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Abstract. The increasing prevalence of renewable energy 

sources and the heightened uncertainty in load demands 

within active distribution networks (ADNs) have led to 

more fluctuations in power flow and voltage levels during 

operational periods. In light of these challenges, this paper 

proposes a robust optimization framework specifically 

designed for ADNs, which carefully balances system secu-

rity, economic efficiency, and operational flexibility with 

multiple types of regulation resources. Firstly, a compre-

hensive regulation methodology is employed to integrate 

a variety of dispatchable resources. Secondly, the proposed 

model accounts for the inherent uncertainties related to 

load demand and the output of renewable energy genera-

tion by using the robust optimization (RO) technique. The 

proposed robust operational model for ADNs aims to min-

imizing power losses within the network and reducing 

voltage deviations, thereby improving overall network 

performance and reliability. Thirdly, the proposed model is 

linearized and reformulated as a convex optimization 

problem utilizing second-order cone relaxation techniques, 

and a relaxed cooperative co-evolution algorithm is im-

plemented to solve it efficiently. Numerical results across 

various scenarios indicate that, compared to the conven-

tional model without regulation resources, the proposed 

robust optimization model with multiple types of regulation 

resources can reduce voltage fluctuations by 89.6% and 

network losses by 12.9%. The proposed algorithm demon-

strates better computational performance compared to 

conventional methods. 
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1. Introduction 

Recent developments in renewable energy sources 

(RESs) and an increase in the unpredictability of power 

loads have introduced considerable volatility, which has 

resulted in reverse power flows, voltage fluctuations, and 

frequent violations of operational limits within distribution 

networks [1],[2]. The uncertainties arising from both gen-

eration and consumption sides can lead to the operation of 

distribution networks under complex and extreme condi-

tions, complicating the tasks of reactive power and voltage 

regulation, and potentially jeopardizing the safety and 

stability of the network [3]–[5]. The significant integration 

of RESs, electric vehicles (EVs), and energy storage sys-

tems (ESSs) into power infrastructures necessitates the 

extensive implementation of various flexible electronic 

devices. These devices enable the dynamic and efficient 

management of these emerging components, providing 

enhanced functionalities for power management and volt-

age stabilization. Consequently, they play a crucial role in 

increasing system flexibility and strengthening grid resili-

ence against fluctuations and disturbances [6]–[8]. 

Recently, the application of flexible power electronic 

technologies in distribution networks has been on the rise 

[9]. These technologies present effective solutions to 

mitigate the high volatility associated with renewable 

energy generation and the randomness of load demands, 

thereby alleviating issues related to transmission 

congestion within distribution networks. 

The effective management of distribution networks, 

particularly in the context of integrating RESs and regulat-

ing voltage, relies on various regulatory resources, includ-

ing capacitor banks (CBs), static var compensators (SVCs), 

network reconfiguration, and ESSs [10]–[13]. CBs contrib-

ute to voltage stability by providing reactive power com-

pensation, while SVCs offer rapid responses to voltage 
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fluctuations, thereby enhancing the dynamic equilibrium of 

the grid. Network reconfiguration serves to optimize the 

distribution of power flow, thereby increasing system flex-

ibility. Additionally, ESSs exhibit significant efficiency in 

peak shaving, mitigating fluctuations in renewable energy 

output, and maintaining grid stability. In [10], a model 

predictive control (MPC)-based methodology is introduced 

for voltage regulation that optimally adjusts the reactive 

power outputs of generators and SVCs to uphold power 

system stability. This approach employs a sensitivity-

informed state-space model and seeks to minimize a cost 

function while adhering to Voltage Stability Indices (VSIs) 

and operational constraints. An advanced energy manage-

ment dispatch (EMD) strategy designed for the coordina-

tion of ESSs powered by batteries and renewable energy 

sources within medium-voltage distribution networks is 

presented in [11]. This methodology utilizes a convex 

approximation to enhance the dispatch optimization pro-

cess, thereby ensuring operational efficiency and economic 

viability. The enhancement of distribution system efficien-

cy through hybrid reconfiguration and coordinated opera-

tion of distributed generation (DG) has been discussed in 

[12], which can reduce power losses; however, the signifi-

cant effects of voltage fluctuations on load power and DG 

output are frequently neglected, necessitating the use of 

complex nonlinear or linearization techniques. Reference 

[13] aims to investigate the coordinated impact of flexible 

technologies, including renewable-based distributed gener-

ations, battery energy storage systems, controllable load 

management, and network reconfiguration, on enhancing 

distribution system performance despite various technical 

constraints. In summary, these resources contribute to the 

effective integration of RESs and voltage regulation within 

distribution networks, facilitating more intelligent and 

reliable operations of power systems. 

The Soft Open Point (SOP) represents an advanced 

power electronic device that facilitates continuous reactive 

power compensation, thereby improving power balance 

and voltage regulation within ADNs [14], [15]. In compar-

ison to conventional switching devices, the SOP demon-

strates superior response times, extended operational 

lifespans, and enhanced capacity for managing impulse 

currents, rendering it particularly suitable for the integra-

tion of intermittent renewable energy sources [16]. In [14], 

an SOP operational strategy that has been optimized 

through particle swarm optimization to enhance voltage 

stability in ADNs is presented, while taking into account 

both network and technical constraints. The deep rein-

forcement learning method is employed in [15] to facilitate 

efficient real-time decision-making in the reconfiguration 

of ADNs that incorporate SOPs and large-scale distributed 

generation. A robust mixed-integer convex optimization 

model is introduced in [17], aimed at optimal SOP schedul-

ing in conjunction with energy storage systems, focusing 

on the management of power flows, minimization of 

losses, and maximization of profits within ADNs, while 

addressing uncertainties associated with demand and re-

newable generation. A three-stage optimization approach is 

proposed in [18] to synchronize SOPs with other active 

management strategies in ADNs, specifically targeting 

voltage fluctuations induced by variations in photovoltaic 

power through scheduled adjustments, periodic optimiza-

tion, and real-time control. Although these studies have 

advanced the application of SOPs in ADNs, there remains 

a lack of research addressing the collaborative optimization 

of SOPs alongside other regulatory resources such as CBs, 

SVCs, and network reconfiguration. 

