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Abstract. End-to-End Encryption (E2EE) plays an es-
sential role in safeguarding user privacy and protecting
sensitive data across various communication platforms, in-
cluding messaging applications, email services, and Inter-
net of Things (IoT) devices. This paper presents a Hybrid
Cryptography-Based E2EE method implemented on a Soft-
ware Defined Networking (SDN) infrastructure, to strengthen
bidirectional data security between hosts and IoT devices
via the non-secure Message Queuing Telemetry Transport
(MQTT) port. By addressing the threat of Man-in-the-Middle
(MitM) attacks, the proposed system ensures that only autho-
rized users can decrypt transmitted messages. This paper
thoroughly analyzes the implementation and advantages of
our Hybrid Cryptography-Based E2EE method by comparing
RSA and ECC encryption techniques. ECC-256 is favored for
key generation, owing to its high efficiency and speed, mea-
sured at 0.4009 ms. Additionally, through a comparison of
RSA, AES, and ChaCha20 algorithms, AES-256 emerges as
the optimal encryption choice, demonstrating the fastest en-
cryption and decryption times for publishing 0.2758 ms and
0.1781 ms, respectively and for subscribing, with encryp-
tion at 0.2542 ms and decryption at 0.1577 ms. Along with
its minimal packet size and low resource consumption, our
proposed Hybrid Cryptography-Based E2EE method, imple-
mented on SDN infrastructure, validate it’s effectiveness in
securing digital communications within SDN environments
compared to existing solutions.
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1. Introduction
In the context of IoT devices [1], MQTT [2] facilitates

efficient and reliable communication between IoT devices
and other systems via a central broker, enabling real-time

data exchange in IoT applications [3]. An IoT device trans-
mits a message payload to a subscriber through an MQTT
broker on port 1883. The device, acting as an MQTT client,
establishes a TCP connection with the broker on port 1883.
Once connected, the device publish to a specific topic of inter-
est, with topics acting as channels for message transmission.
The device sends a publish message to the broker, specifying
the topic and desired Quality of Service (QoS) level. The
broker then forwards the message payload to all subscribers
interested in that topic.

In the context of an SDN-IoT environment [4], where the
control plane [5] is distinct from the data plane [6], and com-
munication involves network devices orchestrated by a cen-
tralized controller, the process of subscribing and publishing
in MQTT remains largely unchanged. The SDN controller
plays a central role in managing the network infrastructure
and facilitating communication between MQTT clients and
the broker. By leveraging SDN capabilities such as central-
ized control and programmability, organizations can achieve
more efficient and dynamic management of MQTT commu-
nication in their IoT deployments. Nevertheless, this commu-
nication may pose cybersecurity threats, such as an MitM at-
tack [7] and [8], due to the vulnerability of port 1883 MQTT.
When MQTT traffic is transmitted over port 1883 without
encryption, an attacker positioned between the client and the
broker can intercept and manipulate the communication, as
shown in Fig. 1. This allows the attacker to eavesdrop on
the messages exchanged between the client and the broker,
modify the content of the messages, or even impersonate
either party, thereby compromising the confidentiality and
integrity [9] of the communication. To mitigate this vul-
nerability, it’s recommended to use encryption [10] method
to secure MQTT communication and prevent MitM attacks.
Therefore, securing the MQTT port is crucial to mitigate such
threats. E2EE [11] is an effective method that ensures trans-
mitted information remains confidential and secure. When
a device publishes data, it encrypts the information using the
public key of the intended recipient(s). Subscribing devices
receive the encrypted data and use their private keys to de-
crypt and access the original information. The encryption
and decryption processes occur exclusively at the endpoints,
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Fig. 1. MitM attacks in SDN.

i.e., the publishing and subscribing devices. Even if the data
passes through intermediary communication channels, it re-
mains encrypted and secure. The integrity of the data is
maintained as any tampering or unauthorized access would
result in unreadable, garbled information.

The main emphasis of this paper lies on port 1883,
which currently lacks encryption, whereas port 8883 utilizes
TLS/SSL to safeguard MQTT payloads. Our objective is to
bolster the security of data transmitted via MQTT port 1883.
We propose a Hybrid Cryptography [12] Based E2EE method
to secure communications among resource-constrained IoT
devices across the host network within an SDN infrastruc-
ture. This method involves employing one algorithm for key
generation and management, coupled with another algorithm
for efficient encryption and decryption of data.

