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Abstract. Depression is a common mental illness that not 

only profoundly infests the psychological state of patients, 

but also tends to cause damage to the functioning of pa-

tients' brain areas. To construct a comprehensive and de-

tailed framework for a supporting diagnostic network that 

will help physicians make accurate and timely diagnoses 

when dealing with patients at different stages of depres-

sion, a network model based on three-dimensional (3D) 

weight group MobileNet (3D-WGMobileNet) and transfer 

learning is proposed. Firstly, fMRI data is preprocessed, 

and regional homogeneity analysis is used to reduce the 

dimension of the image. Then, the characteristics of Alz-

heimer's disease are learned by transfer learning and 

transferred to the proposed model. Next, the dynamic 

group convolution was used to construct the expert weight 

matrix of the convolution kernel, and the sliding window 

group convolution was used to compress the parameters of 

the model to improve the expression ability and computing 

power of the model. By using 5-fold cross-validation, we 

conducted experiments using data from HCP and REST-

meta-MDD. The experiment results show that the proposed 

model gives a superior performance compared with other 

state-of-the-art methods, especially on the classification of 

the healthy group with major depression groups, where the 

two datasets achieve 88% and 91% accuracy, respectively, 

which verifies the feasibility and effectiveness of our model. 
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1. Introduction 

Depression usually refers to a mood disorder, a syn-

drome characterized by a depressed state of mind [1], 

whose clinical manifestations mainly include low mood, 

interest, cognition, thinking, volitional activities, and phys-

iological function disorders, etc. And some patients commit 

suicide, even engage in aggressive behavior. The diagnosis 

of early depression is based on clinical symptoms, medical 

history, course of illness, and physical examination, as well 

as laboratory tests, but quantitative physiological indicators 

are lacked [2]. Therefore, it is of great significance to ex-

plore the imaging neurobiological markers of depression 

diagnosis in depth, and to break through the bottlenecks 

faced by modern medical technology in the clinical diagno-

sis of depression, such as too much subjectivity and lacking 

quantitative indexes. 

With the rapid development of medical imaging tech-

nologies and deep learning in recent years, some new ideas 

are provided for the study of brain diseases [3], [4]. Func-

tional magnetic resonance imaging (fMRI) [5] is a popular 

neuroimaging technology at present, whose principle is to 

use magnetic resonance imaging (MRI) to reflect the 

changes on blood oxygen level dependent (BOLD) in the 

brain. fMRI images have a high temporal resolution, and 

can dynamically reflect the changes of signal intensity in 

the brain areas. Deep learning is a new field motivated for 

building neural networks, which mimics the human brain's 

mechanisms for interpreting data such as images, sounds, 

and text. Recently, more and more people are combining 

deep learning with medical imaging as a research hotspot 

to assist doctors for diagnosing medical diseases [6–9]. 

Wang et al. [10] used convolutional neural network (CNN) 

to classify major depressive disorder (MDD) for resolving 

the problems of insufficiently raw image data which easily 

leads to overfitting and poor generalization ability of com-

mon classification models. But CNN itself has a simple 

structure, and cannot simultaneously extract shallow and 

deep information of the image. Hamid et al. [11] proposed 

a deep learning method based on bi-directional long short-

term memory (Bi-LSTM), which combined electroen-

cephalograph (EEG) data and facial features to detect de-

pression. But the EEG data is two-dimensional (2D) data, 

and the extent of brain damage is not detectable. Jan et al. 

[12] proposed a dynamic visual motion feature extraction 

algorithm, which could predict the degree of depression 

based on an individual's visual and acoustic features. Final-

ly, partial least squares regression model was used to obtain 

the correlation between visual features and depression, but 

the method based on dynamic visual features is unstable. 

Therefore, an accurate diagnosis of depression is unable to 

make. 
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Melo et al. [13] proposed a distributed learning meth-

od based on ResNet-50 to determine whether a subject has 

depression by recognizing facial expressions, but its pa-

rameters and computational quantities were huge, and it 

was not easy to train. Ahmed et al. [14] proposed an fMRI-

S4 lightweight network model based on long short-term 

memory and one-dimensional convolution to classify the 

functional connectivity maps of brain regions in MDD 

patients. However, one-dimensional convolution is not 

sufficient for medical image feature extraction, and the 

classification accuracy is required to improve. Daegil et al. 

[15] proposed a depression diagnosis algorithm based on 2-

stream CNN, which combined ResNet and SeNet to extract 

feature information in the image, and to classify patients. 

