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Abstract. To address the suboptimal spatial distribution
and low comprehensive utilization of existing electric vehi-
cle (EV) public charging infrastructure, this study proposes
an innovative charging station placement and capacity de-
termination methodology integrating K-Means++ clustering
with an enhanced RODDPSO variant. Building upon con-
ventional K-Means and RODDPSO frameworks, we develop
an improved hybrid algorithm incorporating three critical
advancements: 1) an adaptive mutation mechanism within
the RODDPSO architecture to enhance global search capa-
bilities and prevent premature convergence; 2) synergistic
optimization of K-Means++ cluster centroids through the en-
hanced RODDPSO operator; and 3) a novel cluster vali-
dation metric based on real-world utilization patterns. The
proposed methodology effectively resolves the inherent lim-
itations of conventional K-Means approaches, particularly
their sensitivity to initial centroid selection and tendency
toward local optima. Empirical validation through a case
study of Nanjing’s charging infrastructure demonstrates the
algorithm’s superior performance: stations sited using the
proposed hybrid method exhibit 63.8% greater spatial corre-
lation with high-utilization zones (>15% operational utiliza-
tion) compared to baseline K-Means implementations. The
advancements provide both methodological contributions to
spatial optimization algorithms and practical insights for ur-
ban EV infrastructure planning.

Keywords
K-Means++, variation randomly occurring distributedly
delayed particle swarm optimization, public charging
station, siting and capacity determination

1. Introduction
With the growing awareness of environmental protec-

tion and the ongoing transformation of the energy structure,

electric vehicles (EVs), as a clean and sustainable mode of
transportation, are rapidly becoming the mainstream choice
for future mobility. The widespread adoption and promo-
tion of EVs, however, rely heavily on the construction of
adequate charging infrastructure. Public charging stations,
as the primary service providers for the general population,
deserve significant attention in this context. Despite their
importance, the current charging network faces several crit-
ical challenges, including an insufficient number of public
charging piles, uneven distribution, low utilization rates, and
subpar user service quality. These issues manifest in various
ways: overcrowding and long queues at charging hot spots,
a lack of charging facilities in certain areas, prolonged idle-
ness of charging piles in other regions, and even some stations
being left unattended throughout the year. Such inefficien-
cies fail to adequately meet both the current and anticipated
future charging demands of surrounding areas.To address
these challenges, it is imperative to optimize the siting and
capacity planning of charging stations. This not only helps
reduce construction and operational costs but also enhances
the comprehensive utilization rate of charging infrastructure.
Consequently, research on the siting and capacity optimiza-
tion of public EV charging stations has become a critical
focus for improving the efficiency and sustainability of the
charging network. In existing studies, EV charging load has
been identified as a critical factor in the deployment of pub-
lic charging stations. Literature [1] examined EV charging
loads using a standard IEEE 33-bus radial distribution sys-
tem and applied the condor search algorithm and cuckoo
search algorithm for siting and capacity determination, ef-
fectively evaluating the methods’ performance. At the same
time, there are many factors that can affect the load on the
grid. Literature [2] proposed a robust optimization model
for siting charging stations in micro grids composed of wind
power, photovoltaic, and distributed energy sources. By com-
bining road networks and power grids, this study used load
fluctuation rates to assess the fit between renewable energy
output curves and charging demand curves, simultaneously
addressing capacity determination.
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Economic factors also play a pivotal role in charging
station optimization. Literature [3] considered economic ef-
ficiency and the impact of fast charging stations on the grid to
determine optimal locations. Literature [4] evaluated existing
EV charging stations by analyzing charging locations, times,
connector types, architectural combinations, and the perfor-
mance of power converters, aiming to mitigate uncertainties
caused by transmission grids. Different types of charging
stations with different sources of electricity can also affect
the charging load. Literature [5] proposed a modified multi-
objective salp swarm-based optimization algorithm to allo-
cate photovoltaic (PV), wind turbines (WT), and EV charging
stations in a micro grid. All of the above literature discusses
the impact of grid load on charging station layout, but none
of them consider the overall number of charges and charging
loads within the administrative boundaries.