The uncertainties arising from both energy supply and 

demand contribute to increasingly complex and unpredict-

able power flow dynamics within ADNs. Traditional de-

terministic optimization models may fall short in adequate-

ly addressing the safety and economic requirements across 

a range of operational scenarios influenced by these uncer-

tainties. Consequently, robust optimization (RO) and sto-

chastic programming (SP) have emerged as effective meth-

odologies for addressing challenges associated with 

uncertainty. In [19], a two-phase optimization strategy is 

introduced based on particle swarm optimization for 

ADNs, with the objective of reducing operational costs and 

minimizing load shedding while accounting for uncertain-

ties in renewable energy sources, demand, pricing, and 

system reliability. In [20], a stochastic programming ap-

proach for the coordination of distributed energy resources 

(DERs) in unbalanced ADNs is proposed to address opera-

tional uncertainties. A robust multi-objective optimization 

framework for ADNs is delineated in [21], emphasizing the 

enhancement of renewable energy utilization and the re-

duction of losses through the effective management of 

photovoltaic output uncertainties via scenario analysis and 

the generation of Pareto fronts. A trilevel, two-stage robust 

optimization model, referred to as Defender-Attacker-

Defender (DAD), is developed in [22], which aims to op-

timally pre-allocate and dispatch defensive resources in the 

face of three types of uncertainties—attack strategies, wind 

power, and solar irradiation—thereby minimizing load 

shedding. This model leverages energy storage capacity 

and is solved using a Column and Constraint Generation 

(C&CG) algorithm with Second Order Cone Programming 

(SOCP) relaxation for non-convex sub-problems. Current 

research predominantly addresses robust optimization 

challenges through the C&CG method or by reformulating 

them into general optimization problems via duality. Nev-

ertheless, there is a need for enhancements in the complexi-

ty, computational efficiency, and worst-case scenario iden-

tification of the C&CG algorithm. 

In response to existing challenges, this study presents 

a comprehensive operational model for ADNs, prioritizing 

system security, economic efficiency, and operational flex-

ibility. A comparison of the proposed model with the relat-

ed studies is provided in Tab. 1. The proposed model is 

designed to thoroughly incorporate uncertainties associated 

with load variations and renewable energy generation. The 

main contributions of this paper can be summarized as 

follows: 
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Ref. DG 
Reactive power 

compensation device 
ESSs SOP Reconfiguration Robust optimization 

[10]   × × × × 

[11]  ×  × × × 

[12]  × × ×  × 

[13]    ×  × 

[14]  × ×  × × 

[15]  × ×   × 

[17]  ×   ×  

[21]  × × × ×  

This study       

Tab. 1. Related studies and key features of this study. 

 Compared with existing studies, this paper integrates 

a wide range of regulatory resources, such as distrib-

uted generation, energy storage systems, reactive 

power compensation devices, and flexible network 

reconfiguration strategies. This integration serves as 

the foundation for a robust optimal operational 

framework for ADNs, with the primary goals of min-

imizing network losses and reducing voltage fluctua-

tions. The proposed model effectively balances opera-

tional cost and voltage regulation, thereby ensuring 

optimal performance of the network. 

 The proposed model undergoes linearization through 

second-order cone relaxation techniques, transform-

ing it into a convex optimization problem. This trans-

formation not only simplifies the model but also en-

hances the efficiency of its solution process. To 

address the resulting optimization problem, a relaxa-

tion evolutionary algorithm is utilized, providing 

a robust approach for tackling complex optimization 

challenges. 

 A comparative analysis is conducted against a tradi-

tional robust optimization algorithm to highlight the 

improved efficacy and precision of the proposed algo-

rithm. The impacts of uncertainties in renewable en-

ergy supply and demand on the system are also inves-

tigated under different scenario settings. 

The subsequent sections of this paper are structured 

as follows: Section 2 provides an overview of the modeling 

of various regulatory resources. Section 3 introduces the 

proposed robust optimal operation model for ADNs. The 

linearization of the model and the corresponding solution 

methodology are detailed in Sec. 4. Section 5 presents and 

discusses the results of the case study. Finally, this paper is 

concluded in Sec. 6. 

2. Modeling of Multiple Regulation 

Resources 

In order to mitigate the volatility and uncertainty as-

sociated with renewable energy sources and load demands, 

distribution networks implement a range of regulatory 

resources as active management strategies. These resources 

include Soft Open Points (SOPS) equipped with an energy 

storage system (ESS), SVCs, CBs, and network reconfigu-

ration techniques. 

2.1 Modeling of SOPS 

A SOP enhances the flexibility and power quality of 

distribution networks by functioning as a controllable 

switch that regulates bidirectional power flow. It facilitates 

the rerouting of power, balances load distributions, and 

addresses challenges such as congestion and voltage sags 

through precise control of phase angles and voltage magni-

tudes. The SOP typically exists in two primary configura-

tions: the two-terminal SOP and the three-terminal SOP. 