However, this network has high complexity and requires 

a large number of samples as support.  

Because transfer learning can acquire knowledge from 

different types of images in different domains, it is widely 

used to solve the problems like insufficient data for the 

target task. Tao et al. [16] used a ViT-Transformer coding 

network combined with EEG signal data to classify MDD 

patients, and achieved better classification results. Jazaery 

and Guo et al. [17] used RNN-C3D network to extract 

useful feature information from continuous facial expres-

sions, and to get prediction results for depression. 

In all of the above work, only healthy controls and 

MDD are categorized, and the course of depression, such 

as mild, moderate and major, failed to accurately be diag-

nosed. As inspired by the above ideas, in this paper a deep 

learning model based on the designed 3D-WGMobileNet 

and transfer learning is proposed to accurately classify 

fMRI images of depression patients. Main ideas include 

that four-dimensional (4D) images are converted into three-

dimensional (3D) images using the regional homogeneity 

(ReHo) analysis method, which facilitates the effective 

processing of the deep learning model at later stage. In 

addition, transfer learning is used to solve the problem of 

poor generalization ability due to the lack of medical data, 

and in the proposed 3D-WGMobileNet, dynamic group 

convolution is utilized to balance weight distribution, to 

extract detailed features of the image, and to reduce the 

number of parameters. Furthermore, the training speed of 

the model is accelerated by sliding window group convolu-

tion. The proposed model can achieve better accuracy 

while improving real-time performance, and can finally 

realize the correct classification of depression patients. 

The remainder of this paper is organized as follows. In 

Sec. 2, the experimental dataset and the image prepro-

cessing method are presented, respectively. In Sec. 3, the 

proposed method in detail is described. Section 4 gives the 

experimental results and analysis. Finally, a conclusion is 

drawn in Sec. 5. 

2. Data 

The current feature extraction algorithms are difficult 

to directly extract the features of 4D fMRI data, so in this 

paper, fMRI images are subjected to ReHo analysis. By 

analyzing the blood oxygen content of the patient's brain 

region over a period of time, the local activity information 

of the brain functional region can be extracted, and the 

high-dimensional data can be converted into low-

dimensional data by statistical methods. In the first part of 

this section, we introduce the data information and prepro-

cessing methods. In the second part data dimension reduc-

tion method is presented. 

2.1 Experimental Dataset 

In this paper, fMRI images of 144 subjects were used, 

including 25 cases of mild depression (MID), 41 cases of 

moderate depression (MOD), 8 cases of MDD, and 70 

cases of healthy control group. All of depression data came 

from the HCP database (https://humanconnectome.org/). 

The fMRI data of each subject are 33 layers of head images 

scanned from left to right. A total of 1200 time point image 

data are scanned, and the diagnostic and statistical manual 

of mental disorders (DSM) values of the patients were all 

above 50 points. The specific information is shown in 

Tab. 1. In addition, in order to verify the in scalability of 

our model on a larger dataset, we also selected data from 

the REST-meta-MDD Consortium [18], which consists of 

830 MDD and 771 HC. For mitigating data bias and ensur-

ing data integrity, subject selection was governed by the 

following criteria: (1) Removal of low-quality images due 

to inadequate coverage, poor spatial normalization, or sig-

nificant head motion. (2) Exclusion of sites contributing 

fewer than 10 participants or a disproportionately high 

number of elderly participants. (3) Discard of zero signal 

images in target graph detection. 

2.2 Data Preprocessing 

During the collection of medical images, due to the 

influence of imaging equipments, imaging principles, and 

individual differences, the original images generally con-

tain degradation phenomena such as uneven brightness and 

noise etc. [19]. Therefore, preprocessing of raw fMRI data, 

such as head movement correction, normalization, and 

smoothing etc., is needed to reduce errors, and to improve 

image quality. In this paper, the preprocessing of fMRI 

data is realized using FMRIB's software library (FSL) and 

statistical parametric mapping (SPM) software. fMRI pre-

processing flowchart is shown in Fig. 1. 
 
 

 

Dataset Number Age 
Sex 

(M/F) 

DSM 

values 
Mean 

Standard 

Deviation 

HC 70 28 35/35 45.6 0.4 0.02 

MID 25 28 5/20 54.8 0.35 0.05 

MOD 41 29 18/23 63 0.3 0.08 

MDD 8 29.8 3/5 73.3 0.2 0.12 

Tab. 1.  Statistical analysis of subject information. 
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Fig. 1. Preprocessing of fMRI images.

