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Abstract. The accuracy of wind speed estimation is 
an important factor affecting wind-shear detection in air-
borne weather radar. Aiming at the problem that diction-
ary mismatch in the sparse recovery-based wind speed 
estimation leads to the performance degradation, this pa-
per proposes a wind speed estimation method based on 
atomic norm minimization for airborne array weather 
radar. The method first constructs joint sparse recovery 
measurements by compensating multiple array element 
data with wind-shear orientation information, and then the 
wind speed is estimated on continuous parameter domain 
using atomic norm minimization with multiple compen-
sated measurements. Simulation experiments demonstrate 
that the proposed method can effectively improve the accu-
racy of wind speed estimation under dictionary mismatch, 
and the performance is better than that of the existing 
sparse recovery-based method of wind speed estimation 
with the pre-set discretized dictionary. 
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1. Introduction 
Airborne weather radar is a type of radar used to pro-

vide an indication to pilots of the intensity of convective 
weather [1]. Weather can be a hazard to aircraft in many 
ways. Wind-shear is one of the most dangerous conditions, 
which is the change in speed and direction of wind sudden-
ly over a relatively short distance or time period, it is also 
called wind gradient [2]. Low altitude wind-shear (LAWS) 
is recognized as a major hazard during takeoff and landing 
of an aircraft. When the wind-shear occurs below 600 m 
during takeoff or landing, the pilot has little time to react 
correctly to maintain safe flight [3], as shown in Fig. 1. 
According to the record, in the United States between 1964 
and 1985, there were 26 major civil transport aircraft acci-
dents caused 626 fatalities for which wind-shear was 

a direct cause or a contributing factor [4]. One of the most 
notable accident was a Delta Air Lines crash in 1985, 
wind-shear caused the aircraft to lose lift and crash short of 
the runway, killing 137 passengers. 

Radar technology developments have allowed more 
accurate wind-shear detection. Through the detection of the 
frequency shift of the microwave pulses, airborne radar is 
now capable of detecting wind-shear and changes in wind 
speed close to the ground [5]. All commercial jet aircraft 
must have an airborne forward-looking weather radar with 
a solution for detecting wind-shear since 1993, according 
to FAA regulations (RTCA DO-220A) [6]. 

One of the major problems associated with wind-
shear detection using an airborne weather radar is the pres-
ence' of ground clutter. When the airborne weather radar 
detects wind-shear for aircraft landing, the radar is in 
a down-looking mode, the received signal of the wind-
shear is mixed with the signal of ground clutter. In order to 
detect the wind-shear effectively, the ground clutter must 
be suppressed before wind-shear detection [7]. Recently, 
phased array radar (PAR) has demonstrated the high-
resolution estimation of accurate Doppler speed when 
compared to mechanically scanning radar. The space-time 
adaptive processing (STAP) is an effective method for 
clutter suppression in airborne phased array radar systems 
[8], and it has been used for ground clutter suppression 
before wind-shear detection in airborne weather radar [9], [10]. 

 
Fig. 1.  Wind-shear encounter during approach. 
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The F-factor is a quantitative measurement of the ef-
fect of the wind-shear to either increase or decrease the 
performance of the aircraft [11]. The results were evaluated 
to determine the capability of the radar to detect and alert 
of hazardous wind-shear. The F-factor is calculated by the 
wind speed, since, wind speed estimation is the most im-
portant step of wind-shear detection. Some methods of 
wind speed estimation have been proposed for wind-shear 
detection. Baxa proposed the pulse pair processing method 
(PPP) [12], and it is used in Collins WXR-700 airborne 
weather. Briit proposed the fast Fourier transform-based 
(FFT) wind speed estimator [13]. In the case of adequate 
measurements, the PPP and FFT methods can get a good 
performance. However, sufficient measurements are hardly 
obtained in practical applications. The performance of 
wind speed estimation degrades significantly in the case of 
insufficient measurements. In order to improve the perfor-
mance of wind speed estimation and reduce the number of 
required samples, the sparse recovery-based wind speed 
estimator jointly with STAP was proposed for airborne 
phased array weather radar [14], termed as on-grid CS 
method. Sparse recovery approaches have gained great 
attention due to their ability to provide innovative solutions 
to the problems of signal estimation, where the signal is 
sparse on some basis vectors [15]. In the above-mentioned 
sparse recovery-based wind speed estimator, the wind 
speed parameter domain has been uniformly discretized 
into small grid points, and the wind speed has been as-
sumed to be located exactly in the pre-discretized grid 
points on the parameter domain. The set of parameter vec-
tors of all grid points is called the wind speed dictionary. 
However, wind speed is continuously distributed on the 
parameter domain, and the wind speed estimates are not 
even located on the grids, which is known as the off-grid 
effect [16]. The accuracy of sparse recovery-based wind 
speed estimator relies on the discretized wind speed dic-
tionary, and the performance degrades significantly due to 
the off-grid effect. Recently, continuous compressive sens-
ing (CCS) has been proposed for super-resolution sparse 
recovery, i.e., atomic  ℓ0 norm [17]. For the low-rank prop-
erty of the covariance matrix, the atomic ℓ1 norm, i.e., 
atomic norm, was proposed as a computationally feasible 
alternative to the atomic ℓ0 norm, to reconstruct the atoms 
in the continuous-valued frequency domain by utilizing 
Vandermonde decomposition [16]. Inspired by the super-
resolution property of the atomic norm minimization, this 
paper extends the atomic norm minimization to the wind 
speed estimation, and a gridless super-resolution sparse 
recovery wind speed estimator based on the atomic norm 
minimization with multiple measurements is proposed. In 
the proposed method, first, the multiple measurements for 
sparse recovery are constructed by compensating multiple 
array elements with the wind orientation information. 
Then, the wind speed is estimated in the continuous-value 
parameter domain using the atomic norm minimization, 
and the off-grid problem caused by the discretized diction-