These configurations enable the simultaneous connection 

of either two or multiple feeders, respectively, thereby 

improving the connectivity and adaptability of distribution 

networks. 

The integration of a SOPS significantly optimizes 

grid performance. The SOP effectively manages power 

flow, which is essential for maintaining microgrid stability 

and addressing peak demand periods, while the ESS con-

tribute to load curve smoothing and reduces reliance on 

costly peaking power plants. Both components play a vital 

role in voltage regulation, with the SOP adjusting phase 

angles and the ESS managing reactive power. In scenarios 

involving isolated grids, this system facilitates island oper-

ation and supports critical load requirements. Furthermore, 

it enhances the integration of renewable energy by balanc-

ing intermittent supply, storing surplus energy, and direct-

ing power to areas of high demand. During fault condi-

tions, the ESS provides immediate power availability, 

while the SOP efficiently redirects power. By participating 

in ancillary services, the system optimizes operational 

efficiency, generates revenue, and supports dynamic de-

mand response mechanisms to avert blackouts. 

＝
＝

＝ ＝
~ ~VSC i VSC j

ESS

 

Fig. 1. Illustration of a two-terminal SOP with an ESS. 
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Consequently, a system design that combines a two-

terminal SOP with an ESS is employed, as illustrated in 

Fig. 1. This configuration utilizes two voltage source con-

verters (VSCs) connected by a DC-DC converter, with an 

attached battery for energy storage and retrieval, thereby 

optimizing usage and enhancing flexibility. This arrange-

ment facilitates controlled power exchange between feed-

ers and efficient energy storage management.  

Mathematically, the SOP and ESS are modeled with 

constraints that reflect their operational limits and charac-

teristics, including power flow constraints, reactive power 

capabilities, energy storage capacity, power ratings, and 

depth of discharge, ensuring that the system operates effi-

ciently and reliably across various operational conditions. 

Constraint (1) updates the state of energy storage Si,t, tak-

ing into account the energy generated during the charging 

process and the energy utilized during discharging. Con-

straint (2) stipulates that the initial state of charge (SOC) at 

the beginning of the period must be equivalent to the final 

state at the conclusion of the period. Furthermore, con-

straints (3)-(4) dictate that the charging and discharging 

power of battery i at time t must fall within the range of 0 

to its maximum charging and discharging capacity 

(pi
cha,max/pi

dis,max). Constraint (5) guarantees that the total 

power flow from the ESS, aggregated across all batteries i 

within the set P at time t, is equal to the net difference 

between discharging and charging power. Constraint (6) 

ensures that the apparent power of the SOPS at time t does 

not surpass its rated capacity (SSOP). Additionally, the reac-

tive power SOP

,i tQ  is bounded by its physical minimum and 

maximum limits. 

 
cha c dish

, 1 , , ,

a dis ,/i t i t i t i tS S p p      (1) 

 ,1 , ,i i TS S  (2) 

 
cha,mcha cha

, ,

ax0 ,i t i t ipp b   (3) 

  dis cha dis,max

, ,0 1 ,i t i t ip b p    (4) 

 P

SOP dis cha

, , , ,i t i t i t

i

P p p


   (5) 

 
   

2 2
SOP SOP SOP

, ,i t i tP Q S   (6) 

where pi,t
cha and pi,t

dis denote the charging/discharging 

power of ESS at time t, respectively. cha and dis are the 

charging/discharging efficiencies. Additionally, Si,t remains 

within specified minimum and maximum limits. The binary 

variable bi,t
cha denotes whether the battery is in a charging 

state (1) or not (0).  

2.2 Modeling of SVC 

An SVC represents a sophisticated element within 

contemporary power systems, specifically engineered to 

deliver dynamic reactive power support, as illustrated in 

Fig. 2. In contrast to conventional devices, the SVC pro- 

SVC connection bus

 

Fig. 2. Illustration of the SVC structure. 

vides continuous reactive power compensation (Qi,t
SVC), 

thereby effectively regulating voltage and sustaining grid 

stability. Similarly, the SVC needs to satisfy its upper and 

lower bounds during operation. 

2.3 Modeling of CB 

Conversely, CBs are categorized as discrete reactive 

power compensation devices that function as slower-speed 

regulation resources. Although they are proficient in com-

pensating for reactive power and stabilizing voltage levels 

within power systems, their operation is characterized by 

a stepped approach, necessitating a longer adjustment peri-

od compared to the continuously variable nature of SVCs. 

The reactive power output of the capacitor Qi,t
CB is articu-

lated in (7). Constraint (8) limits the total number of 

switching operations CBmax (steps up or down) that capaci-

tor bank i can execute throughout the entire time horizon T. 

Indeed, the number of steps of capacitor bank i connected 

to the system at time t remains within its physical limit. 

 
CB CB CB,step

, , ,i t i tQ Z Q  (7) 

 
1

CB CB CBmax

, 1 ,

1

T

i t i t

t

Z Z 






   (8) 

where the variable Zi,t
CB denotes a discrete control variable 

that indicates the number of steps (or units) of capacitor 

bank i that are engaged with the system at time t. QCB,step 

means the capacity of one step or unit.  