To structure our paper effectively, we divide it into six
sections. The first section reviews related works relevant
to our research, highlighting their advantages and limita-
tions. In the second section, we delineate our system model,
which involves bidirectional transmission of MQTT packet
data between IoT devices and hosts via the unsecured MQTT
protocol. Moving to the third part, We conduct a com-
parative study among various algorithms to determine the
optimal key generation and encryption/decryption method
for MQTT packet data. This analysis is crucial for imple-
menting our Hybrid Cryptography-Based E2EE method. In
the fourth section, we implement our Hybrid Cryptography-
Based E2EE method. In the fifth section we deploy our
Hybrid Cryptography-Based E2EE method within an SDN
network to evaluate its effectiveness. Finally, we compare
our system with related works to demonstrate its efficacy
and relevance.

2. Related Works
The Armstrong Number Encryption Standard (ANES)

method [13] is used in [14] to enhance security in IoT de-
vices using the MQTT protocol. ANES employs circular

shifts and XOR operations for encryption, making it suitable
for resource-constrained devices. The algorithm involves
dividing data into blocks, performing shifts, XORing with
an Armstrong number and an initialization vector, and chain-
ing blocks. While ANES is efficient in ensuring data confi-
dentiality over MQTT, the paper reports that the encryption
and decryption time for an MQTT packet of 100 bytes is
67 ms, highlighting the need to reduce this time. The algo-
rithm’s scope includes simulating processes on a microcon-
troller and evaluating its robustness through MitM attacks.

In [15], the author used the Robust Security Scheme
(RSS) to enhance the security of the MQTT protocol in
IoT environments. RSS combines a dynamic variant of the
Advanced Encryption Standard (D-AES) with Key-Policy
Attribute-Based Encryption (KP-ABE) to strengthen secu-
rity while reducing computational overhead. D-AES im-
proves the standard AES by making key expansion and trans-
formations more robust, while KP-ABE securely manages
encryption keys. The scheme ensures confidentiality, ac-
cess control, collusion resistance, and efficient encryption
for MQTT communications, with the paper reporting an en-
cryption and decryption time of 5.73 ms for an MQTT packet.
However, the paper’s limitation is that it does not focus on
testing the scheme against cyber-attacks in real environments,
such as SDN and actual MQTT broker servers, to evaluate
performance.

H. Li-Wen, et al. [16] introduced a dynamic encryp-
tion algorithm for Internet of Vehicles (IoV) systems, bal-
ancing security and real-time performance. The algorithm
combines AES, PRESENT, and TEA encryption methods,
dynamically selecting the appropriate one based on the mes-
sage’s Quality of Service (QoS) level. This approach opti-
mizes system efficiency, improving encryption and decryp-
tion performance compared to using AES alone. Simulation
experiments demonstrate enhanced security and performance
for MQTT communications in IoV, with encryption taking
3463 ms and decryption 3557 ms for a 128-bit MQTT packet.
However, the paper notes that the method’s low security
requirements, aimed at minimizing resource consumption,
should be tested in a live network to evaluate its effectiveness
against vulnerabilities.

The paper [17] highlighting that ECC offers an equiv-
alent security level to RSA, with significantly smaller key
size. This reduction in key size improves processing speed
and lowers memory usage, making ECC more efficient, es-
pecially for high-security applications such as SSL for web
communications. The paper concludes that ECC is prefer-
able for modern cryptographic needs due to its superior per-
formance and security compared to RSA, which has the dis-
advantage of larger key sizes. Specifically the key generation
step which takes only 121 ms with ECC, as against the AES
encryption and decryption steps which require an additional
latency of 423 ms. A noted limitation of the paper is the lack
of real-world beds testing in order to validate performance in
real-time scenarios.
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The authors of [18] examined privacy protection in ve-
hicular ad-hoc networks (VANETs) and compared elliptic
curve cryptography (ECC) with genus 2 and genus 3 hy-
perelliptic curve cryptography (HECC). It finds that ECC is
broadly the better choice for most metrics, but under cer-
tain conditions HECC could be more energy efficient. The
paper notes that ECC may not fully address the security-
performance trade-off in various scenarios, although it has
a data encryption and decryption time of 3500 micro-seconds.