ary is fully avoided. Due to the super-resolution property 
of the atomic norm minimization, the proposed method can 
achieve more accurate estimations of the wind speed than 
the existing approaches. Simulations are conducted to 
demonstrate the wind speed estimation performance of the 
proposed method, and the results show that the proposed 
method can achieve significant improvement compare to 
the presently available methods.  

There are two major contributions in the proposed 
method: 

• The wind speed is estimated on continuous parameter 
domain using atomic norm minimization, then the off-
grid effect in sparse recovery-based wind speed esti-
mator is avoided. 

• Joint sparse recovery measurements by compensating 
multiple array element data with wind-shear orienta-
tion are constructed to enhance the performance of 
sparse recovery. 

The rest of the paper is organized as follows. Sec-
tion 2 introduces the signal model of an airborne phased 
array weather radar. Section 3 reviews the sparse recovery-
based wind speed estimate approaches and then explains 
the off-grid effect. Section 4 presents the proposed method. 
Section 5 presents the simulation results to demonstrate the 
performance of the proposed method. Section 6 provides 
the conclusion. 

Notations used in this paper are as follows. AT and AH 
denote the matrix transpose and conjugate transpose of A, 
respectively; ⊗ denotes the Kronecker product;  and  
denote the sets of real and complex numbers, respectively; 
the upper and lower cases boldface letters denote matrices 
and vectors, respectively; rank(∙) denotes the rank, and tr(∙) 
denotes the trace.  

2. Signal Model 
This paper considers a uniformly linear array (ULA) 

forward-looking airborne array weather radar, which con-
sists of M antenna elements having a spacing of half of 
wavelength (d = λ/2) and where N pulses are received dur-
ing the coherent processing interval (CPI) at a constant 
pulse repetition frequency (PRF) fr. The geometry of the 
radar is shown in Fig. 2, the platform has an altitude H and 
moves with a constant velocity vp along the x axis. The 
received signal of radar in the lth (l = 1,2,…,L) range bin 
can be expressed as: 

 ( ) ( ) ( ) ( )
s c n

l l l l= + +x x x x  (1) 

where x is an NM-dimensional measurement vector, and it 
is called the space-time snapshot; xs is the wind-shear sig-
nal vector, xc denotes the clutter signal vector, and xn is the 
thermal noise vector with a Gaussian distribution. 
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Fig. 2.  The geometry of the forward-looking array weather 

radar. 

2.1 Signal of Wind-Shear 
The signal of the wind-shear received by M antenna 

elements and sampled by N pulses, then an NM-
dimensional measurement vector of wind-shear xs can be 
obtained. Due to the power of the wind-shear is much 
lower than that of clutter, only the main lobe signal of 
wind-shear is considered. xs in the lth range bin can be 
expressed as: 

 ( )
s s d s( , )l b f f=x s  (2) 

where bs is complex amplitude of the wind-shear. s(fd, fs) is 
the NM-dimensional space-time steering vector with the 
Doppler frequency fd and the spatial frequency fs, i.e., 

d s d d s s( , ) ( ) ( )f f f f= ⊗s s s , which can be expressed as: 

 T
d d d d( ) [1 exp( j ) exp( j( 1) )]f f N f= −s ,  (3) 

 T
s s s s( ) [1 exp( j ) exp( j( 1) )]f f M f= −s   (4) 

where 

 d
r

4 lvf
f

π
λ

= , (5) 

 s
2 2cos cos = cosd df π πθ ϕ φ

λ λ
=   (6) 

where θ and ϕ are the azimuth and pitch angle of the wind-
shear respectively, φ is the spatial cone angle. vl is statisti-
cal average of the radial velocity of all the meteorological 
particles in the lth range bin, namely the wind speed. 

