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Abstract. In this paper, a system utilizing an active intelli-
gent reflecting surface (IRS) to enhance the performance of
wireless communication network is modeled, which has the
ability to adjust power between base station (BS) and active
IRS. We aim to maximize the signal-to-noise ratio (SNR) of
the user by jointly designing power allocation (PA) factor,
active IRS phase shift matrix, and beamforming vector of BS,
subject to a total power constraint. To tackle this non-convex
problem, we solve this problem by alternately optimizing
these variables. The PA factor is designed via polynomial
regression method in machine learning. BS beamforming
vector and IRS phase shift matrix are obtained by Dinkel-
bach’s transform and successive convex approximation meth-
ods. Then, we maximize achievable rate (AR) and use closed-
form fractional programming (CFFP) method to transform
the original problem into an equivalent form. This problem
is addressed by iteratively optimizing auxiliary variables, BS
and IRS beamformings. Thus, two iterative PA methods are
proposed accordingly, namely maximizing SNR based on PA
factor (Max-SNR-PA) and maximizing AR based on CFFP
(Max-AR-CFFP). The former has a better rate performance,
while the latter has a lower computational complexity. Sim-
ulation results show that the proposed algorithms can effec-
tively improve the rate performance compared to fixed PA
strategies, only optimizing PA factor, aided by passive IRS,
and without IRS.

Keywords
Active intelligent reflecting surface, achievable rate,
power allocation, closed-form fractional programming

1. Introduction
With the rapid development of 5th generation commu-

nication technology and the emergence of a large number of
new applications such as augmented reality and virtual real-
ity, the demand for high quality and high speed wireless com-

munication network is growing day by day [1–4]. However,
high-rate wireless networks also face some new challenges,
like high costs and high energy consumption. The realiza-
tion of green wireless transmission has become the consensus
of industry and academia [5–7]. As a low-cost, low-power
reflector, intelligent reflecting surface (IRS) provides a new
way for future green wireless communication [8–10].

In an IRS-aided multiple-input single-output (MISO)
system [11], two optimization schemes were proposed to
minimize the power consumption at base station (BS) by
jointly optimizing the transmitting beamforming of BS and
phase shift matrix of IRS, given the signal-to-noise (SNR)
target of the receiving end user. In [12], by using a deep
reinforcement learning neural network, it was possible to
simultaneously optimize transmit beamforming at BS and
phase shift matrices at IRS to maximize ergodic sum rate in
an IRS-aided multiuser downlink MISO system. In [13], the
authors introduced IRS into secure multiple-input multiple-
output (MIMO) wireless powered communication networks.
A secrecy rate maximization problem was investigated and
alternating optimization methods were constructed based on
mean-square error and dual subgradient techniques to solve
this non-convex problem. Literature [14] studied an IRS-
assisted MIMO system, by iteratively optimizing the precod-
ing beamformings in every BSs and phase shift beamforming
in IRS, block coordinate descent and complex circle manifold
methods are proposed to maximize the weighted sum rate.
The deployment of IRS can significantly improve the perfor-
mance of cell edge users compared to MIMO communication
systems without IRS.

Although the power consumption of passive IRS mainly
composed of passive reflective elements is significantly lower
than that of active IRS, recent studies have shown that active
IRS may have superiorities in some scenarios [15–18]. The
power gain achieved by passive IRS is limited in some cases
due to the fact that double fading effect caused by signal trans-
mission over the BS-to-IRS and IRS-to-user channels [19].
By using active IRS with power amplifiers, the impact of
double fading can be reduced [20]. The authors in [21] com-
pared the performance of active and passive IRS-assisted
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communication systems with the same total power budget,
which proved that active IRS was superior to passive IRS
when the power budget and the number of IRS elements are
at a moderate level. The achievable rate (AR) maximization
problem was studied in [22] in an active IRS-aided single-
input single-output system, closed-form maximum ratio re-
flecting and selective ratio reflecting methods were proposed
to optimize IRS precodings. Zhu et al. [23] investigated
the sum-rate maximization problem in an active IRS-assisted
multi-user MISO system, which the iterative optimization
approach was developed based on second-order cone pro-
gramming and majorization-minimization methods. Based
on the above analysis, active IRS has more advanced features
than passive IRS. To further improve the performance of
communication system, we introduce active IRS and design
active IRS and BS as an integrated system for joint control.
In this case, it is natural to assume that active IRS will share
a power supply with BS, and the optimal AR can be obtained
by rationally distributing the power of BS and active IRS.
Also this assumption facilitates performance comparisons
with other systems.

The power allocation (PA) strategy can further improve
rate performance under the condition that total power con-
sumption of communication system is limited, which has
been researched in [24–27]. Specifically, a secrecy rate (SR)
maximization problem was established and a PA strategy
was proposed in a secure directional modulation system after
specifying secrecy symbol and artificial noise beamform-
ings [28]. The maximum SR of a secure spatial modulation
system was investigated in [29] and two PA strategies were
provided based on gradient descent method. The authors
in [30] studied the total power consumption minimization
problem in a cooperative downlink multi-user system and
proposed a scheme for joint optimization of spectrum and
PA factors. Two iterative algorithms, including inter-node
and intra-node PA phases, were proposed for a full-duplex
decode-and-forward MIMO relay system to improve the rate
performance of users end [31].

