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Abstract. Deep learning-based methods have recently
made enormous progress in remote sensing image compres-
sion. However, conventional CNN is complex to adaptively
capture important information from different image regions.
In addition, previous transformer-based compression meth-
ods have introduced high computational complexity to the
models. Remote sensing images contain rich spatial and
channel information. The effective extraction of these two
kinds of information for image compression remains chal-
lenging. To address these issues, we propose a new low-
complexity end-to-end image compression framework com-
bining CNN and transformer. This framework includes two
critical modules: the Dynamic Attention Model (DAM) and
the Hyper-Prior Hybrid Attention Model (HPHAM). By em-
ploying dynamic convolution as the core part of the DAM,
the DAM can dynamically adjust the attention weights ac-
cording to the image content. HPHAM effectively integrates
non-local and channel information of latent representations
through the parallel running of Gated Channel Attention
(GCA) and multi-head self-attention. Experiments demon-
strate that the proposed approach outperforms existing main-
stream deep-learning image compression approaches and
conventional image compression methods, achieving optimal
rate-distortion performance on three datasets. Code is avail-
able at https://github.com/jiahuiLiu11/LTCHM.

Keywords
Remote sensing image compression, dynamic convolu-
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1. Introduction
In the current era of information explosion, remote sens-

ing technology has become an indispensable tool in many
fields, including earth sciences, environmental monitoring,
and agricultural management. With the development of re-

mote sensing technology and the continuous improvement
of satellite resolution, the data volume of remote sensing
images is also increasing dramatically, which brings signifi-
cant challenges in data storage, transmission, and processing.
Therefore, efficient remote sensing image compression tech-
niques are essential. In the past decades, conventional im-
age compression methods, such as JPEG [1], JPEG2000 [2],
HEVC/H.265 [3], and CCSDS [4], have achieved good rate-
distortion performance for image compression. However,
these image compression methods rely heavily on hand-
crafted codec modules and have complex interdependencies.
It is challenging to integrate the entire encoding and de-
coding system. The encoding and decoding process needs
to be implemented block by block sequentially in a block-
based hybrid codec, which brings block effect and ringing
effect to the reconstructed image [5]. Thus, they frequently
struggle to achieve satisfactory results when dealing with
remote-sensing images of higher complexity. As deep learn-
ing technology advances quickly, its powerful potential offers
fresh approaches and ideas for resolving the issue of remote
sensing image compression.

Remote sensing image compression technology aims to
effectively reduce the data volume of remote sensing images
while preserving critical information. Currently, traditional
compression methods remain the mainstream approach for
processing remote sensing images. For a hybrid lossless com-
pression technique, Afjal et al. [6] suggested a band reorder-
ing scheme for segmented subgroup datasets of the original
remote sensing image dataset. Hong et al. [7] explored the
effectiveness of its application in remote sensing image com-
pression using discrete cosine transform. For compressing
remote sensing images with high spatial resolution, Zhang
et al. [8] proposed a fast discrete wavelet transform (DWT)
based on orientation prediction. Xiang et al. [9] proposed
a band selection and slant-haar orthogonal transform-based
hyperspectral image compression technique for remote sens-
ing. Shi et al. [10] proposed an adaptive scanning remote
sensing image compression method based on the human vi-
sual system.
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Deep learning, especially CNN and autoencoders, has
shown excellent performance in image recognition, classifi-
cation, and generation tasks. In recent studies, most deep
learning-based image compression methods usually use end-
to-end training strategies. End-to-end learning image com-
pression [11–13] allows for optimizing the entire framework.
This approach allows for the automatic optimization of fea-
ture extraction and information encoding during the encoding
process. Additionally, it adjusts the model structure and pa-
rameters to meet specific compression needs, resulting in im-
proved compression performance. In terms of Peak Signal-
to-Noise Ratio (PSNR) and Multi-scale Structural Similar-
ity (MS-SSIM) [14], some recent work on learning image
compression [15–21] performs better than traditional image
compression algorithms. This shows that deep learning-
based image compression techniques have great potential in
the future.

As deep learning technology has advanced over the past
few years, an increasing number of research projects have
used deep learning in the application of remote sensing im-
age compression. Fu et al. [22] proposed a hybrid hyper-
prior network based on transformers and CNN. The network
can explore local and non-local redundancies to improve en-
tropy estimation accuracy. To effectively adjust the feature
distribution and reduce the information dependence in Syn-
thetic Aperture Radar (SAR) image compression, Zhang et
al. [23] presented an end-to-end trainable model using a dis-
crete Gaussian adaptive entropy model. In addition, gener-
alized subtractive normalization is applied to minimize the
remaining redundancy and reduce the statistical properties of
SAR images. Zhang et al. [24] proposed a region-of-interest
compression algorithm based on a deep learning autoencoder
framework to improve image reconstruction performance and
reduce distortion in the region of interest. Zhang et al. [25]
extended the hyperprior with a global stripe self-attention
mechanism to capture global, local, and channel dependen-
cies. It enables global correlation and hierarchical model-
ing of latent vectors. A multi-scale depth-wise convolution-
based attention module was introduced to boost the feature
extraction capabilities of the encoder and decoder. This mod-
ule increases the receptive field and nonlinear transformation
capacity, which retains more valuable information for com-
pression.

The majority of deep learning-based image compres-
sion methods [11, 19, 26–28] are designed using Variational
Auto-Encoder (VAE) [29] and CNN. Typically, VAE-based
image compression consists of three main steps: transforma-
tion, quantization, and entropy encoding. The transformation
process involves converting the original image into the po-
tential coding space to create a latent representation. Deep
learning-based image compression typically applies uniform
quantization during the quantization process. This method
divides the input signal’s value range into equal-width inter-
vals, called "quantization steps" or "quantization intervals,"
and rounds each input value to the nearest discrete value.
Since the derivative of uniform quantization is nearly zero at