3. System Model
Our system model comprises a smart home ecosystem,

consisting of IoT devices equipped with DHT11 sensors and
smart lights. Additionally, It includes an MQTT broker,
specifically the Mosquitto server [19], which was installed
on a Raspberry Pi 4 running the Raspbian OS. The purpose
of this system model is to encrypt the MQTT payload mes-
sages sent by the publisher via 1883’ port to the broker before
being decrypted by IoT devices or SDN host server.

3.1 IoT Device Subscribe
The subscription architecture in SDN is illustrated in

Fig. 2. Host 1 publishes a payload message that indicates
either an ’on’ or an ’off’ status. This message is transmitted
to a single topic named iot/device2 using the MQTT protocol
via port 1883 to the Mosquitto MQTT broker. Subsequently,
the broker forwards the MQTT message to the subscriber IoT
devices, in this instance, the smart light. In this scenario,
the payload message has a size of 10 bytes. The IoT device,
which is an ESP8266, controls the opening or closing of the
light based on the payload message sent by the MQTT broker.

3.2 IoT Device Publish
The publishing architecture in SDN is shown in Fig. 3.

The IoT device, in particular an ESP8266 combined with
a DHT11 sensor, publishes a payload message indicating the
temperature and humidity values in the room. This message
is transmitted to a single topic named iot/device1 using the
MQTT protocol to the Mosquitto MQTT broker through 1883
port. Subsequently, the broker forwards the MQTT message
to the subscriber hosts, Host 1 and Host 2. In this scenario,
the payload message has a size of 30 bytes. If an IoT device
needs to securely communicate with multiple hosts, it must
have a public key for each host. It should encrypt each host
data separately using the corresponding public key for each
one, to ensure that only the intended recipient could decrypt
the data.

3.3 Encrypting and Decrypting MQTT
Message Payloads

Generating keys for both IoT devices and hosts before
encrypting and decrypting data aims to enhance the security
of MQTT payloads exchanged between them. To demonstrate

Fig. 2. Subscription architecture for IoT devices in SDN.

Fig. 3. Publishing architecture for IoT devices in SDN.

this, we applied our Hybrid Cryptography-Based E2EE
method in the scenarios outlined in Sec. 3.1 and Sec. 3.2.
In these cases, data from Host 1 or the IoT device is en-
crypted before being sent to the MQTT broker and decrypted
only after it is received by the intended recipient, either the
host or the IoT device.

4. Comparative Study
In this section, we first specify the hardware and soft-

ware environment of our work. Then, to implement our Hy-
brid Cryptography-Based E2EE method, we conduct a com-
parative study of key generation algorithms such as RSA [20],
and ECC [21] across multiple key sizes (128, 192, and
256 bits) to measure the generation time (in ms) and iden-
tify the algorithm with the shortest generation time. Subse-
quently, we perform a comparative study of data encryption
algorithms with MQTT payload data of 10 bytes and 30 bytes,
including RSA [22], AES [23], and ChaCha20 [24]. We eval-
uate these algorithms using three different key sizes for AES,
and ChaCha20 (128, 192, and 256 bits), and two key sizes for
RSA (2048 and 4096 bits). The objective is to determine the
best algorithms in terms of encrypted packet size (in octets),
encryption time (in ms), and decryption time (in ms). Fi-
nally, we select the optimal key generation algorithm among
RSA and ECC, as well as the most suitable encryption and
decryption algorithms from RSA, AES, and ChaCha20 to
implement our Hybrid Cryptography-Based E2EE method
deployed in the SDN architecture to protect IoT devices from
MitM attacks.
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4.1 Hardware and Software Tools
This project utilizes specific hardware and software

tools. The hardware includes a virtual machine run-
ning Ubuntu 22.04 with the following specifications: In-
tel Core i5-1235U processor (4.40 GHz Turbo max, 12 MB
cache, 10 cores), 16 GB DDR4 RAM, and 256 GB SSD stor-
age. The software tools used are Mininet, a free and open-
source tool for creating virtual networks and running net-
working applications at high speeds; Ryu Controller, an open-
source SDN controller that manages network devices via the
OpenFlow protocol for dynamic control and centralized man-
agement; Mosquitto, an open-source message broker imple-
menting the MQTT protocol for publishing and subscribing
to messages in IoT applications; Ettercap, a tool for perform-
ing man-in-the-middle attacks, which allows traffic intercep-
tion and analysis; and Wireshark, an open-source network
protocol analyzer for capturing and inspecting data packets
in real-time.