 

Fig. 2.  Comparison of fMRI images (a) before and (b) after 

preprocessing. 

Due to the instability of the initial fMRI signal, the 

first 10 time points of each fMRI data were deleted, and the 

rest of points were made timing correction, realigning, and 

normalization. The images are registered to the template 

proposed by the Montreal Neurological Institute (MNI). 

The comparison plots of fMRI images before and after 

preprocessing are shown in Fig. 2. 

2.3 ReHo Transformation Analysis Method 

ReHo analysis method is used to characterize the con-

sistency of the BOLD signals (time series) of a voxel and 

its nearby voxels, which is measured by the Kendall con-

sistency coefficient (KCC) [21]. ReHo method first pro-

posed by Zang et al. [20] is used to calculate the area of 

fMRI time series in the process of blood oxygen level syn-

chronization. 

Suppose that an fMRI data is represented by 

F(X, Y, Z, M), where X is the sagittal plane (the number of 

rows), Y is the coronal plane (the number of columns), Z is 

the transverse plane (the number of layers), M is the num-

ber of time points of the current voxel (the length of the 

BOLD signal), and the data contains Xo  Yo  Zo voxel 

points. Tm represents the time series of the m-th voxel 

Vm(x, y. z) (1  xm  Xo, 1  ym  Yo, 1  zm  Yo,), the ReHo 

procedure for calculating the BOLD signal sequences of 

the Tm voxel and the Km (usually is 6, 18, and 26) voxels in 

the nearest neighboring domain is as follows. 

(1) The time series of the Tm and Km voxels are 

arranged into a matrix Cm,k+1(i,j) of m  (k + 1), where 

C(i, j) represents the im-th time point of the jm-th voxel. 

 

Fig. 3.  An example of ReHo transformation results. 

(2) The elements of the jm-th column is filled with the 

ordering of the values in the columns, and the matrix 

Sm,k+1(i, j) of the size m  (k + 1) is obtained, where S(i, j) 

represents the ordering of the data value F at the im-th time 

point of the jm-th voxel among the m time points data in 

this column, where 1  i  m, 1  j  k + 1. The characteris-

tic of the matrix Sm,k+1(i, j) is that the elements of each 

column are positive integers from 1 to m without repetition. 

(3) The KCC of the BOLD signal sequence of Tm and 

neighboring Kmvoxels is calculated as shown in (1). 
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where m denotes the number of time points, K denotes the 

size of the neighborhood selected in the calculation. Si 

denotes the sum of row i in the matrix Sm,k+1(i, j), and 

S̅ = (m + 1)(k + 1)/2 denotes the mean value of Si. W de-

notes the KCC value of the voxel which is also called the 

ReHo value, and the value of W ranges from 0 to 1. The 

larger the value of W, the higher regional homogeneity of 

this voxel Vm(x, y. z) is, and vice versa. 

The larger the KCC in the ReHo analysis method is, 

the more similar the time series of these neighboring voxels 

are, and the mean-averaged ReHo image is obtained by the 

normalization method. The transformed image using ReHo 

analysis method is shown in Fig. 3. 

3. Methods 

Specifically, first, the fMRI image is preprocessed 

and ReHo transformed. Then, transfer learning was used to 

obtain the basic feature information of the image from 
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other data and transfer it to the proposed 3D-

WGMobileNet. Then, the improved 3D-WGMobileNet 

was used to extract the features of the transformed image. 

Finally, patients with different stages of depression were 

classified. The preprocessing and transformation steps have 

been presented in the previous section and other detailed 

steps are explained in the following subsections.  

3.1 3D-WGMobileNet 

3D-WGMobileNet is designed by changing convolu-

tion kernel into dynamic group convolution (DGConv) 

based on the original 2D-MobileNet [22] and by adding 

sliding window group convolution (SGConv) layer behind 

the depth-separable convolution Block, which is used to 

fuse the features, and finally the fusion features are output-

ted through the fully connected layer. The input of the 

model is N ReHo transformed images of size 

C × X × Y × Z, and the global information of the image is 

extracted using the dynamic convolution [23] module and 

the depthwise separable convolution group in turn. The 

expert weight measurement matrix is constructed, and the 

weight information of each convolution kernel is more 

carefully allocated to improve the efficiency of the convo-

lution kernel. Subsequently, the extracted feature infor-

mation was spliced and fused by sliding window group 

convolution to refine the extracted features and to reduce 

information redundancy. Finally, the depression features 

are classified into four categories such as MID, MOD, 

MDD, and HC through the fully connected layer, and the 

classification results are obtained. 