most points, gradient descent becomes ineffective. Previous
research [11] proposes using additive uniform noise during
the training phase as a proxy for quantization to allow op-
timization through stochastic gradient descent. In contrast,
uniform quantization is used during the inference stage. En-
tropy encoding uses an entropy model to estimate the entropy
of the latent representation. Creating an efficient and accurate
entropy model is critical to improving image compression
performance. Thus, Ballé et al. [12] introduced a VAE-based
image compression model, leveraging a hyperprior structure
to capture spatial dependencies in latent representations. Ad-
ditionally, side information is used to estimate the variance of
the parameter distribution. To improve the utilization of the
probability distribution of the potential representation in the
compression model, Minnen et al. [13] proposed the merger
of the autoregressive model and the hyper-prior. Numer-
ous image compression models have been proposed based
on this. With the rise of visual transformers [30], [31], re-
searchers have begun to explore their application in image
compression. Qian et al. [20] proposed a new entropy model
based on transformers, effectively capturing long-range de-
pendencies in probability distribution estimation. Koyuncu
et al. [21] suggested Transformer-based contextual model-
ing motivated by the adaptive features of the Transformer.
Khoshkhahtinat et al. [32] proposed transformer-based non-
linear transformations to overcome the limitations of CNN.
However, remote sensing images typically have richer infor-
mation and higher resolution than regular images. Therefore,
it is necessary to collect global and local information to en-
hance the compression performance of remote sensing im-
ages. Although CNN is constrained by its receptive fields and
lacks the ability to model long-term dependencies, it has solid
local feature extraction capability. Transformers use multi-
head self-attention to capture long-range dependencies and
non-local features effectively. Both methods have distinct ad-
vantages, but merging these strengths into a unified approach
remains a significant challenge. A parallel Transformer-CNN
hybrid module (TCM) that combines the non-local model-
ing capabilities of the Transformer with the local modeling
capabilities of CNN was proposed by Liu et al. [33]. How-
ever, the computational complexity of the entire compres-
sion model is boosted by this design. The main reason is
the significant computational complexity of the multi-head
self-attention mechanism in Transformers, coupled with the
entire compression framework being constructed solely from
TCM.

Over the past few years, attention mechanisms have been
widely utilized for computer vision tasks. It mimics human
information processing by efficiently concentrating on impor-
tant information while filtering out irrelevant details. Image
compression architectures have incorporated a variety of at-
tention models to enhance the rate-distortion performance of
image compression [17, 19, 26, 33]. Zou et al. [17] proposed
a simple and efficient window-based attention model. Chen et
al. [19] proposed a non-local attention mechanism for gener-
ating implicit masks to weight adaptive bit allocation features.
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Cheng et al. [26] contended that the non-local attention mech-
anism is extremely time-consuming during training. Con-
sequently, they propose a simple attention mechanism by
removing the non-local operation block. Liu et al. [33] sug-
gested a parameter-effective swin-transformer-based atten-
tion model to reduce the complexity of the model by putting
the attention model into an entropy model. Window-based lo-
cal attention models offer low computational complexity but
lack inter-window information exchange, hindering non-local
information extraction. Although computationally expen-
sive, non-local attention mechanisms capture broader con-
textual information. Simple attention mechanisms reduce
training time but are limited in feature extraction capabili-
ties. Moving the Swin-Transformer-based attention model
within the entropy model can reduce the overall computa-
tional complexity of the compression model. However, the
attention model still faces high computational complexity.

To address the above issues, we introduce a new
image compression framework called the Low-complexity
Transformer-CNN Hybrid Model (LTCHM). The contribu-
tion of this paper can be summarized as follows:

• In order to reduce the computational complexity of the
model, in this paper, we use the CNN residual block and
Dynamic Attention Model (DAM) to form the primary
codec and use the swin-transformer-based Hyper-Priori
Hybrid Attention Model (HPHAM) in the hyper-priori
structure. The rate-distortion performance is improved
by effectively combining local, non-local, and channel
information.

• To strike an optimal balance between computational
complexity and rate-distortion performance in attention
models, we provide a Dynamic Attention Model (DAM)
that utilizes dynamic convolution. DAM not only sig-
nificantly improves the rate-distortion performance of
the model but also further reduces the computational
effort. By adaptive adjusting the weights of the input
features, DAM can flexibly focus on significant regions
in the image, thus capturing local and global informa-
tion more effectively.

• Our Hyper-Prior Hybrid Attention Model (HPHAM)
employs Window-based Multi-head Self-Attention (W-
MSA) and Shifted Window-based Multi-head Self-
Attention (SW-MSA) alongside gated channel atten-
tion in parallel, respectively. This integration effec-
tively merges channel and non-local information, im-
proving the rate-distortion performance of the compres-
sion model.

• We introduce a novel feed-forward network called the
Multi-Scale and Multi-Branch Feed-Forward Network
(MSB-FFN). This network incorporates a hierarchical
structural design and utilizes multi-branch parallel pro-
cessing. It enhances the ability of the network to repre-
sent multi-scale features at a more detailed level, result-
ing in the effective capture of multi-scale information.

• Experimental results demonstrate that our approach
outperforms traditional and deep learning-based image
compression methods on three distinct remote sensing
datasets (i.e., DOTA, UC-Merced, and China Gaofen
satellite datasets).

The structure of this paper is as follows: Section 2
presents the proposed low-complexity Transformer-CNN hy-
brid model for image compression in detail. Section 3 dis-
cusses the experimental setup and datasets used, along with
an analysis and comparison of the results to evaluate the ef-
fectiveness of the proposed method. Finally, Section 4 con-
cludes the paper and suggests directions for future research.

2. Proposed Method

2.1 Overall Framework
LTCHM is built based on the Gaussian hybrid entropy

model proposed by Cheng et al. [14]. As shown in Fig. 1, the
structure contains the primary encoder, the primary decoder,
the hyper-priori encoder, the hyper-priori decoder, and the
entropy model. A DAM and a residual block constitute the
primary encoder and decoder. By dynamically adjusting at-
tention levels across different regions, the DAM strengthens
the capacity of the network to extract relevant information.
The hyper-prior encoder and decoder network are composed
of HPHAM and down-sampling modules. To enhance com-
pression performance, HPHAM extracts global and channel
information. Assumed an original image with dimension
x ∈ 3 × 𝐻 ×𝑊 , the master encoder converts it into the latent
representation y ∈ 𝐶× 𝐻

16×
𝑊
16 . To create ŷ ∈ 𝐶× 𝐻

16×
𝑊
16 , a dis-

crete expression of the potential representation y, y is quan-
tized. The process of quantization unavoidably introduces er-
rors, which distorts the reconstructed image. As such, Ballé
et al. [11] suggested adding uniform noise U(−0.5, 0.5) ap-
proximate quantization during the training phase to produce
noisy encodings. At inference, y is rounded using the round
function to obtain the latent representation and correct quan-
tization errors. Finally, ŷ is input into the primary decoder to
generate the reconstructed image x̂ ∈ 3 × 𝐻 ×𝑊 .

