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Abstract. Based on the sparsity of inverse synthetic aper-
ture radar (ISAR) signal, this paper proposes a high reso-
lution imaging algorithm for ISAR based on weighted 
adaptive mixed norm. By weighting against l2,0 mixed norm 
term, an improved model of the sparse constraint ISAR 
signal is proposed. The model effectively distinguishes the 
signal and noise by adding the weight coefficient, and 
improves the reconstruction accuracy of the strong scatter-
ing center. Meanwhile, the weight coefficients in this im-
proved model can be iteratively updated in each cycle to 
improve the image reconstruction accuracy. The optimiza-
tion model takes advantage of l2,0 mixed norm to achieve 
fast convergence in the operation, and adopts conjugate 
gradient descent method and fast Fourier transform opera-
tion in the solution, which simplifies the solving process of 
the optimization problem and improves the operation effi-
ciency of the algorithm. Simulation data and measured 
data verify the effectiveness of the proposed method. 
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1. Introduction 
Inverse synthetic aperture radar (ISAR) is an im-

portant branch in the development of synthetic aperture 
radar. Its imaging process is a process in which static radar 
conducts two-dimensional high resolution imaging includ-
ing range and azimuth of moving targets [1]. Usually, in 
ISAR imaging, the high range resolution is obtained by 
transmitting a wideband signal [2], and the azimuth resolu-
tion is achieved by utilizing the rotational motion between 
the radar and targets. Under long Coherent Processing 
Interval (CPI) observation, the bigger the angle of target 
relative to radar, the higher the azimuth resolution [3]. As 
a result, a two-dimensional ISAR image of the target can 
be obtained. However, in practical application, due to the 
mobility characteristics of the ISAR target and the interfer-

ence of the external environment, the sampling results are 
not ideal during long CPI observation. In contrast, the short 
CPI sampling requires a short time [4], and the target 
movement can be regarded as a smooth movement during 
observation, but there are also defects of small number of 
echoes and low resolution of reconstruction image, which 
is not conducive to subsequent operations. Studying the 
imaging process of ISAR can find that the main amount of 
information required in image reconstruction is only pro-
vided by strong scattering points, and the number of strong 
scattering points in the scattering point system is very 
small, so it can be found that ISAR images have sparsity 
characteristics [5]. 

Based on the sparsity of the ISAR signal, many re-
searchers have recently studied the ISAR high resolution 
imaging algorithms deeply. The ordinary compression 
sensing (CS) super-resolution imaging algorithm can suc-
cessfully recover the signal from low dimensional sparse to 
high dimensional, but under the condition of low signal to 
noise ratio (SNR), it cannot accurately focus the image due 
to excessive noise information [6]. To solve this disad-
vantage, a weighted compression sensing (WCS) imaging 
algorithm based on CS algorithm is proposed [7]. In this 
algorithm, the effective signal and noise are effectively 
distinguished by assigning different weights. So this algo-
rithm effectively improves the problem of poor imaging 
performance at low signal-to-noise ratio and improves the 
noise tolerance performance. Although CS and WCS algo-
rithms are able to reconstruct ISAR images under short CPI 
observation, as these two algorithms need to be optimized 
and solved by CVX method, they have great challenges in 
terms of operation complexity and efficiency. The core of 
ISAR high resolution imaging is the high resolution recon-
struction of the target sparse signal obtained by the short 
aperture sampling [8]. In other words, it is the accurate 
information recovery of the target sampled by the short 
CPI in the presence of noise interference. With the contin-
uous improvement of research, a high resolution imaging 
algorithm based on l1 norm sparse constraint is proposed 
[9]. When the observation method is short CPI sampling, 
the algorithm combines the statistical information of sparse 
signal and noise collected to derive a method to achieve 
high resolution reconstruction of target signal under noise 
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interference by solving an optimization problem with min-
imum constraint. This algorithm can successfully achieve 
accurate and efficient recovery of target images in testing. 
Based on the above algorithm, an adaptive sparse con-
straint ISAR high resolution imaging algorithm based on 
l2,0 mixed norm, which combines the advantages of l2 norm 
and l0 norm [10]. The sparse constraint optimization model 
established by this algorithm can realize the adaptive ad-
justment of the regularization coefficient according to the 
sparsity of each iteration in the case of any positive SNR, 
and can determine a relatively stable only a few iteration 
cycles, thus shorten the running time of the algorithm and 
improve the solution efficiency. 