The 3D-WGMobileNet model structure consists of 16 

modules, including 2 3D-DGConv modules, 11 3D-

WGBlock modules, 1 3D-Avg_pool module, and 2 fully 

connected (FC) layers modules. The overall network struc-

tural framework is shown in Fig. 4. 

Among them, the 3D-DGConv module is the 3D dy-

namic group convolution module, and the 3D-Avg_pool 

module is the 3D average pooling layer. In addition, the FC 

module is the fully connected layer, and the 3D-WGBlock 

module is the improved Block group whose specific struc-

ture is shown in Fig. 5. BN is the batch normalization, and 

SE denotes the squeeze excitation [24] model, RE repre-

sents ReLU6 activation function, HS is H-Switch activation 

function, and SGConv denotes sliding window group con-

volution. 

Dynamic Group Convolution. The convolution ker-

nels of traditional deep learning network models are 2D 

static convolution kernels. By setting a fixed convolution 

kernel size, the convolution is carried out according to the 

size of each input image, and the features of the image are 

extracted using pooling and activation functions. However, 

the weights of the static convolution kernel are shared, and 

it is easy to extract duplicate features. Therefore, in this 

paper a new dynamic group convolution is proposed to 

replace the original static convolution. The squeeze excita-

tion principle is used to construct expert weight measure-

ment matrix, and the static convolution kernel group is 

transformed into a dynamic convolution kernel for improv-

ing the expression ability of the model. The input feature 

map and output feature map of the module are 

N × C × X × Y × Z dimensions, and the image size remains 

unchanged after dynamic group convolution. The specific 

calculation method process is as follows.  

(1) An expert weight restructuring function is defined 

including global average pooling layer, fully connected 

layer, and RE activation function, where i is the final 

weight coefficient, R is the expert weight coefficient, GAP 

is the global average pooling, and  is the activation func-

tion, as shown in (2). 
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(2)  A dynamic convolution on the expert weight 

reorganization is constructed whose structure consists of 

a global average pooling layer i, two fully connected 

layers Wfc1 and Wfc2, and an activation function, where w is 

the weight of the convolution kernel, l is the number of ex-

perts, out is the output convolution kernel weight, and σ is 

the activation function, as shown in (3). 
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(3) A dynamic group convolution is constructed, 

connecting a grouped fully connected layer behind the 

dynamic convolution, and the convolution kernel weights 

for convolution are grouped, where Gout is a 

C  C  Kx  Ky  Kz dimensional vector, and Wfc3 is the 

grouped fully connected layer. Wfc3 is divided into G × C 

groups at operation time, where G is the number of groups, 

which is used to adjust the model to achieve the optimal 

effect, as shown in (4). 

 
Gout 3 outfcW     (4) 

DGConv saves memory space occupation in the ker-

nel space by recalculating the weights of each convolution 

kernel in each layer. Furthermore, the model is easier to 

train, and has a strong generalization ability. The overall 

structural module of DGConv is shown in Fig. 6. 

Sliding window Group Convolution. 2D-MobileNet 

contains depth separable convolution module, which can 

reduce the computation and number of parameters of the 

network. In this paper, the improved 3D-WGMobileNet is 

proposed. Although it is easier to extract the features of 3D 

images, but due to the increase of the network dimensions, 

the number of parameters of the overall network structure 

is very large. And due to the sharing of the output weight, 

slow training is generated. Therefore, a sliding window 

group convolution layer behind the depth separable convo-

lution is added for fusing features. The SGConv uses 

a convolution kernel with a step size of s to slide on the 

input to extract features, to sparsify the connection between 

the input and output, and to reduce the number of parameters 
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Fig. 4.  The network structure of the designed 3D-WGMobileNet. 

 

Fig. 5.  The structure of the 3D-WGBlock module. 

 

Fig. 6.  The structure of DGConv. 

while ensuring the extraction of a certain degree of infor-

mation from neighboring channels. The principle structure 

is shown in Fig. 7. 

Assuming that the size of the convolution kernel for 

SGConv is dk, the input image is of size X × Y × Z voxels 

and dimension M, and the number of channels of the output 

is h. Dividing the input into g groups and using the convo-

lution kernel with step size s to convolve the input image 

will produce dc
 

windows with parameter number 

dc  dk  dk  dk, and computation amount is 

dc  dk  dk  dk x  y  z h. Compared with ordinary 

convolution, the number of parameters of this method is 

reduced by m × h orders of magnitude, and the amount of 

calculation is reduced by m orders of magnitude. The cal-

culation method of dc is consistent with the one of ordinary 

convolution, where P is the number of fillers and s is the 

speed of the sliding window, and the calculation in X di-

mension is shown in (5): 
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Fig. 7.  Schematic diagram of SGConv. 

