFQ and PQ under the conditions that the number of
UAVs 𝑁 = 50 and channels 𝑀 = 40 as shown in Fig. 9. First,
we observe that MMFQ and MFQ outperform PQ across
all task settings even if the scale of training or adaptation
tasks is small. Second, we find that the difference between
MMFQ and MFQ is insignificant in Set A, which indicates
that the UAV cannot effectively utilize the meta-model when
the number of training tasks is small. With the increasing
number of training tasks, MMFQ converges faster than MFQ

in Set B, showing that the meta-model has been well-trained
in the training phase. In Set C, MMFQ significantly outper-
forms the MFQ, including faster convergence and more sta-
ble trends. The reason is that MMFQ can quickly update the
meta-model to the optimal one with minor adjustments when
performing too many adaptation tasks, enabling the UAVs’
enhanced adaptability toward new jamming environments.

Type Training Tasks Adaptation Task
Set A 2 2
Set B 30 2
Set C 30 30

Tab. 2. Different task settings for MMFQ.

0 25 50 75 100 125 150 175 200
Episode

40

50

60

70

80

90

100

110

T
hr

ou
gh

pu
t（

M
bp
s）

MMFQ (the proposed)
MFQ
IQL
PQ
MMFQ (the proposed)
MFQ
PQ
IQL

Fig. 8. The throughput comparison of different algorithms varies
with the steps.

0 50 100 150 200
Step

0

2

4

6

8

10

Sc
or

es

Set A

0 50 100 150 200
Step

0

2

4

6

8

10

Sc
or

es

Set B

0 50 100 150 200
Step

0

2

4

6

8

10

Sc
or

es

Set C

MMFQ (the proposed) MFQ PQ

Fig. 9. Meta-adaptation performance comparison of MMFQ with different training and adaptation tasks.



RADIOENGINEERING, VOL. 33, NO. 3, SEPTEMBER 2024 427

8. Conclusion
In this paper, we have proposed an anti-jamming chan-

nel selection scheme for a large-scale UAV communication
network, where each UAV pair aims to maximize its long-
term expected achievable throughput by finding the opti-
mal channel selection policy with malicious jammers and
co-channel interference. Furthermore, we have designed
a POSG to formulate the channel selection process and uti-
lized the mean-field theory to simplify the computational
complexity. Then, we have developed an algorithm based on
MMFQ to cultivate adaptability and promote self-oriented
exploration when facing novel tasks. Moreover, we have
proved the convergence and the fast adaptation performance
of the proposed algorithm. Experimental results show that
the proposed algorithm converges faster, achieves higher
throughput, and adapts to new tasks more quickly than the
benchmark algorithms, especially for large-scale communi-
cation networks. Exploring more appropriate and effective
methods for incorporating the MMFQ within the broader
framework of the UAV communication system represents
an interesting avenue for future research.
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Appendix A: Proof of Lemma 1
We demonstrate the objective of meta-adaptation

𝐿 (𝜃meta) is 𝑝-strongly convex and 𝑞-smooth. According
to (22), we have

∇𝜃𝐿 (𝜃meta) =∇𝜃𝐿 (𝜃meta) −𝛼∇𝜃𝐿 (𝜃meta) · ∇2
𝜃𝐿 (𝜃) . (A1)

Therefore, we can deduce that

∥∇𝜃𝐿 (𝜃meta) − ∇𝜃𝐿 (𝜃′meta)∥

=




(1 − 𝛼∇2
𝜃𝐿 (𝜃)

)
[∇𝜃𝐿 (𝜃meta) − ∇𝜃𝐿 (𝜃′meta)]

− 𝛼∇𝜃𝐿 (𝜃′meta)
[
∇2
𝜃𝐿 (𝜃) − ∇2

𝜃𝐿 (𝜃′)
]
∥. (A2)

