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Abstract. Recent advancements in occupancy and indoor
environmental monitoring have encouraged the development
of innovative solutions. This paper presents a novel approach
to room occupancy detection using Wi-Fi probe requests
and machine learning techniques. We propose a method-
ology that splits occupancy detection into two distinct sub-
tasks: personnel presence detection, where the model pre-
dicts whether someone is present in the room, and occupancy
level detection, which estimates the number of occupants on
a six-level scale (ranging from 1 person to up to 25 peo-
ple) based on probe requests. To achieve this, we evaluated
three types of neural networks: CNN (Convolutional Neu-
ral Network), LSTM (Long Short-Term Memory), and GRU
(Gated Recurrent Unit). Our experimental results show that
the GRU model exhibits superior performance in both tasks.
For personnel presence detection, the GRU model achieves
an accuracy of 91.8%, outperforming the CNN and LSTM
models with accuracies of 88.7% and 63.8%, respectively.
This demonstrates the effectiveness of GRU in discerning
room occupancy. Furthermore, for occupancy level detec-
tion, the GRU model achieves an accuracy of 75.1%, surpass-
ing the CNN and LSTM models with accuracies of 47.1% and
52.8%, respectively. This research contributes to the field of
occupancy detection by providing a cost-effective solution
that utilizes existing Wi-Fi infrastructure and demonstrates
the potential of machine learning techniques in accurately
classifying room occupancy.

Keywords
Occupancy detection, probe requests, Wi-Fi, energy
savings, machine learning

1. Introduction
Knowing the occupancy of rooms and buildings can be

useful in a wide range of circumstances. In smart buildings,
there is a significant interest among facility managers in using
occupancy monitoring systems to improve property manage-
ment [1], which can lead to reduced energy consumption of

lighting and HVAC (Heating, Ventilation and Air Condition-
ing) systems [2], efficient use of reserved rooms, and also
to the detection of user behavior patterns. In other areas,
such as libraries, corridors, or restrooms, effective mainte-
nance planning can be implemented. Additionally, having
knowledge of the number of people in a building can prove
highly beneficial in crisis situations. For instance, in the
event of a fire or a breach in the building, this information
can be utilized by rescue services to locate trapped persons
in time [3].

Occupancy patterns vary according to the building type.
Differences can be expected for residential areas compared
to commercial [4] and other buildings, such as universities
and hospitals. Residential buildings are mainly occupied
in the morning, evening, and during the night. Commer-
cial objects and university campuses are heavily used during
working hours, but sporadically during weekends, holidays,
or summer vacations. Hospital facilities and some facto-
ries operate continuously 24 hours a day [5]. Occupancy
can be detected in several ways, from a surveillance camera
system, through a network of motion and environmental sen-
sors, to the use of wireless communication in users’ mobile
devices by the 802.11 wireless interface, whose packets are
easy to capture and the management frames do not use any
type of encryption.

The paper is structured as follows. The next section
provides a summary of relevant works on room/building oc-
cupancy. Section 3 reviews the methodology and background
of used approaches. Section 4 explains the data collection
process and its transformation for use in deep learning. In
Section 5, the data analysis, including the space use manage-
ment study and occupancy predictive modeling is presented.
Subsequently, Section 6 presents the discussion of experi-
mental results and Section 7 concludes the topic and presents
possible goals for the future.

2. Literature Review
Advancements in sensor and communication technolo-

gies have provided plenty of opportunities for occupancy and
indoor environmental monitoring applications. For exam-
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ple, space use management in public buildings is enabled
by long-term monitoring using sensor-based occupancy de-
tection instead of manual surveys [6]. Various sensors and
tools allow occupancy detection in commercial and university
buildings, such as PIR (Passive InfraRed) sensors, infrared
arrays, ultrasonic sensors, and power consumption metering
systems [7], [8]. In order to make the estimation more accu-
rate, these sensors are usually supplemented by others, such
as video cameras [9], [10], environmental sensors [11], [12],
or radio signal monitoring [13], [14].

Jia et al., in [15], used existing video cameras from
the surveillance system, detected people from video frames
using machine learning classifiers, and tried to follow them
through the zones of a building. They proposed the estima-
tion algorithm, which detected arrival and departure events
at the boundaries of zones.