On this basis, for facilitating the model training, we 

add skip connections to the depthwise separable convolu-

tional Blocks to generate the group features with the global 

information. 

3.2 Transfer Learning 

With the wild application of artificial intelligence and 

deep learning in image processing, supervised learning and 

unsupervised learning have developed rapidly, such as 

RNN and DC-Gan [25] networks, etc. However, these 

methods require extremely high quality and a large number 

of labeled datasets for training. Transfer learning gives an 

effective solution to the problem of model overfitting due 

to the lack of data and other reasons. Tajbakhsh et al. [26] 

concluded in their published paper that in the methods 

using deep learning for diagnosis in medical images, it is 

better to obtain initial image information using transfer 

learning, then fine-tuning the network compared with zero 

initialization to train the network. Medical imaging is diffi-

cult to obtain a lot of labeled image data due to problems 

such as experimental equipment, rare specialists etc. There-

fore, in the above cases, direct use of deep learning for 

feature extraction and classification often does not perform 

well. Verified by predecessors, transfer learning can be 

used to pre-train the model to solve the problem of insuffi-

cient data for depression, and then improve the generaliza-

tion ability of 3D-WGMobileNet network. 

In this paper, the large public Alzheimer's disease neu-

roimaging initiative (ADNI) database is used as the pre-

training data, and the model is pre-trained by transfer learn-

ing method. The steps of transfer learning pre-training 
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method based on ADNI are as follows. Firstly, fMRI raw 

images of 670 AD subjects without other diseases were 

screened out from the ADNI database, containing three 

categories of AD patients, mild cognitive impairment, and 

healthy controls. And the same preprocessing steps as those 

for depression subjects are carried out. Secondly, the 3D-

WGMobileNet model was trained with the preprocessed 

ADNI data, and the training weight files of the model were 

saved. Then, the training weights of the backbone part of 

the model were transferred to the assisted model 3D-

WGMobileNet. Next, the depression data was used to fine-

tuned the model. Finally, the output features from the 

model were classified.  

4. Experiment and Result Analysis 

4.1 Experimental Environment 

In this paper, all network models use cross-entropy 

loss function and Adam optimization algorithm, the data is 

divided into training, validation and test sets according to 

the ratio of 8:1:1, and five-fold cross validation is used, and 

the epoch value is set to 80. The batch is set to 64 when 

training the 2D network model and 8 when training the 3D 

network model. The initial learning rate is set to 0.01, and 

the initial learning rate of the network model after transfer 

learning is 0.0001. For experimental fairness, the parame-

ters of each model are adjusted, and the best results are 

selected for comparison. 

4.2 Model Evaluation Index 

For better evaluating the performance of the proposed 

model, in this paper, Accurary (ACC), F1 score, and the 

area under curve (AUC) covered by receiver operating 

characteristic (ROC) curve are used as the evaluation in-

dexes of the model [26]. The calculation is shown in (6), 

(7) and (8): 
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where TP and TN respectively represent the number of 

subjects in the true positive and negative category. FP and 

FN respectively represent the number of subjects in the 

false positive and negative category. The ACC is obtained 

by calculating the ratio of predicted positive samples to all 

samples, which reflects the quality of neural network clas-

sification results. The F1 score is a comprehensive evalua-

tion index, which combines precision (Pre) and sensitivity 

(Sen). rank
iins represents the number of the i-th sample, 

and U and V respectively represent the number of positive 

and negative samples. 
ins positiveclassi

  denotes the summa-

tion of only the serial number of positive samples, and the 

larger the AUC value indicates, the better classifier per-

formance is. The above three indexes range from 0 to 1. 

The larger the result is, the better the performance of the 

method shows. 

4.3 Results and Analysis 

In this paper, three groups of controlling experiments 

are designed to verify the feasibility and effectiveness of 

the improved 3D-WGMobileNet for the diagnosis of 

depression.  

Controlling experiment 1: The classical 2D and 3D 

lightweight deep learning networks were used to extract 

and classify the depression images after ReHo transfor-

mation, and compared with the proposed 3D-MobileNet the 

ability of 3D network to extract and classify medical 

images is explored. The experimental results are shown in 

Tab. 2. 