2.2 Signal of Ground Clutter 
As shown in Fig. 2, the clutter in a range ring can be 

model as a superposition of signals from Nc independent 

clutter patches distributed in the azimuth direction, which 
can be expressed as: 

 
c

( )
c d, s,

1
( , )

N
l

i i i
i

a f f
=

= ∑x s  (7) 

where 

 p
d,

r

2
cos cosi i i

v
f

f
ϕ θ

λ
= , (8) 

 s, cos cos( )i i
df φ ϕ ψ
λ

= = − . (9) 

3. Wind Speed Estimation and Off-
grid Problem 

3.1 Wind Speed Estimation Based on On-grid 
Sparse Recovery 
The received signal of the wind-shear is mixed with 

the signal of ground clutter, before we estimate the wind 
speed, the clutter should be suppressed firstly. The space-
time adaptive processing (STAP) is an effective method for 
clutter suppression [9], [10]. The linear transformation can 
be designed based on space-time interpolation, then the 
clutter-and-noise covariance matrix is obtained, and after 
clutter suppression the wind-shear observation with the 
wind speed to be estimated can be expressed as: 

 ( ) ( ) ( )
s n

l l l= +x x x . (10) 

The wind-shear is consisted by a large number of 
metrological particles, and the wind speed of the range bin 
is the statistical average of the velocity of all the particles 
in the range bin. The Doppler frequency is related to the 
wind speed, as shown in (5) and it is considered to be 
sparse in the frequency domain. The redundant dictionary 
is constructed by space-time steering vectors with different 
Doppler frequency (related to the wind speed), then the 
wind speed estimation is transformed to the sparse recov-
ery problem. 

 ( ) = +lx α n , (11) 

where Ψ denotes the redundant space-time steering dic-
tionary, d

d

1T
1[ , , ] N

Na a ×= ∈ α  is an unknown solution 
vector, where each row represents a possible wind speed. 
When the radar scans the wind-shear in a certain orienta-
tion φ, the fs is a constant. The wind speed vl is related to fd, 
according to the range of the wind speed, the wind speed 
domain is discretized into Nd grid points, e.g., 

{ } { }d( )(1) , , N
l l lv V v v∈ =  . The corresponding set of the 

space-time steering vectors of all grid points can be formu-
lated as: 

 d

dd s 1 2[ , , , ] NM N
N

×= ⊗ = ∈ Ψ S S ψ ψ ψ  (12) 
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1
2exp j cos cos

2exp j( 1) cos cos

d

dM

π θ ϕ
λ

π θ ϕ
λ

 
 

     =  
 
  −  

  



S .  (14) 

According to the theory of sparse recovery, the 
solution vector α  can be the method such as orthogonal 
match pursuit.  

3.2 Off-grid Problem 
Although the sparse recovery methods can obtain 

good performance with only limited number of pulse sam-
ples, the wind speed is not always located in the discretized 
grid points in the wind speed domain {V}, and the off-grid 
effect can degrade the performance of wind speed estima-
tion significantly. 

To solve the off-grid problem, a theory of super-
resolution for frequency estimation has been recently in-
troduced [16], and a gridless convex optimization method 
known as atomic norm minimization was proposed [17]. 
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Fig. 3.  The off-grid problem of wind speed estimation. 

4. Gridless Sparse Recovery-based 
Wind Speed Estimation with 
Multiple Measurements 
A gridless sparse recovery-based wind speed 

estimator with multiple measurement vectors is suggested 
to address the off-grid issue and enhance wind speed 
estimate performance. 

The above-mentioned sparse recovery-based wind 
speed estimation method only utilize a single measurement 
vector for sparse recovery, while joint sparse recovery of 
multiple measurement vectors can significantly improve 
the performance of wind speed sparse recovery [14]. Each 
element of the airborne array radar undergoes pulse sam-
pling to obtain multi-channel spatial sampling data. There-
fore, after clutter suppression with STAP, this paper uses 
phase compensation for multi-channel spatial sampling 
data to construct multiple Doppler measurement vectors for 
wind speed estimation. 