The aforementioned research primarily centers on
power distribution in wireless networks without IRS. Com-
pared to passive IRS and without IRS, active IRS can pro-
vide higher beamforming gain and also incur higher power
consumption. Thus, upon incorporating active IRS into the
communication system, we investigated the potential rate im-
provement achievable by dynamically allocating power be-
tween the BS and active IRS, in contrast to traditional fixed
PA, passive IRS and without IRS. In this paper, our focus
shifts to the development of two high-performance iterative
PA strategies aimed at achieving corresponding PA gains.
Our main contributions are outlined as follows:

• An active IRS-assisted PA wireless network system
model is constructed and a PA strategy named Max-
SNR-PA is proposed. We maximize SNR at user by
jointly optimizing PA factor, BS transmit beamforming,
and IRS phase shift matrix. Due to the fact that vari-

ables in objective function are coupled to each other,
solving this problem directly is challenging. To deal
with this difficulty, we adopt an alternate optimization
approach. First, PA factor can be obtained by using
polynomial regression method. Then, a successive con-
vex approximation (SCA) technique in [32] is used to
get BS transmit vector. Finally, a suboptimal iterative
algorithm based on Dinkelbach’s transform is applied
for optimizing IRS phase shift beamforming.

• To reduce the computational complexity of the Max-
SNR-PA strategy, a low-complexity Max-AR-CFFP al-
gorithm is proposed. Here, we reformulate the system
model with the goal of maximizing AR. Then, the objec-
tive function can be transformed into a equivalent form
by using closed-form fractional programming (CFFP)
method in [33], [34]. Next, we can use alternate it-
erative methods to obtain locally optimal solutions for
BS and IRS beamformings. Simulation results show
that: (a) the polynomial regression function can fit the
original PA factor function well, (b) both of our pro-
posed PA strategies can quickly achieve convergence,
(c) compared with the case of fixed PA strategy in [35],
gradient ascent (GA) method in [36], passive IRS, and
without IRS, the two proposed PA strategies can effec-
tively improve the rate performance.

The reminder of this paper is organized as follows. The
system model with PA strategy is shown in Sec. 2. Two
iterative PA algorithms are proposed in Sec. 3 and Sec. 4.
Simulation results are presented in Sec. 5 and conclusions
are drawn in Sec. 6.

Notations: During this paper, matrices and vectors are
denoted as uppercase letters and lowercase letters, respec-
tively. C represents a set of complex numbers. (·)H, (·)T,
(·)∗, | | · | |, diag(·), 𝐸{·}, and ℜ{·} denote the conjugate
transpose, transpose, conjugate, Euclidean norm, diagonal,
expectation and real part operations, respectively. I𝑁 repre-
sents the 𝑁 × 𝑁 identity matrix.

2. System Model

2.1 System Model with PA Factor
As shown in Fig. 1, we consider an active IRS-assisted

wireless network with PA. BS is equipped with 𝑀 antennas.
The user is equipped with a single antenna, and active IRS
is equipped with 𝑁 elements. The channel state informa-
tion (CSI) of all links can be obtained by existing channel
estimation technique [10]. Therefore, the CSI of all chan-
nels is assumed to be available at BS, active IRS, and user.
G ∈ C𝑁×𝑀 , fH ∈ C1×𝑁 , and hH ∈ C1×𝑀 stand for the chan-
nels from BS to active IRS, active IRS to user, BS to user,
respectively. The transmitted signal at BS is given by

sB =
√︁
𝛽𝑃maxv𝑥 (1)
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Fig. 1. System model of an active IRS-assisted wireless network
with PA.

where v ∈ C𝑀×1 is the transmit beamforming of BS that
meets the condition vHv = 1, 𝑃max is the upper limit of the
sum of power consumption by BS and active IRS, 𝛽 is the
PA factor within interval [0, 1], and 𝑥 denotes the transmit
symbol satisfying E

{
|𝑥 |2

}
= 1.

For active IRS, let 𝑎𝑚 and 𝜃𝑚 represent am-
plification coefficient of the 𝑚-th element and phase
shift of 𝑚-th element respectively, where 𝑚 = 1, · · · , 𝑁 .
𝚯 = diag

(
𝑎1ej𝜃1 , · · · , 𝑎𝑁ej𝜃𝑁

)
denotes the reflective beam-

forming matrix of active IRS. The signal reflected by active
IRS can be written as:

sI = 𝚯GsB +𝚯nI =
√︁
𝛽𝑃max𝚯Gv𝑥 +𝚯nI (2)

where nI ∈ C𝑁×1 denotes the additive white Gaussian
noise (AWGN) introduced by active IRS power amplifiers,
nI ∼ CN

(
0, 𝜎2

I I𝑁
)
.

The received signal at the user is given by

𝑦 =
√︁
𝛽𝑃max (fH𝚯G + hH)v𝑥 + fH𝚯nI + 𝑧 (3)

where 𝑧 is the AWGN with distribution 𝑧 ∼ CN(0, 𝜎2
𝑛).

The power consumed at active IRS can be expressed as

𝑃IRS = 𝐸{sH
I sI} = 𝛽𝑃max | |𝚯Gv| |22 + 𝜎2

I | |𝚯| |2F. (4)

From (3), SNR at the user can be given by

SNR =
𝛽𝑃max | | (fH𝚯G + hH)v| |22

𝜎2
I | |fH𝚯| |22 + 𝜎2

𝑛

. (5)

The AR is

AR = log2 (1 + SNR). (6)

2.2 System Model without PA Factor
In this subsection, let us consider the system model

hides PA factor 𝛽.

The transmitted signal at BS is

sB1 = v1𝑥 (7)

where v1 ∈ C𝑀×1 is the transmit beamforming of BS.

The signal reflected by active IRS is:

sI1 = 𝚯GsB1 +𝚯nI = 𝚯Gv1𝑥 +𝚯nI. (8)

The received signal at the user can be given by

𝑦1 = (fH𝚯G + hH)v1𝑥 + fH𝚯nI + 𝑧. (9)

The power consumed at BS and active IRS can be ex-
pressed as

𝑃BS1 = vH
1 v1,

𝑃IRS1 = | |𝚯Gv1 | |22 + 𝜎2
I | |𝚯| |2F.