To improve the accuracy of image reconstruction, we 
propose an ISAR high resolution imaging algorithm based 
on the regularization coefficient adaptive adjustment algo-
rithm and the l2,0 mixed norm algorithm. The main ad-
vantages of the proposed algorithm are 

1) In this algorithm, a sparse constraint optimization 
improved model is established by using the weighted l2,0 
mixed norm. The model can add different weight coeffi-
cients to the strong scattering center [11] and the noise 
support center according to the signal amplitude. In this 
way, the target scattering center and the noise support 
center are treated differently, achieving the purpose of 
ensuring the original image recovery while suppressing the 
strong noise. 

2) The algorithm introduces an iterative operation to 
update the weight coefficients related to the amplitude of 
the signal. With each iteration operation, the reconstruction 
accuracy of the image improves, leading to more precise 
weight coefficients. These accurate weight coefficients, in 
turn, enhance the accuracy of image reconstruction. This 
iterative process creates a symbiotic relationship between 
the improvement in weight coefficient accuracy and the 
enhancement of image reconstruction precision. The opera-
tion can effectively improve the accuracy of high resolu-
tion image reconstruction. 

3) The regularization coefficient can be adjusted 
adaptively according to the result of each signal iteration 
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Fig. 1. Rotating signal model.  

under different noise. Combining the l2,0 mixed norm and 
conjugate gradient descent method ensures the operation 
efficiency, so that the algorithm has better effectiveness 
and superiority in the operation. 

The paper is organized as follows. In Sec. 2, the theo-
retical knowledge of the ISAR imaging signal model is 
briefly introduced. In Sec. 3, the optimization model based 
on the weighted adaptive mixed norm is proposed and the 
solution algorithm is given to reconstruct the target signal 
by authors. Section 4 presents ISAR imaging results of 
simulated and measured data. Section 5 provides the con-
clusion and possible future directions. 

2. ISAR Imaging Signal Model 
After the radar acquired the target echoes, the imag-

ing model is drawn in a two-dimensional plane for simplic-
ity, where the Y axis and X axis represent the distance and 
azimuth direction respectively. After the envelope align-
ment and initial phase correction, the simplified ISAR 
signal model is obtained, as shown in Fig. 1. 

For the simplified rotation signal model, the angle 
change of the target relative to the radar in the case of short 
CPI can be approximated as 

 ( )m mt tθ ω∆ ≈    (1) 

where tm is slow time, 0 ≤ tm ≤ T, T is coherent processing 
time length; ω is the rotational angular velocity of the tar-
get. Due to the size of the reflected target is much smaller 
than the distance between the target and the radar, after the 
motion compensation and phase correction of the echo 
data, at which time the distance between the scattering 
point p(x,y) on the target and the radar can be approxi-
mated as 

 ( ) ( )( ) ( )( )0 cos sinm m mR t R y t x tθ θ= + ∆ + ∆   (2) 

where R0 represents the distance between radar and target 
rotation center O. In a short CPI observation, Equation (1) 
can substitute the target rotation angle ∆θ(tm), yielding an 
approximate formula for the distance between the target 
scattering point and the radar 

 ( ) ( )0 sinm mR t R y x tω= + + .  (3) 

Generally, the radar transmitting signal is linear 
frequency modulation signal 

 2r
r c r r

p

( ) rect exp 2
2

ts t f t t
T

απ
    = ⋅ +        

  (4) 

where tr represents the sampling fast time; Tp represents 
pulse width; fc represents the carrier frequency; α repre-
sents the modulation frequency; rect[∙] represents a win-
dow function. When the target size is large, the target 
movement may produce the Migration Though Resolution 
Cell (MTRC) situation, which needs to be compensated 
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[12]. The echo signal after MTRC compensation is pulse 
compressed to obtain 
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 (5) 

where βp represents the target scattering coefficient of the 
scattering point p, which can be regarded as a constant 
when the rotation angle of the target is very small; γ is the 
radar transmitting signal wavelength; C is the speed of 
light. Under considering noise, when there are N scattering 
points in the range cell with a distance of r0 + y, the echo 
signal of this range cell is 

 
1

( ) rect exp( 2 j )
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p

ts t B f t n
T

π
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 = ⋅ ⋅ − +  
∑   (6) 

where Bp represents the scattering coefficient of the scatter-
ing point p at the azimuth moment tm, and 