Particle swarm algorithms are widely used in strategy
optimization and prediction, and there are more improve-
ment algorithms for them. Literature [6] proposed a multi-
objective full-parameter optimization particle swarm algo-
rithm that integrates all the factors affecting the global and
local search capabilities. Literature [7] proposed a novel par-
ticle swarm algorithm applied to the economic emission load
dispatch problem. Some of the particle swarm optimiza-
tion algorithms mainly focus on improving the efficiency and
speed of the algorithm. Literature [8] used simulated an-
nealing immune particle swarm optimization algorithm. The
simulated annealing algorithm is used for the global update
of the particle swarm algorithm, and the immune mecha-
nism is introduced to participate in the iterative update of
particles to improve the speed and efficiency of the particle
swarm algorithm. Literature [9] proposes the use of hybrid
genetic algorithm and particle swarm algorithm to optimize
the allocation of plug-in electric vehicle charging stations in
the distribution network. Literature [10] uses an improved
particle swarm algorithm to optimize the problem of avoid-
ing over-voltage caused by power injection from PV power
sources and voltage dips in the distribution network caused
by EV charging. There is also a lot of literature on charging
station layout using clustering algorithms. Literature [11]
uses algorithms such as K-Means, DBSCAN, and CFS to
cluster demand points and derive the location of charging sta-
tions. However, their clustering algorithms do not optimize
the initial cluster center location. A well-performing initial
clustering center point is crucial to the merit of the clustering
effect. There are many algorithms other than using clustering
and PSO algorithms that can be equally applied in accom-
plishing the charging station layout. Literature [12] predicts
the EV charging demand through the encoder-decoder depth
architecture of GCN and optimizes the competitive resource
allocation strategy for charger planning through the Cournot
competitive game model. A new parallel computing algo-
rithm is proposed to seek the Cournot competitive equilib-
rium through convergence analysis.GCN is mainly used for
predicting suitable siting areas, such as predicting the charg-
ing demand at a certain location, the impact on the grid,
etc., but relies on a large amount of high-quality graph data,

which is otherwise of limited effectiveness, and suffers from
the problems of high computational cost and the need for
a long time to train the neural network, and is not good at
solving the optimization problem directly. While particle
swarm algorithm is directly used to optimize the charging
station location, capacity and other parameters to achieve the
optimal goal, and the computational amount is small, suitable
for multi-objective optimization, no graph structure data and
other optimization problems.

Minimizing travel distance and waiting time has also
been a major focus in siting and layout research. Litera-
ture [13] used a genetic algorithm to simulate charging station
locations, reducing travel distance and waiting time. Liter-
ature [14] applied a decision experiment and proportional-
ity assessment technique to identify six sustainable charging
station sites, minimizing travel distances. Literature [15] op-
timized charging station locations and capacities by employ-
ing a multi-objective evolutionary algorithm (NSGA-II and
MOEA/D-gen) based on urban mobility distribution models,
reducing travel time. Literature [16] combined deep neural
networks with the NSGA-II algorithm to improve operational
performance, assigning stations based on EV charging levels
to minimize setup costs and average waiting times. In addi-
tion, the number and quality of charging stations is an im-
portant metric. Lastly, Literature [17] proposed an uncertain
model converted into deterministic opportunity-constrained
programming, accounting for multiple optimization pref-
erences of distribution network operators, charging station
owners, and EV users to reduce travel distances and optimize
siting. All of the above literatures have used factors such as
the user’s travel distance to obtain charging demand points
for site selection, but none of them have analyzed the user’s
charging demand directly based on the user’s charging de-
mand.

In recent years, a variety of factors and algorithms have
been considered in the research on optimal charging station
layouts. These studies have achieved significant progress
and proposed diverse solutions for optimizing charging sta-
tion siting and capacity planning. However, many of the
existing studies fail to address the specific needs of electric
vehicle (EV) users comprehensively. Most focus solely on
electric taxis and overlook the primary users of public charg-
ing stations, such as internet vehicles, which are prevalent at
this stage.

To address these gaps, this paper presents a novel
method for EV charging station siting and capacity deter-
mination. The proposed approach integrates K-Means++
clustering with the Variational Randomly Occurring Dis-
tributedly Delayed Particle Swarm Optimization (VROD-
DPSO) algorithm. The VRODDPSO algorithm is utilized
to optimize the initial clustering centroids of the K-Means++
algorithm, which is then applied to cluster charging demand
points. The charging station capacity is determined based on
administrative divisions, charging frequency, and the propor-
tion of total power demand.
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Fig. 1. System architecture.