(10)

The SNR1 is

SNR1 =
| | (fH𝚯G + hH)v1 | |22
𝜎2

I | |fH𝚯| |22 + 𝜎2
𝑛

. (11)

The AR1 can be written as

AR1 = log2 (1 + SNR1). (12)

Equations (6) and (12) are just two different expressions
of AR, and there is no essential difference between them. It
has no effect on AR. The purpose of writing two forms with
and without PA factor is to adopt different methods to solve
the proposed optimization problem in next sections.

3. Proposed Max-SNR-PA Strategy
In this section, considering the system model with PA

factor 𝛽, we maximize SNR by jointly optimizing PA factor
𝛽, active IRS phase shift matrix 𝚯, and BS beamforming
vector v. The overall optimization problem is formulated as:

(P0) : max
𝛽,𝚯,v

SNR =
𝛽𝑃max | | (fH𝚯G + hH)v| |22

𝜎2
I | |fH𝚯| |22 + 𝜎2

𝑛

s.t. 0 ≤ 𝛽 ≤ 1, vHv = 1,
𝛽𝑃max | |𝚯Gv| |22 + 𝜎2

I | |𝚯| |2F ≤ (1 − 𝛽)𝑃max.
(13)

Due to the coupled 𝛽, 𝚯, and v, this optimization prob-
lem is difficult to solve. In general, there is no efficient
method to solve problem (P0) directly. Therefore, in the fol-
lowing, we apply the alternating optimization algorithm and
optimize 𝛽, 𝚯, and v alternately.

3.1 Optimize 𝜷 by fixing 𝚯 and v
Letting 𝛉 = (𝑎1ej𝜃1 , · · · , 𝑎𝑁ej𝜃𝑁 )H, the received signal

at the user can be rewritten as
𝑦 =

√︁
𝛽𝑃max (𝜌�̃�

H
diag(fH)G + hH)v𝑥

+ 𝜌�̃�
H

diag(fH)nI + 𝑧

(14)
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where
𝛉 = 𝜌�̃�, 𝜌 = ∥𝛉∥2, ∥ �̃�∥2 = 1. (15)

The power consumed at active IRS is

𝑃IRS = 𝛽𝑃max𝜌
2 | |�̃�H

diag(Gv) | |22 + 𝜎2
I 𝜌

2. (16)

In order to optimize 𝛽, we consider making the sum of
consumed power of BS and active IRS reach the upper limit
𝑃max, which means that

𝑃IRS = (1 − 𝛽)𝑃max, (17)

then we can obtain

𝜌 =

√√
(1 − 𝛽)𝑃max

𝛽𝑃max | |�̃�
H

diag(Gv) | |22 + 𝜎2
I

. (18)

Thus, the SNR can be simplified as

SNR =
𝛽𝑃max | | (𝜌�̃�

H
diag(fH)G + hH)v| |22

𝜎2
I 𝜌

2 | |�̃�H
diag(fH) | |22 + 𝜎2

𝑛

. (19)

Substituting (18) into (19) to simplify the optimization
problem as

(P1) : max
𝛽

𝑓 (𝛽) = 𝑎𝛽2 + 𝑏𝛽 + 2𝑐𝛽
√︁
𝑑𝛽2 + 𝑒𝛽 + 𝑓

𝑔𝛽 + ℎ

s.t. 0 ≤ 𝛽 ≤ 1.
(20)

where

𝑎 = 𝑃2
max | |hHv| |2 | |�̃�H

diag(Gv) | |2

− 𝑃2
max | |�̃�

H
diag(fH)Gv| |2,

𝑏 = 𝑃2
max | |�̃�

H
diag(fH)Gv| |2 + 𝑃max | |hHv| |2𝜎2

I ,

𝑐 = 𝑃maxℜ{�̃�H
diag(fH)GvvHh},

𝑑 = −𝑃2
max | |�̃�

H
diag(Gv) | |2,

𝑒 = 𝑃2
max | |�̃�

H
diag(Gv) | |2 − 𝜎2

I 𝑃max,

𝑓 = 𝑃max𝜎
2
I ,

𝑔 = 𝜎2
𝑛𝑃max | |�̃�

H
diag(Gv) | |2 − 𝜎2

I 𝑃max | |�̃�
H

diag(fH) | |2,

ℎ = 𝜎2
I 𝑃max | |�̃�

H
diag(fH) | |2 + 𝜎2

𝑛𝜎
2
I .

(21)

Due to the difficulty of directly solving the sub optimiza-
tion problem (P1), in the following, we will use polynomial
regression method in machine learning [37] to fit the objec-
tive function 𝑓 (𝛽). Firstly, a 𝑄-order polynomial 𝑔(𝛽) is
constructed to approximate 𝑓 (𝛽),

𝑔(𝛽) = 𝑎0 + 𝑎1𝛽 + · · · + 𝑎𝑄𝛽𝑄

=

(
1, 𝛽, · · · , 𝛽𝑄

)
•
(
𝑎0, 𝑎1, · · · , 𝑎𝑄

)T
.

(22)

To estimate the coefficients of the above polynomial,
the training set 𝑆PR is generated as

𝑆PR = {(𝛽1, 𝑓 (𝛽1)), (𝛽2, 𝑓 (𝛽2)), · · · , (𝛽𝐽 , 𝑓 (𝛽𝐽 ))} . (23)

Constructing the polynomial fitting matrix-vector form
as follows:

©«
𝑔(𝛽1)

...

𝑔(𝛽𝐽 )

ª®®¬︸   ︷︷   ︸
g

=

©«
1 𝛽1 · · · 𝛽

𝑄

1
...

...
...

...

1 𝛽𝐽 · · · 𝛽
𝑄

𝐽

ª®®®¬︸                   ︷︷                   ︸
A

©«
𝑎0
...