With the Assumptions 1, Equation (A2) can be derived
as follows

∥∇𝜃𝐿 (𝜃meta) − ∇𝜃𝐿 (𝜃′meta)∥
≥ (1 − 𝛼𝐻) ∥∇𝜃𝐿 (𝜃meta) − ∇𝜃𝐿 (𝜃′meta)∥
− 𝛼



∇𝜃𝐿 (𝜃′meta)
[
∇2
𝜃𝐿 (𝜃) − ∇2

𝜃𝐿 (𝜃′)
]



≥ 𝜇 (1 − 𝛼𝐻) ∥𝜃meta − 𝜃′meta∥ − 𝛼𝜌𝐵 ∥𝜃 − 𝜃′∥ . (A3)

From ∇2
𝜃
𝐿 (𝜃) = ∇𝜃𝐿 (𝜃 )−∇𝜃𝐿 (𝜃 ′ )

∥ 𝜃−𝜃 ′ ∥ ≤ 𝐻, we can obtain
the expression

1 − 𝛼𝐻 ≤ 1 − 𝛼∇2
𝜃𝐿 (𝜃) ≤ 1 − 𝛼𝜇. (A4)

With respect to ∇𝜃𝜃meta =
∥ 𝜃meta−𝜃 ′meta ∥
∥ 𝜃−𝜃 ′ ∥ , we have

(1 − 𝛼𝐻) ∥𝜃 − 𝜃′∥ ≤ ∥𝜃meta − 𝜃′meta∥ ≤ (1 − 𝛼𝜇) ∥𝜃 − 𝜃′∥ .
(A5)

According to (A3), (A4) and (A5), (A2) can be re-
stricted by the following expression

𝑝 ∥𝜃 − 𝜃′∥ ≤ ∥∇𝜃𝐿 (𝜃meta) − ∇𝜃𝐿 (𝜃′meta)∥ ≤ 𝑞 ∥𝜃 − 𝜃′∥
(A6)

where 𝑝 = 𝜇(1 − 𝛼𝐻)2 − 𝛼𝜌𝐵> 0 and 𝑞 = 𝐻 (1 − 𝛼𝐻)2 +
𝛼𝜌𝐵.

Thus, if 𝛼 ≤ min
(

𝜇

2𝜇𝐻+𝜌𝐵 ,
1
𝜇

)
, 𝐿 (𝜃meta) is 𝑝-strongly

convex and 𝑞-smooth, where 𝑝 = 𝜇(1 − 𝛼𝐻)2−𝛼𝜌𝐵> 0 and
𝑞 = 𝐻 (1 − 𝛼𝐻)2 + 𝛼𝜌𝐵.

Appendix B: Proof of Theorem 1
From Taylor’s theorem, it follows that

∇𝐿T𝑥 (𝜃meta) = ∇𝐿T𝑥 (𝜃) + ∇2𝐿T𝑥 (𝜃) (𝜃meta − 𝜃)

+ 𝑜
(
∥𝜃meta − 𝜃∥2

)
. (B1)

According to (22) and Assumption 1, Equation (B1)
can be rewritten as

∇𝐿T𝑥 (𝜃meta) = ∇𝐿T𝑥 (𝜃)−𝛼∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃)+𝑜
(
𝛼2𝐵2

)
.

(B2)

Based on Assumption 1 and Assumption 2, the product
between the Hessian matrix and the gradient of 𝐿T𝑥 (𝜃) can
be expressed as follows



∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃) − ∇2𝐿 (𝜃meta) ∇𝐿 (𝜃meta)


 ≤ 𝜔 (B3)

where 𝜔 = 𝐻𝛿 + 𝐵𝜎 + 𝜏, and 𝜏 = 𝛿𝜎.