An entropy model is frequently used to estimate the
parameterized distribution of ŷ, which is essential for rate-
distortion performance. It is necessary to model the con-
ditional probability distribution 𝑝ŷ | ẑ (ŷ|ẑ) after decoding ẑ.
Therefore, we model 𝑝ŷ | ẑ (ŷ|ẑ) using the Gaussian mixture
entropy model proposed by Cheng et al. [26], i.e.:

𝑝ŷ | ẑ (ŷ|ẑ) ∼
𝐾∑︁
𝑘=1

𝛚 (𝑘 )N
(
𝛍 (𝑘 ) , 𝛔2(𝑘 )

)
. (1)

This can be further expressed as [26]:
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Fig. 1. The overall framework of LTCHM. GMM denotes the Gaussian Mixed entropy Model. DAM denotes Dynamic Attention Module.
HPHAM denotes the Hyper-Prior Hybrid Attention Model. 𝐾 denotes convolutional kernel size, 𝐾3 denotes a convolutional kernel size
of 3, 𝐾1 denotes a convolutional kernel size of 1. 𝐶 denotes the number of channels, 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256
when 𝜆 = {1024, 2048, 4096}. 𝑆 denotes convolutional step size, 𝑆1 denotes a step size of 1, 𝑆2 denotes a step size of 1. ↓ denotes
down-sampling, and ↑ denotes up-sampling.

𝑝ŷ | ẑ (ŷ|ẑ) =
∏
𝑖

𝑝ŷ | ẑ ( �̂�𝑖 |ẑ),

𝑝ŷ | ẑ ( �̂�𝑖 |ẑ) = (𝜒𝑖 ∗ U (−0.5, 0.5)) ( �̂�𝑖) ,

𝜒𝑖 =

(
𝐾∑︁
𝑘=1

𝜔
(𝑘 )
𝑖

N
(
𝜇
(𝑘 )
𝑖
, 𝜎

2(𝑘 )
𝑖

)) (2)

where 𝜒𝑖 denotes 𝑖-th feature of the potential representation
and 𝑖 represents the position of the feature map in the map-
ping. The symbol 𝑘 signifies the exponent of the mixture.
Each mixture Gaussian distribution contains three parame-
ters, i.e., weight 𝜔 (𝑘 )

𝑖
, 𝜇 (𝑘 )

𝑖
, and 𝜎2(𝑘 )

𝑖
for each element.

The problem is regarded as a rate-distortion optimiza-
tion problem based on Lagrange multipliers, which is sig-
nificant for training the whole compression model. The loss
function is defined as [26]:

L = R (ŷ) + R (ẑ) + 𝜆 · D (x, x̂)
= E

[
− log2

(
𝑝ŷ | ẑ (ŷ|ẑ)

) ]
+ E

[
− log2

(
𝑝ẑ |𝛙 (ẑ|𝛙)

) ]
+ 𝜆 · D (x, x̂)

(3)

where 𝜆 is used to control the rate-distortion trade-off. Dif-
ferent values of 𝜆 correspond to different bit rates. D (x, x̂)
denotes the distortion between the original image and the re-
constructed image, which can be computed using the MSE or
the MS-SSIM. R (ŷ) and R (ẑ) signify the bit rates of poten-
tial ŷ and ẑ, respectively. Since ẑ has no prior, it is encoded
using the factorized density model 𝛙, i.e. [26]:

𝑝ẑ |𝛙 (ẑ|𝛙) =
∏
𝑖

(
𝑝𝑧𝑖 |𝛙 (𝛙) ∗ U (−0.5, 0.5)

)
(𝑧𝑖) (4)

where 𝑧𝑖 represents the 𝑖-th element of z, 𝑖 denotes the posi-
tion of each element.

2.2 Dynamic Attention Model
The Dynamic Attention Model (DAM) incorporates the

Input-dependent Depth-wise Convolution (IDConv) as a core
component, as proposed by Lou et al. [34]. The structure of
IDConv is shown in Fig. 2(a). IDConv takes the feature map
𝑋 ∈ R𝐶×𝐻×𝑊 as input and uses adaptive average pooling to
reduce the spatial dimensions from 𝐻 ×𝑊 to 𝐾 × 𝐾 . Then,
two 1 × 1 convolution layers are employed to generate and
refine the feature map precisely. The first 1 × 1 convolution
layers produce feature map 𝐹′ ∈ R𝐶

𝑟
×𝐾×𝐾 , which is subse-

quently fed into the second 1 × 1 convolution layer to obtain
the output feature map 𝐹 ′′ ∈ R(𝐺×𝐶 )×𝐾×𝐾 , where𝐺 denotes
the number of feature map groupings. The dimension of
feature map 𝐹 ′′ is resized to R𝐺×𝐶×𝐾×𝐾 , optimized with the
softmax function, obtaining the output feature map weight
𝐹 ∈ R𝐺×𝐶×𝐾×𝐾 . This weight is multiplied element-by-
element with a set of learnable parameters 𝐿 ∈ R𝐺×𝐶×𝐾×𝐾

and summed over dimension𝐺 to integrate relevant informa-
tion, which forms the input-dependent depth-wise convolu-
tion kernel 𝐷 ∈ R𝐶×𝐾×𝐾 . The dynamic convolution kernel
is used to convolve the input feature 𝑋 , producing the final
output 𝑂𝑢𝑡IDConv, represented as [34]:
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Fig. 2. (a) Input-dependent depth-wise convolution. 𝐶 denotes the number of channels, 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256 when
𝜆 = {1024, 2048, 4096}. 𝑟 denotes the channel attenuation ratio set to 2 in the experiments. 𝐾 denotes the convolutional kernel size set
to 1 and 3 in the experiments. 𝐺 denotes the number of groups set to 2 in the experiments. 1 × 1Conv means that the convolution kernel
size is 1, the step size is set to 1, and the number of channels is set to 𝐶

𝑟
and (𝐺 × 𝐶 ) , respectively. (b) Dynamic attention module.

1 × 1Conv means that the convolution kernel size is 1, the step size is 1, and the number of channels is set to 𝐶.

𝐹′ = Conv1×1 (AdaptiveAvgPool (𝑋)) ,
𝐹

′′
= Conv1×1 (𝐹′) ,

𝐹 = Softmax
(
Reshape

(
𝐹

′′
))
,

𝐷 =

𝐺∑︁
𝑖=0

𝐿𝑖𝐹𝑖 ,

𝑂𝑢𝑡IDConv = 𝐷 (𝑋) .