In [16], information from the existing ventilation sys-
tem and indoor CO2 (Carbon Dioxide) concentration levels
was used in a university environment together with super-
vised machine learning techniques, namely Random Forests
and Extreme Learning Machine Neural Networks, for indi-
rect occupancy profile estimation. Depending on the type
and size of the rooms, they achieved RMSE determination
errors between 2.75 and 8.39. A test-bed for an open-plan
office building was provided in [17]. They combined pol-
lutant, heat, and noise environmental sensors, namely CO2,
CO (Carbon Monoxide), TVOC (Total Volatile Organic Com-
pounds), PM2.5 (Particulate Matter), acoustics, illumination,
motion, temperature, and relative humidity. Three machine
learning techniques were used to study occupancy detec-
tion. Despite the significant temperature dependence of CO2
measurements, the absolute testing accuracy from SVMs
(Support Vector Machines) and the ANN (Artificial Neu-
ral Network) were both around 75%. Because of the dy-
namic Markov properties, the estimated occupancy achieved
by Hidden Markov Models (HMMs) was, on average, 73%
during the test periods.

In [7], authors used thermal imaging provided by 8 × 8
infrared sensor arrays placed on top of doorways in offices
and laboratory rooms. By using human heat maps, they were
able to count the number of people crossing the doorway in
each room and track their direction. The recognition sys-
tem depended on the walking speed of passing people, the
differing distance of the sensor, and the temperature noise.
However, the authors report an average accuracy of detect-
ing passing persons at 95%. Nevertheless, this method may
suffer from cumulative error.

Existing systems for detecting occupancy and effi-
cient use of rooms can also be supplemented by other ap-
proaches. One such approach utilizes radio waves from com-
mon wireless protocols for detecting people, both by wear-
able device presence tracking and by device-free presence
detection [18–20]. Individualized occupancy detection sys-
tems can be developed using radio frequency identification.
Li et al., in [21], used tracking tags to detect the occupants’

locations based on the known location of reference tags in
an educational building. The occupancy estimator was based
on the 𝑘-Nearest Neighbor algorithm and was able to detect
both stationary and mobile occupants. In a more dynamic
environment test, the zone level detection rate was 76%.

Research using existing infrastructure in the form of
Wi-Fi networks to estimate occupancy is published by Mo-
hottige et al. in [22] and Çiftler et al. in [23]. The number of
Wi-Fi connections from a large university campus was col-
lected during four weeks. Using Wi-Fi and Beam counters in
each room, the authors were able to measure the number of
connected devices. Their study shows that data from existing
Wi-Fi infrastructure is a viable way to monitor the behavior
of students in various places on the campus during the day,
e.g. in teaching spaces, on-campus accommodation areas,
the gymnasium, library, or food court.

This research work is related to the RUGGEDISED
project, which is dedicated to testing, implementing, and ac-
celerating the smart city model across Europe [24]. By using
practical experience from implementation in the Lighthouse
city of Umeå, this work proposes a new solution to estimate
occupancy levels in an enclosed space in Brno based on users’
wearable wireless devices. To this end, our contributions are
as follows:

• We analyzed space use management at a Swedish uni-
versity using PIR sensors and evaluated its impact on
energy consumption.

• We conducted a field experiment at a Czech university
recording probe requests from students and employees
within a laboratory environment.

• We processed all data with special regard to the partici-
pants’ privacy and we published the anonymized dataset
for scientific purposes.

• We proposed a methodology for classifying the num-
ber of people in a room using Wi-Fi (Wireless Fidelity)
communication.

• We discussed the possibilities of merging with other
detection systems to strengthen room occupancy mon-
itoring and the possibility of implementing this system
for building management.

3. Methodology
In this paper, we present two studies applicable to the

detection of people inside buildings and rooms. The studies
were carried out at Umeå University and Brno University of
Technology. It is essential to point out that the occupancy es-
timation system in Umeå is based on motion, while in Brno,
it is dependent on the number of users’ wearable wireless de-
vices and machine learning. Both studies have the potential
to be combined into one system in the future.