0exp 4 jp p
r yB β π
γ
+ 

= ⋅ − 
 

. fp represents the Doppler 

frequency of the scattering point p, and fp = 2ωx / γ; n is 
additive noise. To obtain the pixel distribution of the image 
domain, the orientation Fourier transform of (6) is required 

 
1

( ) sinc[ ( )] .
N
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=
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3. ISAR High Resolution Imaging 
Based on Weighted Adaptive Mixed 
Norm 

3.1 ISAR Optimization Imaging Model Based 
on Weighted Adaptive l2,0 Mixed Norm 
Sparse Constraint 
In the case of short CPI sampling observation, the 

target movement can be regarded as a smooth motion, and 
the sampled signal echoes are less affected by noise and 
more stable. Based on the sparsity of the ISAR signal, the 
signal model shown in (6) can be discretized. On the short 
CPI sampling observation, if there are M̂  effective pulses 
within each range cell, the ISAR echo signal is expressed as 

 S = FX + ε   (8) 

where S represents the ISAR echo signal on the short CPI 
observation, whose size is M̂ N× , M̂ is the total number of 
sampling pulses, N is the sampling points of range profile. 
Under the short CPI observation, the small number of echo 
pulses is obtained. To obtain azimuthal high resolution, 
long CPI observations are required. We need an algorithm 
to achieve the reconstruction of the full-aperture images by 

the small number of echo pulses. X represents the target 
image to be reconstructed of size M × N, and M is the 
number of pulses emitted by the signal under the full-
aperture observation. In the simulation and measured ex-
periments in this paper, the number of pulses correspond-
ing to high resolution is 256, that is, the number of full 
aperture pulses is set to 256. ε represents an additive com-
plex noise matrix, whose dimension is equivalent to S; F 
represents a partial Fourier transform matrix with a size of 
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2where exp j
M
πω  = − 

 
. 

In (8), the solution of the target matrix is to accurately 
recover the full aperture of the target signal in the presence 
of noise interference. In the adaptive sparse constraint 
ISAR high resolution imaging algorithm based on mixed 
norm, signal and noise in the echo are treated equally, 
leading to the inability to achieve high resolution recon-
struction of images under strong noise. To more accurately 
distinguish between the effective signal and the noise [13], 
different weight coefficients are added to the signal and the 
noise in the echo according to the amplitude. Meanwhile, 
combined with the adaptive regularization coefficient [14], 
we propose an ISAR high resolution imaging model based 
on the weighted adaptive mixed norm sparse constraint as 

( )( )2

2 2
1

ˆ arg min 1 exp
M

m
m

λ β
=

 
= − + − − 

 
∑X S FX W X 

 

  (10) 
where λ  represents the adaptive regularization coefficient. 
In the case of uncertain SNR, λ is adjusted according to the 
noise variance and the Laplace coefficient to balance the 
relationship between image sparsity and estimation error 
[10]. W is the diagonal matrix of the weight coefficient, 
and each cycle can be updated iteratively. 

The relationship between the weight coefficient [15] 
and the signal amplitude can be expressed as 

 
f

1
( )nw
n δ

=
+X

   (11) 

where Xf is obtained from Fourier transform of the matrix 
X, δ represents a small value constant. 

In order to ensure the accuracy of the weight coeffi-
cient, the value of the weight coefficient needs to change 
after each cycle, so an iterative algorithm is introduced. 
During the iteration process, the weight coefficient is up-
dated according to (11), making the weight matrix more 
accurate and improving constantly the imaging resolution. 
The weight coefficient iteration formula is 
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  (12) 

where Xf
i(n) represents the n element of the image vector 

after the i reconstruction; wn
i+1 represents the weight coef-

ficient corresponding to the n element of the image vector 
during the (i + 1) reconstruction, and the diagonal matrix 
composed of wn obtained by the last reconstruction is W. 

3.2 Solution of Improved ISAR Imaging 
Model Based on the Weighted Adaptive 
Mixed Norm 
The quasi-Newton algorithm [16] solves the optimiza-

tion problem shown in (10). In order to avoid the non-
differentiable problem in the process of solving the mixed 
norm, a minimal non-negative value φ is used to approxi-
mate (10) 
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2

1
where

N
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=

+∑  is the approximation of  Xm2 in (10). 