The main contributions of this paper are as follows:

• Three-stage clustering method for charging station sit-
ing: A three-stage clustering method is proposed for
EV charging station site selection. Based on the user’s
point of need, The first stage identifies regional areas,
the second stage determines charging pile locations,
and the third stage identifies charging station locations.
This approach ensures a reasonable and efficient layout
of charging stations while reducing computational time
and improving operational efficiency.

• Improved K-Means++ algorithm with VRODDPSO op-
timization: All three clustering stages adopt an im-
proved K-Means++ algorithm, which incorporates the
VRODDPSO algorithm to optimize the initial cluster-
ing centroids. This enhancement effectively addresses
the limitations of the traditional K-Means algorithm,
such as falling into local minima and producing sub
optimal clustering results due to inappropriate initial
centroids.

• New evaluation index for siting performance: A novel
measurement index is proposed to assess the advantages
and disadvantages of charging station siting under dif-
ferent algorithms. This index evaluates performance
based on the comprehensive utilization rate of real-
world charging stations, providing a more practical and
reliable benchmark for optimization.

The remainder of this paper is structured as follows:
Section 2 outlines the system framework structure. Sec-
tion 3 describes the data analysis and processing methods.
Section 4 details the improvements made to the RODDPSO
algorithm. Section 5 presents the experimental results, while
Section 6 provides an analysis of these results and validates
their reliability. Finally, Section 7 concludes the paper.

2. System Architecture
This paper presents a comprehensive strategy for the

siting and sizing of electric vehicle (EV) charging stations in
urban areas by integrating the K-Means++ and Variational
RODDPSO algorithms. The proposed approach demon-
strates superior performance compared to the traditional
K-Means algorithm, as evidenced by its ability to generate
more accurate clustering results that align with the actual
utilization rates of existing charging stations.

To achieve optimized charging station locations, this
study follows a systematic series of steps designed to en-
sure the accuracy of the siting process. These steps include
data acquisition, data cleaning, per-processing, determining
the optimal number of clusters for K-Means++ through the
elbow method, modeling and clustering, and analyzing the fi-
nal results. The overall technical framework of the proposed
methodology is illustrated in Fig. 1.

The first step involves collecting essential data, includ-
ing real-time GPS signals, road network data, geographic
locations, and the utilization rates of internet-based ride ser-
vices’ charging stations. Once the data is gathered, it is
cleaned to address issues such as missing values and outliers.
The K-Means++ algorithm is then applied to determine the
optimal number of clusters, categorizing the demand points
of online vehicle services.

Next, a model integrating K-Means++ with the variant
RODDPSO algorithms is developed. This model clusters
regions to ensure that the charging station locations remain
within the city’s construction boundaries. It then optimizes
the placement of charging piles and stations within each re-
gion, aiming to maximize user satisfaction among electric
vehicle owners.

Finally, the charging station locations are analyzed and
optimized, with the performance of existing stations assessed
based on comprehensive utilization rates. This analysis pro-
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vides valuable insights that can assist governments and re-
lated agencies in better understanding the performance of
charging infrastructure, ultimately supporting infrastructure
planning and optimization efforts.

3. Data Analysis and Processing
This paper utilizes Yancheng City’s online ride-hailing

trip data as the primary data source for analysis, which in-
cludes 5 days of GPS signal data from approximately 12 mil-
lion online ride-hailing trips. The dataset contains essential
information such as vehicle ID, latitude and longitude, speed,
direction, passenger status, data sending and receiving times,
administrative district number, and specific locations. No-
tably, all data points correspond to trips with passengers.
For the purpose of this study, all online vehicles are treated
as electric vehicles during data cleaning and processing.The
dataset, consisting of 12 million data points, was thoroughly
cleaned. Vehicle IDs with anomalous sending times were
identified and removed, ensuring that only error-free data re-
mained. Data points with coordinates outside Yancheng City
were deleted, and the number of GPS signal data entries for
each vehicle ID was checked. If a vehicle had fewer than
100 GPS signals in a single day, it was assumed to have low
driving mileage and no charging demand, so such vehicle
IDs were deleted. Additionally, records with mismatched
sending times were cleaned and removed.