434 O. ZELENY, T. FRYZA, T. BRAVENEC, ET AL., DETECTION OF ROOM OCCUPANCY IN SMART BUILDINGS

3.1 PIR-Based Space Occupancy
Various occupancy sensing technologies may be suit-

able for different applications, with each presenting its
own set of advantages, disadvantages, and limitations [25].
Among these technologies, PIR sensors have garnered wider
acceptance in buildings, primarily due to their affordability
and energy efficiency. However, the reliability of occupancy
data significantly impacts the effectiveness of intended appli-
cations. The accuracy and reliability of PIR data are influ-
enced by the placement of sensors within a space [26]. Many
factors contribute to this influence, such as the proximity of
sensors to occupants, the ambient temperature, and the angle
of view for detecting subtle movements.

The trials conducted at Umeå University concerning
PIR sensors had two primary objectives: (a) to investigate
how sensor placement affects the reliability and accuracy of
occupancy detection, and (b) to explore the utilization of PIR
sensors in space management and efficiency. Both studies
utilized identical infrastructure for sensor deployment, data
transmission, storage, and accessibility. The sensors operated
on battery power and transmitted data wirelessly, eliminating
the need for extensive wiring and simplifying installation.
Data transmission relied on the LoRa (Long-Range) wire-
less network, known for its low-power, wide-area coverage,
commonly utilized in IoT (Internet of Things) applications.

In general, when installing sensors, it is important to
avoid blind spots while simultaneously minimizing the over-
lap between the sensors. However, evenly distributing sen-
sors without any overlap is often challenging in practice. The
distance between the sensors depends on the sensors’ detec-
tion range. The vendor recommendation for the installation
range of the sensors used in this study was within the 5 m
range. Nevertheless, the sensors were installed to cover the
2–3 m range to reduce the probability of blind spots.

The resulting data were in the form of a time series,
which developed regularly, instead of being event-based, such
as data transmitted when a motion is detected on an irregular
basis. This strategy facilitated combining data from several
sensors by making them time-aligned. The data were trans-
mitted every 10 minutes, which is a typical time-delay set for
PIR sensors. The data from all sensors could be accessed via
the internet as they were collected and stored in a middleware
database platform.

3.2 Wi-Fi Probe Requests
Wi-Fi enabled devices use several types of management

frames of the 802.11 protocol. One such frame is the probe
request, which is broadcast from mobile devices for active
scanning of nearby Wi-Fi APs (Access Points) to find pre-
viously associated ones and to replace cellular connectivity
with WLAN (Wireless Local Area Network) [27]. Even
while connected to a Wi-Fi network, the device transmits
probe requests for localization purposes [28]. When a device
transmits probe requests, it receives response packets from

the APs in the vicinity. The list of nearby APs can be used
for assisted global positioning systems to approximate the
user’s location. To estimate the approximate location, the
SSIDs (Service Set Identifiers) of nearby APs are compared
to the online database of wireless APs. Note that developers
of mobile operating systems use their own private databases,
but a public one is also available.

The probe request consists of Header and Information
Element fields [28]. The Header contains information about
the MAC (Media Access Control) addresses (globally unique
or locally assigned) of the source and destination devices, as
well as the size of the probe request. The Information Ele-
ment usually contains supported transmission speeds, but the
rest of the fields vary depending on the device manufacturer.
The additional fields can contain vendor specific informa-
tion, usually related, but not limited, to the manufacturer of
the wireless interface. While not as common as vendor spe-
cific information, the WPS (Wi-Fi Protected Setup) field can
contain information ranging from device model to the name
of the device. In the worst case scenario in terms of privacy,
this contains the owner’s name.

In the last decade, many mobile devices implemented
MAC address randomization to prevent tracking [29]. From
our previous research, the MAC address does not change dur-
ing a single scan instance [30] and devices often reuse the
same locally assigned address in the presence of known APs.
This knowledge allows us to rely on MAC addresses as de-
vice identifiers despite the MAC address randomization. In
this work, we determined that, while using a short detection
window, the influence of MAC address randomization on the
assessment of room occupancy is negligible. As one MAC
address disappears and another one takes its place, the result-
ing room occupancy prediction ends up being the same, even
if there is a small delay in updating.

There are several benefits in using Wi-Fi management
frames for room occupancy estimation. The main advantages
of this solution are:

• It is not dependent on users carrying specialized hard-
ware like Bluetooth or RFID tags. Conscious user co-
operation is also unnecessary, making the system robust
as users do not need to perform any tasks.

• It is cost effective, as the probe requests data can be
either captured by existing Wi-Fi infrastructure, by
a cheap microcontroller (such as ESP32 by Espressif)
equipped with a Wi-Fi interface supporting monitoring
mode.