2.4 Modeling of Network Reconfiguration 

In the context of a distribution network, network re-

configuration serves as a vital strategy employed by net-

work operators to enhance system performance. This pro-

cess entails modifying the network topology by managing 

the state of contact switches—such as breakers, reclosers, 

and sectionalizers—that interconnect various segments of 

the network. By judiciously opening or closing these 

switches, operators can modify the direction and distribu-

tion of power flow to achieve multiple objectives, includ-

ing loss minimization, reliability maximization, voltage 

profile enhancement, or isolation of malfunctioning sec-

tions. Network reconfiguration is governed by a series of 

constraints to ensure the system's operational integrity and 

safety. Specifically, constraint (9) applies Kirchhoff's Cur-
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rent Law to each node j, excluding the reference node 

(node 1). The negative sign indicates that any power injec-

tion at the node results in a reduction of the net flow into 

that node. Constraint (10) establishes the equivalence be-

tween the cumulative power output from the reference 

node (node 1) directed towards its connected child nodes k 

and the total power demand or generation v at that particu-

lar node. Constraint (11) delineates the limitations on pow-

er flow Fij,t through line ij at time t. Constraint (12) ensures 

that precisely n − 1 lines are closed at any time t (where n 

represents the number of nodes in the network), and con-

straint (13) restricts the frequency with which a specific 

line ij can transition between open and closed states 

throughout the optimization horizon T − 1. Furthermore, 

constraint (14) imposes a cap on the total number of 

switching operations permissible across the entire network 

during the optimization horizon T − 1. 
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where M is a large positive constant. ZL
ij,t represents the 

status of the line connecting nodes i and j at time t, where 1 

indicates the line is closed and 0 indicates it is open. L is 

the set of all lines. ZL
ij,t+1 – ZL

ij,t represents the change in 

the status of the line connecting nodes i and j between 

consecutive time steps. ZLmax and ZsLmax represent the limits 

of one single and all contact switches. 

3. Robust Optimal Operation Model 

for ADNs 

In the context of managing a distribution network, 

uncertainties such as fluctuations in load and the variability 

of renewable energy generation present considerable chal-

lenges that can adversely affect service quality and opera-

tional efficiency. These uncertainties introduce variability 

within the network, which may result in significant voltage 

deviations and increased network losses. Voltage devia-

tion, defined as the difference between the actual voltage at 

any point in the network and the nominal voltage level, is 

a critical parameter that necessitates careful monitoring and 

control. Excessive voltage deviations can degrade power 

quality, thereby affecting the performance of connected 

electrical devices and diminishing customer satisfaction. 

Conversely, total network loss, primarily resulting from the 

resistive characteristics of conductors that lead to energy 

dissipation as heat, contributes to inefficiencies, elevated 

operational costs, and a heightened environmental impact. 

To address these challenges, RO techniques, which 

are specifically tailored to manage uncertain parameters, 

are employed. In this context, a min-max optimization 

framework is particularly advantageous, as it seeks to min-

imize the worst-case scenarios for both voltage deviation 

and network loss, thereby ensuring stable power quality 

and operational efficiency across a spectrum of uncertain 

conditions. This methodology enables network operators to 

make decisions that are resilient to the variability intro-

duced by load fluctuations and renewable energy output, 

thereby enhancing the overall reliability and sustainability 

of the distribution network. 

3.1 Objective Function 

The formulation of the robust optimal operation 

model specific to ADNs involves the establishment of 

equations and the delineation of the objective function, i.e., 

equations (15) and (16). This constitutes a minimax prob-

lem, wherein the primary aim is to minimize the maximum 

potential value of the function f, taking into account two 

distinct sets of variables: 𝑥 from X, representing the do-

main of decision variables, and 𝑦 from Y, denoting the 

domain of uncertain variables. This dual-variable optimiza-

tion approach seeks to achieve a balance that yields the 

most robust solution, accommodating both controllable 

decisions and potential uncertainties. The problem is de-

signed to identify the optimal strategy under worst-case 

scenarios, which is essential in uncertain environments 

where it is necessary to mitigate against potential adverse 

situations or extreme conditions. In this framework, f is 

defined as the overall objective function, represented as 

a weighted sum of two sub-objectives, f1 and f2. The 

weights α and β are utilized to balance the significance of 

each sub-objective, with μ serving as a scaling factor 

(commonly referred to as a dimensional uniform 

conversion scaling coefficient) to ensure uniformity in the 

conversion of measurements across different dimensions. 

 
minmax
x y
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where rij represents the resistance of line ij, Iij,t denotes the 

current flowing through line ij at time t, Ui,t indicates the 

voltage at bus i at time t, and UN signifies the rated voltage 

of the system. The constraint α + β = 1 guarantees that the 

total weight is normalized, reflecting a coherent combina-
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tion of objectives. Specifically, f1 pertains to the minimiza-

tion of total network losses, while f2 focuses on minimizing 

the deviation of nodal voltages from their nominal values. 

The optimization problem thus aims to identify the optimal 

operational strategy that minimizes total network losses 

while concurrently maintaining voltage deviations at min-

imal levels, all under the assumption of worst-case scenari-

os for certain parameters, likely represented by the varia-

bles y. The trade-off between these two objectives is 

modulated by the parameters α and β, allowing for adapta-

ble prioritization based on the specific operational re-

quirements or constraints of the power system. 