The experimental results show that in the above 

lightweight model network, with the increase of network 

model depth, the classification results of the model are 

improved. MobileNetV1 adds a depthwise separable con-

volution architecture, which reduces the memory occupa-

tion and computational complexity of the convolutional 

layers. While MobileNetV3 [28] uses neural architecture 

search (NAS) relative to V1 version, and adds the SE mod-

ule to the depthwise separable convolution to obtain more 

feature information, which changes the calculation method 

of the model and enhances the performance of the model. 

However, compared with the 2D convolutional net-

work, the 3D network can read the inter-layer information 

of the image, and has good adaptability to the fMRI data of 

medical images. In the comparison experiment between 3D 

and 2D-MobileNetV3, 3D-MobileNetV3 can directly en-

code the features of three dimensions when extracting 

fMRI image features, which enhances the feature extraction 

ability of spatial information. The recognition accuracy of 

depression patients on HCP dataset reaches 78.02%. The 

importance of inter-layer information is further demon-

strated. 

Controlling experiment 2: In the Block module of the 

MobileNetV3 network, the number of static convolutions 

replaced by DGConv is compared. The first group experi-

ment is to replace the original static convolutions with two 

or three DGConv modules only in the Block module with 

ReLU6 activation function. The second group one is based 

on the first group experiment, which adds again 2 or 3 

DGConv respectively replacing the original static convolu-

tions in the Block (ReLU6 and HS activation function) 
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module, means that in one MobileNetV3 network, Block 

(ReLU6) and Block (HS) are simultaneously contained, 

and 2 DGConv are used respectively. While in another 

MobileNetV3 network, Block (ReLU6) and Block (HS) are 

also simultaneously contained, and 3 DGConv are used 

respectively. The number of DGConv modules is used to 

verify the feature extraction ability of the DGConv idea in 

the deep feature extraction part of the model, and the ad-

vantages of achieving the best results are discussed. The 

experimental results are shown in Tab. 3. 

The experimental results from Tab. 3 show that re-

placing static convolution with DGConv helps to improve 

the classification accuracy of the model, but adding too 

many DGConv modules does not achieve better results, 

and can lead to an increase on the computational complexi-

ty of the model. Adding DGConv to the Block module 

using ReLU6 and HS functions achieves a 2.68% im-

provement over that of not applying DGConv, which indi-

cates that using the weight adjustable function on the con-

volution kernel is helpful to improve the ability of 

convolution kernel, and to learn deep features. 

Controlling experiment 3: For verifying the effective-

ness of the transfer learning modules, DGConv and 

SGConv added to the improved 3D-WGMobileNet, 

an ablation experiment on the network is conducted, and 

the results are shown in Tab. 4. 
 

Methods Criteria 
HC vs 

MID 

MID vs 

MOD 

MOD vs 

MDD 

HC vs 

MDD  

2D-Vgg16 

ACC 62.22% 61.11% 63.00% 65.60% 

F1 65.85% 51.79% 63.52% 77.14% 

AUC 61.25% 53.88% 62.10% 52.80% 

2D-Resnet50 

ACC 62.78% 60.00% 62.50% 63.20% 

F1 63.13% 40.08% 63.61% 71.21% 

AUC 46.63% 56.25% 64.50% 58.00% 

2D-

MobileNetV1 

ACC 67.56% 62.17% 60.50% 70.04% 

F1 69.76% 61.17% 50.93% 72.56% 

AUC 69.25% 63.88% 54.20% 74.59% 

3D-

MobileNetV1 

ACC 73.11% 65.56% 59.00% 73.61% 

F1 72.59% 66.30% 47.29% 74.50% 

AUC 74.88% 68.00% 48.50% 77.92% 

2D-

MobileNetV3 

ACC 70.17% 66.71% 62.34% 72.82% 

F1 72.37% 65.21% 59.53% 75.63% 

AUC 72.48% 76.20% 55.88% 76.70% 

3D-

MobileNetV3 

ACC 73.33% 71.89% 70.12% 78.02% 

F1 74.35% 70.50% 71.91% 77.78% 

AUC 75.25% 77.75% 70.01% 78.33% 

Tab. 2.  Experimental results of 2D deep learning network. 
 

Methods DGConv Precision Recall 

3D-MobileNetV3 - 81.50% 74.32% 

+Block (ReLU6) 
2 83.85% 75.88% 

3 83.82% 75.67% 

+Block (ReLU6, HS) 
4 84.18% 78.78% 

6 84.01% 78.34% 

Tab. 3.  Results on the addition effect of the idea of DGConv 

in 3D-MobileNet. 