• It is a simple solution as the capture of probe requests
and extraction of the needed information is not difficult.

• It is easily deployed.

There are a few main disadvantages of using this ap-
proach with the RSSI (Received Signal Strength Intensity)
measurements:
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• The user must have a Wi-Fi enabled device on them
for the system to detect their presence. This could
be resolved by using CSI (Channel State Information)
instead of RSSI. On the other hand, the CSI based ap-
proach would require considerably more time during
the offline phase to gather the information on how the
radio channel changes with people in different parts of
the room.

• The RSSI threshold is different based on the size of
the monitored room. If the RSSI threshold is not set
correctly for all individual rooms, the system might in-
correctly identify the room as occupied by detecting
movement outside of the room.

3.3 Machine Learning
Machine Learning describes an area of artificial in-

telligence that focuses on the development of models and
algorithms capable of learning from data on their own. In
machine learning, there are two primary methodologies: Su-
pervised Learning and Unsupervised Learning. Supervised
learning involves models that learn to perform tasks from
labeled data, which includes both the input data and the cor-
responding expected outputs. Unsupervised learning, on the
other hand, does not rely on labeled data and is employed to
perform tasks that derive insights directly from the data with-
out predefined labels. Machine learning models learn to per-
form tasks through training, which is a process of adjusting
the model’s parameters to minimize the difference between
its predictions and the desired output. Model parameters
are usually optimized using techniques like gradient descent,
which updates the parameters in a direction that minimizes
error. After achieving sufficient accuracy on the training data,
the model is then evaluated on validation data to assess its
performance on data it has not previously encountered [31].

Deep learning, a subset of machine learning, primar-
ily relies on neural networks, which are mathematical mod-
els inspired by the neuronal structures of the human brain.
These deep learning models are constructed with many suc-
cessive layers, where each layer itself functions as an inde-
pendent neural network. There are two main types of neural
networks: RNNs (Recurrent Neural Networks) and CNNs
(Convolutional Neural Networks). The CNNs, or ConvNets,
are neural networks designed for grid-shaped data and are
based on a set of predefined learnable filters that are applied
to each section of the input data. The output of ConvNet
is called a feature map and is often further processed using
pooling layers to decrease its spatial dimensions [32].

RNNs are built to handle sequences and time series data
using something called a hidden state as a form of memory.
They have a feedback loop that carries this hidden state from
one time step to the next. This loop helps the RNN remember
important information from earlier in the sequence, which al-
lows it to make accurate predictions. Although RNNs can be
highly effective for certain tasks, they are generally difficult

to train. This challenge prompted the creation of more ad-
vanced recurrent units: LSTM (Long Short-Term Memory)
and GRU (Gated Recurrent Unit) units [31].

LSTM units are designed to retain information over
an arbitrary time, commonly referred to as memory. LSTM
units consist of input, output, and forget gates, which control
the flow of information. They also include a hidden state and
memory state, which help to retain information over long-
term periods. The forget gate uses the input data and the
previous hidden state to control how much information the
memory state will use to calculate the output values, the new
memory state, and the new hidden state [32].

GRU units are similar to the LSTM units, however, they
do not use a memory state and forget gate to control the flow
of information. Instead, they use the reset gate and update
gate to generate a new hidden state and output values. The
update gate determines how much of the previous hidden
state will be passed along, while the reset gate decides how
much of it will be forgotten. GRU units are usually faster to
train and require less data to generalize; however, in some
cases, especially with large datasets, LSTM may significantly
outperform GRU-based networks. The architecture of both
LSTM and GRU units can be seen in Figs. 1 and 2, re-
spectively. Both were used to obtain an effective occupancy
estimator [31].

Fig. 1. Long-short term memory [31].

Fig. 2. Gated recurrent units [31].
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3.4 Ethics and Sensitive Information Collection
With the capture of Wi-Fi probe requests, the question

of user privacy is raised. Since some devices share private
user information that can be used for user identification, it is
necessary to state that our firmware stores the probe requests
as they are received in industry standard binary PCAP (Packet
Capture) files, all user data included. The only information
necessary for presence detection is the probe request headers
with the MAC address to identify non-wearable devices like
computers that might be left in the office while the owner of
the device leaves. To protect users’ privacy rights, we have
adhered to the following procedures and recommendations:

• We informed the university department that tests related
to the collection of attendance data will be taking place.