Furthermore, constraints (17)–(21) are employed to 

articulate the uncertainties associated with both sources 

and loads. In particular, the set of uncertain variables Y can 

be characterized by the predicted value yj,t
pre, the maximum 

value yj,t
max, and the minimum value yj,t

min. Constraints (18) 

and (19) delineate the methodology for calculating the 

maximum and minimum adjusted values of y at node j and 

time t. Specifically, they scale the prior value yj,t
pre by fac-

tors of (1 + ) and (1 – ). A particular constraint ensures 

that at most one of +
j,t or –

j,t can be non-zero for any 

given j and t, thereby preventing the simultaneous increase 

and decrease of the variable y. Another constraint imposes 

a limit on the total number of adjustments (either increases 

or decreases) that y can undergo throughout the entire time 

horizon T for a specified node j.  

   pre max min

, , , , , , ,1 ,j t j t j t j t j t j t j ty y y          Y  (17) 

  max pre

, ,1 ,j t j ty y   (18) 

  min pre

, ,1 ,j t j ty y   (19) 

 
, , 1,j t j t     (20) 

  , ,j t j t j

t T

  


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where the binary variables +
j,t or –

j,t denote decisions 

regarding the potential increase or decrease of the variable 

y at node j and time t.  signifies the permissible percent-

age change expressed as a decimal value.  is used to ad-

just the range of the interval, and a larger omega indicates 

a larger uncertainty interval. The parameter j indicates the 

maximum number of adjustments permitted for y at node j. 

3.2 Constraints 

Constraints (1)-(14) establish the operational limits of 

the regulatory resources implemented. Additional 

constraints are outlined as follows: 

1. Power Flow Constraints Considering Network 

Reconfiguration 

The traditional DistFlow model requires modification 

when accounting for network reconfiguration. Constraint 

(22) articulates the conservation of active and reactive 

power at node j at time t, asserting that the power output, 

minus losses, equals the power input plus the power in-

jected at the node. Inequalities in (23) link the squared 

voltages at nodes i and j to the active and reactive powers 

traversing the line connecting them, utilizing the big-M 

method with the binary variable ZL
ij,t to indicate whether 

the line is closed or open. The final equation computes the 

magnitude of the current. Constraint (24) is defined to 

establish the power balance at node j at time t.  
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where Pij,t and Qij,t are the active and reactive power trans-

mitted by line ij at time t, respectively. xij is the reactance 

of line ij. Pj,t and Qj,t are the net injected active and reactive 

power at bus j at time t. Similarly, Pjk,t and Qjk,t are the 

active and reactive power transmitted by line jk at time t. 
DG

,j tP  and DG

,j tQ  represent the active and reactive power gen-

erated by renewable energy sources at bus j at time t. Grid

,j tP  

and Grid

,j tQ  represent the active and reactive power supplied 

by the substation at bus j at time t. Load

,j tP  and Load

,j tQ  

represent the active and reactive power consumed by the  
load at bus j at time t. 

2. Substation Operational Constraints 

Given the finite capacity of ADNs, the transmission 

of power from the main grid to these networks via substa-

tions necessitates meticulous management. In particular, 

while supplying active power, substations must also regu-

late the exchange of reactive power to ensure that the total 

power throughput remains within designated limits. This 

regulation is crucial for mitigating the effects of power 

fluctuations within DNs on the stability of the main grid. 

The pair of inequalities in (25) delineate the acceptable 

ranges for the active and reactive power outputs of substa-

tion i at any given time t, thereby protecting against poten-

tial overloads and ensuring operational integrity.  
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where 
Grid,maxP /

Grid,minP  and 
Grid,maxQ /

Grid,minQ  are the 

upper/lower bounds on the active and reactive power 

outputs. 



RADIOENGINEERING, VOL. 34, NO. 1, APRIL 2025 43 

 

3. DG Operational Constraints 

Constraint (26) defines the permissible limits for both 

active and reactive power outputs for DG unit i at a given 

time t.  
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(26)

 

where DGmax

,i tP  and DGmin

,i tP  are the upper/lower bounds of 

the DG active power output. cos  is the power factor. 

4. System Security Constraints 

In the context of ADN operations, it is imperative to 

maintain bus voltages within specified limits to ensure the 

proper functioning of equipment and the quality of power 

supplied. Additionally, managing branch currents and 

transmission powers is essential to prevent overloading, 

equipment malfunctions, and service interruptions, thereby 

preserving the reliability and efficiency of the network. 

This necessitates ongoing monitoring and control to ensure 

that all operational variables (e.g., the voltage magnitude 

Ui,t, the current Iij,t, active and reactive power flow 

,ij tP / ,ij tQ ) remain within safe limits, thereby optimizing 

network performance. 

4. Model Linearization and Solution 

Method 

As highlighted in the preceding discussion, the model 

formulated encompasses various nonlinear and nonconvex 

elements, which complicates its direct resolution using 

traditional optimization solvers. To address this issue, the 

current section initiates the process by linearizing the non-

linear components, thereby enabling their approximation 

through linear equivalents, which enhances the model's 

tractability. Subsequently, second-order cone relaxation 

techniques are employed to reformulate the model into 

a MISOCP format, facilitating its resolution with 

specialized optimization algorithms. 

4.1 Model Linearization 

To address the squared terms of voltage and current 

present in the constraints, we introduce new variables, lij,t 

and Vi,t, to substitute these terms, as shown in (27). 
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Then, constraints (16), (22), and (23) can be replaced 

by the following forms. 
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By using the SOCP methodology on the last equation 

in (30), the relaxation constraint is presented as follows: 
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Furthermore, the developed model includes terms 

characterized by absolute values, such as constraints (8), 

(13) and (14). Without loss of generality, these absolute 

value terms can be linearized using the following formula-

tion. The first inequality in constraint (33) restricts the 

permissible increase or decrease in the value of Z between 

time intervals t and t + 1. 
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(33)

 

where the binary variable Ot is utilized to allow for either 

an increase or a decrease. Zmax and Zmin are the maximum 

and minimum values of Z. The final inequality imposes 

a limit on the total number of operational changes (in-

creases or decreases) that can occur throughout the entire 

time horizon T − 1. The parameter max represents the max-

imum number of operations permitted, which may reflect 

budgetary constraints on the frequency of adjustments to Z 

during the operational process. 
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4.2 Solution Method Based on the Relaxed 