𝑎𝑄

ª®®¬︸︷︷︸
b

, (24)

g = Ab, where 𝐽 ≥ 5(𝑄 + 1). Let us define the following
target vector

c = ( 𝑓 (𝛽1), · · · , 𝑓 (𝛽𝐽 ))T . (25)

The corresponding square error summation is defined as

Δ(b) = (g − c)T (g − c)/𝐽

=
1
𝐽

{
bTATAb − cTAb − bTATc + cTc

}
.

(26)

Taking the first derivative of Δ(b) with respect to b
equal zero

𝜕Δ(b)
𝜕b

=
1
𝐽

{
2ATAb − 2ATc

}
= 0 (27)

which yields

b̂ =

(
ATA

)−1
ATc. (28)

We have completed the estimate of coefficients of poly-
nomial 𝑔(𝛽) and obtained the fitting polynomial as follows:

�̂�(𝛽) = �̂�0 + �̂�1𝛽 + · · · + �̂�𝑄𝛽𝑄 . (29)

Finding the stationary points of the above polynomial in
interval [0, 1] is equivalent to find the roots of the following
polynomial:

𝜕�̂�(𝛽)
𝜕𝛽

= 𝑄�̂�𝑄𝛽𝑄−1 + · · · + 2�̂�2𝛽 + �̂�1 = 0. (30)

For example, when 𝑄 = 2, we have

2�̂�2𝛽 + �̂�1 = 0 ⇒ 𝛽 =
−�̂�1
2�̂�2

, (31)

when 𝑄 = 3, we have

3�̂�3𝛽
2 + 2�̂�2𝛽 + �̂�1 = 0 (32)

which yields

𝛽1=
−�̂�2 +

√︃
�̂�2

2 − 3�̂�3�̂�1

3�̂�3
, 𝛽2=

−�̂�2 −
√︃
�̂�2

2 − 3�̂�3�̂�1

3�̂�3
. (33)
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In order to guarantee that there are closed-form roots
for the equation (30), the value of 𝑄 is taken to be an integer
smaller than 6.

Considering 𝛽 ∈ [0, 1], we need to judge whether all
candidate roots are within the interval [0, 1], then we have

𝛽𝑖 =

{
𝛽𝑖 , 𝛽𝑖 ∈ [0, 1]
0, 𝛽𝑖 ∉ [0, 1]

(34)

where 𝑖 ∈ {1, 2, · · · , 𝑄 − 1}. The optimal solution of 𝛽 is

𝛽𝑜 = argmax
𝛽∈𝑆B

𝑓 (𝛽) (35)

where set 𝑆B is defined as

𝑆B =

{
0, 𝛽1, · · · , 𝛽𝑄−1, 1

}
. (36)

3.2 Optimize v by Fixing 𝜷 and 𝚯

In this subsection, beamforming vector of BS v is opti-
mized by fixing PA factor 𝛽 and active IRS phase shift matrix
𝚯. The optimization problem with respect to v is

(P2) : max
v

SNR =
𝛽𝑃max | | (fH𝚯G + hH)v| |22

𝜎2
I | |fH𝚯| |22 + 𝜎2

𝑛

s.t. vHv = 1,
𝛽𝑃max | |𝚯Gv| |22 + 𝜎2

I | |𝚯| |2F ≤ (1 − 𝛽)𝑃max,
(37)

which can be re-arranged as

(P2-1) : max
v

vHBv

s.t. vHv = 1,
vHCv ≤ 𝑃′

max

(38)

where
B = (fH𝚯G + hH)H (fH𝚯G + hH),
C = GH𝚯H𝚯G,

𝑃′
max =

(1 − 𝛽)𝑃max − 𝜎2
I | |𝚯| |2F

𝛽𝑃max
.

(39)

Due to the insensitivity of the objective function value
to the scaling of v, we relax the modulo constraint to vHv ≤ 1,
the optimization problem can be rewritten as

(P2-2) : max
v

vHBv

s.t. vHv ≤ 1,
vHCv
vHv

≤ 𝑃′
max.

(40)

However, the optimization problem (P2-2) is still non-
convex. Therefore, we use SCA method in [32] to solve
this problem. By referring to the first-order Taylor series
expansion at fixed point ṽ, we have

vHBv ≥ 2ℜ{ṽHBv} − ṽHBṽ,
vHv ≥ 2ℜ{ṽHv} − ṽHṽ

(41)

then, the optimization problem is transformed into

(P2-3) : max
v

ℜ{ṽHBv}

s.t. vHv ≤ 1,

vHCv ≤ 𝑃′
max

(
2ℜ{ṽHv} − ṽHṽ

)
.

(42)

This is a convex optimization problem, and it can be
solved by CVX. After obtain the solution v̄, the beamform-
ing vector is designed as

v =
v̄
|v̄| . (43)

3.3 Optimize 𝚯 by Fixing 𝜷 and v
In this subsection, we optimize 𝚯 by fixing 𝛽 and v.

Considering reflective beamforming vector 𝛉, and on the ba-
sis of (3), the received signal at the user can be rewritten as

𝑦 =
√︁
𝛽𝑃max (𝛉H diag(fH)G + hH)v𝑥

+ 𝛉H diag(fH)nI + 𝑧,
(44)

SNR is given by

SNR =
𝛽𝑃max | | (𝛉H diag(fH)G + hH)v| |22

𝜎2
I | |𝛉

H diag(fH) | |22 + 𝜎2
𝑛

. (45)

The power consumed at active IRS can be reformu-
lated as

𝑃IRS = 𝛽𝑃max | |𝛉H diag(Gv) | |22 + 𝜎2
I 𝛉

H𝛉

= 𝛽𝑃max𝛉
H diag(Gv) diag(Gv)H𝛉 + 𝜎2

I 𝛉
H𝛉

= 𝛉H [
𝛽𝑃max diag(Gv) diag(Gv)H + 𝜎2

I I𝑁
]
𝛉.