The experimental results in Tab. 4 show that the use 

of transfer learning method can obtain more basic features 

of the original data, supplement the data volume, reduce 

the training time of the model, and improve the generaliza-

tion ability of the model. Therefore, the accuracy of using 

transfer learning is 4.38% higher than that of directly using 

3D-MobileNet for the classification of depression and HC. 

Because the state grouped convolution module can dynam-

ically adjust the weight of the convolution kernel using the 

self-attention mechanism and the input features, and reduce 

the repeated calculation by grouping, improve the feature 

extraction ability of the convolution kernel, and decrease 

the model parameters. The classification of HC and MID is 

improved by 1.21% by replacing the DGConv module 

compared with only adding transfer learning. Because the 

SGConv uses the feature fusion of adjacent channels for 

convolution, the reuse of global features is avoided, the 

amount of network parameters is reduced, and the compu-

tational efficiency of the model is improved. Therefore, 

compared with only using transfer learning, the classifica-

tion accuracy of using SGConv in HC and depression in-

creases by 3.11%, and compared with adding transfer 

learning and DGConv, the classification accuracy of HC 

and depression increases by 2.49%. In particular, the exper-

imental results of HC vs MID using ROC are visualized, as 

shown in Fig. 8. The horizontal axis represents False Posi-

tive Rate (FPR) and the vertical axis represents True Posi-

tive Rate (TPR). As can be seen from this figure, the curve 

is significantly closer to the upper left corner, indicating 

that the model performs well in distinguishing between the 

healthy and depressed groups. The diagonal line represents 

the baseline for random classification, and the further the 

curve moves away from this baseline, the better the model's 

performance is. 

The accuracy of the method proposed in this paper 

reaches 88.00%, 87.9% on the recognition accuracy of HC 

vs. depression, and MID vs. MOD, respectively. It is effec-

tively proved that adding transfer learning, subdividing the 

weight of the convolution module, and changing the weight 

sharing of the fully connected layer help to capture more 

small feature information, and to improve the accuracy of 

the model. And the main architecture of the model uses 

a lightweight network, which is more conducive to running 

on the Central Processing Unit (CPU). In addition, to vali-

date the in scalability of our model on larger datasets, we 

 

Fig. 8.  Schematic diagram of ROC. 
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also selected data from the REST-meta-MDD Consortium. 

The experimental results are shown in Tab. 5. On this 

larger dataset, it can be found that the performance of the 

model shows an increase compared to the performance of 

the smaller dataset, proving that the model can still run 

effectively when the data size increases. This indicates that 

our model has good scalability for larger datasets and has 

strong potential for practical applications. 

Controlling experiment 4: In this paper, the proposed 

method is compared with the latest methods such as 3-D 

CNN proposed by Zhao et al. [29], P-mRMR proposed by 

Bhaskar et al. [30], Constrained PARAFAC redictive sub-

network proposed by Bhaskar et al. [31], GAE-FCNN 

proposed by Fuad et al. [32]. The relevant results are 

shown in Tab. 6. It can be seen from Tab. 6 that the holistic 

results obtained by the proposed method in the small data 

set are better, and got the specificity of 92%, compared 

with the other methods. Because in this paper transfer 

learning is used as the pre-training basis of the model, and 

the ideas of dynamic grouped convolution and sliding win-

dow grouped convolution effectively avoid the overfitting 

problem caused by using small sample data to train model. 

Therefore, the specificity of image classification is im-

proved, and the best experimental results are obtained. 

5. Discussion 

In addition to the technological advances demonstrat-

ed in this study, a number of challenges exist which must 

be addressed before our proposed data processing approach 

can be widely applied in clinical settings. In a clinical set-

ting, computational cost can be a limiting factor, especially 

if large amounts of real-time data need to be processed. 

High-performance computing equipment may be required 

to ensure timely analysis, but not all healthcare organiza-

tions can be equipped with such resources. In addition, the 

sheer size of fMRI images requires significant data storage 

and processing power. To mitigate these awkward prob-

lems, in the future we will further optimize the computa-

tional efficiency of the model. In terms of clinical applica-

tions, although the proposed data processing method 

performs well in experimental settings, there are still some 

limitations. For example, in a clinical setting, it may be 

more difficult for patients to remain still, resulting in poor-

er data quality. Individual differences may also affect the 

effectiveness of the method. In addition, real-time data 

processing and immediate feedback are critical in clinical 

practice. Therefore, for successfully applying the method to 

the clinic, we need to do the following work in the future. 