Cooperative Co-evolution Algorithm 

The robust optimization problem addressed in this re-

search is reformulated into a constrained optimization 

framework through the application of a relaxation evolu-

tionary algorithm [23], [24]. This methodology iteratively 

alternates between a first-layer minimization and a second-

layer maximization, transforming infinite continuous con-

straints into manageable finite constraints. As an anytime 

algorithm, it progressively yields increasingly refined solu-

tions over time and computes optimal values for decision 

variables (x*, representing simulation operation variables) 

and environmental variables (y*, encompassing load 

fluctuations and renewable energy outputs) in each itera-

tion, thereby facilitating comprehensive data analysis. By 

reformulating the intricate continuous min-max problem, 

the relaxation evolutionary algorithm systematically en-

hances solution accuracy. Its dual-layer iterative structure 

enables the simultaneous computation of optimal values for 

x*, y*, and robustness metrics, rendering it particularly 

effective for addressing uncertainties in operational envi-

ronments while providing extensive data for analysis at 

each stage. 

The proposed method involves an iterative process al-

ternating between the first-layer optimization (minmax) 

and the second-layer optimization (max). In this research, 

the decision variable x encompasses various simulation 

operation variables, whereas the environmental variable y 

comprises load fluctuations and renewable energy output. 

(a) The first layer optimization 

The first layer of optimization is designed to mini-

mize a variable denoted as , which serves to limit the 

maximum value of the objective function, as illustrated in 

equations (34), (35). If maximum value of the objective 

function f is less than 𝜌, and 𝜌 obtains the minimum value, 

then the solution in this layer is found. 

minimize
x


X

 (34) 

s.t. 
,
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(b) Relaxation method implementation  

Given the continuous nature of the problem, which 

imposes infinite constraints, it is addressed through relaxa-

tion methods that transform it into a series of manageable 

subproblems. Each subproblem corresponds to a discrete 

value of the uncertainty variable y(k), selected from a finite 

set SY, thereby facilitating the approximation of the solu-

tion to the original problem. The optimal value of the ob-

jective function, represented as fm*, along with the corre-

sponding decision variable x*, is subsequently forwarded to 

the second layer of optimization for additional analysis. 
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It can be proved that if (xk, ρk) is the optimal solution 

of the relaxation problem (36), and is also a feasible solu-

tion of (34), (35), then this solution is also the optimal 

solution of (34), (35). If a solution is deemed non-viable, 

the most serious violation constraint is added to the set SY. 

The relaxation evolutionary algorithm then proceeds to 

approximate the optimal solution by progressively reducing 

the domain of infeasible solutions. 

(c) The second layer of optimization 

The second layer of optimization, as formulated in 

(37), operates under the premise that the decision variables 

are fixed at their optimal values x* derived from the first 

layer. In contrast to the first layer, the environmental 

variables in this layer are unconstrained, encompassing the 

entire continuous domain 𝑌, rather than being restricted to 

the finite set SY. The objective of this layer is to compute 

the value of the objective function fM* and to identify the 

optimal environmental variable y* under worst-case 

conditions, thereby accounting for the full spectrum of 

potential uncertainties. 
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(d) The iterative process 

The relaxation evolutionary algorithm is implemented 

as an iterative process. Each iteration involves solving the 

first layer optimization to obtain (x*, fm*), updating the 

lower bound with fm
*, and subsequently fixing x* to resolve 

the second layer, yielding (y*, fM*) and updating the upper 

bound with fM
*. The iteration concludes when the differ-

ence between fM* and fm* falls below a specified threshold, 

R; otherwise, y* is incorporated into SY, and the process 

continues. 

5. Case Study 

In this section, the modified IEEE 33-bus test system 

is employed to verify the effectivity of the proposed model 

and solution algorithm. Note that all the numerical tests are 
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performed on MATLAB 2022b with Gurobi 10.0.1 on 

a personal computer with 16 GB RAM and a 2.30 GHz CPU. 

5.1 Parameter Setting 

A detailed layout of the modified IEEE 33-bus test 

system utilized in the case study is illustrated in Fig. 3. 

Voltage stability is assessed within a safe operational range 

of 0.95 to 1.05 per unit, thereby ensuring the reliability of 

electrical service. This enhanced system design incorpo-

rates contact switches installed across lines 9-15, 8-21, and 

25-29, each initially configured in an open state. Further-

more, controllable switches are positioned on lines 12-13, 

20-21, and 6-26, starting in a closed condition. Additional-

ly, a two-terminal SOPS device is connected to buses 18 

and 33. Other basic parameters can be seen in [25]. 

The capacity of WT and PV are set at 1 MW and 

3 MW respectively. The minimum and maximum value of 

the reactive power of SVC are –0.1 and 0.1 MVar. The 

minimum and maximum value of the reactive power of CB 

are 0 and 0.5 MVar. The minimum and maximum value of 

the reactive power of SOP are 0 and 0.3 MVar. The ESS 

within the SOPS is designed with a capacity of 1 MWh. 

CBs are permitted to perform up to three operations 

throughout the scheduling horizon. Balancing economic 

factors with security considerations, the coefficients α and 

β are established at 0.8 and 0.2, respectively. A representa-

tive day is divided into 24 hourly intervals, with each 

scheduling cycle lasting 1 hour. The parameters for renew-

able energy and load fluctuations, ΛRE and ΛLoad, are set to 

8, while the weight factor, ω, is defined as 10%. 