(5)

According to research in [5,17,19,26,33], the attention
mechanism can enhance the rate-distortion performance of
image compression. To further enhance the rate-distortion
performance of remote sensing image compression, we de-
sign DAM based on IDConv. Because dynamic convolution
can produce distinct weight parameters based on varying
inputs, it can extract local and non-local information more
effectively. As illustrated in Fig. 2(b), the DAM is created
by building residual blocks with IDConv and cascading the
residual block.
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Dynamic convolution generates convolution kernels dy-
namically during network forward propagation. This oper-
ation enables feature extraction at each layer to adaptively
adjust according to the attributes of the input feature map.
Unlike the conventional fixed convolutional kernel method,
this approach allows the network to adjust its parameters
dynamically. Dynamic attention mechanisms highlight sig-
nificant information by assigning different weights to various
parts of the input feature map. Contrary to the fixed attention
mechanism, dynamic attention may adapt the attention allo-
cation in real-time based on the variations in the content of
the feature map. It further enhances the ability of the model
to identify and handle significant characteristics.

By integrating IDConv as the core component of the at-
tention module, we can construct a highly effective adaptive
attention model. In this model, dynamic convolution gen-
erates convolution kernels dynamically based on input data
characteristics, while the dynamic attention mechanism as-
signs varying weights according to feature importance. This
dual dynamic adjustment mechanism allows the model to
handle complex data more accurately and efficiently. Dur-
ing forward propagation, convolution kernels are generated
in real-time based on input data analysis, followed by rapid
parameter generation. These convolutional kernels extract
features, and attention weights are dynamically assigned
based on these features. The dynamic attention mechanism
reweights features according to their importance, enhancing
critical features and suppressing less important ones.

2.3 Gated Channel Attention
Narayanan et al. [35] proposed the Squeeze Aggregated

Excitation (SaE) module. This module uses multi-branch
fully connected layers to process compressed features in par-

allel, enhancing the ability of the model to capture global
channel information by aggregating the outputs of these
branches. Increasing the number of branches improves the
feature representation capability of the network without sig-
nificantly increasing model parameters. Inspired by this, we
propose a Gated Channel Attention (GCA) mechanism to aid
compression by extracting channel information, as shown in
Fig. 3. First, global average pooling compresses the input
tensor to aggregate channel information. The pooled out-
put is divided into four tensors along the channel dimension.
Next, four parallel 1 × 1 convolutional layers process each
tensor, with a gating mechanism designed after each con-
volution. This gating mechanism dynamically adjusts the
channel weights based on their importance in enhancing the
feature representation. Finally, the four tensors are concate-
nated and passed through another 1 × 1 convolutional layer
to re-aggregate the channel features. The output of the 1 × 1
convolutional layer is channel-by-channel multiplied by the
original input tensor to form the final output.

2.4 Multi-Scale and Multi-Branch Feed-
Forward Network

The role of the feedforward network is to integrate and
map global dependencies between different feature represen-
tations. Multi-scale features are crucial for computer vision
tasks as they better capture objects of varying sizes, con-
textual information, and non-local features. Building on the
work of [34], [36], we propose a Multi-Scale and Multi-
Branch Feed-Forward Network (MSB-FFN), as shown in
Fig. 4. Following the 1 × 1 convolution layer, the feature
map is evenly divided into four parts, each processed by par-
allel depth-wise separable convolutions of different scales.
Each convolution handles a quarter of the channels to capture

Fig. 3. Gated Channel Attention. 𝐶 denotes the number of channels, 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256 when
𝜆 = {1024, 2048, 4096}. 1 × 1Conv means that the convolution kernel size is 1, the step size is 1, and the number of channels is
set to 𝐶.
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Fig. 4. Multi-Scale and Multi-Branch Feed-Forward Network. 𝐶 denotes the number of channels, 𝐶 = 192 when 𝜆 = {128, 256, 512}
and 𝐶 = 256 when 𝜆 = {1024, 2048, 4096}. 1 × 1DWConv denotes a depth separable convolution with convolution kernel size 1.
3× 3DWConv denotes a depth separable convolution with convolution kernel size 3. 5× 5DWConv denotes a depth separable convolution
with convolution kernel size 5. 7 × 7DWConv denotes a depth separable convolution with convolution kernel size 5. The step size of the
four depth separable convolutions is 1, and the number of channels is 𝐶.

multi-scale information. Following the convolutional layer,
the first three sets of features are split into two branches. One
of the branches will continue to propagate forward, while the
other branch will be transferred to the convolutional layer
along with the information flow route of the latter set of input
features. The MSB-FFN leverages hierarchical residual con-
nections and multi-branch parallel processing to boost the
multi-scale feature capture and representation capabilities of
the model. This method broadens the receptive field of each
layer and enhances the multi-scale feature representation at
a more detailed level.

2.5 Hyper-Prior Hybrid Attention Model
The vision transformer-based image compression meth-

ods, as proposed by references [20] and [33], have achieved
remarkable success in image compression. By relying on the
multi-head self-attention mechanism of transformers, these
methods capture global information from images and estab-
lish efficient long-range dependencies. According to refer-
ences [21] and [32], channel information can significantly
boost the performance of compression models. Building on
this insight, we have developed a Hyper-Prior Hybrid Atten-
tion Model (HPHAM), which merges the multi-head self-
attention mechanism with Gated Channel Attention (GCA).
As shown in Fig. 5, the HPHAM proceeds through two
stages, each following a similar procedure. In the first stage,
a window-based multi-head self-attention (W-MSA) module
is in conjunction with GCA. The W-MSA extracts local infor-
mation, which is combined with the channel information ob-
tained by GCA. During the second stage, it combines a shifted

window-based multi-head self-attention module (SW-MSA)
with GCA. Using SW-MSA, non-local information is re-
trieved and then integrated with channel information. As-
sume the dimension of the input tensor 𝑋 is R2𝐶×𝐻×𝑊 . The
tensor 𝑋 is initially fed into a 1× 1 convolutional layer. Sub-
sequently, the output tensor of the 1×1 convolutional layer is
split equally along the channel dimensions into two tensors,
𝑋cha ∈ R𝐶×𝐻×𝑊 and 𝑋trans ∈ R𝐶×𝐻×𝑊 . Following that, the
tensor 𝑋trans ∈ R𝐶×𝐻×𝑊 is promptly fed into the W-MSA to
obtain 𝑋 ′