4.2 Comparative Analysis
To measure the time taken for key generation, the com-

parison focuses on RSA ,and ECC key algorithms, chosen
for their encryption performance [25] and [26]. We have ex-
cluded the 1024-bit key size due to its susceptibility to cyber
attacks [27], opting instead for key sizes of 2048 and 4096 for
RSA. For ECC, key sizes of 128, 192, and 256 are employed.
For the comparison of MQTT payload data encryption sizes,
encryption and decryption times, CPU usage, and memory
consumption, we utilized RSA with key sizes of 2048 and
4096, as well as AES, and ChaCha20 with key sizes of 128,
192, and 256.

4.2.1Key Generation
Key generation occurs initially and may also be trig-

gered subsequently by events such as device reboot or session
initiation, or based on the expiration of previous keys.

Table 1 compares key generation times for RSA and
ECC algorithms in SDN infrastructure. RSA, with key sizes
of 2048 and 4096 bits, exhibits longer generation times at
1.73303 and 3.1699 ms, respectively, owing to its reliance on
larger key lengths for security. ECC offers key lengths of
128, 192, and 256 bits, with corresponding generation times
of 0.2150, 0.3262, and 0.4009 ms, showcasing faster key
generation compared to RSA due to its shorter key lengths
while maintaining robust security. This makes ECC advan-
tageous for the rapid establishment of secure communication
channels, particularly in real-time IoT devices in SDN en-
vironments, due to its key agreement nature and reduced
computational overhead.

4.2.2Encrypted Packet Size
Figure 4 illustrates the analysis of encrypted packet

sizes for RSA, AES, and ChaCha20 algorithms within
an SDN infrastructure, considering packet sizes of 10 bytes
and 30 bytes. The results highlight significant observations.

Algorithm Key size [octets] Key generation time [ms]
RSA 2048 1.73303
RSA 4096 3.1699
ECC 128 0.2150
ECC 192 0.3262
ECC 256 0.4009

Tab. 1. Key generation time comparison for RSA and ECC al-
gorithms in SDN infrastructure

Fig. 4. Comparison of encrypted packet sizes using RSA, AES,
and ChaCha20 algorithms for 10 and 30 bytes in SDN
infrastructure.

As the packet size increases due to the application of en-
cryption algorithms, there is a consistent escalation in the
encrypted packet size across all algorithms, indicating a di-
rect correlation between packet size and encryption overhead.
Moreover, upon comparison within each packet size category,
RSA consistently yields larger encrypted packet sizes com-
pared to AES and ChaCha20, whereas AES and ChaCha20
exhibit packet sizes closely aligned with each other. This em-
phasizes the considerable impact of algorithm selection on
the resulting encrypted packet size. These findings suggest
that in resource-constrained environments like SDN infras-
tructure, the selection of AES may strike a balance between
encryption efficiency and security.

4.2.3Encryption and Decryption Time
Table 2 presents encryption and decryption times for

RSA, AES, and ChaCha20 algorithms across various key
sizes for 10-byte and 30 byte MQTT payload messages in
SDN infrastructure. For 10-byte payloads, RSA encryption
and decryption times are relatively higher, with RSA-2048
encryption taking approximately 0.9372 ms and decryption
about 0.3839 ms, increasing to 1.597 ms for RSA-4096 en-
cryption and 0.5546 ms for decryption. Conversely, AES
demonstrates efficient performance, with AES-128 encryp-
tion and decryption times at 0.1504 and 0.5927 ms, respec-
tively. As key sizes increase, AES maintains consistently
low times, with AES-256 encryption and decryption times
at 0.2542 and 0.1577 ms, respectively. ChaCha20, while
slightly slower than AES, offers competitive performance,
with encryption and decryption times ranging from 0.3091
to 0.4116 ms for key sizes 128 to 256 bits. For 30-byte no-
tably, RSA encryption and decryption times are the highest,
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Algorithm Encryption time for 10B
[ms]