The conjugate gradient function of f(X) is 
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The Hessian matrix H(X) is 

 H( ) 2 )X λ= +H F F WΛ(X    (15) 

where λ in H(X) is updated with each iteration; Λ(X) is 
a diagonal matrix, and the expression is 
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Because the Hessian matrix contains the objective 
function to be solved, it can be solved directly by iterative 
method 

 ( ) 11 Hn n −
+  =  X H X F S   (17) 

where nX  represents the result of the n iteration of the 
objective function X; [∙]–1 represents the matrix inverse 
operation. The convergence threshold is set, and when the 
convergence condition of the target function satisfies 

2 21

2 2

n n n ρ+ − ≤X X X , the iteration cycle ends and the 

final result is obtained. 

In (17), the inversion operation of Hessian matrix is 
realized by the conjugate gradient descent method in the 
algorithm, which avoids the huge amount of operation 
generated by the inversion operation of Hessian matrix and 
improves the operation efficiency [17]. In addition, the fast 
Fourier transform and its inverse transform operation [18] 
are used to solve the problem of the Fourier dictionary 
matrix and the reconstructed target product operation in 
(14), which also reduces the amount of operation in the 
execution process of the algorithm and improves the opera-
tion speed. 

For clarity, we give the detailed flow of solution of 
improved ISAR imaging model based on the weighted 
adaptive mixed norm as follows. First, in the case of short 
CPI observation, we obtain a small number of echo pulses 
with the number of pulses of M̂ and the pulses number of 
the full-aperture image is M. We use matched filter or the 
dechirp method for pulse compression in the simulation. 
To be more realistic, complex Gaussian noise is added into 
the signal. After the compensation of translational motion, 
the range-oriented imaging result of simulation data by 
M̂ echo pulses is obtained. Next, the range-oriented image 
is processed by the high-resolution algorithm proposed in 
this paper. The following is an introduction to the high-
resolution algorithm flow. After the parameter initializa-
tion, Hessian function H(X) is constructed. Then we use 
conjugate gradient descent method to obtain optimal solu-
tion X̂ . Terminate on convergence or when attains a spec-
ified maximum number of iterations max. Otherwise, up-
date Xf, regularization coefficient λ  and weight coefficient 
wn, and continue to iterate. Finally, the reconstructed 
images with M pulses are obtained. 

4. Verification of Experimental Data 
In this paper, an improved ISAR imaging model 

based on the weighted adaptive mixed norm model is es-
tablished and that is an improvement of the optimization 
imaging model based on mixed norm sparse constraint 
[10]. Simulation data and measured data are used to verify 
the imaging results of the proposed algorithm, and compare 
the imaging results of the proposed algorithm with the 
algorithm based on the l2,0 mixed norm and the ISAR high-
resolution imaging algorithm based on the l1 norm in the 
case of different numbers of echo pulses and SNRs [19]. 
The above algorithms are based on the optimization imag-
ing model with norm sparse constraint, and all obtain the 
objective function employ the maximum a posteriori 
(MAP) estimator.  

In order to verify the reconstruction performance of 
the algorithm, the paper tests the algorithm through the 
MATLAB 2020a processing platform and run on a working 
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Fig. 2. Aircraft scatter point model. 

 

Radar carrier frequency 9.15 GHz 

Radial velocity 100 m/s 

Signal bandwidth 400 MHz 

Pulse repetition frequency 125 Hz 

Rotational angular velocity 0.0216 rad/s 

Range direction resolution 0.375 m 

Tab. 1.  Main simulation parameters of the radar system. 

station with Intel(R) Core(TM) i7-8565U CPU @ 
1.80 GHz 1.99 GHz and 16.0 GB RAM. 

In the simulation experiments, the target model is 
shown in Fig. 2. The relevant parameters of the radar used 
are shown in Tab. 1.  

The distance between the rotation center of the radar 
and the target is 10 000 m, and the amplitude of each scat-
tering point is 1. Under the short CPI observation, 64 
echoes are taken for processing, and the super resolution 
image with a length of 256 is reconstructed. The itera-
tion threshold is ρ = 10–4, the number of iterations is set 
to 500, and the constant φ = 10–6. 

In the case of short CPI observation, we obtain 64 
echo pulses and use matched filter for pulse compression in 
the simulation. The range-oriented imaging result obtained 
after the compensation of translational motion is shown in 
Fig. 3. Figure 4 shows the result of the simulation data 
processed with traditional Range-Doppler (RD) algorithm, 
and Figure 5 shows the full-aperture image of the 256 
pulses about the simulation data. 
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Fig. 3. Range-oriented imaging result of simulation data by 64 

echo pulses. 
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Fig. 4. Imaging result of RD algorithm by 64 echo pulses. 
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Fig. 5. Full-aperture image of the 256 pulses. 