trans ∈ R𝐶×𝐻×𝑊 , while the tensor 𝑋cha ∈ R𝐶×𝐻×𝑊

is fed into the GCA to obtain 𝑋 ′
cha ∈ R

𝐶×𝐻×𝑊 . Subsequently,
the tensors 𝑋 ′

trans and 𝑋 ′
cha are concatenated and inputted into

the 1 × 1 convolutional layer to enhance the integration of
channel features and local features. Finally, the output 𝑋mid
is then obtained by creating a jump link between the 1 × 1
convolutional layer and the input feature 𝑋 . 𝑋mid is fed
into a Multi-Scale and Multi-Branch Feed-Forward Network
(MSB-FFN) to obtain the output 𝑋out of the first stage. The
second stage utilizes the output of the first stage as its input,
and the remainder of the procedure is analogous to the first
stage. Consequently, the second stage will not be explicitly
described. The first stage is represented by the equation:

𝑋cha, 𝑋trans = Split (Conv1×1 (LayerNorm (𝑋))) ,
𝑋 ′

cha = GCA (𝑋cha) ,
𝑋 ′

trans = W-MSA (𝑋trans) ,
𝑋mid = Conv1×1

(
Concat

(
𝑋 ′

cha, 𝑋
′
trans

) )
+ 𝑋,

𝑋out = MSB-FFN (LayerNorm (𝑋mid)) + 𝑋mid.

(6)
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Fig. 5. Hyper-Prior Hybrid Attention Model. 𝐶 denotes the
number of channels,𝐶 = 192 when 𝜆 = {128, 256, 512}
and 𝐶 = 256 when 𝜆 = {1024, 2048, 4096}.
LayerNorm denotes layer normalization. 1 × 1Conv
means that the convolution kernel size is 1, the step size
is 1, and the number of channels is set to𝐶. W-MSA de-
notes Window Multihead Self-Attention. GCA denotes
Gated Channel Attention. MSB-FFN denotes a Multi-
Scale and Multi-Branch Feed-Forward Network. SW-
MSA denotes Shift Window Multihead Self-Attention.

3. Experiments

3.1 Datasets
For training and evaluating LTCHM, we employ the

DOTA high-resolution remote sensing image dataset, the
UC-Merced dataset, and the China Gaofen satellite dataset.
The DOTA dataset, randomly selected from DOTA-v1
and DOTA-v2, consists of 5,489 high-resolution images
with dimensions ranging from approximately 800 × 800 to
4000 × 4000 pixels. The UC-Merced dataset includes 2,100
remote sensing images covering 21 scene categories, each
sized at 256× 256 pixels. The China Gaofen satellite dataset
comprises images from Gaofen-1 and Gaofen-5 satellites, to-
taling 2,531 images, each 256 × 256 pixels in size. In exper-
iments, we randomly divide the three datasets into training,
testing, and validation sets in an 8 : 1 : 1 ratio.

3.2 Training Details
In the training process, we use the Adam optimizer [37]

with a batch size of 8. Images are resized to 256× 256 pixels
through random cropping. The training experiences 200k
iterations, beginning with an initial learning rate of 1× 10−4,
which decreases to 1×10−5 after 100k iterations until the end
of training. Using 𝜆 to control the rate-distortion trade-off
of the model. The 𝜆 values are set to [128, 256, 512, 1024,
2048, 4096] to obtain different rate-distortion curves. The
first three lambda values are for low-rate models, and the lat-
ter three are for high-rate models. The number of channels is
set to 192 for low-rate models and 256 for high-rate models.
Our compression model is implemented using the PyTorch
framework and trained on an NVIDIA RTX 3090 GPU.

3.3 Traditional Codecs
For JPEG2000 implementation, we obtain the official

OpenJPEG library from https://www.openjpeg.org/ and use
the default configuration. Compression and decompression
are performed using the following command:
opj_compress -i [input_file]
-o [output_file.j2k] -r [comression_ratio]
opj_decompress -i [input_file.j2k]
-o [output_file]
Where the compression_ratio is set to {20, 30, 40, 60, 110,
160}.

For the BPG implementation, we download the BPG
software from http://bellard.org/bpg/ and use the default con-
figuration. Compression and decompression are performed
using the following command:
bpgenc -q [quality] [input_file]
-o [output.bpg]
bpgdec -o [output_file] [input.jpg]
Where the quality is set to {25, 30, 35, 40, 43, 46}.

We implemented AVIF and WebP using the third-party
online tool Squoosh (https://squoosh.app/), with compression
rates for AVIF set to {10, 20, 30, 40, 50, 60} and for WebP set
to {1, 4, 20, 35, 60, 80}.

3.4 Architecture Details
Table 1 shows the detailed parameter settings for each

component in the main encoder and decoder, and Table 2
lists the parameter configurations for each component in the
hyper-prior encoder and decoder. More detailed parameter
configuration can be found in our source code.

3.5 Evaluation Strategies
To measure the rate-distortion performance of the de-

signed compression model, we employ PSNR, MS-SSIM,
Learned Perceptual Image Patch Similarity (LPIPS), and Vi-
sual Information Fidelity in the pixel domain (VIFp) as met-
rics of measure distortion, with the bitrate expressed in bits
per pixel (bpp). PSNR is an objective standard of image
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Input size Layer Output size

Encoder

3 × 256 × 256


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

GDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 128 × 128

𝐶 × 128 × 128


DAM : 𝐶, 𝐾, 𝐺
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 128 × 128

𝐶 × 128 × 128


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

GDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 64 × 64

𝐶 × 64 × 64


DAM : 𝐶, 𝐾, 𝐺
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 64 × 64

𝐶 × 64 × 64


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

GDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 32 × 32

𝐶 × 32 × 32


DAM : 𝐶, 𝐾, 𝐺
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 32 × 32

𝐶 × 32 × 32
[

Conv |𝐾3 |2𝐶 |𝑆2
DAM : 2𝐶, 𝐾, 𝐺

]
2𝐶 × 16 × 16

Decoder

2𝐶 × 16 × 16


DAM : 2𝐶, 𝐾, 𝐺
Conv |𝐾3 |2𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 16 × 16