Decryption time for 10B
[ms]

Encryption time for 30B
[ms]

Decryption time for 30B
[ms]

RSA-2048 0.9372 0.3839 0.9666 0.4412
RSA-4096 1.597 0.5546 1.772 0.6560
AES-128 0.1504 0.05927 0.1826 0.07110
AES-192 0.2138 0.1062 0.2391 0.1369
AES-256 0.2542 0.1577 0.2758 0.1781

ChaCha20-128 0.3091 0.2118 0.3200 0.2366
ChaCha20-192 0.3598 0.2575 0.3697 0.2782
ChaCha20-256 0.4116 0.3013 0.4595 0.3479

Tab. 2. Comparison of encryption and decryption times for 10-byte and 30-byte MQTT payload messages using RSA, AES, and ChaCha20
algorithms in SDN infrastructure.

with RSA-2048 encryption taking approximately 0.9666 ms
and decryption about 0.4412 ms, increasing to 1.772 ms for
RSA-4096 encryption and 0.6560 ms for decryption. In con-
trast, AES demonstrates superior efficiency, with AES-128
encryption and decryption times at 0.1826 and 0.07110 ms,
respectively. As the key size increases, AES still main-
tains relatively low times, with AES-256 encryption and
decryption times at 0.2758 and 0.1781 ms. ChaCha20, is
slightly slower than AES, offers competitive performance,
with encryption and decryption times ranging from 0.3200
to 0.4595 ms for key sizes 128 to 256 bits.

AES offers fast and efficient encryption and decryption,
particularly for symmetric encryption, making it suitable for
scenarios requiring high throughput and low latency.

4.2.4CPU Usage and Memory Consumption
The analysis of CPU usage and memory consump-

tion for our hardware machine, when using RSA, AES, and
ChaCha20 algorithms with 10-byte and 30-byte MQTT pay-
loads, reveals distinct performance characteristics. RSA ex-
hibits higher CPU and memory consumption compared to
the other algorithms. In contrast, ChaCha20 shows lower
CPU and memory usage relative to RSA. AES, however, per-
forms the best in terms of both CPU and memory utilization
for both 10-byte and 30-byte MQTT payloads. This perfor-
mance comparison is illustrated in Figs. 5 and 6.

4.3 Selecting the Optimal Algorithms
Based on the results discussed in Sec. 4.2, our Hybrid

Cryptography-Based E2EE method is designed to utilize the
ECC 256 algorithm for key generation due to its efficient key
generation process compared to other algorithms. Addition-
ally, we opt for the AES 256 algorithm for encrypting and
decrypting MQTT payload data. This choice is motivated by
its ability to encrypt and decrypt data swiftly with minimal
memory usage and CPU utilization on our operating system,
making it a favorable option when compared to alternative
algorithms. We used AES256-GCM as AES mode. By using
AES-GCM [28], we benefit from its robust security features
and efficient performance, making it a preferred choice for
modern encryption needs, especially when both confidential-
ity and data integrity are crucial.

Fig. 5. Comparison of CPU usage using RSA, AES, and
ChaCha20 algorithms in SDN infrastructure.

Fig. 6. Comparison of memory consumption using RSA, AES,
and ChaCha20 algorithms in SDN infrastructure.

4.4 Algorithms
Before implementing our Hybrid Cryptography-Based

E2EE method, which is based on Sec. 4.3, we define the two
algorithms that form the basis of our Hybrid Cryptography-
Based E2EE method. Algorithm 1 involves publishing and
encrypting at the sender’s side (IoT device) using ECC-256
and AES-256, while Algorithm 2 entails subscribing, de-
crypting, and receiving at the receiver’s side (Host 2) using
ECC-256 and AES-256.

