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Abstract. Aiming at the challenge of infrared small target 
detection with different shape and size under the different 
scene, a novel algorithm architecture is proposed using the 
kernel of Target Detection Unit (TDU). The TDU incorpo-
rates the fractal geometry design and dual-scale structure, 
which can execute three main sub-tasks: preliminary target 
detection, target localization with high precision and tar-
get segmentation by pixel-level. First, the principle estab-
lishes a dual-scale target detection structure, selects the 
central point, decomposes the scale information and con-
structs the Integrated Local Contrast Saliency (ILCS) map, 
the target preliminary result is obtained by the visual at-
tention mechanism of “top to bottom”. Second, the princi-
ple adopts the scale-recursion algorithm by the mechanism 
of “bottom to up” to locate the target precisely from the 
preliminary result along with Area Optimal Recommend 
Mechanism (AORM) strategy. At last, the separated local 
histogram is used to segment the target by per-pixel with 
suitable threshold. From the experimental results, con-
ducted across five different types of infrared-scenes includ-
ing infrared sky scene, infrared maritime scene, backlight 
illuminance scene, infrared scene with interference and 
infrared scene with small & dim target, we observe the 
performance of high accuracy rate and remarkable ro-
bustness.  

Keywords 
Infrared target detection, target detection unit, target 
localization with high-precision, target segmentation 
by per-pixel, area optimal recommend mechanism 

1. Introduction 
Infrared small target detection has extensive applica-

tions in infrared warning [1–3], precise guidance [4–6], 
and maritime surveillance [7]. Compared with typical tar-
get, infrared small target exhibits the following characteris-

tics [8–10]: (1) Small size: high-distance infrared imaging 
makes the true target appear with small size. (2) Dim gray 
value: low Signal-to-Clutter Ratio (SCR) or submerge into 
the background easily. (3) Shapeless or low texture charac-
teristic: infrared target can appear point-shape, line-shape 
or circle-shape characteristic, additionally the infrared 
target’s inner region has less gray value change. (4) Easy to 
vary: external environmental change, illumination change 
or target motivation often happens.  

Some theoretical frameworks have been proposed for 
detecting infrared small target, which can be broadly cate-
gorized into two main groups: (1) Feature extraction and 
processing. (2) Deep learning frameworks. 

The first principle encompasses the methods such as 
feature multi-layer information processing [11], [12], 
background modeling [13], target feature information en-
hancement and fusion [14], [15], tensor form expansion of 
feature information [17], background filtering [18], diffu-
sion of partial differential equations [19], background sub-
traction [20], and sparse representation and low-rank in-
formation extraction [21]. Researchers have developed 
numerous approaches within these above-mentioned 
frameworks, also proposing the models and measures. For 
example, Chen et al. [22] introduced the Local Contrast 
Method (LCM), which focuses on enhancing and fusing 
target features to describe the disparity between a point and 
its surrounding area. Tang et al. [23] further improved 
upon LCM by combining the background filtering, result-
ing in an efficient method for detecting suspicious target 
with low time complexity. Similar to LCM, Absolute Av-
erage Gray Difference (AAGD) [24] and Absolute Direc-
tional Mean Difference (ADMD) [25] algorithms have 
been proposed. AAGD establishes a mathematical model 
for suspected targets with high precision, particularly ef-
fective for detecting dim infrared target. On the other hand, 
ADMD generates a saliency map based on absolute direc-
tional mean difference, but selecting an appropriate thresh-
old for target detection remains challenging. Zhang et al. 
[26] developed a mathematical model aiming at capturing 
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high-dimension features of suspected target within infrared 
image, producing notable efficiency, especially in detecting 
blurred infrared target. Xia et al. [27] also contributed 
a mathematical model proficient in capturing high-
precision features, particularly effective in detecting the 
sporadic infrared target. Kong et al. [17] introduced the 
Nonconvex Tensor Fibered Rank Approximation (NTFRA) 
algorithm, combining tensor form expansion and sparse 
representation with low-rank information extraction to 
effectively suppress clutter. However, the algorithm exhib-
its high time complexity. Zhang et al. [28] utilized low-
rank sparse tensor decomposition to detect the infrared 
small target, but its complexity may limit the adaptiveness 
of targets with different sizes. Tunc et al. [29] focuses on 
the changes in the Signal-to-Noise Ratio (SNR) before and 
after target detection and considers that extracting the sali-
ency of the target is an effective method for detecting dim 
and small infrared targets. 