• The participants of the experiment were informed about
the recording of probe requests as well as video record-
ing for the determination of the ground truth occupancy.

• Modules with an on-board antenna providing a limited
radius were used for the measurements. In addition,
a signal strength indicator threshold was set to select
the probe request to be stored.

• During the Wi-Fi experiment, we did not extract per-
sonal information, such as user information stored in
WPS or any other sensitive data.

• MAC addresses and SSIDs from preferred network lists
were hashed before storing.

• All video recordings from the rooms were deleted after
their analysis.

• During the testing period, the scanned data was stored
only during the selected interval, i.e., a maximum of 15
minutes.

The aspect of user security and privacy is very impor-
tant. Therefore, the measurement and evaluation of the in-
formation itself served to educate users about the presence of
Wi-Fi probe requests and the data structure of these requests.

4. Dataset
To support the functionality for estimating room oc-

cupancy, we created a dataset of probe requests, collected
within two Fall and two Spring semesters from October 2022
to March 2024 at the Brno University of Technology, Depart-
ment of Radio Electronics. The department is located on the
6th, i.e., the second highest floor of the university campus
building. The dataset was created in a regular laboratory
with a floor area of 73 m2, see Fig. 3.

The testing was conducted during regular university
operations and involved participation from over 350 indi-
viduals. Throughout the entire measurement period, a total
of 3,453,658 probe requests were recorded, with 1,442,437

(41.8%) using randomized MAC addresses. For the replica-
bility of our results and also for the needs of the scientific
community, the entire dataset is available in a public reposi-
tory on GitHub [33].

It is important to note that these probe requests were
collected not only during selected working hours but also
throughout various nights and weekends to capture informa-
tion regarding static wireless background activity. In to-
tal, data was recorded over 158 days. Figure 4 displays the
total number of probe requests recorded during the month
of September 2023, aggregated into 15-minute intervals.
Increased wireless communication activity is evident after
Monday, September 18, coinciding with the start of the Fall
semester, while minimal activity is observed during week-
ends. It is worth noting that on the afternoon of Wednesday,
September 20, classes were canceled due to the University
music festival, leading a decrease in probe request numbers.

These requests came not only from mobile devices of
students and department employees, but also from fixed wire-
less devices, devices of maintenance employees, and devices
situated on higher or lower floors. Today, Wi-Fi devices are
very popular and it is likely that a single occupant owns more
than one device. Likewise, it is likely that another occupant
has wireless connectivity completely turned off or does not
have any Wi-Fi device at all, see Fig. 5. Still, our efforts
are to demonstrate that we were able to interpret the num-
ber of people based on received data and real observations.
All measurements were performed on an ESP32 based plat-
form with an embedded camera module and custom C/C++
firmware. The collected data were processes using Python.

Fig. 3. Wi-Fi sniffer position in the laboratory.

Fig. 4. Probe request density (requests per 15 minutes) recorded
in September 2023.
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Fig. 5. Sensing system concept.

Probe requests collected for occupancy classification
typically offer a limited set of features for analysis. The
anonymized data consists of features that can be categorized
as either temporally or spatio-temporally dependent, or as
static across both time and space. From each probe request
packet, a total of 13 features were extracted and organized
into a table. Each row within this table, sorted chronolog-
ically, represents an individual probe request alongside its
respective features in columns. However, certain utilized
features, namely the OUI (Organization Unique Identifier)
and Dot11Elt (802.11 Information Element), contained lists
of numerical labels representing device capabilities, which
may vary in both length and value. To ensure optimal uti-
lization of these features in the neural network input, each of
these features was padded to attain uniform length. Subse-
quently, each value was transformed into a distinct column
labeled 𝑜𝑢𝑖𝑛 or dot11elt𝑚, where 𝑛 and𝑚 denote values from
zero up to the maximal lengths of lists of respective features
within the whole dataset.

To reduce the influence of external sources (devices
outside of the monitored room) and static devices (such as
embedded devices or Wi-Fi enabled computers), we filtered
the probe requests based on the RSSI level. To accurately
estimate the RSSI threshold, a series of tests was conducted
across the entire footprint of the laboratory. Based on these
measurements, the appropriate threshold was estimated to
be −66 dBm. To identify static devices, an overnight probe
request collection was conducted and static devices present
during this period were subsequently filtered out. Addi-
tionally, MAC addresses were used to identify some of the
vendors of embedded devices whose MAC stays static, which
were also filtered out during this process.