Similarly, we can deduce the following expression


[∇2𝐿T𝑥 (𝜃)
]2∇𝐿T𝑥 (𝜃) −

[
∇2𝐿 (𝜃meta)

]2∇𝐿 (𝜃meta)



 ≤ 𝜔′

(B4)

where 𝜔′ = 𝐻𝛿′ + 𝐵𝜎 + 𝜏′, 𝛿′ = 𝐻𝛿 + 𝐵𝜎 + 𝜏, and 𝜏′ = 𝛿′𝜎.
Based on (B3) and (B4), we have

∇𝐿T𝑥 (𝜃meta) − ∇𝐿 (𝜃meta)




=




[𝐼 − 𝛼∇2𝐿T𝑥 (𝜃)
] [
∇𝐿T𝑥 (𝜃) − ∇𝐿T𝑗 (𝜃) + ∇𝐿T𝑗 (𝜃)

]
−
∑︁
T

[
𝐼 − 𝛼∇2𝐿T𝑥 (𝜃)

] [
∇𝐿T𝑥 (𝜃) − ∇𝐿T𝑗 (𝜃) + ∇𝐿T𝑗 (𝜃)

]





=




∇𝐿T𝑥 (𝜃) − ∇𝐿T𝑗 (𝜃) − 2𝛼 ∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃)

+ 2𝛼
∑︁
T
∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃) + 𝑜

(
𝛼2𝐵2

)
+𝛼2

[
∇2𝐿T𝑥 (𝜃)

]2
∇𝐿T𝑥 (𝜃) − 𝛼

2
∑︁
T

[
∇2𝐿T𝑥 (𝜃)

]2
∇𝐿T𝑥 (𝜃)







≤



∇𝐿T𝑥 (𝜃) − ∇𝐿T𝑗 (𝜃)


 + 𝑜 (𝛼2𝐵2

)
+ 2𝛼






∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃) −
∑︁
T
∇2𝐿T𝑥 (𝜃) ∇𝐿T𝑥 (𝜃)







+ 𝛼2






[∇2𝐿T𝑥 (𝜃)
]2
∇𝐿T𝑥 (𝜃) −

∑︁
T

[
∇2𝐿T𝑥 (𝜃)

]2
∇𝐿T𝑥 (𝜃)







(B5)

≤ 𝛿 + 𝛼𝐶 (𝐻𝛿 + 𝐵𝜎 + 𝜏) (B6)

where 𝜏 = 𝛿𝜎.

We summarize that if 𝛼 is relatively small, the above
expression is satisfied with a fixed 𝐶, which means an upper
bound of the objective function for MMFQ can be obtained
with a given bounded variance of the gradient and the Hessian
of the loss function in the presence of task variability.

Appendix C: Proof of Theorem 2
We define a virtual sequence 𝑍 𝑡[𝑛] for the model

𝜃𝑡 where [𝑛] denotes the interval [(𝑛 − 1)𝐸, 𝑛𝐸], and
𝑍
(𝑛−1)𝐸
[𝑛] = 𝜃 (𝑛−1)𝐸 . Then we have

𝑍 𝑡+1[𝑛] = 𝑍
𝑡
[𝑛]−𝛽∇𝐿

(
𝑍 𝑡[𝑛]

)
. (C1)

Therefore, the distance between 𝑍 𝑡+1[𝑛] and 𝜃𝑡+1 can be
expressed as
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𝜃𝑡+1 − 𝑍 𝑡+1[𝑛]


 = 


𝜃𝑡 − 𝛽∇𝐿 (𝜃𝑡 ) − 𝑍 𝑡[𝑛] + 𝛽∇𝐿 (𝑍 𝑡[𝑛])


 .
(C2)

According to (A6), (C2) can be deduced as


𝜃𝑡+1 − 𝑍 𝑡+1[𝑛]


 ≤ 


𝜃𝑡 − 𝑍 𝑡[𝑛]


 + 𝛽𝑞 


𝑍 𝑡[𝑛] − 𝜃𝑡


 . (C3)

By induction, we can derive the following expression


𝜃𝑡 − 𝑍 𝑡[𝑛]


 ≤ 𝑔(𝑡 − (𝑛 − 1)𝐸) (C4)

where 𝑔 (𝑥) Δ
=

𝛿+𝛼𝐶 (𝐻𝛿+𝐵𝜎+𝜏 )
𝑞

[(1 + 𝛽𝑞)𝑥 − 1], and 𝐶, 𝛿,
𝜎, and 𝜏=𝛿𝜎 are all constants.