Among the more general deep learning-based target 
recognition frameworks are the two classical models: one 
is Faster Region-based Convolutional Neural Network 
(Faster R-CNN) [30], the other one is You Only Look 
Once (YOLO) [31]. The main principle of Faster R-CNN 
lies in the convolutional operation between multiple re-
gional candidate boxes and specific operators, involving 
a large number of samples and high-dimensional training 
characteristic data [30], [31]. The main advantage of the 
YOLO model for object detection lies in its refined region 
proposal mechanism. However, its limitation in small ob-
ject detection primarily stems from the fact that training 
with a large number of samples can easily lead to overfit-
ting. In fact, for small target characteristics, we can draw 
on YOLO's strategy for selecting region proposals. By 
extracting effective feature information and performing 
decomposition, fusion, and reconstruction across scales, 
small target recognition can be achieved through computa-
tion on a single frame image. 

Our paper’s workflow diagram can be shown in 
Fig. 1, it divides the entire task into three sequential sub-
tasks: preliminary target detection, high-precision target 
localization, and target segmentation. There are two deci-
sion-making processes in both preliminary target detection 
and high-precision target localization stages. The integra-
tion of information between different scales and threshold 
filtering is used to decide the preliminary detection regions 
of the targets, and the high-precision localization results 
are determined by merged adjacent TDU regions and scale 
matching within the preliminary detection regions. Ulti-
mately, by performing binary processing on local region 
based on the central coordinate of the target’s high-
precision localization, the segmentation result of the target 
on per-pixel basis can be obtained. 

The main contribution of this paper is the decomposi-
tion, fusion and reconstruction of target information at 
different scales, achieving the segmentation of infrared 
small targets from coarse to fine. 

2. The Preliminary Target Area 
Detection by TDU 

2.1 TDU’s Dual-Scale Geometry Design 
As shown in Fig. 2, the outermost box, represented by 

a solid black line, indicates the overall outline of the entire 
TDU. The entire TDU contains a large target area (size: 
w1 × w1, marked by blue color) and eight equal-sized back-
ground regions (size: w1 × w1). Each large target area can 
be subdivided into nine small areas (size: w0 × w0) with 
corresponding small backgrounds (size: w0 × w0). Addi-
tionally, the total size of the TDU is w2 × w2. Big-scale’s 
Local Contrast Saliency (LCSbig-scale) is measured through 
evaluating the differences between the central target 
(T area) and its surrounding backgrounds (named from B1 
area to B8 area). As for small-scale’s LCS measurement 
(LCSsmall-scale), each small target (named from t1 area to t9 
area of size w0 × w0) and its backgrounds (named from b1

1 
to b1

8) are similarly assessed to determine their values. 

The central point (x0, y0) of the TDU lies within the 
center of the T region and the t5 region, covering the tar-
get’s all possible locations in the entire image after tra-
versal. According to SPIE standards for small target, which 
should be less than 0.12% with area proportion of the en-
tire image area, so we can adjust the TDU’s different size 
for different images. In this case, w1 is defined as the larg-
est integer that can be multiplied by three and needs to be 
less than or equal to 0.035 W H× × , w0 is set as one-third 
of w1, and w2 is established as 3 times by w1, which can 
format the fractal geometry’s structure in TDU. 

To sum up, TDU employs a fractal geometric design 
structure that includes both big-scale and small-scale 
level’s feature data to measure target’s gray value variation 
against background, enabling the target detection with 
different shape and size. Moreover, we have established 
a mathematical model for local contrast saliency based on 
two kinds of target contrast properties: positive and nega-
tive, represented by (1) and (2) respectively, where I repre-
sents the potential positions of the background at a large 
scale, with a total of 8 options. i indicates the possible 
scenarios for the target at a small scale, with a total of 9 
options. j represents the scenarios that may occur whenever 
i is determined, with a total of 8 options. The property of 
target contrast are defined such that positive contrast oc-
curs when the average grayscale value of the target area is 
greater than that of the background area, while negative 
contrast is when the average grayscale value of the target 
area is less than that of the background area (such as 
Fig. 11(a)). 
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Fig. 1.  Technical workflow diagram of the proposed principle.  