𝐶 × 16 × 16


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

IGDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 32 × 32

𝐶 × 32 × 32


DAM : 𝐶, 𝐾, 𝐺
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 32 × 32

𝐶 × 32 × 32


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

IGDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 64 × 64

𝐶 × 64 × 64


DAM : 𝐶, 𝐾, 𝐺
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1

 𝐶 × 64 × 64

𝐶 × 64 × 64


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |𝐶 |𝑆1

IGDN
, Conv |𝐾1 |𝐶 |𝑆2

 𝐶 × 128 × 128

𝐶 × 128 × 128


Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |3 |𝑆2

 3 × 256 × 256

Tab. 1. The table lists the detailed parameters for each primary encoder and decoder component. 𝐾3 indicates a convolution kernel size of 3,
while 𝐾1 represents a kernel size of 1. 𝐶 denotes the number of channels, 𝐶 = 192 when 𝜆 = {128, 256, 512} and 𝐶 = 256 when
𝜆 = {1024, 2048, 4096}. 𝑆2 denotes a stride of 2, and 𝑆1 indicates a stride of 1. DAM refers to the dynamic attention model. 𝐾 specifies
the convolution kernel size, which is set to {1, 3} in the experiments, and𝐺 represents the number of groups, set to 2 in our experiments.

Input size Layer Output size

Hyper-Encoder 2𝐶 × 16 × 16


HPHAM : 2𝐶, ℎ32, 𝑤𝑖𝑛4

Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |2𝐶 |𝑆2

 2𝐶 × 8 × 8

2𝐶 × 8 × 8


HPHAM : 2𝐶, ℎ32, 𝑤𝑖𝑛4
Conv |𝐾3 |𝐶 |𝑆1
Conv |𝐾3 |𝐶 |𝑆2

 𝐶 × 4 × 4

Hyper-Decoder 𝐶 × 4 × 4


Conv |𝐾3 |𝐶 |𝑆2
Conv |𝐾3 |2𝐶 |𝑆1

HPHAM : 2𝐶, ℎ32, 𝑤𝑖𝑛4

 2𝐶 × 8 × 8

2𝐶 × 8 × 8


Conv |𝐾3 |1.5𝐶 |𝑆1
Conv |𝐾3 |1.5𝐶 |𝑆2
Conv |𝐾3 |2𝐶 |𝑆1

HPHAM : 2𝐶, ℎ32, 𝑤𝑖𝑛4

 2𝐶 × 16 × 16

Tab. 2. The table shows the detailed parameters for each component in the hyper-prior encoder and decoder, where ℎ32 refers to a head dimension
of 32 and 𝑤𝑖𝑛4 refers to a window size of 4. HPHAM denotes Hyper-Prior Hybrid Attention Model.
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quality that assesses the peak signal ratio between the origi-
nal and reconstructed images, with higher values indicating
better quality. MS-SSIM measures image similarity by com-
bining structural and luminance information and considering
variations at different scales. The MS-SSIM value ranges
from –1 to 1, with values closer to 1 indicating higher sim-
ilarity between the original and reconstructed images. MS-
SSIM is particularly effective for natural images, aligning
with human visual perception of images. When using MS-
SSIM, it is necessary to convert the original MS-SSIM values
to decibels (dB) using −10 log10 (1 − MS-SSIM) for a more
precise comparison. Bpp represents the average number of
bits required to encode or compress each pixel of an im-
age. LPIPS is a metric for evaluating perceptual similarity
between images, commonly used in image generation, com-
pression, and enhancement tasks. Unlike traditional metrics
such as PSNR and SSIM, LPIPS leverages feature repre-
sentations from deep learning networks to assess perceptual
differences, aligning more with how the human visual sys-
tem perceives images. LPIPS values range from 0 to 1, with
lower values indicating higher perceptual similarity between
images. A score below 0.1 usually signifies that the images
are visually similar, while scores above 0.4 suggest notice-
able differences. VIFp is rooted in information theory and
suggests that the perceptual quality of an image can be quan-
tified by the amount of information the human visual system
extracts. VIFp measures image quality by comparing the
visual information retained in both the original and distorted
images. Its values typically range from 0 to 1, where 1 indi-
cates perfect visual consistency between the compressed and
original images, while values closer to 0 represent poorer
image quality.

3.6 Rate-Distortion Performance
To validate the effectiveness of the proposed method,

we compare LTCHM with four well-established traditional
image compression standards, JPEG2000, BPG, AVIF and
WebP, as well as with recent deep learning-based image com-
pression models. These models include the discrete Gaus-
sian mixture likelihood entropy model and simple attention
model [26] (denoted as Cheng2020), the global reference
entropy model [18] (denoted as Qian2020), the transformer-
based entropy model [20] (denoted as Qian2022), the hybrid
transformer-CNN image compression model [33] (denoted
as Liu2023), and the region-adaptive transform-based image
compression model [38] (denoted as Liu2024). We obtain
the experimental data for the comparative methods by retrain-
ing and testing the provided open-source code on the DOTA,
UC-Merced, and China Gaofen satellite datasets.

We evaluate the effects of LTCHM by comparing its
rate-distortion performance on the DOTA dataset. Figure 6
displays the rate-distortion curves using PSNR, MS-SSIM,
LPIPS and VIFp as image quality metrics. As depicted
in Fig. 6, the proposed model achieves superior rate-
distortion performance in both PSNR, MS-SSIM, LPIPS and
VIFp compared to the methods of Cheng2020, Qian2020,
Qian2022, Liu2023, and Liu2024. It also significantly sur-
passes traditional compression methods such as JPEG2000,
BPG, AVIF and WebP in rate-distortion performance.
Figures 7 and 8 show the rate-distortion curves for the UC-
Merced and Gaofen satellite datasets, respectively. To com-
prehensively assess the compression performance of the pro-
posed method, we conduct cross-dataset testing. The model
is trained on the DOTA training set and tested on the UC-
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Fig. 6. Rate-distortion performance on the DOTA dataset. (a) Distortion measured by PSNR. (b) Distortion measured by MS-SSIM. (c) Distortion
measured by LPIPS. (d) Distortion measured by VIFp.
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Fig. 7. Rate distortion performance on the UC-Merced dataset. (a) Distortion measured by PSNR. (b) Distortion measured by MS-SSIM.
(c) Distortion measured by LPIPS. (d) Distortion measured by VIFp.
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Fig. 8. Rate distortion performance on the China Gaofen satellite dataset. (a) Distortion measured by PSNR. (b) Distortion measured by MS-
SSIM. (c) Distortion measured by LPIPS. (d) Distortion measured by VIFp.