Therefore, Equation (C2) can be further derived as


𝜃𝑡+1 − 𝑍 𝑡+1[𝑛]


 ≤ 


𝜃𝑡 − 𝑍 𝑡[𝑛]


 + 𝛼′ [(1 + 𝛽𝑞)𝑡−(𝑛−1)𝐸−1
]

(C5)

where 𝛼′=𝛽 [𝛿+𝛼𝐶 (𝐻𝛿+𝐵𝜎+𝜏)].

When 𝑡 ∈ [(𝑛 − 1) 𝐸, 𝑛𝐸], we have


𝜃𝑡 − 𝑍 𝑡[𝑛]


 ≤∑︁𝑡−(𝑛−1)𝐸
𝑗=1

{
𝛼′

[
(1 + 𝛽𝑞)𝑡−(𝑛−1)𝐸 − 1

]}
=
𝛼′

𝛽𝑞
(1 + 𝛽𝑞)𝑡−(𝑛−1)𝐸 − 𝛼′ [𝑡 − (𝑛 − 1)𝐸]

Δ
= ℎ(𝑡 − (𝑛 − 1)𝐸). (C6)

Next, we discuss the convergence of 𝑍 𝑡[𝑛] . Based on the
𝑝-strongly convex of 𝐿 (𝜃meta), we can obtain

𝐿

(
𝑍 𝑡+1[𝑛]

)
− 𝐿

(
𝑍 𝑡[𝑛]

)
≤ −𝛽

(
1 − 𝛽𝑞

2

) 


∇𝐿 (
𝑍 𝑡[𝑛]

)


2
. (C7)

Similarly, based on the 𝑞-smooth of 𝐿 (𝜃meta), we have

𝐿

(
𝑍 𝑡[𝑛]

)
≤ 𝐿 (𝜃∗) + 1

2𝑝




∇𝐿 (
𝑍 𝑡[𝑛]

)


2
. (C8)

According to (C7) and (C8), the expression can be de-
duced as follows

𝐿

(
𝑍 𝑡+1[𝑛]

)
− 𝐿

(
𝑍 𝑡[𝑛]

)
≤ −2𝛽𝑞

(
1 − 𝛽𝑞

2

) [
𝐿

(
𝑍 𝑡[𝑛]

)
− 𝐿 (𝜃∗)

]
(C9)

which can be rewritten as

𝐿

(
𝑍 𝑡+1[𝑛]

)
− 𝐿 (𝜃∗) ≤ 𝜉

[
𝐿

(
𝑍 𝑡[𝑛]

)
− 𝐿 (𝜃∗)

]
(C10)

and

𝜉

[
𝐿

(
𝑍 𝑡[𝑛]

)
− 𝐿

(
𝜃∗
) ] Δ

=

[
1 − 2𝛽𝑞

(
1 − 𝛽𝑞

2

)] [
𝐿

(
𝑍 𝑡[𝑛]

)
− 𝐿

(
𝜃∗
) ]

(C11)

where 𝜉 ∈ (0, 1), and 𝛽<min
{

1
2𝑝 ,

2
𝑞

}
.

Iterations can be deduced as follows

𝐿

(
𝑍𝑛𝐸[𝑛]

)
− 𝐿 (𝜃∗) ≤ 𝜉

[
𝐿

(
𝑍𝑛𝐸−1
[𝑛]

)
− 𝐿 (𝜃∗)

]
≤ 𝜉2

[
𝐿

(
𝑍𝑛𝐸−2
[𝑛]

)
− 𝐿 (𝜃∗)

]
. . .