 
Fig. 2.  The structure of TDU within the double scale. 

2
negative
big-scale

2
negative
small-scale

mean (B )LCS min , 1,2...8,
min(T)

mean (b )LCS min , 1,2...9, 1, 2...8
min(t )

I
I

j
i

j
i

I

i j

= =

= = =

  (2) 

where max(T) denotes the maximum grayscale value of the 
big scale target area, mean(BI) represents the average gray-
scale value of the big scale background area, and min(T) 
indicates the minimum grayscale value of the big scale 
target area. As for the small scale, the variables and com-
puting measurement for the small scale are designated with 
the same rationale. 

Figure 3 demonstrates the saliency detection capabil-
ity for the positive contrast target and false target elimina-
tion ability of TDU with multiple directions under the 
guidance of (1). For instance, the LCS values in each direc-
tion of true target are high, thereby resulting in a high val-
ue of positive

big-scaleLCS . On the other hand, the values in all direc-
tions for the pure background are low, hence weakening its 
influence. Simultaneously, the minimum value operation of 
(1) eliminates the easily confused target from the intersec-
tion background. 

Equation (3) describes the generation of ILCS map, 
which is integrated by different scales within the same 
TDU. It can stimulate the visual attention mechanism of 
“top to bottom” [34] to find the preliminary target detec-
tion region. By incorporating multi-scale LCS information 
and considering the differences arising from various size 
and shape, the ILCS map formed through the maximum 
value operation of the TDU kernel ensures that target re-
gions are detected without overlooking any genuine targets. 

 big-scale small-scaleILCS max(LCS ,LCS )=  (3) 
 

 
(a) big scale directions 

 
(b) the multi-directional sensing capability of TDU 

Fig. 3.  The TDU perception ability of a multi-directional 
detector for different types of objects in an infrared 
image (taking each Directional-LCS value at the large 
scale as an example). 

2.2 Scale Decomposed and Fusion 
The schematic diagram of the traversal method is 

shown in Fig. 4. A TDU with dual-scale can produce nine 
small-scale LCS values and one big-scale LCS value, then 
the ILCS result combines the maximum values from both 
scales. The coordinate of the central point (x0, y0) traversed 
by TDU is crucial. Once determined, they can be used to 
deduce and obtain the coordinates of the central points at 
big scale and small scale. Figure 4’s middle part also 
demonstrates the traversal path of the overlapping TDU 
detection units in the original infrared image, once the 
central point is moved, LCS maps at different scales will 
be formed, then leading to the integrated ILCS map. As 
shown in this diagram, moving TDU horizontally and ver-
tically by a length of w1/2 within the image creates over-
lapping target search spaces, thereby ensuring a high detec-
tion rate for suspected targets. In fact, from an algorithmic 
perspective, w1/2, w1/3, and w1/4 can all be used to 
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Fig. 4.  TDU traversal produces LCS maps with different scale and ILCS map generation by “top to bottom” visual attention model. 

partition the candidate box space. However, a smaller step 
length results in a denser partitioning of the space, leading 
to higher algorithm time complexity and storage require-
ments. Extensive testing experience indicates that w1/2 is 
the optimal choice, as it does not result in the loss of target 
detection and high-precision localization. 

2.3 Dual-Threshold Strategy for Target 
Preliminary Detection 
The establishment of target threshold involves both 

global threshold and local threshold. Moreover, the selec-
tion and implementation of these thresholds stimulate the 
way the human eye focuses on the prominent target at both 
the overall and local level. When a certain region meets 
either the local threshold or global threshold, it can be 
recognized as a target. For both global threshold and local 
threshold, excessively high threshold may lead to missing 
the true target, on the contrary, excessively low threshold 
may lead to a large amount of background being falsely 
detected as targets. The global threshold method selects a 
threshold thG based on the entire ILCS map, while the local 
threshold method determines a threshold thL for each TDU 
central point in the green color region, as shown in 
Fig. 4(b), by establishing an 18 × 18 local area. The 

definition of global threshold and local threshold are 
shown in (4) and (5). 