Merced and a Gaofen satellite dataset. The rate-distortion
curves of the test results are shown in Figs. 9 and 10. Fur-
thermore, We also tested the model on a subset of 54 DOTA
images, which were not part of the training data. This sub-
set includes object types like buildings, vegetation, and urban
and rural areas. The results are displayed in Fig. 11. LTCHM

exceeds other comparative methods in PSNR and MS-SSIM,
further validating its robustness and superior performance
across different datasets.

In order to acquire quantitative results, we employ
PSNR-BPP curves to calculate BD-rate [39] and BD-PSNR
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Fig. 9. Rate distortion performance is trained with the DOTA dataset and tested with the UC-Merced dataset. (a) Distortion measured by PSNR.
(b) Distortion measured by MS-SSIM. (c) Distortion measured by LPIPS. (d) Distortion measured by VIFp.
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Fig. 10. Rate distortion performance is trained with the DOTA dataset and tested with the Gaofen satellite dataset. (a) Distortion measured by
PSNR. (b) Distortion measured by MS-SSIM. (c) Distortion measured by LPIPS. (d) Distortion measured by VIFp.

as quantitative metrics. Using JPEG2000 as the anchor (BD-
rate is equal to 0%) on the DOTA, UC-Merced, and China
Gaofen satellite datasets, we compare the BD-rate and BD-
PSNR results of LTCHM with other methods, as shown in
Tab. 3. The data shows that LTCHM achieves bit rate sav-
ings of 72.693%, 69.499%, and 75.217% on the DOTA,

UC-Merced, and China Gaofen satellite datasets, respec-
tively, compared to JPEG2000, while increasing BD-PSNR
by 5.131 dB, 4.350 dB, and 4.822 dB. Compared to the best-
performing deep learning method, LTCHM shows improve-
ments in BD-rate by 1.579%, 1.735%, and 1.948%, and in
BD-PSNR by 0.289 dB, 0.144 dB, and 0.271 dB.
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Fig. 11. The DOTA dataset is used for training and assesses the rate-distortion performance on a subset of images not included in the training.
(a) Distortion measured by PSNR. (b) Distortion measured by MS-SSIM. (c) Distortion measured by LPIPS. (d) Distortion measured by
VIFp.

Model DOTA UC-Merced Gaofen satellite
BD-rate BD-PSNR BD-rate BD-PSNR BD-rate BD-PSNR

BPG –43.266% 2.054 dB –33.674% 1.531 dB –28.913% 1.010 dB
AVIF –32.001% 1.626 dB –34.635% 1.638 dB –39.697% 1.850 dB
WebP –11.117% 0.467 dB –28.749% 1.214 dB –27.495% 1.106 dB

Liu2024 –69.857% 4.764 dB –66.889% 3.762 dB –73.109% 4.282 dB
Liu2023 –71.114% 4.842 dB –62.141% 3.324 dB –71.418% 3.973 dB
Qian2022 –69.468% 4.471 dB –65.358% 3.938 dB –72.759% 4.304 dB
Qian2020 –66.744% 4.161 dB –61.082% 3.711 dB –69.669% 3.699 dB

Cheng2020 –70.504% 4.677 dB –67.764% 4.206 dB –73.269% 4.551 dB
Ours –72.693% 5.131 dB –69.499% 4.350 dB –75.217% 4.822 dB

Tab. 3. The comparison of BD-rate and BD-PSNR results between the method proposed in this paper and other comparative methods on DOTA,
UC-Merced, and China Gaofen satellite datasets highlights the best result in each column.

3.7 Visualization
We select one image from each of the DOTA, UC-

Merced, and Gaofen satellite datasets, compress these im-
ages using different methods, and visualize the decom-
pressed images to verify the visual superiority of LTCHM.
Figures 12, 13, and 14 show the original images and the vi-
sual results of the comparison methods. In contrast, LTCHM
preserves more details. This makes the reconstructed images
clearer in texture details and object edges.

3.8 Ablation Study
To verify the effectiveness of DAM and HPHAM,

we conduct ablation experiments on the DOTA dataset us-
ing the same parameters. The compression framework of
Cheng2020 serves as the baseline, denoted as a baseline,

without the simple attention module. DAM is added to the
baseline, denoted as a baseline+DAM, to determine the im-
pact of DAM on remote sensing image compression. We
also incorporate HPHAM with and without GCA into the
baseline to test whether HPHAM and channel information
enhance rate-distortion performance, denoted as a base-
line+HPHAM (w/ GCA) and baseline+HPHAM (w/o GCA),
respectively. Combining DAM and HPHAM with GCA
in the baseline, denoted as a baseline+DAM+HPHAM (w/
GCA), assesses their joint impact on rate-distortion perfor-
mance. The rate-distortion curves in Fig. 15 demonstrate
that baseline+DAM, baseline+HPHAM (w/ GCA), base-
line+HPHAM (w/o GCA), and baseline+DAM+HPHAM (w/
GCA) all significantly outperform the baseline. Results con-
firm that DAM and HPHAM improve rate-distortion per-
formance. Baseline+HPHAM (w/ GCA) outperforms base-
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Fig. 12. The visualization results of a DOTA dataset image decompress with different image compression methods.

Fig. 13. The visualization results of a UC-Merced dataset image decompress with different image compression methods.

Fig. 14. The visualization results of a Gaofen satellite dataset image decompress with different image compression methods.
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Fig. 15. Rate distortion performance based on ablation experiments with the DOTA dataset.

Model Params (M) BD-rate BD-PSNR
baseline 7.43 0 0

baseling+DAM 8.41 –4.233% 0.187 dB
baseline+HPHAM(w/ GCA) 11.36 –5.621% 0.245 dB
baseline+HPHAM(w/o GCA) 11.24 –2.082% 0.114 dB

baseline+DAM+HPHAM(w/ GCA) 12.34 –9.658% 0.423 dB

Tab. 4. The number of parameters, BD-rate and BD-PSNR for different models.

line+HPHAM (w/o GCA) due to the ability of GCA to adjust
attention weights based on channel information dynamically.
This permits the model to focus accurately on critical fea-
tures. HPHAM (w/ GCA) fuses channel and non-local in-
formation, which enhances rate-distortion performance. The
result confirms the effectiveness of GCA and channel infor-
mation in improving rate distortion. DAM adjusts attention
dynamically based on local and global features. This enables
the model to focus more effectively on critical local details
and better capture global information. HPHAM (w/ GCA)
leverages spatial and channel information of latent repre-
sentations, which boosts image reconstruction and compres-
sion by considering spatial and inter-channel relationships.
Therefore, baseline+DAM+HPHAM (w/ GCA) effectively
combines local, non-local, and channel information for opti-
mal rate-distortion performance.