Algorithm 1 on the sender’s side, the IoT device cap-
tures the plaintext data and generates a shared secret using its
private key and the receiver’s (host) public key via Elliptic
Curve Diffie-Hellman (ECDH) [29]. This shared secret is
then used to derive a 256-bit encryption key through Hash-
based Key Derivation Function (HKDF) [30], which encrypts
the plaintext data with AES-256, producing the encrypted
message.



588 N. KARMOUS, M. HIZEM, Y. BEN DHIAB, ET AL., HYBRID CRYPTOGRAPHIC END-TO-END ENCRYPTION METHOD . . .

Algorithm 1. Encrypting at sender’s side (IoT device).

1:<Input: published_data, public_key_receiver>
2:<Output: encrypted_message>
3.pm <–published_data
4. shared_secret <–perform_ECDH(public_key_receiver, pri-
vate_key_sender)
5. derived_key <–HKDF(shared_secret, key_length=256)
6. c_text <–encrypt_AES256(pm, derived_key)
7. encrypted_message <– ciphertext
return (encrypted_message)

Algorithm 2. Decrypting at receiver’s side (host).

1:<Input: encrypted_message, public_key_sender>
2:<Output: received_data>
3. ciphertext <– encrypted_message
4. shared_secret <– perform_ECDH(public_key_sender, pri-
vate_key_receiver )
5. derived_key <–HKDF(shared_secret, key_length=256)
6. pmr <–decrypt_AES256(ciphertext, derived_key )
7. received_data <–pmr
return (received_data)

Algorithm 2 on the receiver’s side, upon receiving the
encrypted message and the IoT device’s public key, the host
device extracts the ciphertext. It then performs an ECDH
operation using the IoT device’s public key and its own pri-
vate key to generate a shared secret. This shared secret is
processed with a HKDF to derive a 256-bit encryption key.
The host device uses this derived key to decrypt the cipher-
text with AES-256, revealing the original plaintext message,
which is then stored in received_data and returned. This
ensures secure communication between the IoT device and
the host device by combining ECDH for secure key exchange
and AES-256 for strong encryption.

Our Hybrid Cryptography-Based E2EE method ensures
data confidentiality and secure transmission between the IoT
device and the host.

5. Implementation
In this section, we describe the implementation of our

Hybrid Cryptography-Based End-to-End Encryption (E2EE)
method within a Software-Defined Networking (SDN) envi-
ronment. The process for securely distributing the host’s
Elliptic Curve Cryptography (ECC) public key to an IoT de-
vice over MQTT on port 1883 using our method involves
several key steps:

• Key Management: The SDN controller, acting as
a central authority, oversees key management. The host
generates an ECC key pair and registers the public key
with the Ryu SDN controller.

• Public Key Distribution: The Ryu SDN controller
publishes the host’s ECC public key to a predefined
MQTT topic, host/key/public. The IoT device sub-
scribes to this topic and receives the public key.

• Key Verification and Sharing: Upon receiving the
public key, the IoT device verifies its integrity using
a Message Authentication Code (MAC) provided by
the SDN controller.

• Key Derivation: After successful verification, the IoT
device uses the ECC public key to derive a shared se-
cret key. This shared secret is then employed to generate
an AES-256 key for encrypting data.

• Data Encryption and Transmission: The encrypted
data is sent to the host. The host uses its private ECC
key to derive the same AES-256 key and subsequently
decrypts the received data.

This approach ensures secure key distribution and data
encryption, leveraging ECC for key management and AES-
256 for data encryption within the SDN framework.

5.1 Steps of our Methodology
Figure 7 illustrates the methodology of our Hybrid

Cryptography-Based E2EE method within the SDN inter-
face, establishing a secure connection between the IoT device
and the host. The detailed steps are outlined below.

• Generate Keys
ECC involves creating key pairs consisting of a private
key and a corresponding public key. Here’s a detailed
explanation of the key generation process for both par-
ties (IoT device and host device) using a 256-bit elliptic
curve:

Key Generation For IoT Device (Sender): Generate
a private key 𝐼pr which is a randomly selected integer.
For a 256-bit elliptic curve, this integer should be in
the range [1, 𝑛 − 1], where 𝑛 is the order of the elliptic
curve. Calculate the public key 𝐼pu as:

𝐼pu = 𝐼pr ∗ 𝐺 (1)

where 𝐺 is the generator point on the elliptic curve.