 1G 1 1,th kµ σ= + ×  (4) 

 2L 2 2th kµ σ= + ×  (5) 

where thG is a global threshold, and thL is a local threshold. 
They are respectively derived from global ILCS statistical 
information and local ILCS statistical information. μ1 rep-
resents the mean value of entire ILCS map, while μ2 repre-
sents the mean value of local ILCS region. Similarly, σ1 
represents the standard deviation of entire ILCS map, and 
σ2 represents the standard deviation of local ILCS region. 
k1 and k2 are proportional factors used to adjust the times of 
standard. In the decision-making process discovered in the 
preliminary target area, the default range for k1 is from 2.5 
to 4, and the default range for k2 is from 3 to 9. When the 
special scene occurs, thG is tuned first, followed by tuning 
thL. On the side of numerical range, k1 is suitable for fine-
tuning within a small range, while k2 is suitable for adjust-
ments over a larger range. In general, for scenarios with 
a high target signal-to-noise ratio (SNR), both k1 and k2 can 
be set to relatively large values, while for scenarios with 
a low target SNR, k1 and k2 need to be set to smaller 
values.  

 
Fig. 5.  The diagram of local and global threshold selection strategy.  
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Fig. 6.  The progress of target localization with high precision (from preliminary detection result to high-precision position result). 

3. Target Localization with High 
Precision 

3.1 Scale Reconstruction for Precise 
Localization 
This sub-section discusses how to get the high-

precision localization results from the preliminary detec-
tion area. It can be divided into two steps: the merging 
operation of the overlapping adjacent TDU areas based on 
the maximum criteria of ILCS and the scale-match opera-
tion within TDU searched from the ILCS value, which can 
simulate the "bottom-up" attention mechanism of the hu-
man eye attention [35]. The determination of adjacent TDU 
fusion regions is based on the L1 norm of the central points 
of adjacent TDUs as a threshold criterion. The mathemati-
cal description is shown in (6), typically sets the thdist value 
to 2. TDUi

Px  and TDUi

Py represent the horizontal and vertical 
coordinates of TDU central point respectively: 

 
1TDU TDU TDU TDU 1 disti i

P P P P
i ix x y y th

+ +− + − ≤ .  (6) 

Figure 6 illustrates the "bottom-up" process of high-
precision target localization mimicking human visual atten-
tion. Figure 6(d) and (e) depict the fusion process of ILCS 
values near TDU based on the maximum value principle, 
while Figure 6(f) and (g) show the scale matching process. 
The target lain above Fig. 6(a) is factually large, and is 
ultimately identified with a large-scale candidate box by 
this proposed algorithm. In the different case, the target 
lain below Fig. 6(a) is factually small, and is ultimately 
identified with a small-scale label by this proposed algorithm. 

3.2 The Strategy of AORM  
The layout of fixed candidate boxes is illustrated in 

Fig. 7(a), which are formed by uniform division of the 

image area from the width and height directions. This lay-
out of TDU is highly advantageous for the central point 
location and describing target feature. Figure 7(b) shows 
the decomposition-scale candidate box generated by the 
fractal geometric scale and overlapping movement of TDU 
in the horizontal direction. The yellow solid line represents 
the result of scale decomposition applied to the blue solid 
line box, while the yellow dashed line demonstrates small-
scale decomposition effects on the blue dashed line box 
after horizontal stepping. Taking as a size of 640 × 512 
image as an example, the size of the fixed box is 21 × 21 
pixels. After undergoing small-scale decomposition, this 
box can be derived into nine fractal small-scale boxes, each 
with size of 7 × 7 pixels. Through these analysis and calcu-
lation, total of 21,730 candidate boxes are generated, in-
cluding 2,173 affiliated TDU kernels, 2,173 fixed candi-
date boxes (the central region of TDU) and 19557 
(2,173 × 9) small-scale moving candidate boxes. After 
scale decomposition, adjacent candidate box generates 
a grid width of 4 pixels (w1/6) from both horizontal side 
and vertical side. If the TDU is traversed with a smaller 
length, the overall layout of candidate boxes will be denser. 
This dense candidate box layout is crucial for the high-
precision localization of infrared small targets of different 
sizes and arbitrary positions because it can provide a com-
prehensive and adequate searching space. In conclusion, 
the AORM (Area Optimal Recommend Mechanism) strategy 