≤ 𝜉𝐸
[
𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛]

)
− 𝐿 (𝜃∗)

]
= 𝜉𝐸

[
𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛−1]

)
− 𝐿 (𝜃∗)

]
+ 𝜉𝐸

[
𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛]

)
− 𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛−1]

)]
.

(C12)

Combining (A1) and Assumption 1–Assumption 2, we
have

∥∇𝜃𝐿 (𝜃meta)∥ ≤ (1 − 𝛼𝜇) 𝐵. (C13)

According to the mean value theorem
∥𝐿 (𝜃) − 𝐿 (𝜃′)∥ ≤ (1 − 𝛼𝜇)𝐵 ∥𝜃 − 𝜃′∥ and (C6), we can
derive

𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛]

)
− 𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛−1]

)
= 𝐿 (𝜃 (𝑛−1)𝐸) − 𝐿 (𝑍 (𝑛−1)𝐸

[𝑛−1] )

≤ (1 − 𝛼𝜇)𝐵



𝜃 (𝑛−1)𝐸 − 𝑍 (𝑛−1)𝐸

[𝑛−1]





≤ (1 − 𝛼𝜇)𝐵ℎ(𝐸). (C14)

Iterations can be expressed as follows

𝐿

(
𝑍𝑛𝐸[𝑛]

)
− 𝐿

(
𝜃∗
)

≤ 𝜉𝐸
[
𝐿

(
𝑍
(𝑛−1)𝐸
[𝑛−1]

)
− 𝐿

(
𝜃∗
) ]
+ 𝜉𝐸 (1 − 𝛼𝜇)𝐵ℎ(𝐸)

≤ 𝜉2𝐸
[
𝐿

(
𝑍
(𝑛−2)𝐸
[𝑛−2]

)
− 𝐿

(
𝜃∗
) ]
+ (𝜉𝐸 + 𝜉2𝐸 ) (1 − 𝛼𝜇)𝐵ℎ(𝐸)

. . .

≤ 𝜉𝑛𝐸
[
𝐿

(
𝑍0
[0]

)
− 𝐿

(
𝜃∗
) ]
+
∑︁𝑁

𝑗=1
𝜉 𝑗𝐸 (1 − 𝛼𝜇)𝐵ℎ(𝐸)

= 𝜉𝑛𝐸
[
𝐿

(
𝜃0
)
− 𝐿

(
𝜃∗
) ]
+ (1 − 𝛼𝜇)𝐵

1 − 𝜉𝐸
ℎ(𝐸) (C15)

where 𝜉 = 1 − 2𝛽𝑝(1 − 𝛽𝑞

2 ).

In conclusion, when the learning rate 𝛼 and adapt-
ing step size 𝛽 are satisfied with 𝛼 ≤ min

(
𝜇

2𝜇𝐻+𝜌𝐵 ,
1
𝜇

)
and 𝛽 < min

{
1

2𝑝 ,
2
𝑞

}
respectively, 𝐿

(
𝜃𝐸

)
− 𝐿 (𝜃∗) ≤

𝜉𝑛𝐸
[
𝐿
(
𝜃0) − 𝐿 (𝜃∗)] + (1−𝛼𝜇)𝐵1−𝜉𝐸0 ℎ(𝐸0).

Appendix D: Proof of Theorem 3
Recall that 𝜒 = 𝜃meta − 𝛼∇𝐿𝑎 (𝜃meta) and 𝜒∗ =

arg min 𝐿𝜏 (𝜃) = 𝜃∗𝑎 − 𝛼∇𝐿𝜏
(
𝜃∗𝑎

)
, where 𝜃meta can be

considered as an estimation of 𝜃∗𝑎 and 𝐿𝑎 (·) is the sam-
ple average approximation of 𝐿𝜏 (·). In addition, denote
𝜒̃ = 𝜃∗𝑎 − 𝛼∇𝐿𝑎

(
𝜃∗𝑎

)
.