Fig. 7. Integrating our hybrid cryptography-based E2EE method
within SDN infrastructure.
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Key Generation For Host Device (Receiver): Generate
a private key ℎpr which is a randomly selected integer.
For a 256-bit elliptic curve, this integer should be in
the range [1, 𝑛 − 1], where 𝑛 is the order of the elliptic
curve. Calculate the public key ℎpu as:

ℎpu = ℎpr ∗ 𝐺. (2)

• Generate a Shared Secret

The IoT device wants to send an encrypted MQTT mes-
sage to the host’s subscribers. It obtains the host sub-
scriber’s public key. To generate a shared secret key,
we used the ECDH key exchange protocol, where both
parties (IoT device and host) use their own private key
and the other party’s public key. This shared secret
is typically a point on the elliptic curve multiplication
written as:

𝑆 = 𝐼pr ∗ ℎpu (3)

where 𝑆 is the shared secret point, 𝐼pr is the IoT device’s
private key, and ℎpu is the host’s public key.

• Derive a Symmetric Key from the Shared Secret

Next, the IoT device derives a symmetric key from the
shared secret. The symmetric key has a length of 32
bytes (256 bits), using HKDF with SHA-256 [31] as the
hash function.

• Encrypt the Data with the Derived Symmetric Key

The sender then uses the derived symmetric key to en-
crypt the actual data. We used the AES-256 algorithm
for this step.

• Send the Encrypted Data and Public Key

The host subscriber receives the encrypted data and the
IoT device sender’s public key via a secure channel.

• Generate the Shared Secret (On Host Side)

The host device wants to decrypt the MQTT message
sent by the IoT device. It obtains the IoT device’s public
key. To generate a shared secret key, we use the ECDH
key exchange protocol. Both parties (host and IoT de-
vice) will use their own private key and the other party’s
public key. This shared secret is typically a point on the
elliptic curve multiplication written as:

𝑆 = 𝐼pu ∗ ℎpr (4)

where 𝑆 is the shared secret point, 𝐼pu is the IoT device’s
public key, and ℎpr is the host’s private key.

• Derive the Same Symmetric Key

The same step as in Sec. 5.1.3 is applied here to derive
the symmetric key from the shared secret.

• Decrypt the Data with the Symmetric Key

The host subscriber uses the derived symmetric key to
decrypt the encrypted data. We used the AES-256 al-
gorithm for this step. The host subscriber now has the
decrypted data, which was originally encrypted by the
IoT device.

6. Deployment in SDN
In Fig. 8, we integrate our Hybrid Cryptography-Based

E2EE method into an SDN network with 1 Ryu controller,
1 switch, and 4 hosts. Among the hosts, h1 represents an IoT
device sensor for temperature and humidity, publishing data
every 1 second. h2 is the subscriber host, and h3 represents
an MitM attacker. Using Ettercap to launch MitM attacks
allows interception of data exchanged between an IoT device
and h2. Figure 9 shows the initial Mininet setup with 4 hosts,
1 switch, and 1 controller.

Fig. 8. Our SDN topology utilized.

Fig. 9. Creating our virtual SDN network using Mininet.
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Fig. 10. Starting the Ryu controller.

Fig. 11. Launching an MitM attack using Ettercap tools.

Fig. 12. Wireshark capture file of plaintext traffic collected by
an MitM attacker.

6.1 Before Applying Our Hybrid
Cryptography-Based E2EE Method

Figure 10 depicts the start of a simple Ryu controller.
As shown in Fig. 11, we launched an MitM attack using the
Ettercap tool by h3 to collect data exchanged between h1, the
IoT device publisher, and h2, the host subscriber. As shown
in Fig. 12, the attacker h3 could easily collect the data ex-
changed between h1 and h2, which includes the temperature
and humidity values sent by h1 to h2 using wireshark tools.

Fig. 13. Wireshark capture file of encrypted traffic collected by
an MitM attacker.

6.2 After Applying Our Hybrid Cryptography-
Based E2EE Method
After integrating our E2EE method, as explained in

Sec. 5.1, we launched an MitM attack using the Ettercap tool
by h3 to collect data exchanged between h1, the IoT device
publisher, and h2, the host subscriber, as shown in Fig. 11.
The attacker could not read the temperature and humidity
data sent by h1 to h2. h3 could only read the encrypted data,
as shown in Fig. 13.