 
Fig. 7.  The structure and layout of the candidate box. 
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is in the purpose of reducing the traversal time of each 
candidate box, the final traversal time can be effectively 
shortened from 2173 (fixed boxes number) × 10 (total 
number of scales) to “2173 + m × 10”, m is total remaining 
number of TDU after merged. Typically, m variable varies 
between [2, 10], so “2173 + m × 10” is much smaller than 
21730. This optimization is mainly based on the design of 
the TDU kernel among the global principle. 

4. Target Segmentation by Per-pixel 
This section discusses how to binarize the segmenta-

tion results based on high-precision localization’s result. 
The key operation to binarization is the determination of 
local area, the generation of local histograms and threshold 
segmentation points through local area. The important 
factor of the local area decision is (xH

matched-scale, yH
matched-

scale) and the suitable scale from above high-precision local-
ization, the size of local area for target segmentation is 
chosen as 2w0 × 2w0 and 2w1 × 2w1 by small scale and 
big scale, respectively. By dividing the grayscale levels of 
the affiliated target region into local target (Category 0) 
and local background (Category 1), using the value th3 as 
the optimal threshold, Category 0 comprises pixels with 
values higher than or equal to th3, whereas Category 1 
encompasses pixels with values lower than th3. 

After obtaining the local target region, maximize the 
between-class variation named by σB

2, the mathematical 
model is shown in (7): 

 2 2 2
B 0 0 T 1 1 T( ) ( )σ π µ µ π µ µ= − + −   (7) 

where π0 represents the proportion of the number of pixels 
to the total number of pixels and μ0 is the average grayscale 
value of all pixels in Category 0, while π1 represents the 
proportion of the number of pixels to the total number of 
pixels and μ1 is the average grayscale value of all pixels in 
Category 1. μT represents the average of the total grayscale 
value in the entire image. 

Given that μT = μ0π0 + μ1π1, the formula for the be-
tween-class variance can be simplified to (8). Thus, the 

best target segmentation results can be achieved by travers-
ing th3: 

 2 2
B 0 1 1 0( )σ π π µ µ= − . (8) 

As observed from Fig.  8, the histogram approaches to 
a Gaussian distribution with one peak, that is to say the 
local target region contains one target (Category 0) and one 
background (Category 1). Figure 8(f) and (g) show the 
local histograms and optimal thresholds. Figure 8(h) and (i) 
correspond to the local region binarization results under the 
optimal threshold. From the binarized results, it can be 
seen that the threshold segmentation method is suitable to 
segment the target by pixel-level. 

5. Experimental Results and 
Performance Assessment 
To validate the effectiveness of the proposed method, 

we compared it with seven other state-of-the-art unsuper-
vised infrared small target detection algorithms, namely 
LIG [26], AAGD [24], ADMD [25], LEF [27], NTFRA 
[17], GCMDO [23], and ANLPT [28]. The deep learning 
method is not compared here, because our proposed princi-
ple does not require data pre-training. We selected different 
infrared scenes to illustrate the proposed algorithm's per-
formance in high-precision target localization and pixel-
level target segmentation. These scenes include the infrared 
sky scene with irregular shaped targets [36], infrared mari-
time scene with irregular shaped targets (ours), infrared 
maritime target with negative contrast property (ours), 
point-shaped targets with inference (the upward datasets 
come from [36], and the downward datasets come from 
[37]), and infrared small & dim target scenes (the down-
ward one comes from [38], and the upward one comes 
from ours). Our images are captured by an integrated mari-
time imaging facility that includes an infrared medium 
wave camera, a visible light camera and an infrared long 
wave camera. This equipment acquires a picture dataset of 
640 × 512 pixels for a duration of two hours and has 
a maximum target capture distance of 20 km. Our data for 