RADIOENGINEERING, VOL. 33, NO. 3, SEPTEMBER 2024 431

∥𝜒 − 𝜒∗∥ = ∥𝜒 − 𝜒̃ + 𝜒̃ − 𝜒∗∥
≤ ∥𝜒 − 𝜒̃∥ + ∥ 𝜒̃ − 𝜒∗∥ (D1)

where ∥𝜒 − 𝜒̃∥ denote the gap between the output model of
RL 𝜃meta and the objective optimal model 𝜃∗𝑎, and ∥ 𝜒̃ − 𝜒∗∥
represents the error introduced by the sample average approx-
imation of the loss function.

For ∥𝜒 − 𝜒̃∥ in (D1), we can express the term as

∥𝜒 − 𝜒̃∥ =


𝜃meta − 𝜃∗𝑎 − 𝛼

[
∇𝐿𝑎 (𝜃meta) − ∇𝐿𝑎

(
𝜃∗𝑎

) ]


≤


𝜃meta − 𝜃∗𝑎



 + 𝛼 

∇𝐿𝑎 (𝜃meta) − ∇𝐿𝑎
(
𝜃∗𝑎

)


≤ (1 + 𝛼𝐻)



𝜃meta − 𝜃∗𝑎




= (1 + 𝛼𝐻)


𝜃meta − 𝜃∗ + 𝜃∗ − 𝜃∗𝑎




≤ (1 + 𝛼𝐻)

[
∥𝜃meta − 𝜃∗∥ +



𝜃∗ − 𝜃∗𝑎

]
≤ (1 + 𝛼𝐻)

(
𝜁 +



𝜃∗ − 𝜃∗𝑎

) . (D2)

Next, we evaluate the term ∥ 𝜒̃ − 𝜒∗∥ in (D1). Note that

∥ 𝜒̃ − 𝜒∗∥ = 𝛼


∇𝐿𝜏 (𝜃∗𝑎 ) − ∇𝐿𝑎 (𝜃∗𝑎 )

 (D3)

where ∇𝐿𝑎 (·) = 1
𝑘

∑
T𝑥 ∈T ∇𝑙 (·,T𝑥) and ∇𝐿𝜏 (·) =

E𝜏∼𝑝∇𝑙 (·, 𝜃).

Define 𝑦 Δ
= ∇𝑙 (·), then we have

𝑌𝑎
(
𝜃∗𝑎

) Δ
=

1
𝑘

∑︁
T𝑥 ∈T

𝑦
(
𝜃∗𝑎,T𝑥

)
= ∇𝐿𝑎

(
𝜃∗𝑎

)
(D4)

and
𝑌𝜏

(
𝜃∗𝑎

) Δ
= E𝜏∼𝑝𝑦

(
𝜃∗𝑎,T𝑥

)
= ∇𝐿𝜏

(
𝜃∗𝑎

)
. (D5)

Similarly,𝑌𝑎 (·) is the sample average approximation of𝑌𝜏 (·)
and 𝑙 (𝜃) is 𝐻-smooth. According to the uniform law of large
number, there exist constants 𝐶𝑎 and 𝑛 = 𝑛 (𝜁) such that

Pr {sup ∥𝑌𝑎 (𝜃) − 𝑌𝜏 (𝜃)∥ ≥ 𝜁 } ≤ 𝐶𝑎e−𝑘𝑛 (D6)

where ∀𝜁 > 0.

According to (D3), (D4), and (D5), we have

Pr {∥ 𝜒̃ − 𝜒∗∥ ≤ 𝛼𝜁 } ≥ 1 − 𝐶𝑎e−𝑘𝑛. (D7)

Combining (D2) and (D7), we can derived the following
expression

∥𝐿𝜏 (𝜒) − 𝐿𝜏 (𝜒∗)∥ ≤ 𝛼𝐻𝜁 + 𝐻 (1 + 𝛼𝐻) 𝜁
+ 𝐻 (1 + 𝛼𝐻) ∥𝜃∗ − 𝜃𝑎∗∥ (D8)

which illustrates the effect of task variability on the adapta-
tion performance.