(46)

Simplifying the numerator and denominator terms in
SNR can yield

| | (𝛉H diag(fH)G + hH)v| |22
= (𝛉H diag(fH)G + hH)vvH (𝛉H diag(fH)G + hH)H

= (𝛉H diag(fH)G + hH)vvH (GH diag(fH)H𝛉 + h)
= 𝛉H diag(fH)GvvHGH diag(fH)H𝛉 + hHvvHh
+ 2ℜ{hHvvHGH diag(fH)H𝛉},
𝜎2

I | |𝛉
H diag(fH) | |22 + 𝜎2

𝑛 = 𝜎2
I 𝛉

H diag(fH) diag(fH)H𝛉 + 𝜎2
𝑛 .

(47)

Thus, the optimization problem respect to 𝛉 can be
recast as

(P3) : max
𝛉

𝛉HD𝛉 + 2ℜ{tH𝛉}
𝛉HE𝛉 + 𝜎2

𝑛

s.t. 𝛉HF𝛉 ≤ (1 − 𝛽)𝑃max

(48)

where for briefly, we define
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D = diag(fH)GvvHGH diag(fH)H,

tH = hHvvHGH diag(fH)H,

E = 𝜎2
I diag(fH) diag(fH)H,

F = 𝛽𝑃max diag(Gv) diag(Gv)H + 𝜎2
I I𝑁 .

(49)

Since this is a fractional programming problem, we can
use the Dinkelbach’s transform, then the optimization prob-
lem turns into

(P3-1) : max
𝛉

𝛉HD𝛉 + 2ℜ{tH𝛉} − 𝜂(𝛉HE𝛉 + 𝜎2
𝑛)

s.t. 𝛉HF𝛉 ≤ (1 − 𝛽)𝑃max
(50)

where 𝜂 is an auxiliary variable, during each iteration process

𝜂 (𝑖+1) =
𝛉 (𝑖)HD𝛉 (𝑖) + 2ℜ{tH𝛉 (𝑖) }

𝛉 (𝑖)HE𝛉 (𝑖) + 𝜎2
𝑛

. (51)

Similarly, by using the first-order Taylor series expan-
sion at fixed point 𝛉0, we have

𝛉HD𝛉 ≥ 2ℜ{𝛉H
0 D𝛉} − 𝛉H

0 D𝛉0, (52)

then, problem (P3-1) can be transformed into

(P3-2) : max
𝛉

2ℜ{𝛉H
0 D𝛉} + 2ℜ{tH𝛉} − 𝜂(𝛉HE𝛉 + 𝜎2

𝑛)

s.t. 𝛉HF𝛉 ≤ (1 − 𝛽)𝑃max.
(53)

The optimization problem (53) is convex, and we can
address it by CVX directly. The process of algorithm to
optimize 𝚯 is as follows:

Algorithm 1. The algorithm to optimize 𝚯.

1: Input D, tH, E, F, initial value 𝛉 (0) , 𝜂 (0) , 𝑖 = 0, and convergence
accuracy 𝜉 .
repeat

2: 𝑖 = 𝑖 + 1.
3: Update 𝜂 (𝑖) , 𝜂 (𝑖) = 𝛉 ( (𝑖−1) )HD𝛉 (𝑖−1) +2ℜ{tH𝛉 (𝑖−1) }

𝛉 ( (𝑖−1) )HE𝛉 (𝑖−1) +𝜎2
𝑛

.

4: Let 𝛉0 = 𝛉 (𝑖−1) , solved problem (53) to obtain 𝛉 (𝑖) .
until 𝛉 (𝑖)HD𝛉 (𝑖) + 2ℜ{tH𝛉 (𝑖) } − 𝜂 (𝑖) (𝛉 (𝑖)HE𝛉 (𝑖) + 𝜎2

𝑛 ) ≤ 𝜉 .
5: Output 𝛉, 𝚯 = diag(𝛉H ) .

3.4 Overall Strategy and Complexity Analysis
In this subsection, we have summarized the algorithm

implementation of alternatingly optimizing variables 𝛽, 𝚯,
and v as follows:

Due to the fact that the obtained solutions in Algo-
rithm 2 are locally optimal, and the objective value sequence{
AR(𝛽 (𝑘 ) , v(𝑘 ) ,𝚯(𝑘 ) )

}
obtained in each iteration of the al-

ternate optimization method is non-decreasing. Specifically,
it follows

AR
(
𝛽 (𝑘 ) , v(𝑘 ) ,𝚯(𝑘 )

)
(𝑎)
≤ AR

(
𝛽 (𝑘+1) , v(𝑘 ) ,𝚯(𝑘 )

)
(𝑏)
≤ AR

(
𝛽 (𝑘+1) , v(𝑘+1) ,𝚯(𝑘 )

)
(𝑐)
≤ AR

(
𝛽 (𝑘+1) , v(𝑘+1) ,𝚯(𝑘+1)

)
(54)

where (𝑎), (𝑏), and (𝑐) are due to the update in (30), (42),
and (53), respectively. Moreover, AR

(
𝛽 (𝑘 ) , v(𝑘 ) ,𝚯(𝑘 ) ) has

a finite upper bound since the limited power constraint.
Therefore, the convergence of proposed Max-SNR-PA al-
gorithm can be guaranteed.

Algorithm 2. Proposed Max-SNR-PA algorithm.

1: Initialize feasible solutions 𝛽 (0) , v(0) , and 𝚯(0) , calculate the achiev-
able rate AR(0) based on (6).
2: Set iteration number 𝑘 = 0, convergence accuracy 𝜀.
repeat

3: Given 𝚯(𝑘) and v(𝑘) to obtain 𝛽 (𝑘+1) based on (30).
4: Given 𝚯(𝑘) and 𝛽 (𝑘+1) to obtain v(𝑘+1) based on (42).
5: Given v(𝑘+1) and 𝛽 (𝑘+1) to obtain 𝚯(𝑘+1) based on (53).
6: 𝑘 = 𝑘 + 1.

until |AR(𝑘) − AR(𝑘−1) | ≤ 𝜀.
7: v(𝑘) , 𝛽 (𝑘) , and 𝚯(𝑘) are the optimal value, and AR(𝑘) is the optimal
achievable rate.