 
Fig. 8.  Demonstration of local target histogram and local target segmentation by pixel-level. 
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this paper were collected at Marina Bay Plaza in Dalian on 
March 18, 2022. Subsequently, we chose two representa-
tive images from each scene to verify the algorithm's per-
formance. All algorithms’ experiments are implemented in 
MATLAB 2020a on a laptop with a 2.30-GHz Core i7-
12700H CPU and 16.0-GB memory. 

The blue rectangular region represents the true target 
region in the Ground truth, the small red rectangle repre-
sents the true target region localized accurately by each 
algorithm, the green rectangular region represents the tar-
get region localized falsely by each algorithm, meanwhile, 
the large green rectangle indicates that the representative 
region contains a large number of detected targets falsely. 

5.1 Infrared Sky Scene with Irregular Shaped 
Targets 
The detection results for infrared sky scenes with ir-

regularly shaped targets are depicted in Fig. 9. This dataset 
comprises 998 images, characterized by the irregular 
shapes of the targets and the presence of numerous targets 
in each image. As illustrated in Fig. 9, most compared 
algorithms can detect the big scale targets successfully, 
while the LIG, AAGD, ADMD, and NTFRA algorithms 
fail to detect small-scale targets. Our proposed algorithm 
can detect and segment the double-scale targets successfully. 

5.2 Infrared Maritime Scene with Irregular 
Shaped Targets 
Figure 10 shows the detection results and segmenta-

tion results of infrared maritime scene with irregular 
shaped target, which is a dataset of 1106 images. The tar-
gets are easily submerged in a heavy noise and clutter 
background, from the results, LIG, ADMD, LEF, GCMDO 
algorithm detect a great number of false alarm regions as 
the true targets. Under the comparison, our proposed algo-
rithm has the ability to suppress the noise or clutter. 

5.3 Infrared Maritime Targets with Backlight 
Illumination 
The detection results for this group are presented in 

Fig. 11. This dataset comprises 1000 images. Unlike other 
scenes, this backlight scenario poses a challenge for target 
detection due to the negative contrast property, where the 
central region has lower gray value than its surrounding. It 
is obvious that the compared detection algorithms are easy 
to detect the cluttered wave regions, whereas, our proposed 
algorithm can prevent this problem. 

5.4 Point-Shaped Targets with Interference 
The target detection and segmentation results for 

point-shaped targets with interference are illustrated in 
Fig. 12. This dataset comprises 2000 images, where targets 
appear as point-shaped with one or two pixel-size, and 
some clutter from background is easily confused with the 
true target in this scene. Due to the small size of the target, 
the red dashed rectangular box represents the magnified 
result of the target. However, the compared algorithms 
often misidentify the nature of snow interference as the 
true target. In this case, our proposed algorithm can sup-
press the background clutter through the parameter k1 and 
k2 setting with a relative higher value. 

5.5 Infrared Small & Dim Targets Scene 
The detection results for infrared small and dim target 

scenes are also displayed in Fig. 13. This dataset comprises 
1500 images. The target appears extremely small, from the 
results, we can see only LIG algorithm and our proposed 
algorithm obtain the better result, other compared algo-
rithms lose the true target and detects more false regions. It 
can be concluded that the two algorithms can detect the 
extremely dim target, which can be easily disappeared 
within the background. 

 
Fig. 9.  The detection results and segment results of two representative images of infrared sky scene with irregular shaped target. (a) Original 

image; (b) LIG; (c) AAGD; (d) ADMD; (e) LEF; (f) NTFRA; (g) ANLTP; (h) GCMDO; (i) ours (k1 = 3, k2 = 5). 
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Fig. 10.  The detection results and segment results of two representative images of infrared maritime scene with irregular shaped target. 

(a) Original image; (b) LIG; (c) AAGD; (d) ADMD; (e) LEF; (f) NTFRA; (g) ANLTP; (h) GCMDO; (i) ours (k1 = 3, k2 = 5). 