To facilitate predictions at regular intervals of 𝑁 min-
utes, the dataset was partitioned into time windows based
on the timestamps of each probe request. The end of each
window represented the start of the following window. Since
probe requests were broadcast randomly and the number of
devices varied in each time window, the sample (representing
a time window of 𝑁 minutes) contained varying numbers of
probe requests (rows). Consequently, padding became nec-
essary to ensure uniformity in the shape of the input data,
thereby leading to faster training, simplified implementation,
improved memory usage, etc. Algorithm 1 shows how the
data were transformed from a simple 2D table of shape [Time,

Features] to the input and output arrays (or tensors) of shape
[Windows, Time, Feature] and [Windows, Classes(one-hot
encoded)], respectively.

Algorithm 1. Data preprocessing.

Load probe requests from PCAP or CSV file(s)
Convert oui column to float
Convert dot11elt column to float
Filter out probe requests below RSSI threshold

Group probe requests into 𝑁-minute windows
for all window in windows do

Merge probe requests with identical MAC addresses
Create occurrence feature to count merged requests
Average RSSI and aggregate remaining features
Convert SSID to binary values
Pad rows with zeros for uniform length

end for
𝐾 ← Stack windows into 3D array of shape [Windows ×
Probe requests × Features]
𝑋 ← Slice 𝐾 to extract input features
𝑌 ← Slice 𝐾 to extract truth values

Aggregate 𝑌 per window using max() function
Map 𝑌 to classes
Limit examples per class and generate list of selected sample
indexes
𝑌 ← Slice 𝑌 vector using selected indexes

𝑋 ← Slice 𝑋 using selected indexes
𝑌 ← One-hot encode 𝑌
return 𝑋 , 𝑌

5. Experimental Results
The in situ data collection approach meant that the oc-

cupants continued their daily routines, much like in other
unmonitored spaces. This approach has several advantages
compared to laboratory studies and is suitable for long-term
data collection due to its cost-effectiveness. Moreover, mon-
itoring the occupants in their natural environment reduces
the probability of alteration of their behavior by disturbances
from data collection - this is known as the Hawthorne effect.
This section presents the results obtained from both the PIR-
and Wi-Fi-based occupancy methods.

5.1 Space Use Management Study in Umeå
The space utilization study was carried out in eight lec-

ture rooms (named S1, S2, S3, M1, M2, M3, L1, L2) at
Umeå University, utilizing data collected from 71 sensor de-
vices over a four-month period. As a supplement, another
study was conducted for two weeks in three single-occupant
offices. Six sensors were installed in each of the three of-
fices at various positions to detect the occupants’ motions,
see Fig. 6. A primary focus of this investigation was to de-
vise informative indicators for visualizing sensor data and
generating insights into space utilization patterns.
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Fig. 6. Position of sensors in the office.

Four indicators were introduced to evaluate space use
and to track the changes resulting from the implemented in-
terventions. The space use indicators are used to transform
data into useful information that represents usage time and
occupancy density of the space. Figure 7 shows the results of
one of the space use indicators named the PUS (Proportion
of Usage Statuses). This indicator enabled the monitoring
of space utilization in relation to four defined statuses that
were assigned to the lecture rooms based on booking and oc-
cupancy information. The status occupied-booked was used
when the lecture hall was booked and the PIR sensors showed
occupancy. Unoccupied-booked occurred when the lecture
hall was booked but the sensors did not detect the presence
of occupants. The status occupied-not booked was when the
lecture hall was not booked but the PIR sensors showed the
presence of occupants. Lastly, unoccupied-not booked was
when the lecture hall was neither booked nor occupied.

From Figure 7, it can be seen that the lecture hall marked
S2 was the most booked room and furthermore that the av-
erage room occupancy (booked or not booked) was 49.8%.
The practical results from eight lecture rooms thus showed
the possibility of closing one or two rooms without impairing
everyday activities - this could save up to 19% of the energy
consumed in the lecture rooms. Similarly, the other space
use indicators provide views on how the lecture rooms are
used and enable improvements in the efficiency of their use.