The computational complexity of Algorithm 2 is mainly
determined by the updates of the three variables 𝛽, v, and
𝚯 via (30), (42), and (53), respectively. Specifically, the
computational complexity of updating 𝛽 is O

{
(𝑄 + 1)4}

float-point operations (FLOPs). The complexity of up-
dating v is O

{
6𝑀3log2 (1/𝜀)

}
FLOPs. The complexity

of updating 𝚯 is O
{
log2 (1/𝜀)𝐿𝚯log2 (1/𝜉)

√
𝑁 (2𝑁4 + 𝑁3)

}
FLOPs. Thus, the overall computational complexity
of Algorithm 2 is given by O

{
𝐿p [𝑄4 + 6𝑀3log2 (1/𝜀)

+2log2 (1/𝜀)𝐿𝚯log2 (1/𝜉)𝑁4.5]
}
, wherein 𝑄 is the order of

fitting polynomial, 𝜉 is the given accuracy tolerance of Algo-
rithm 1, 𝜀 is the given accuracy tolerance of Algorithm 2, 𝐿𝚯

denotes the number of iterations required by Algorithm 1 for
convergence, 𝐿p denotes the number of iterations required by
Algorithm 2 for convergence.

4. Proposed Max-AR-CFFP Strategy
In the previous section, we have proposed a PA strategy

named Max-SNR-PA to achieve the power allocation between
BS and active IRS. However, the computational complexity
of this algorithm is too high. To address this issue, a low-
complexity alternating iteration method will be presented as
follows. This method differs by optimizing the beamform-
ing vector of the BS and the active IRS phase shift matrix,
with the optimization goal being the AR rather than the SNR.
Thus, let us consider the system model hiding PA factor 𝛽

mentioned in Sec. 2.2.
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Our optimization goal is to maximize AR1 by jointly
optimizing v1 and 𝚯 under limited total power 𝑃max. The
overall optimization problem is formulated as:

(P4) : max
𝚯,v1

AR1

s.t. 𝑃BS1 + 𝑃IRS1 ≤ 𝑃max.
(55)

The joint design of 𝚯 and v1 is challenging due to the
non-convexity and highly coupled variables in problem (P4).
Therefore, in order to effectively solve this problem, we de-
velop a joint beamforming and precoding scheme. By using
the CFFP method in [33] Subsection III, introducing auxil-
iary variables 𝛾 and 𝜇, equation (55) can be transformed as
follows:

(P4-1) : max
𝚯,v1 ,𝛾,𝜇

AR′
1 = ln(1 + 𝛾) − |𝜇 |2 (𝜎2

I | |f
H𝚯| |22 + 𝜎2

n )

− 𝛾 + 2
√︁
(1 + 𝛾)ℜ{𝜇∗ (fH𝚯G + hH)v1}

s.t. vH
1 v1 + ||𝚯Gv1 | |22 + 𝜎2

I | |𝚯| |2F ≤ 𝑃max.
(56)

Then, the locally optimal solution of (56) can be ob-
tained by optimizing these variables alternately.

4.1 Optimize 𝝁, given v1, 𝚯, and 𝜸

After giving v1, 𝚯, and 𝛾, the optimal 𝜇 can be obtained
by solving 𝜕AR′

1
𝜕𝜇

= 0 as

𝜇opt =

√︃
(1 + 𝛾) | | (fH𝚯G + hH)v1 | |22

𝜎2
I | |fH𝚯| |22 + 𝜎2

𝑛

. (57)

4.2 Optimize 𝜸, given v1, 𝚯, and 𝝁

After giving v1, 𝚯, and 𝜇, the optimal 𝛾 can be obtained
by solving 𝜕AR′

1
𝜕𝛾

= 0 as

𝛾opt =
𝜛2 +𝜛

√
𝜛2 + 4

2
(58)

where 𝜛 = ℜ{𝜇∗ (fH𝚯G + hH)v1}.

4.3 Optimize v1, given 𝚯, 𝜸, and 𝝁

For briefly, we define

H = I𝑀 + GH𝚯H𝚯G,

kH = 2
√︁
(1 + 𝛾)𝜇∗ (fH𝚯G + hH),

𝑃r = 𝑃max − 𝜎2
I | |𝚯| |2F

(59)

then, problem (P4-1) can be reformulated as follows

(P4-2) : max
v1

ℜ{kHv1}

s.t. vH
1 Hv1 ≤ 𝑃r.

(60)

This is a convex problem and it can be solved by CVX.

4.4 Optimize 𝚯, given v1, 𝜸, and 𝝁

Before solving this optimization problem, we have

fH𝚯G + hH = 𝛉H diag(fH)G + hH,

| |𝚯Gv1 | |22 = | |𝛉H diag(Gv1) | |22,
| |𝚯| |2F = 𝛉H𝛉.

(61)

Utilizing (61), while giving v1, 𝛾 and 𝜇, problem (P4-1)
can be reformulated as

(P4-3) : max
𝛉

ℜ{𝛉Hd} − 𝛉HJ𝛉

s.t. 𝛉HL𝛉 ≤ 𝑃b
(62)

where
d = 2

√︁
(1 + 𝛾) diag(𝜇∗fH)Gv1,

J = |𝜇 |2𝜎2
I diag(fH) diag(fH)H,

L = diag(Gv1) diag(Gv1)H + 𝜎2
I I𝑁 ,

𝑃b = 𝑃max − vH
1 v1.

(63)

This is a convex problem, it could be solved by CVX.
Then, we can obtain 𝚯 = diag(𝛉H).