Firstly, the real-time processing requirements is considered, 

and we will continue to optimize the algorithm in the future 

to achieve fast computation while ensuring diagnostic ac-

curacy. Secondly, large-scale clinical trials are needed in 

the future to fully validate the accuracy, reliability and 

stability of the model in order to ensure the validity of the 

model in a clinical setting. This will help to evaluate the 

performance of the method in different patient popula-

tions, especially in different disease stages and different age 
 

Methods Criteria 
HC vs 

MID 

MID vs 

MOD 

MOD 

vs 

MAD 

HC vs 

MDD 

3D-

MobileNet+Transfer 

learning 

ACC 82.83% 81.80% 80.55% 82.40% 

F1 83.75% 81.94% 78.62% 85.31% 

AUC 80.42% 79.93% 84.00% 78.47% 

3D-MobileNet+ 

Transfer learning + 

DGConv 

 

ACC 84.04% 81.20% 80.56% 83.60% 

F1 81.56% 82.86% 81.76% 85.71% 

AUC 80.59% 79.20% 86.25% 79.67% 

3D-MobileNet+ 

Transfer learning+ 

SGConv 

ACC 84.73% 82.60% 81.11% 85.51% 

F1 80.72% 81.69% 82.59% 85.25% 

AUC 84.67% 78.53% 81.88% 79.07% 

The proposed 

method 

ACC 85.15% 87.90% 82.57% 88.00% 

F1 82.37% 85.81% 81.79% 87.78% 

AUC 84.59% 82.26% 83.28% 84.07% 

Tab. 4.  Experimental results of different improved ideas of 

3D-WGMobileNet. 
 

Methods Criteria 
HC vs 

MID 

MID vs 

MOD 

MOD 

vs 

MAD 

HC vs 

MDD 

The proposed 

Method 

ACC 87.35% 89.60% 90.38% 91.00% 

F1 86.24% 88.46% 89.21% 90.34% 

AUC 85.74% 84.38% 84.26% 85.22% 

Tab. 5. Experimental results in REST-meta-MDD. 
 

Methods Depression/HC ACC Spe Sen 

Zhao et al. [29] 40/37 90% 10% 79% 

Bhaskar et al. [30] 49/33 78% 55% 90% 

Bhaskar et al. [31] 49/33 82% 79% 84% 

Fuadet al. [32] 250/227 65.07% 60.00% 69.74% 

The proposed 

method 
74/70 88% 92% 83.88% 

Tab. 6.  Comparison results of different methods. 

groups. Finally, any clinical decision support system based 

on deep learning requires the involvement of physicians, 

with which we combine clinical experience to make ration-

al decisions. Finally, considering the complexity of depres-

sion data, we will further explore multimodal fusion to 

integrate information from different data sources in order to 

extract more representative and discriminative features, and 

to improve classification accuracy and model robustness. 

6. Conclusion 

In this paper a depression assisted diagnosis algorithm 

is proposed based on a lightweight deep learning network 

in order to fully extract the local and global feature infor-

mation of MDD images, and to improve the network's 

classification performance on 3D medical data. Firstly, the 

fMRI image data are preprocessed, and ReHo analysis is 

used to reduce the dimension of the original images. 

Secondly, the fMRI image data are transferred to the 

proposed model 3D-WGMobileNet as the pre-training data 

using the transfer learning method. In addition, a DGConv 

module is designed to improve the computing power of the 
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convolution kernel by dynamically calculating the weight 

of the convolution kernel, and the weight matrix of each 

channel is divided in groups to compress the computation 

of the convolution kernel, which effectively enhances the 

feature extraction ability of the convolution kernel. Fur-

thermore, SGConv and skip connection are added to the 

network to extract the local and global information of the 

features, and to avoid the redundancy of information in the 

kernel space and the feature space. Finally, the depression 

data is inputted into the pre-trained 3D-WGMobileNet to 

fine-tune the model, and the classification results are 

obtained.  

The results of the classification experiments show that 

the classification accuracy of depression and HC, MID and 

HC, MID and MOD, MOD and MDD reaches 88.00%, 

85.15%, 87.90% and 82.57%, respectively, which verified 

that using the proposed method in this paper, patients with 

different stages of depression can be effectively classified, 

and some theoretical basis for the adjuvant treatment of 

depression is provided.  
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