5.2 Personnel Presence Detection
In order to obtain accurate classification and estimation

of room occupancy, a variety of architectures were tested
to ensure thorough evaluation. A number of neural net-
works architectures was tested, including basic RNN, LSTM,
and GRU models. Furthermore, combinations of RNNs and
CNNs were tested to address the problem of feature extraction
within RNNs. Based on a thorough evaluation, two models
were developed to solve two tasks in room occupancy esti-
mation. The following subsections briefly explain the goals
of each task and presents the experimental results of the de-
veloped models. Initial testing showed the occupancy level
estimation to be very problematic when using seven levels of
occupancy, where the first level (class) represents zero per-
sonnel presence and the remaining uniformly cover the range
of personnel from 1 to 25. In this case, the models had prob-

Fig. 7. Proportion of usage statuses of eight lecture rooms,
adopted from [6].

lems learning the correct prediction as the first class was for
no personnel present, and the data in this class essentially
represented the probe requests from devices outside of the
room, which were not filtered out by the RSSI threshold.
The remaining classes represented bins of different person-
nel occupancies and, in many cases, also contained probe
requests from outside of the room that were collected as if
they came from the inside. It was very problematic for the
models to learn to distinguish between these distributions
and due to these issues, we decided to split the occupancy
surveillance into two simpler sub-tasks: personnel presence
detection and occupancy level detection.

Personnel presence detection is a task in which the deep
learning model has to distinguish between two states of the
room: occupied and unoccupied. This essentially means the
model learns to distinguish if, during the given time win-
dow, the probe requests came from outside (unoccupied) or
inside the room (occupied). Using the dataset processing
algorithm, the actual personnel occupancy was converted
into two classes - unoccupied (0 personnel) and occupied
(1–25 personnel). This makes the task essentially a binary
classification task. To ensure smooth training and avoid bias,
the occurrence of each class within the training and vali-
dation sets was limited, resulting in 960 samples per class
for training and 240 samples per class for validation. The
temporal CNN, LSTM, and GRU models were implemented
and optimized using techniques such as grid search, ran-
dom search, and genetic algorithms. The best configurations
(see Tab. 3) of individual networks were evaluated based
on multiple training runs with randomly generated training
and validation sets. The results of the evaluation, shown in
Tab. 1, present very good performance of both the CNN and
GRU models. The LSTM model, on the other hand, showed
very poor performance and often reached a point during the
training where the model stopped learning. This led to large
differences in final loss, which is reflected in the mean accu-
racy (and precision) and also in the standard deviation.

5.3 Occupancy Level Detection
Unlike a binary presence detector, occupancy level de-

tection determines the specific number of people in a room
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and is often limited to three levels: low, moderate, and high.
To refine this categorization and enhance its specificity, the
dataset for this task was split into six bins, accommodating
occupancy ranging from 1 to 25 personnel. This approach
allows control of six distinct levels of occupancy. To ensure
an unbiased representation across all classes, the dataset was
constrained to 210 samples per class, promoting a balanced
distribution in both the training and validation sets (70%
and 30% respectively). Leveraging the same optimization
techniques utilized in personnel presence detection, the GRU
architecture once again demonstrated superior performance,
reaching an accuracy of up to 75.1%. The CNN and LSTM
models, on the other hand, were not able to capture the re-
lations between the input data and output labels and showed
an accuracy of about 47.1% and 52.8%, respectively. The
summary of performance of all models can be seen in Tab. 2
and configuration of all models can be found in Tab. 3. The
example of confusion matrix of the best GRU model can be
seen in Figure 8.

Fig. 8. Confusion matrix of GRU occupancy level detector.

CNN model LSTM model GRU model
Accuracy [%] 88.7 ± 1.0% 63.8 ± 17.2% 91.8 ± 0.8%
Precision [%] 89.8 ± 0.9% 59.1 ± 25.9% 92.0 ± 0.8%

Tab. 1. Performance of evaluated models for personnel presence
detection.

CNN model LSTM model GRU model
Accuracy [%] 47.1 ± 1.6% 52.8 ± 5.1% 75.1 ± 1.3%
Precision [%] 45.4 ± 1.6% 53.3 ± 7.4% 74.7 ± 1.5%

Tab. 2. Performance of evaluated models for occupancy level
detection.