4.5 Overall Strategy and Complexity Analysis
In this subsection, we have summarized the algorithm

implementation process for alternating optimization vari-
ables v1, 𝚯, 𝜇, and 𝛾 as follows:

Algorithm 3. Proposed Max-AR-CFFP algorithm.

1: Initialize v(0)
1 , 𝚯(0) , 𝜇 (0) , and 𝛾 (0) , calculate the signal-to-noise ratio

SNR(0)
1 and achievable rate AR(0)

1 based on (11) and (12).
2: Set 𝑡 = 0, convergence accuracy 𝜁 .
repeat

2: Update 𝜇 (𝑡+1) by (57).
3: Update 𝛾 (𝑡+1) by (58).
4: Update v(𝑡+1)

1 by (60).
5: Update 𝚯(𝑡+1) by (62).
6: 𝑡 = 𝑡 + 1.

until |AR(𝑡 )
1 − AR(𝑡−1)

1 | ≤ 𝜁 .
7: v1 and 𝚯 are the optimal value, and AR1 is the optimal achievable
rate.

Algorithm 3 converges to a local optimum after mul-
tiple iterations, as the updates in each iteration step of the
algorithm are the optimal solutions to the corresponding sub-
problems. Then, Algorithm 3 converges to

AR1

(
𝚯(𝑡 ) , v(𝑡 )

1 , 𝛾 (𝑡 ) , 𝜇 (𝑡 )
)

(𝑑)
≤ AR1

(
𝚯(𝑡 ) , v(𝑡 )

1 , 𝛾 (𝑡 ) , 𝜇 (𝑡+1)
)

(𝑒)
≤ AR1

(
𝚯(𝑡 ) , v(𝑡 )

1 , 𝛾 (𝑡+1) , 𝜇 (𝑡+1)
)

( 𝑓 )
≤ AR1

(
𝚯(𝑡 ) , v(𝑡+1)

1 , 𝛾 (𝑡+1) , 𝜇 (𝑡+1)
)

(𝑔)
≤ AR1

(
𝚯(𝑡+1) , v(𝑡+1)

1 , 𝛾 (𝑡+1) , 𝜇 (𝑡+1)
)

(64)
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where (𝑑), (𝑒), ( 𝑓 ), and (𝑔) are due to the update
in (57), (58), (60), and (62), respectively. Moreover,
AR1

(
𝚯(𝑡 ) , v(𝑡 )

1 , 𝛾 (𝑡 ) , 𝜇 (𝑡 )
)

has a finite upper bound since
the limited power constraint. Therefore, we can guarantee
the convergence of proposed Max-AR-CFFP algorithm.

The computational complexity of Algorithm 3 is
mainly determined by the updates of the four variables
𝜇, 𝛾, v1, and 𝚯 via (57), (58), (60), and (62), respec-
tively. The computational complexity of updating 𝜇 is
O {𝑁} FLOPs. The computational complexity of updat-
ing 𝛾 is O {𝑀} FLOPs. The complexity of updating v1

is O
{
log2 (1/𝛿)

√
𝑀 (2𝑀4 + 𝑀3)

}
FLOPs. The complex-

ity of updating 𝚯 is O
{
log2 (1/𝛿)

√
𝑁 (2𝑁4 + 𝑁3)

}
FLOPs.

Thus, the overall computational complexity of Algorithm 3
is O

{
𝐿clog2 (1/𝛿) (𝑀4.5 + 𝑁4.5)

}
, wherein 𝛿 is the given ac-

curacy tolerance of Algorithm 3, 𝐿c denotes the number of
iterations required by Algorithm 3 for convergence.

5. Simulation and Discussion
In this section, simulation results are presented to prove

the performance of the proposed two alternating iteration
methods. We employ a personal computer to do simulation,
which is equipped with AMD Ryzen 5900X and NVIDIA
RTX4070TI. Figures are plotted by MATLAB. Unless oth-
erwise specified in the discussion, the parameters are set as
follows. The locations of BS, active IRS, and user are set to
(0 m, 30 m, 0 m), (50 m, 0 m, 10 m), and (25 m, 30 m, 0 m),
respectively. By using the path loss model in [15], the large-
scale path loss in dB is PL = PL0 − 10𝛼log10

(
𝑑
𝑑0

)
, where

PL0 is the path-loss at the reference distance 𝑑0, 𝑑 is the link
distance, 𝛼 is the path-loss exponent. We set PL0 = −30 dB
and 𝑑0 = 1 m. Following [14], the randomly generated chan-
nel matrix G, channel vectors f, and h follow the Rayleigh
distribution. The number of BS antennas is chosen as fol-
lows: 𝑀 = 2, noise power 𝜎2

I = 𝜎2
𝑛 = −100 dBm. We

use the random number generation function rand() in MAT-
LAB, the simulation parameters in two proposed algorithms
are set to 𝛽 (0) = 0.5, v(0) = ej2·𝜋 ·rand(𝑁,1)/|ej2·𝜋 ·rand(𝑁,1) |,
𝚯(0) = diag

(
ej2·𝜋 ·rand(𝑁,1) ) and v(0)

1 = ej2·𝜋 ·rand(𝑁,1) ,
𝚯(0) = diag

(
ej2·𝜋 ·rand(𝑁,1) ) , 𝛾 (0) = SNR(0)

1 .

Figure 2 illustrates the curves of rate expression and its
polynomial regression rate expression versus the PA factor
𝛽 for four distinct cases: 𝐽 = 201, 𝑄 = 3; 𝐽 = 101, 𝑄 = 3;
𝐽 = 201, 𝑄 = 2; and 𝐽 = 101, 𝑄 = 2 with 𝑁 = 128 and
𝑃max = 30 dBm. Channel path fading factors from BS to IRS,
IRS to user, and BS to user are set to 𝛼BI = 2.1, 𝛼IU = 2.1,
𝛼BU = 4.0, respectively. From Fig. 2, it can be seen that
all four cases can fit the original rate curve well. As the
number of sampling points 𝐽 and fitting order 𝑄 increase, the
polynomial regression fitting improves.