There is a relationship between the first array element 
and the data received by the mth array element as shown in (15) 

 
T(1) ( ) j j j
( 1)

e e em m m m
N

φ φ φ− − −

×
 =   x x ,  (15) 

where  denotes the Hadamard product, and φ is the spa-
tial cone angle of radar beam direction.  

Using the first array element as the reference array 
element, then we use (15) for spatial phase compensation 
of other array elements, M Doppler frequency measure-
ment vectors X̅ = [x̅(1), x̅(2), …, x̅(M)] can be obtained. The 
schematic diagram of spatiotemporal sampling before and 
after phase compensation is shown in Fig. 4. 

The measurements of wind-shear can be tensored by 
the space-time steering vectors, and the covariance matrix 
of the wind-shear measurements X̅ can be decomposed in 
the following form: 

{ }2 H 2
n

1
( , ) ( , )i d s d s MN

i
E f f f fγ σ

=

= +∑R s s I ,  (16) 

where R is a semi-positive definite Hermitian matrix with 
block Toeplitz structure and low-rank features, σn

2 is the 
noise power, and IMN is the unit matrix with NM × NM 
dimension. 
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Fig. 4.  Spatial phase compensation. 

The set of space-time steering vectors in the continu-
ous wind speed domain can be regarded as an atomic set 
  and defined as: 

d s d d s s d s
2( , ) ( ) ( ) | ( 1,1), cos .df f f f f f π φ

λ
 = ⊗ ∈ − = 
 

 s s s   

  (17) 

According to the low-rank matrix recovery theory and 
the sparse properties of clutter, the sparse recovery of X̅ in 
the continuous null time plane can be expressed in the form 
of the following mixed norm, known as the atomic norm. 

 
d, s

d, s2,
inf : ( , )

k
k k kf f k k

f f
 

= 
 
∑ ∑

a
X a X a s


.  (18) 

The wind-shear measurements X̅ and the subspace S(T) can 
be obtained from the above atomic norm minimization. 

 
s

2
s s sarg min , s.t.  .Kε= − ≤

X
X X X X

 F
 (19) 

The following semi-positive definite planning issue 
may be created from the atomic norm minimization in (19).  
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u X
X S T S T Φ

Φ X Φ Φ X X
X S T

H
H

F

(20) 

where Φ is a M × M dimensional Hermitian matrix, S(T) is 
a is a N × N  dimensional Block Toeplitz matrix. 

The obtained subspace S(T) of the wind-shear is sub-
jected to a block Toeplitz matrix decomposition, and the 
normalized Doppler frequency fd can be estimated. Then 
the wind speed vl can be calculated by (5). 

The algorithm of gridless sparse recovery-based wind 
speed estimation is given in Algorithm 1. 
 

Algorithm 1. Gridless sparse recovery-based wind speed estimation 

Step 1: Signal of radar in the lth (l = 1,2,…,L) range bin x(l) is received. 

Step 2: The ground clutter can be suppressed by STAP, then the wind-
shear observation can be expressed as x̅(l). 

Step 3: Spatial phase compensation of array elements, M Doppler 
frequency measurement vectors X̅ = [x̅(1), x̅(2),…,x̅(M)] can be obtained by 
(15). 

Step 4: The wind-shear measurements X̅ and the subspace S(T) can be 
obtained from the atomic norm minimization by (20). 

Step 5: The normalized Doppler frequency fd can be estimated from S(T) 
by a block Toeplitz matrix decomposition. 

Step 6: The wind speed vl can be calculated by (5). 

 

5. Numerical Results 
In this section, we demonstrate and compare the per-

formance of the proposed wind speed estimation method to 
the conventional methods using simulated data. The simu-
lated wind field data of wind-shear is generated by the 
computational fluid dynamic (CFD) software Ansys Fluent 
[18], the wind-shear is in 8.5 km–16.5 km ahead of the 
aircraft. The signal of wind-shear is received by the air-
borne array weather radar, which has M = 8 elements, and 
inter-element spacing is half wavelength (d = λ/2). The 
parameters in our simulations are set as follows: 
PRF = 7000 Hz, wavelength λ = 0.05 m, platform height 
H = 600 m. The platform velocity vp = 75 m/s. Signal to 
noise rate of the wind-shear SNR = 5 dB. Clutter to noise 
rate CNR = 40 dB.  

The proposed method is compared with the existing 
wind speed algorithms, such as pulse pair processing 
method [12], fast Fourier transform method [13] and on-
grid sparse recovery-based wind speed method [14]. In the 
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on-grid CS method, we set the wind speed to a range of –
60 m/s to 60 m/s, a dictionary is built according to (12) 
with intervals set to 0.5 m/s. 