Following the data cleaning, the next step involved pro-
cessing the cleaned data. Given that the battery capacity of
current electric vehicles typically allows them to operate for
less than a day, it was assumed that each vehicle would have
only one charging demand per day. Since GPS signals are
primarily generated when the vehicle is taking orders, and are
absent when the vehicle is idle, the geographic location cor-
responding to the longest interval between two GPS signals
is treated as the charging demand point.

The GPS signals of each eligible vehicle were sorted,
and the sending and receiving times of the data were stan-
dardized. Demand points were filtered based on this criterion
and saved for further analysis. The demand points for each
day were aggregated, and a visual representation of these
points is shown in Fig. 2. In this figure, the blue dots repre-
sent specific demand point locations, with the horizontal and
vertical coordinates indicating latitude and longitude.

The specific cleaning steps are as follows:

Step 1: Delete the vehicle data with abnormal data
sending and receiving times, and delete the data whose GPS
signal is outside Yancheng City, and clean and delete some
of the data whose sending time cannot correspond to the
actual time.

Step 2: According to the vehicle ID, find its single day
GPS signal data, if the data is less than 100, it can be assumed
that the driving distance of the day is too short and there is
no charging demand.

Fig. 2. Demand points.

Step 3: Determine that each vehicle has only 1 charging
demand in a day, and keep the geographic location where the
start time of the two longest GPS signal intervals is located
as a demand point for backup.

4. Improvements to RODDPSO

4.1 RODDPSO
The Randomly Occurring Distributedly Delayed Parti-

cle Swarm Optimization (RODDPSO [18]) is an advanced
evolutionary algorithm based on Particle Swarm Optimiza-
tion (PSO) that is specifically designed to optimize solutions
for complex problems. RODDPSO integrates a dynamic
mechanism with a deterministic strategy to enhance the con-
vergence speed and improve the global search capabilities of
the traditional PSO algorithm.

When applied to optimize the initial cluster center lo-
cations in the K-Means++ algorithm, the RODDPSO algo-
rithm utilizes velocity and positional adjustments of parti-
cles to identify more optimal initial cluster centers within the
search space. This ensures better clustering performance by
addressing limitations of traditional initialization methods,
such as the tendency to converge on sub optimal solutions.

In this study, the RODDPSO algorithm introduces ran-
domly occurring distributed time lags into the velocity update
model. Specifically, a certain number of historical individual
best particles and global best particles are randomly selected
based on the evolutionary state. The time lag term is deter-
mined by multiplying it with a random value (0 or 1).This
newly introduced randomly occurring distributed time lag in
the velocity update model enables more effective utilization
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of the cumulative evolutionary history of the population. It
enhances the algorithm’s ability to avoid becoming trapped
in local optima, while maintaining an appropriate balance be-
tween convergence speed and solution diversity. The velocity
and position update equations for the RODDPSO algorithm
are presented in (1)–(2).

𝑣𝑖 (𝑘 + 1) = 𝑤𝑣𝑖 (𝑘) + 𝑐1𝑟1 (𝑝𝑖 (𝑘) − 𝑥𝑖 (𝑘))
+ 𝑐2𝑟2 (𝑝g (𝑘) − 𝑥𝑖 (𝑘))

+ 𝑚l (𝜉)𝑐3𝑟3

𝑁∑︁
𝜏=1

𝛼(𝜏) (𝑝𝑖 (𝑘 − 𝜏) − 𝑥𝑖 (𝑘))

+ 𝑚g (𝜉)𝑐4𝑟4

𝑁∑︁
𝜏=1

𝛼(𝜏) (𝑝g (𝑘 − 𝜏) − 𝑥𝑖 (𝑘)), (1)

𝑥𝑖 (𝑘 + 1) = 𝑥𝑖 (𝑘) + 𝑣𝑖 (𝑘 + 1). (2)

In the equations, 𝑣𝑖 (𝑘 + 1) represents the updated ve-
locity, and 𝑥𝑖 (𝑘 + 1) represents the updated position. The 𝑘

denotes the current iteration number, while 𝑐1 and 𝑐2 are the
acceleration coefficients. Similarly, 𝑐3 and 𝑐4, which repre-
sent the acceleration coefficients of the distributed time lag
term, are equal to 𝑐1 and 𝑐2, respectively (i.e., 𝑐1 = 𝑐3 and
𝑐2 = 𝑐4). 𝑁 denotes the upper limit of the distributed time
lag, and 𝛼(𝜏) is an 𝑁-dimensional vector where each element
is randomly assigned a value of 0 or 1. 𝑟𝑖 (𝑖 = 1, 2, 3, 4) rep-
resents random numbers uniformly distributed in the interval
[0, 1]. The parameters 𝑚l and 𝑚g denote the strength factors
of the distributed time lag term, which vary according to the
evolutionary state 𝜉.