To further evaluate the image quality, the mean 
square error (MSE) index is introduced to quantitatively 
evaluate the imaging results [20]. MSE is an indicator used 
to calculate the accuracy of image recovery, which is de-
fined as shown in (18). The smaller the value, the higher 
the accuracy of image recovery, that is, the better the re-
construction effect 

 
ˆ

MSE F

F

−
=

X X

X
  (18) 

where X is the full-aperture image of the 256 pulses and 
X̂ is the reconstructed image. 

To verify the effectiveness of the algorithm proposed 
in this paper under different numbers of echo pulses, we 
choose two other algorithms to compare with the algorithm 
proposed in this paper under small amount of echo pulses. 
Under the short CPI observation, through 50 experiments 
with numbers of echo pulses ranging from 32 to 64 in step 
of 4, and the super-resolution image with the length of 256 
is reconstructed. 

Under different numbers of echo pulses, three algo-
rithms are used for operation. In Fig. 6, the blue broken 
line is the MSE obtained by the algorithm proposed in this 
paper, the red line is the MSE obtained by the algorithm 
based on the l2,0 mixed norm, and the yellow line is the 
MSE obtained by the algorithm based on the l1 norm. It can 
be seen that there is little difference in MSE between the 
ISAR high resolution imaging algorithm based on the l1 
norm and the one based on the l2,0 mixed norm. However, 
the imaging efficiency of algorithm based on the l2,0 mixed 
norm is higher than that of the l1 norm[10]. As can also be 
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Fig. 6. Curve of MSE with the number of echo pulses. 

seen from Fig. 6, the MSE of the algorithm proposed in 
this paper is smaller than the previous algorithms based on 
the norm at different numbers of echoes. In summary, the 
algorithm based on the l2,0 mixed norm is an improvement 
of the algorithm based on the l1 norm and the algorithm 
proposed in the paper is an improvement of the algorithm 
based on the l2,0 mixed norm. Therefore, in the following 
comparison of the imaging results, we only present the 
imaging results of algorithm based on the l2,0 mixed norm 
and the one proposed in the paper.  

To verify the effectiveness of the algorithm proposed 
in this paper in the natural environment, different SNRs 
(5 dB, 10 dB, 20 dB) are set by adding Gaussian white 
noise into the echo signal. In the case of different SNRs, 
the results of processing the simulation data using the pro-
posed algorithm and the imaging algorithm based on the l2,0 
mixed norm [10] are shown in Figs. 7–12.  

Figures 7, 9 and 11 in turn represent the imaging re-
sults obtained according to the imaging algorithm based on 
the l2,0 mixed norm at SNRs of 5 dB, 10 dB and 20 dB. 
Figures 8, 10 and 12 in turn represent the imaging results 
obtained according to the proposed algorithm at SNRs of 
5 dB, 10 dB and 20 dB. 

In Fig. 13, Gaussian white noise is added to the simu-
lation data images and the SNR ranges from 2 dB to 20 dB. 
The interval between the data points is 2 dB. The blue 
broken line is the MSE obtained by the algorithm proposed 
in this paper, the red line is the MSE obtained by the algo-
rithm based on the l2,0 mixed norm and the yellow line is 
the MSE obtained by the algorithm based on the l1 norm. 

As can be seen from Fig. 13, the MSE obtained by the 
algorithm in this paper is smaller than the MSE obtained 
based on the l1 norm and the l2,0 mixed norm imaging algo-
rithm. It can be found that with the decrease of the SNR, 
the MSE difference of the algorithm in this paper and the 
other two algorithms based on the norm increases. In other 
words, the greater the noise, the more obvious the im-
provement effect, and the higher the image reconstruction 
accuracy. Combined Figs. 6 and 13 can be found that the 
reconstruction accuracy based on the algorithm proposed in 
the paper is higher than the ISAR high resolution imaging 
algorithm based on the l1 norm and based on the l2,0 mixed 
norm in the case of different number of samples and SNRs. 

To further verify the effectiveness of the algorithm 
proposed in this paper, a set of measured data from the 
target aircraft Yak-42 is used, and the aircraft model is 
shown in Fig. 14. 