5.2 Solution Results 

In order to assess the improved efficacy and precision 

of the proposed algorithm, a comparative analysis was 

conducted against a traditional robust optimization algo-

rithm [26], as illustrated in Tab. 2. The proposed method is 

designated as Method 1 (M1), while the conventional ap-

proach is referred to as Method 2 (M2). It is significant to 

note that M1 requires fewer iterations compared to M2. 

Additionally, the computational time for M1 is only 

42.47% of that required by the conventional algorithm, 

thereby demonstrating the markedly enhanced efficiency of 

the proposed algorithm.  

The optimization results indicate that switches TS1 

and D3 maintain a continuous operational state, whereas 

D1 and TS3 consistently remain disengaged. A notable 

change occurs with switch D2, which transitions from 

a closed to an open state at precisely 23:00, a change that is 

mirrored by TS2. As illustrated in Fig. 4, circuit breaker 

activations are scheduled for specific times: 15:00, 17:00, 

and 18:00. Between the hours of 10:00 and 20:00, excess 

renewable energy is directed to the ESS via the smart oper-

ation and planning system, resulting in an upward trend in 

ESS levels. Conversely, the ESS discharges during periods 

when there is no surplus of renewable energy. 
 

 

Method Obj (p.u.) Iter No. Solution time (s) 

M1 0.06765 4 205.42 

M2 0.06761 7 439.75 

Tab. 2. The comparisons of the proposed and traditional 

approaches. 
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Fig. 3. Diagram of the modified IEEE 33-bus test system. 
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Fig. 4. Operation results of the CB, SVC and ESS. 

 

Fig. 5. The fluctuation in voltages at every bus within the 

system across varying time periods. 
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Figure 5 demonstrates that the voltages across all 

buses remain within the safety limits of the operational 

range. Notably, higher voltage levels are observed at buses 

numbered 30 to 33 during the midday period from 9:00 to 

17:00. The voltages at buses 2 through 12 exhibit consist-

encies, while those at buses 23 to 33 are predominantly 

maintained within the range of 0.97 to 1.00 per unit (p.u.) 

during nighttime and early morning hours, specifically 

from 1:00 to 8:00, as well as during the late evening from 

18:00 to 24:00. The voltages at the remaining buses are 

generally situated within the range of 1.00 to 1.02 p.u. The 

fluctuations in terminal voltages can primarily be attributed 

to the significant output from renewable energy sources, in 

conjunction with the coordinated application of various 

active management strategies. 

5.3 Computational Performance 

The iterative process of the proposed algorithm is de-

tailed in Tab. 3. In this context, fm and fM, expressed in per 

unit (p.u.), represent the optimal results of the objective 

function for the initial and subsequent optimization phases, 

respectively. Here, fM is regarded as the upper bound (UB), 

while fm is considered the lower bound (LB). The gap in 

each iteration can be calculated using the formula  

|UB – LB|/UB. As indicated in Tab. 2, the convergence 

criterion, set at less than 5 × 10−4, is achieved after four 

rounds of iterative computations. 

5.4 Scenario Comparison Analysis 

In the second stage of the model, a comprehensive 

examination is conducted to assess the impact of uncertain-

ties in renewable energy supply and demand on the system. 

This stage is essential for ensuring the system's resilience 

against substantial network losses and its capacity to main-

tain voltage quality standards during extreme conditions. 

A series of scenarios, as displayed in Tab. 4, are employed 

to evaluate and validate the model's robustness. Specifical-

ly, S1 represents a deterministic model, where   is set to 

0. For S2 and S3, the uncertain parameters are taken as the 

boundary values of their respective intervals. In S2, the 

renewable energy output is taken as the upper bound of its 

interval, while the load is taken as the lower bound. Con-

versely, in S3, the renewable energy output is taken as the 

lower bound, and the load is taken as the upper bound. 

From S4 to S8, different interval change percentages and 

numbers of adjustments are applied to study the results 

under various uncertainty scenarios. 

By employing a uniform bus system and consistent 

equipment specifications, the results of the experiments—

encompassing metrics such as network loss (𝑃𝑙𝑜𝑠𝑠), voltage 

offset (deltV), and the frequency of voltage exceeding 

permissible limits ( limit

overNv )—are systematically presented 

(refer to Fig. 6 and Tab. 5). 

In the deterministic model (designated as S1), charac-

terized by high renewable energy penetration, significant 
 

#Iter fM (UB) fm (LB) Gap (|UB-LB|/UB) 

1 0.06765 0.01229 81.84% 

2 0.06765 0.05886 12.99% 

3 0.06765 0.06286 7.08% 

4 0.06765 0.06763 0.03% 

Tab. 3. Detailed iteration procedure. 
 

Scenario Model 
Fluctuation 

deviation 
Uncertainties settings 

S1 DT ω = 0 / 

S2 / ω = 10% 

RE takes the upper bound 

while the load takes the 

lower bound. 

S3 / ω = 10% 

RE takes the lower bound 

while the load takes the 

upper bound. 

S4 RO ω = 5% ΛRE = ΛLoad = 8 

S5 RO ω = 10% ΛRE = ΛLoad = 8 

S6 RO ω = 15% ΛRE = ΛLoad = 8 

S7 RO ω = 10% ΛRE = ΛLoad = 4 

S8 RO ω = 10% ΛRE = ΛLoad = 16 

Tab. 4. Scenario settings. 
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Fig. 6. The network loss and voltage offset in different 

scenarios. 
 