Figure 5 shows the performance of the four estimate 
methods for wind speed estimation. We can see that when 
the number of pulses is more sufficient (N = 64), the PPP 
method and the FFT are also able to estimate the wind 
shear wind speed more effectively, as shown in Fig. 5(a). 
However, when the number of pulses is insufficient 
(N = 32), the wind speed estimation performance of PPP 
method and FFT method decreases obviously, as shown in 
Fig. 5(b). On-grid CS method and the proposed method 
can estimate the wind speed efficiently when the number of 
pulses is sufficient and insufficient. But the wind speed 
estimation result of the proposed method solves the real 
value of the wind speed more accurate, because the wind 
shear wind speed is changing continuously, and the wind 
speed estimation obtained by the on-grid CS method is not 
as efficient as that obtained by the proposed method due to 
the continuous change of wind speed. The wind speed 
estimates obtained by the on-grid CS method can only 
obtain sparse support peaks at the neighboring dictionary 
grid points due to the dictionary mismatch, and they are 
two peaks, which leads to the estimation error, as shown in 
Fig. 6. In this paper, since the method is gridless sparse 
recovery in continuous parameter space, the method in this 
paper produces a peak at the true value of the target speed 
parameter and can estimate the wind speed parameter more 
accurately. 

Table 1 shows the running time comparison. We can 
see that the running time increases rapidly when the dic-
tionary interval decreases from 2 m/s to 0.5 m/s, and even 
the interval is set to 0.5 m/s the performance of the on-grid 
method is worse than the proposed method, but the running 
time is about 8 times of the proposed method. Although, 
the running time of the PPP method and FFT method is 
less than the proposed method, we can see that these two 
methods cannot estimate the wind speed accurately when 
the number of pulses is insufficient. 

Figure 7 shows the comparison of the estimation re-
sults between the proposed method and the on-grid CS 
method with different dictionary intervals. The sparse 
recovery dictionaries with intervals 0.5 m/s, 1 m/s and 
2 m/s in the range of –60 m/s to 60 m/s are constructed for 
the on-grid CS method, respectively, i.e., the larger the 
dictionary intervals are, the more serious is the problem of 
dictionary mismatch. The performance of the on-grid CS 
method decreases significantly as the dictionary interval 
increases (from 0.5 m/s to 2 m/s), which indicates that the 
estimation performance of the method mainly depends on 
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(b) N = 32  

Fig. 5.  Wind speed estimates with different number of pulses. 
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Fig. 6.  Wind speed estimates in the case of dictionary mismatch. 

 

Method Proposed 
method 

On-grid 
method 
(0.5 m/s) 

On-grid 
method 
(1.0 m/s) 

On-Grid 
method 
(2.0 m/s) 

PPP method  FFP method  

Running time 
(s) 0.1512 1.1675 0.4875 0.2127 0.0937 0.1135 

Tab. 1. Running time comparison. 
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Fig. 7.  Wind speed estimates with different dictionary 
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Fig. 8.  Wind speed estimates with different number of array 
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the dictionary interval. When the wind speed parameters do 
not fall on the pre-set dictionary grids, the estimation per-
formance of the method decreases significantly due to the 
dictionary mismatch. On the other hand, the wind speed 
estimation performance of the proposed method is better 
than that of the on-grid CS method due to the sparse recov-
ery on the continuous wind speed domain. 

Figure 8 shows the RMSE of wind speed estimation 
with the number of array elements. When the number of 
array elements increases, the wind speed estimation per-
formance of the proposed method is obviously improved, 
which is due to the construction of multiple measurement 
vectors by the multi-channel data spatial phase compensa-
tion. Multiple observation vectors can obviously improve 
the performance of the sparse recovery and improve the 
accuracy of wind speed estimation. On the other hand, the 
on-grid CS method does not construct multi-observation 
vector sparse recovery, so the increase of the number of 
array elements has little effect on the estimation perfor-
mance. 

6. Conclusion 
The dictionary mismatch degrades the performance of 

wind speed estimation significantly. This paper proposed a 
gridless sparse recovery-based method for wind speed 
estimation based on atomic norm minimization. Joint 
sparse recovery measurements are constructed by compen-
sated spatial samples with wind-shear orientation infor-
mation. The proposed method can effectively improve the 
accuracy of wind speed estimation under dictionary mis-
match, and the estimation performance is better than that of 
the existing sparse recovery-based method of wind speed 
estimation with the pre-set discretized dictionary. 
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