In this paper, the goal of the objective function is to min-
imize the average distance between the data points to their
own centroids and the objective function is shown in (3).

𝐽 =

𝑁c∑
𝑗=1

[ ∑
∀𝑃𝑡 ∈𝐶𝑖 𝑗

dist(𝑃𝑡 ,𝑀𝑖 𝑗 )
𝑁p

]
𝑁c

(3)

where 𝑁c represents the number of clusters; 𝐶𝑖 𝑗 denotes the
𝑗 th cluster of the 𝑖th particle; 𝑀𝑖 𝑗 denotes the 𝑗 th cluster-
ing center of the 𝑖th particle; 𝑃𝑡 denotes the 𝑡th data point;
dist(𝑃𝑡 , 𝑀𝑖 𝑗 ) denotes the Euclidean distance between the data
point 𝑃𝑡 and its clustering center 𝑀𝑖 𝑗 ; and 𝑁p denotes the
number of data points belonging to the clustering 𝐶𝑖 𝑗 .

In this paper, the calculation of the evolution factor is
based on the distance between particles, 𝑑𝑖 , denoted by the
average distance between the 𝑖th particle and the other parti-
cles, as shown in (4).

𝑑𝑖 =
1

𝑆 − 1

𝑆∑︁
𝑗=1, 𝑗≠𝑖

√√√
𝐷∑︁
𝑘=1

(
𝑥𝑖𝑘 − 𝑥 𝑗𝑘

)2 (4)

where 𝑆 denotes the size of the particle population and 𝐷

denotes the size of the particles. The formula for the evolu-
tionary factor 𝐸f is shown in (5).

𝐸f =
𝑑g − 𝑑min

𝑑max − 𝑑min
(5)

where 𝑑g denotes the global best particle in 𝑑𝑖; 𝑑min and
𝑑max denote the minimum and maximum values of 𝑑𝑖 in the
particle population, respectively.

In this paper, an equipartition strategy is used to classify
the four evolutionary states denoted by 𝜉 (𝑘), as shown in (6).

𝜉 (𝑘) =


1, 0.00 ≤ 𝐸f < 0.25,
2, 0.25 ≤ 𝐸f < 0.50,
3, 0.50 ≤ 𝐸f < 0.75,
4, 0.75 ≤ 𝐸f ≤ 1.00

(6)

where the four states of the algorithm are the convergence
state, exploitation state, exploration state, and escape state.
In the convergence state, particles aim to quickly approach the
global optimum by ignoring the distributed time lag term to
enhance convergence speed. In the exploitation state, to avoid
being trapped in a local optimum, the velocity update model
incorporates distributed time lag terms, and a certain number
of historical individual best particles are randomly selected
to enable a more thorough local search. In the exploration
state, particles are encouraged to extensively search the en-
tire solution space by adding randomly occurring distributed
time lags and selecting a certain number of historical global
best particles to guide the exploration. In the escape state,
particles aim to escape from regions around local optima by
randomly selecting a combination of historical global best
particles and individual best particles to assist in the search,
effectively preventing the algorithm from being trapped in
local optima.

Different evolutionary states produce different ran-
domly occurring distributed delay information with updated
values as shown in (7)–(8).

𝑚l (𝜉) =


0.00, 𝜉 (𝑘) = 1,
0.01, 𝜉 (𝑘) = 2,
0.00, 𝜉 (𝑘) = 3,
0.01, 𝜉 (𝑘) = 4.

(7)

𝑚g (𝜉) =


0.00, 𝜉 (𝑘) = 1,
0.00, 𝜉 (𝑘) = 2,
0.01, 𝜉 (𝑘) = 3,
0.01, 𝜉 (𝑘) = 4.