Scenario S1 S2 S3 S4 S5 S6 S7 S8 

l imit

overNv  48 36 112 0 0 0 0 0 

Tab. 5. The voltage over-limit number in different scenarios. 

voltage deviations are observed, leading to numerous in-

stances of voltage exceeding acceptable limits. In contrast, 

S2 exhibits increased network losses and diminished eco-

nomic efficiency relative to S1, although it paradoxically 

demonstrates smaller voltage deviations; this does not 

imply enhanced security due to the serious risks posed by 

voltage over-limit events. S3 reveals the most pronounced 

voltage deviations and occurrences of voltage falling below 

acceptable limits, with network losses comparable to those 

in S2, suggesting similar economic outcomes under vary-

ing voltage profiles. 

The proposed RO model in Scenarios 4, 5, and 6 sig-

nificantly mitigates voltage deviations and eradicates in-
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stances of voltage exceeding limits, albeit at the cost of 

slightly reduced economic performance, resulting in more 

conservative outcomes. An increase in the fluctuation devi-

ation coefficient, ω, across Scenarios 4 to 6 correlates with 

heightened network losses and voltage deviations, indicat-

ing a decline in both economic efficiency and security. 

Similarly, as the levels of ΛRE and ΛLoad rise in Scenarios 5, 

7, and 8, network losses and voltage deviations also in-

crease, reflecting a deterioration in system economy and 

security due to a more cautious approach to managing 

uncertainties. 

5.5 Analysis of Different Portfolios of 

Regulation Resources 

To evaluate the impact of different portfolios of regu-

lation resources on the performance of ADNs, we set up 

various regulation resource combinations based on S5 in 

subsection 5.4 and applied the proposed RO model for 

analysis. The scenario settings are detailed in Tab. 6, where 

NR means network reconfiguration. Metrics of network 

loss Ploss and voltage offset deltV are displayed in Fig. 5. 

From Fig. 7, it can be observed that compared to 

S5.1, which does not consider any regulation resources, 

and S5.6, which incorporates all regulation resources, the 

comprehensive consideration of various regulation re-

sources significantly improves system security and eco-

nomic efficiency. Specifically, the voltage offset deltV in 

S5.6 is reduced by 89.6% compared to S5.1, and the net-

work loss Ploss is decreased by 12.9%. When comparing 

S5.2 to 5.6, it is evident that the participation of the SOP 

and ESS has the best effect on reducing network loss and 

enhancing voltage quality, followed by the reactive power 

compensation devices. Meanwhile, the network reconfigu-

ration method demonstrates better performance in improv-

ing system security compared to the use of ESS. The com-

parative analysis of these calculation results indicates that 

integrating regulation resources into ADNs can improve 

the economic and security aspects of system operation. 

Moreover, the coordinated optimization of multiple regula-

tion resources achieves the optimal performance of the 

system. 

5.6 Discussion on Practical Applications 

The robust optimization framework proposed in this 

paper significantly enhances the operational efficiency and 

stability of ADNs. It achieves this by reducing network 

losses, improving voltage quality, enhancing economic 

efficiency and security. The robust optimization framework 

offers valuable tools for addressing challenges associated 

with integrating renewable energy into ADNs. Its applica-

bility spans various sectors, from residential and industrial 

settings to urban and rural environments. For example, this 

research not only facilitates the coordination of photovolta-

ic generation with local load demands in residential areas, 

mitigating  power  supply  instability  caused  by  weather 
 

Cases S5.1 S5.2 S5.3 S5.4 S5.5 S5.6 

SOPS 
SOP × × √ √ √ √ 

ESS × × × √ √ √ 

SVC&CB × √ √ × √ √ 

NR × √ √ √ × √ 

Tab. 6. The setting of different portfolios of regulation 

resources. 
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Fig. 7. The network loss (a) and voltage offset (b) in different 

portfolios of regulation resources. 

changes, but also applies to microgrid projects in industrial 

parks, enabling self-sufficiency in electricity supply, in-

creasing energy efficiency, and reducing operational costs. 

6. Conclusion 

This study presents a comprehensive operational 

model for distribution networks designed to address uncer-

tainties associated with energy sources and demand. The 

proposed model incorporates a variety of regulatory re-

sources and employs a relaxation-based evolutionary algo-

rithm for optimization purposes. 

Numerical analyses conducted through various test 

cases indicate that the coordinated scheduling of multiple 

regulatory resources effectively mitigates uncertainties on 

both the generation and consumption sides, thereby facili-

tating optimal integration of renewable energy while keep-

ing voltage fluctuations within acceptable limits. The algo-

rithm demonstrates enhanced efficiency and accuracy, 

requiring significantly fewer iterations and utilizing only 

42.47% of the computational time compared to traditional 

robust methods. Additionally, the computational perfor-

mance indicates that the implemented solution algorithm 

can achieve the specified convergence criteria within 
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a finite number of iterations. Voltage levels at all buses 

remain within safe operational thresholds, a result attribut-

ed to the output from renewable energy sources and the 

coordinated management strategies that leverage diverse 

regulatory resources. Moreover, a comparative analysis 

across various model scenarios and uncertainty levels re-

veals that the proposed robust optimization model effec-

tively reduces voltage deviations and mitigates over-limit 

issues, albeit with minor economic trade-offs, thereby 

achieving a balance among network losses, voltage stabil-

ity, and overall system security and economic viability. 

Potential research directions include exploring ad-

vanced forecasting techniques using machine learning for 

improved prediction accuracy, expanding uncertainty man-

agement to handle extreme events and develop adaptive 

control strategies, investigating integration with emerging 

smart grid technologies such as electric vehicles and de-

mand response programs. 
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