 
Fig. 11.  The detection results and segment results of two representative images of infrared maritime target with backlight illumination. 

(a) Original image; (b) LIG; (c) AAGD; (d) ADMD; (e) LEF; (f) NTFRA; (g) ANLTP; (h) GCMDO; (i) ours (k1 = 3, k2 = 5). 

 
Fig. 12.  The detection results and segment results of two representative images of point-shaped target with interference. (a) Original image; 

(b) LIG; (c) AAGD; (d) ADMD; (e) LEF; (f) NTFRA; (g) ANLTP; (h) GCMDO; (i) ours (k1 = 5, k2 = 7). 

 
Fig. 13.  The detection results and segment results of two representative images of infrared small & dim target. (a) Original image; (b) LIG; 

(c) AAGD; (d) ADMD; (e) LEF; (f) NTFRA; (g) ANLTP; (h) GCMDO; (i) ours (k1 = 3, k2 = 5). 
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5.6 Assessment for Infrared Target Detection 
and Segmentation 
The detection algorithm's performance can be as-

sessed using Detection Rate (DR) and False Alarm Rate 
(FAR) standard. DR reflects the algorithm's proficiency in 
accurately identifying targets, the larger DR means the 
algorithm has better performance, while lower FAR indi-
cates that algorithm has better ability to decrease false 
alarm rates. The computing mathematical of DR and FAR 
are shown by (9). 

 A F

T T F

DR , FARN N
N N N

= =
+

  (9) 

where NA represents the number of detected actual targets, 
NT denotes the total number of true targets in the original 
images, and NF is the number of detected false targets. To 
provide a comprehensive evaluation of the detection algo-
rithm, the Fβ score is also introduced, which combines DR 
and FAR. Precision Rate (PR) and Recall Rate (RR) are 
fundamental to calculating the Fβ score. PR and RR are 
related to FAR and DR as shown in (10). Based on PR and 
RR, Fβ score is calculated as shown in (11). 
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To analyze the performance of the algorithms under 
specific thresholds more precisely, first the detection re-
sults are obtained for all the compared algorithms and then 
noise suppression is performed by setting thresholds to 
remove low response regions. Specifically, the adaptive 
threshold Tadp is calculated according to (12). 

 adp max[max( ) 0.7, ( ) avg( )]T R R Rσ= × +   (12) 

where max(R) represents the largest value of the detection 
result. σ(R) and avg(R) represent the standard deviation and 
average value of the detection result, respectively. DR, 
FAR, and F1 score are used as comprehensive metrics to 
evaluate the performance of the detection algorithm, 
providing a balanced measure of accuracy and robustness, 
as shown in Tab. 1. Notably, our algorithm consistently 
demonstrates exceptional performance across all datasets, 
achieving the highest Fβ scores with corresponding high 
DR and negligible FAR. This underscores the robustness 
and effectiveness of our approach compared to the other 
algorithms evaluated. Specifically, our algorithm outper-
forms others by achieving Fβ scores of 0.95, 0.92, 0.88, 
0.95 and 0.95 across Dataset 1 to Dataset 5, respectively, 
with high DR ranging from 90.12% to 96.30% and low 

FAR. These results highlight the superior performance of 
our algorithm and its potential for real-world applications. 

In the target segmentation assessment, Intersection 
over Union (IoU) serves as a crucial evaluation standard 
for measuring the overlap area between the target segmen-
tation result and the ground truth. The maximum value of 
IoU is 1, the larger value indicates the larger overlap area 
between two sides. The computing model is shown as (13): 

 res GT

res GT

IoU I I
I I

=




 (13) 

where Ires represents the target segmentation result’s 
coordinate set and IGT represents the Ground Truth’s.  

The ROC curve shown in Fig. 14 reflects the changes 
in DR and FAR across different image data as the intrinsic 
parameters of the algorithm are adjusted. The larger the 
area formed with the horizontal axis, the better the perfor-
mance of the algorithm. The numbers in the bottom right 
corner represent the average performance of each algo-
rithm, showing that the proposed algorithm has a clear 
advantage. 