The measured data is the echo data of the Yak-42 
aircraft recorded by the C-band experimental system and the 
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Fig. 7. Imaging result of mixed norm at SNR = 5 dB. 
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Fig. 8. Imaging result of the algorithm proposed in this paper 

at SNR = 5 dB. 
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Fig. 9. Imaging result of mixed norm at SNR = 10 dB. 
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Fig. 10. Imaging result of the algorithm proposed in this paper 

at SNR = 10 dB. 
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Fig. 11. Imaging result of mixed norm at SNR = 20 dB. 
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Fig. 12. Imaging result of algorithm proposed in this paper at 

SNR = 20 dB. 
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Fig. 13. Curve of MSE with different SNR. 

 
Fig. 14. Yak-42 model. 

main radar system parameters are shown in Tab. 2. The 
imaging results of the algorithm proposed in this paper 
from the simulation data show that the improvement effect 
is better at a low SNR. Therefore, for the imaging results of 
the measured data at a low SNR, we take the imaging re-
sults obtained at 5 dB as examples to verify the effective-
ness of the algorithm proposed in this paper. The test pa-

rameter setting and the data processing amount are the 
same as the simulation data processing. 

In the case of short CPI observation, we obtain 64 
echo pulses and use the dechirp method for pulse compres-
sion in the simulation. The range-oriented imaging result 
obtained after range-alignment and phase-adjustment is 
shown in Fig. 15. The imaging result obtained by the con-
ventional ISAR imaging algorithm is shown in Fig. 16, and 
Figure 17 represents the full-aperture image of the 256 
pulses about the measured data. 
 

Radar carrier frequency 5.52 GHz 

Transmission signal bandwidth 400 MHz 

Sampling frequency 10 MHz 

Range direction resolution 0.375 m 

Pulse repetition frequency 100 Hz 

Tab. 2.  Main measured parameters of the radar system. 
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Fig. 15. Range-oriented imaging result of measured data by 64 

echo pulses. 
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Fig. 16. Imaging result of traditional RD algorithm by 64 echo 

pulses. 

50 100 150 200 250

cross-range cell

50

100

150

200

250

ra
ng

e 
ce

ll

 
Fig. 17. Full-aperture image of the 256 pulses. 
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Fig. 18. Imaging result of mixed norm at SNR = 5 dB. 
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Fig. 19. Imaging result of the algorithm proposed in this paper 

at SNR = 5 dB. 

Figure 18 illustrates the imaging result obtained 
according to the imaging algorithm based on the l2,0 mixed 
norm [10] at a SNR of 5 dB. Meanwhile, Figure 19 depicts 
the imaging result obtained with the proposed algorithm at 
a SNR of 5 dB. 

Due to the addition of weight coefficient and the in-
troduction of the iterative algorithm for updating the 
weight coefficients in the proposed algorithm in this paper, 
the reconstructed images of the two algorithms are differ-
ent to some extent. Therefore, the MSE is also different. 
The image reconstruction accuracy of the algorithm pro-
posed in this paper is higher than that of the original algo-
rithm based on mixed norm under the measured data. At 
a SNR of 5 dB, the MSE of algorithm based on mixed 
norm is 1.137, and the MSE of the algorithm proposed in 
this paper is 1.035. It can be seen that the MSE obtained by 
the algorithm proposed in this paper is smaller than that 
obtained by the original algorithm based on mixed norm. 
The effectiveness of the algorithm proposed in this paper is 
proved. 

5. Conclusion 
In this paper, based on the sparsity of ISAR images 

and combined with the adaptive adjustment algorithm of 
regularization coefficient we propose an improved sparse 
constrained ISAR signal model based on the weighted 
mixed norm. The model realizes the effective distinction of 
the strong scattering center and the noise support area by 
weighting l2,0, and the weight coefficient can be updated 
according to the result of each iteration, thus ensuring the 

accuracy of image reconstruction. And then, the model 
avoids the complex process of repeated attempts of the 
regularization coefficient, takes advantage of the fast con-
vergence rate of the l2,0 mixed norm, combines the conju-
gate gradient algorithm and the fast Fourier transform, to 
effectively improve the operation efficiency. Future work 
includes: extending the proposed algorithm to achieve high 
quality ISAR 3D imaging under short CPI; combining the 
proposed algorithm with machine learning to improve the 
algorithm adaptability. 
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