Figure 3 illustrates the convergence behaviour of the
proposed Max-SNR-PA method for two distinct active IRS

phase shift elements: 𝑁 = 32 and 𝑁 = 128 with 𝑃max =

30 dBm, 𝛼BI = 2.1, 𝛼IU = 2.1, 𝛼BU = 4.0. From Fig. 3,
it is seen that the AR of proposed method increase rapidly
with the number of iterations and finally converge to a value
after a finite number of iterations. As 𝐽 and 𝑄 increase, the
AR performance of the proposed methods can be gradually
improved. Considering that the rate difference between two
cases: 𝐽 = 201, 𝑄 = 3 and 𝐽 = 101, 𝑄 = 3 is less than 0.2
bit, the number of sampling points 𝐽 and fitting order 𝑄 are
chosen to be 201 and 3.

Figure 4 shows the convergence behaviour of the two
proposed methods for two different active IRS phase-shifting
elements: 𝑁 = 32 and 𝑁 = 128. Here, 𝑃max = 30 dBm,
𝛼BI = 2.1, 𝛼IU = 2.1, 𝛼BU = 4.0. From Fig. 4, it is shown
that as the number of iterations increases, the proposed Max-
AR-CFFP method can also achieve convergence. But the
convergence speed of Max-AR-CFFP method is slower than
that of Max-SNR-PA method.
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Fig. 2. Achievable rate versus PA factor 𝛽.
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Fig. 3. Convergence behaviour of the proposed Max-SNR-PA
method.



RADIOENGINEERING, VOL. 33, NO. 4, DECEMBER 2024 579

1 3 5 7 9 11 13 15

Number of iterations

8

10

12

14

16

A
c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

1 3 5 7 9 11 13 15

Number of iterations

6

8

10

12

14

Fig. 4. Convergence behaviour of the proposed two method.

Figures 5–7 plot the achievable rates of the proposed
Max-SNR-PA and Max-AR-CFFP methods versus the num-
ber of active IRS elements 𝑁 with fixed PA factor 𝛽 = 0.8,
fixed PA factor 𝛽 = 0.99 [35], fixed PA factor 𝛽 = 0.5, GA
method [36], passive IRS, random phase shift, and without
IRS as performance benchmarks. Here, 𝑃max = 30 dBm,
𝛼BI = 2.1, 𝛼IU = 2.1. The channel path fading factor from
BS to user in Figs. 5, 6, 7 are set to 𝛼BU = 4.0, 𝛼BU = 3.0,
and 𝛼BU = 2.1, respectively. This means that the direct
link strength from BS to user are weak, medium and strong,
respectively.

From these three figures, we can see that as the number
of IRS elements 𝑁 increases, the rates of all nine meth-
ods will be promoted. The proposed two methods can
achieve an obvious rate performance gains over fixed PA
factor 𝛽 = 0.8, 𝛽 = 0.99, 𝛽 = 0.5, GA method, passive IRS,
random phase shift, and without IRS. Especially, with the
enhancement of direct link between BS and user, the im-
provement effect of passive IRS on rate performance gradu-
ally deteriorates, and the two proposed PA strategies can still
effectively improve rate performance.

Figures 8–10 illustrate the curves of achievable rate ver-
sus total transmit power 𝑃max, where 𝑁 = 128, 𝛼BI = 2.1,
𝛼IU = 2.1. Here, 𝛼BU are set to 4.0, 3.0, and 2.1 in
Figs. 8, 9, 10, respectively. These three figures are shown that
as 𝑃max increases, all nine curves in figures has an upward
trend. When the direct link between BS and user is gradu-
ally enhanced, the proportion of signal strength transmitted
through direct link in user received signals will be gradually
improved. Thus, the rate performance advantages of two pro-
posed PA strategies are more prominent in the cases of weak
direct link and medium strength direct link. In summary,
nine methods have an increasing order in rate performance
as follows: Max-SNR-PA, Max-AR-CFFP, fixed PA factor
𝛽 = 0.8, fixed PA factor 𝛽 = 0.99 [35], fixed PA factor
𝛽 = 0.5, GA method [36], passive IRS, random phase shift,
and without IRS.
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Fig. 5. Achievable rate versus the number of active IRS elements
𝑁 with a weak direct link.
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Fig. 6. Achievable rate versus the number of active IRS elements
𝑁 with a medium strength direct link.
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Fig. 7. Achievable rate versus the number of active IRS elements
𝑁 with a strong direct link.
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Fig. 8. Achievable rate versus total transmit power 𝑃max with
a weak direct link.
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Fig. 9. Achievable rate versus total transmit power 𝑃max with
a medium strength direct link.
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Fig. 10. Achievable rate versus total transmit power 𝑃max with
a strong direct link.

6. Conclusion
In this paper, we investigated the AR performance of

an active IRS-aided wireless network with PA. To improve
the AR performance, under a limited total power constraint,
a SNR maximization problem was constructed by jointly op-
timizing PA factor, active IRS phase shift matrix, and BS
beamforming vector. To address the non-convex problem,
an alternating optimization method was used. Specifically,
the PA factor was obtained by polynomial regression method,
BS and IRS beamformings were derived based on Dinkel-
bach’s transform and successive convex approximation tech-
niques. To reduce the computational complexity of above
proposed strategy, we maximize AR and alternately optimize
BS and IRS beamformings by a closed-form fractional pro-
gramming method. Simulation results proved that our pro-
posed two strategies obviously outperform the benchmark
schemes and can achieve significant AR performance gains.
For future work, the PA strategies in multiple-input multiple-
output wireless communication networks can be researched
and analyzed.
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