Table 2 presents the IoU of five datasets under the 
comparison algorithms. It can be observed that our algo-
rithm achieves the best IoU in all five datasets. 

Table 3 presents the mean computational time of the 
five datasets tested with all algorithms. It can also be con-
cluded that the proposed algorithm is relatively better than 
most other algorithms in real-time performance. 

6. Conclusion 
Through the above principles and experimental vali-

dation, it can be seen that this paper divides the target de-
tection task into three stages. The core algorithm adopts 
a TDU kernel-based design, so that the TDU kernel 
achieves high-precision target localization and segmenta-
tion through parameter transmission and the transmission 
of subtask results between the kernel and the subtasks. 

The advantage of the TDU kernel-based structure lies 
in the preliminary detection of the target area, and this 
principle does not rush to determine the true area, allowing 
overlapping detection results to ensure that no real targets 
are missed. In the task of high-precision target localization, 
it provides accurate localization of the true area. Mean-
while, the TDU dual-scale division facilitates the fine divi-
sion of candidate boxes and the implementation of the 
AORM strategy. The final segmentation is centered on the 
high-precision localization coordinates from the second 
task. By selecting an appropriate threshold, binarization 
segmentation is performed, which can enhance the contour 
information and local representation of the small target. 
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Methods 
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

DR (%) FAR (%) Fβ DR (%) FAR (%) Fβ DR (%) FAR (%) Fβ DR (%) FAR (%) Fβ DR (%) FAR (%) Fβ 

LIG 68.23 0.55 0.81 84.26 10.15 0.87 47.86 28.66 0.57 91.56 20.12 0.85 95.26 5.12 0.95 

AAGD 71.89 10.22 0.80 75.26 10.12 0.82 46.89 28.57 0.57 81.26 22.34 0.79 86.59 6.11 0.90 

ADMD 70.82 14.00 0.78 76.76 11.23 0.82 39.66 33.57 0.50 83.66 5.26 0.89 87.22 4.21 0.91 

LEF 80.04 0.79 0.89 86.66 19.22 0.84 49.26 39.64 0.54 90.56 4.96 0.93 94.88 7.36 0.94 

NTFRA 76.00 0.19 0.86 91.12 31.06 0.78 79.12 42.12 0.67 87.88 28.92 0.79 97.10 12.55 0.92 

ANLTP 86.04 0.88 0.92 81.68 10.66 0.85 45.16 11.27 0.60 84.78 20.83 0.82 86.27 4.77 0.91 

GCMDO 85.08 0.69 0.92 79.91 19.12 0.80 41.23 20.12 0.54 60.22 19.68 0.69 87.12 5.60 0.91 

Ours 91.08 0.14 0.95 92.88 8.26 0.92 90.12 13.33 0.88 92.16 1.29 0.95 96.30 5.44 0.95 

Tab. 1.  DR, FAR and Fβ score for the five datasets tested by the compared algorithm. 

   
(a) (b) (c) 

  
(d) (e) 

Fig. 14.  ROC curves and AUCs of different algorithm’s result in five scenes. (a) Dataset 1; (b) Dataset 2; (c) Dataset 3; (d) Dataset 4; (e) Dataset 5. 
 

Methods Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

LIG 26.35 32.94 0.18 55.14 39.32 

AAGD 7.25 12.30 0.26 34.45 17.74 

ADMD 15.86 14.31 0.12 17.00 16.17 

LEF 29.84 30.83 0.07 64.25 27.49 

NTFRA 31.42 32.79 0.49 17.50 28.60 

ANLTP 36.49 37.61 0.23 45.79 29.05 

GCMDO 5.88 5.37 0.10 33.21 9.17 

Ours 49.95 52.78 47.63 91.16 66.45 

Tab. 2.  IoU (×10–2) for the five datasets tested by the compared algorithms. 
 

Algorithm LIG AAGD ADMD LEF NTFRA ANLTP GCMDO Ours 

Time(s) 1.0923 0.0886 0.086 2.1768 1.045 1.034 0.0043 0.165 

Tab. 3.  The mean computational time of the five datasets tested by the compared algorithms. 
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