7. Discussion
This section presents a comparative study of three re-

lated works that are closely related to my enhanced E2EE
method.

P. Sushma in [14] used the MQTT protocol in an IoT
application and implemented Armstrong number encryption
to maintain the confidentiality of data over port 1883. From
the work, it can be inferred that decryption is faster than the
encryption process, taking 0.33 ms and 0.34 ms, respectively.

A. J. Hintaw and S. Manickam in [15] proposed a new
security solution called RSS for adoption on IoT devices.
This solution augments the existing MQTT protocol with en-
hanced security features using two separate cryptosystems:
enhanced D-AES and KP-ABE. These cryptosystems dis-
tribute the publisher’s secret key to the subscriber and provide
confidentiality of the MQTT payload, broadcast encryption,
fine-grained access control, and collision resistance. The pro-
posed scheme increases the average total processing time by
only 2.16 and 3.21 ms for encryption and decryption, respec-
tively, compared to related works, where encryption takes
188 ms and decryption 232 ms.

H. Li-Wen in [16] proposed a multi-level dynamic en-
cryption algorithm for an Internet of Vehicles (IoV) sys-
tem using MQTT. This algorithm encrypts and decrypts the
MQTT messages, taking 1143 ms for encryption and 1309 ms
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Paper Framework Method Key generation
time [ms]

Average time
[ms]

[12] Standard MQTT Armstrong Number Encryption Standard - 67
[14] Standard MQTT Enhanced D-AES and KP-ABE - 5.73
[15] MQTT model Multi-level Dynamic Encryption Algorithm - 7020

Our Hybrid Cryptography-Based E2EE SDN ECC 256 with AES 256 0.1841 0.4539

Tab. 3. Comparative study of our work with related works.

for decryption. The algorithm improves the overall efficiency
of the system and realizes high efficiency and energy saving.

Our proposed Hybrid Cryptography-Based E2EE
method secures MQTT payload data on port 1883 for pub-
lishing and subscribing. The selected key generation algo-
rithm, ECC-256, requires 0.184 ms for key generation. The
encryption of MQTT payload data is oriented to AES-256,
with an encryption time of 0.2542 ms and a decryption time
of 0.1577 ms for subscribing, while the encryption time is
0.2758 ms and the decryption time is 0.1781 ms for pub-
lishing. Our proposed Hybrid Cryptography-Based E2EE
method is adaptable to SDN environments, has minimal CPU
usage and memory consumption, and outperforms other re-
lated works.

Table 3 presents a comparative study of our work with
related works. The comparison is based on the framework,
method, key generation time, and average encryption and de-
cryption time. This comparative study shows that our hybrid
E2EE method performs better than the other works and is
flexible and adaptive with SDN networks.

8. Conclusion
In this paper, we present a Hybrid Cryptography-Based

End-to-End Encryption (E2EE) method designed to enhance
the security of data transmitted between IoT devices and
subscribing hosts within an SDN network. Our approach ef-
fectively mitigates man-in-the-middle (MitM) attacks by en-
suring that data remains confidential even when transmitted
over unencrypted channels such as port 1883. The method
leverages Elliptic Curve Cryptography (ECC-256) for key
generation and employs the AES-256 algorithm for both en-
cryption and decryption, using symmetric keys derived from
the publisher IoT device and subscriber hosts.

Our Hybrid Cryptography-Based E2EE method repre-
sents a significant advancement over existing solutions, pro-
viding improved efficiency and security for MQTT payload
exchanges. It is particularly well-suited for practical imple-
mentation in IoT systems within SDN environments.

However, a current limitation is that the same encrypted
data is transmitted consistently over extended periods. To
address this, future work will involve regenerating keys on
an hourly basis and updating data transmission intervals to ei-
ther every minute or every five minutes. Additionally, we are
considering incorporating timestamp or sequence number-

based mechanisms into our encryption protocol to uniquely
identify and validate each data transmission session. These
enhancements aim to prevent malicious actors from reusing
intercepted ciphertexts to impersonate legitimate data.
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