6. Discussion of Results
The research findings from both Umeå and Brno demon-

strate the viability of the proposed systems for estimating
room occupancy on university campuses. These outcomes
are also transferable to office buildings with smart manage-
ment systems. The Swedish approach relies on detecting
human movement within the monitored area. Utilizing PIR-
based technology, this method employs battery-powered units
with wireless data transmission, offering the advantage of
straightforward and cost-effective implementation. Based on
the use of multiple sensors, the occupancy of larger rooms can
be evaluated, and thus, the behavior of students, employees,
or customers can be estimated.

The Brno method is based on the assumption that ev-
ery (or nearly every) person carries at least one device with
an activated Wi-Fi interface. Especially in commercial and
university spaces, this assumption is more than justified. The
proposed system uses passive sensing of the data these de-
vices constantly transmit. Occupancy information can be
used for building management, lighting, and HVAC systems.

The experimental results show that the single sniffer
setup is very capable, and in combination with the GRU
model, which outperforms all the other models, can estimate
personnel presence with an accuracy of up to 91.8% and the
levels of occupancy with an accuracy of about 75.1%. The
models ended up using only 5 relevant input features, whereas
the RSSI is the only feature that is space and time-dependent.
Features 𝑜𝑢𝑖 and 𝑑𝑜𝑡11𝑒𝑙𝑡 are static for each device type, and
thus, multiple probe requests may contain the same values.
Occurrence and SSID are synthetic features since they may
be used only to identify how often certain devices broad-
cast probe requests and/or if they publicly share previously
known SSIDs. While this helps the model to make deci-
sions on multiple levels, the information thus featured within
probe requests might be a limiting factor and the generation
of synthetic features might be required to further improve the
model’s performance.

Some aspects were not taken into account when analyz-
ing the room occupancy, which may be viewed in some cases
as a disadvantage of this approach. Firstly, neither the model
nor the algorithm takes into consideration an absolute zero
presence of devices, which would consist of all input data be-
ing zero for a given time window. In real-world applications,
this would automatically represent an unoccupied room and

Task Personnel presence detection Occupancy level detection
Network type CNN(Temporal) LSTM GRU CNN(Temporal) LSTM GRU

Layers 3 1 3 2 3 2
Kernels 2, 16, 2 - - 32, 4 - GRU

Hidden size 36 159 70 139 158 130
Activation function Logaritmic Softmax

Learning rate 0.002
Optimizer RMSprop

Epochs Maximum of 1000 epochs with early stop

Tab. 3. Summary of best network architectures of personnel presence and occupancy level detections.
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would not need to be processed by the model. Secondly, the
model is not capable of detecting "ghosts," e.g., personnel
with no Wi-Fi enabled devices. While it is a rare situation,
this can lead to errors in ground truth labels in the dataset as
well as make the model ineffective in areas where personnel
are not allowed to bring Wi-Fi-capable devices. Lastly, the
dataset ground truth labels are based on personnel count, not
on the number of devices present, which can vary between
personnel or even certain demographics and can impact the
model’s performance.

7. Conclusion
Our research in Umeå and Brno highlights promising

methods for estimating room occupancy in educational and
office buildings, leveraging PIR-based motion detection and
Wi-Fi signal sensing. These approaches offer scalable, cost-
effective means for smart building management, optimizing
the use of space, energy, and resources. The Umeå method’s
simplicity and low-cost installation makes it appealing for
existing structures, enabling detailed occupancy analysis
with minimal adjustments. Furthermore, detailed evalua-
tion showed this method could save up to 19% of the energy
consumed in the monitored lecture rooms. Therefore, this
method could be used in real-world applications to minimize
energy costs and consumption. The Brno method’s use of
Wi-Fi signal detection showcases high accuracy and adapt-
ability, exploiting the prevalence of Wi-Fi-enabled devices
for passive occupancy sensing. The GRU model has shown
the best performance with an accuracy of about 91.8% on
previously unseen data for the personnel presence task and
about 75.1% for the occupancy level task.

The future goals will be focused on enhancement of
the presented methodology, live testing of proposed sys-
tems in Brno, and energy savings estimation. Further-
more, a thorough evaluation of the single-sniffer system and
multiple-sniffer system is set to be tested. Lastly, to mit-
igate some of the disadvantages of individual approaches,
the fusion of PIR and Wi-Fi-based sensing will be im-
plemented and evaluated to maximize the efficiency and
reliability of occupancy detection.
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