Table 4 contains the number of parameters, BD-
rate, and BD-PSNR for each model. DAM, HPHAM
(w/ GCA), and HPHAM (w/o GCA) add 0.98M, 3.93M,
and 3.81M parameters, respectively, representing 7.95%,
31.84%, and 30.87% of the total parameters. On the DOTA
dataset, baseline+DAM, baseline+HPHAM (w/ GCA), and

baseline+HPHAM (w/o GCA) reduce bitrates by 4.233%,
5.621%, and 2.082%, respectively. Combining DAM and
HPHAM (w/ GCA), baseline+DAM+HPHAM (w/ GCA)
performs best. The model can save 9.658% of bit rates and
improve the reconstructed image quality by 0.423 dB.

3.9 Comparison of Various Attention Models
On the DOTA dataset, with the compression frame-

work of Cheng2020 [26] serving as the baseline, we com-
pare DAM with the Swin-Transformer-base Attention Model
(SWAtten) [33], Simplified Attention Module (SAM) [26],
and Window Attention Model (WAM) [17]. As illustrated in
Fig. 16, DAM achieves the best rate-distortion performance
because DAM can dynamically adjust attention to various re-
gions, effectively focusing on key areas and critical features
in the image.

Floating-point operations (FLOPs) and the number of
parameters are employed to assess the complexity of different
attention models. Table 5 lists the FLOPs and the number
of parameters for DAM and other attention models, all with
an input dimension of 8 × 192 × 128 × 128. The DAM has
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Fig. 16. Rate-distortion performance of different attention mod-
els.

Attention model FLOPs (G) Params (M)
SWAtten 102.27 0.78

SAM 99.05 0.76
WAM 19.53 0.15
DAM 5.30 0.54

Tab. 5. FLOPs and the number of parameters for different atten-
tion methods.

a significant advantage in FLOPs with only 5.30G, compared
to the SWAtten, SAM, and WAM. However, the DAM has
an increase of 0.39M in the number of parameters compared
to WAM.

3.10 Complexity Analysis
The test set in the DOTA dataset is employed to eval-

uate the FLOPs, number of parameters, encoding time, and
decoding time of the model. The input image is 256 × 256
pixels in size, and the test results are presented in Tab. 6.
Since the hardware environment and input data influence en-
coding and decoding times, the times in Tab. 6 are averaged
over all input. According to Tab. 6, LTCHM increases by
8.19G in FLOPs compared to the method of Qian2022 but
remains significantly lower than Liu2023 and Liu2024.The
entire compression framework of Liu2023 combines Swin-
Transformer and CNN, which increase substantial compu-
tational overhead and complexity. The Segmentation-Prior-
Guided Image Compression of Liu2024 includes two main
modules: Region Adaptive Transformation (RAT) and Scale
Affine Layer (SAL). RAT utilizes adaptive convolution to ap-
ply different kernels to various regions based on segmentation
masks. This region-specific processing increases computa-
tional complexity as it may require separate calculations for
each area. The RAT module utilizes depth-wise separable
convolution, merging depth-wise and point-wise convolu-
tions. Depth-wise separable convolution combines depth-
wise and point-wise convolution as a new convolution in the
RAT module.

Method FLOPs (G) Params (M) Times (s)
Encoding Decoding

Cheng2020 27.41 8.78 0.078 0.080
Qian2020 32.10 25.52 0.049 0.061
Qian2022 16.72 39.00 0.022 0.039
Liu2023 116.78 75.90 0.113 0.123
Liu2024 190.55 91.17 0.071 0.081

Ours 24.91 12.34 0.124 0.127

Tab. 6. FLOPs, number of parameters, encoding time and de-
coding time for different compression methods.

Although the computational complexity is similar to
standard depth-wise separable convolution, its design may
necessitate extra parameters and computations to generate
and apply distinct kernels. Regarding the number of param-
eters, LTCHM increases by 3.56M compared to Cheng2020
but is lower than the other methods. By integrating the Swin-
Transformer structure solely in the hyper-prior encoding and
decoding and using DAM and residual blocks in the main
encoder-decoder, LTCHM significantly reduces FLOPs and
the number of parameters. Although LTCHM achieves lower
FLOPs and parameter complexity, it has the longest encod-
ing and decoding times relative to other methods. This is
due to the complex matrix operations and weight computa-
tions required by DAM and HPHAM. Additionally, attention
mechanisms, despite their theoretical parallelism, may suffer
from low practical parallelization efficiency.

4. Conclusion
This paper proposes a new image compression frame-

work called the Low-complexity Transformer-CNN Hybrid
Model (LTCHM). The framework comprises two essen-
tial modules: the Dynamic Attention Model (DAM) and
the Hyper-Prior Hybrid Attention Model (HPHAM). DAM
boosts rate-distortion performance by adaptively adjusting
attention weights to focus on crucial regions of the im-
age. Experiments reveal that DAM surpasses previous atten-
tion models designed for image compression. Furthermore,
HPHAM improves compression efficiency by incorporating
Gated Channel Attention (GCA) into the swin-transformer.
This integration enables parallel operation with W-MSA and
SW-MSA. It effectively captures non-local and channel in-
formation in latent representations. GCA adjusts channel
weights dynamically, strengthening HPHAM’s ability to rec-
ognize and process different features and improve image re-
construction quality in complex scenes. Results show that
our approach provides notable advantages in rate-distortion
performance and visual quality on DOTA, UC-Merced, and
China Gaofen satellite datasets, outperforming current im-
age compression methods. As remote sensing technology
advances, the diversity of collected data types has signif-
icantly increased, encompassing optical imagery, synthetic
aperture radar (SAR) imagery, and light detection and rang-
ing (LiDAR) data. Although existing compression methods
perform well, they still need to improve generalization. In
the future, we will explore how to effectively integrate multi-
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modal data for compression and develop more adaptive deep
learning models. These models automatically adjust com-
pression rates based on different scenarios and resolutions,
improving information utilization and compression efficiency
to meet diverse application needs.
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