(8)

4.2 VRODDPSO
The RODDPSO algorithm employs randomly dis-

tributed delays, which reduces the likelihood of falling into
local optima. However, the algorithm often struggles with
early-stage local convergence due to the gradual narrowing
of the search range for individuals in the population. This
limitation arises from the algorithm’s inherent mechanism,
which exhibits weak exploratory capability in the early stages,
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leading to particle aggregation in localized regions and dif-
ficulty in effectively escaping local optima. This issue is
particularly pronounced in optimization problems with com-
plex search spaces and numerous local optima. While the
algorithm may eventually rely on its global optimization ca-
pability to escape local optima as the number of iterations
increases, this process often requires a large number of itera-
tions, reducing the efficiency of exploration in the early stages
and negatively impacting overall convergence speed and per-
formance. Therefore, enhancing the algorithm’s early explo-
ration ability and avoiding premature convergence to local
optima becomes crucial for improvement.

To address this issue, this paper introduces an adaptive
mutation mechanism to the RODDPSO algorithm, forming
the VRODDPSO algorithm. The proposed algorithm ap-
plies random mutations to particle positions during each it-
eration, thereby reducing the likelihood of being trapped in
local optima. Fixing the mutation probability often results
in abrupt changes during the early stages, causing the al-
gorithm to prematurely focus on specific regions within the
search space, which can lead to early convergence. This early
convergence may prevent the algorithm from identifying the
global optimum or superior solutions. Additionally, fixed
mutation probabilities may reduce diversity among individ-
uals in the population, limiting the algorithm’s exploratory
potential and hindering the discovery of better solutions. In-
creasing the number of adaptive mutations can better address
the problem’s dynamics, but the mutation probability must
be carefully calibrated to strike a balance between explo-
ration and exploitation. A higher mutation probability in the
early stages of iteration promotes broader solution space ex-
ploration, while a gradual reduction in mutation probability
during later iterations helps concentrate the search in regions
likely to contain optimal solutions. Considering these factors,
the formula for the mutation probability is provided in (9).

𝑃(𝑀) = 1 −
(
𝑎1.2 + iter
max iter

× log(max iter)
2

)
(9)

where 0 < 𝑃(𝑀) < 1 is the mutation probability, 𝑎 is the
number of mutations, iter is the number of current iterations,
and max iter is the maximum number of iterations.

In the experiment, the fitness value of RODDPSO is
initially obtained as a reference. As the number of iterations
and mutations increases, the mutation probability should de-
crease to stabilize the optimal solution and prevent divergence
from the global optimum. The formula for mutation proba-
bility is derived from experimental experience. The number
of iterations, denoted as iter, changes linearly, and dividing
it by the maximum number of iterations serves as the base
mutation probability. However, if the mutation count also
follows a linear function, the algorithm may still experience
excessive mutations in the later stages. Therefore, the mu-
tation count is reduced using a power function. During the
experiments, the exponent of the mutation count was set to
decimal values such as 1.0, 1.1, 1.2, . . . , 2.0. After testing
the algorithm on 1,000 experimental datasets, it was found

that setting the exponent of the mutation count to 1.2 achieved
lower fitness values.

To ensure fewer mutations occur in the later stages, the
influence of the maximum number of iterations needs to be
minimized. Typically, the maximum number of iterations
ranges from 50 to 1,000. When the number of iterations is
small, more frequent mutations are necessary to avoid get-
ting trapped in local optima. Conversely, when the number
of iterations is high, excessive mutations could interfere with
selecting the global optimum, so the mutation count needs to
be appropriately reduced. For a moderate number of itera-
tions, mutation probability should not be overly influenced.
A logarithmic function fits these requirements perfectly, as
multiplying the original mutation probability by the base-10
logarithm of the maximum number of iterations and dividing
by 2 satisfies the condition: increasing mutation frequency
for fewer than 100 iterations, decreasing it for more than 100
iterations, and leaving the mutation rate unaffected at exactly
100 iterations.

The adaptive mutation strategy proposed in this paper
plays a vital role in reducing the risk of RODDPSO falling
into local optima. The mutation probability decreases lin-
early with the number of iterations, ensuring a broad explo-
ration space in the early stages of the search and more refined
local search in the later stages. Specifically, during the adap-
tive mutation process, independent random perturbations are
applied to randomly selected dimensions (ranging from 1 to
𝑛) of historical best particle position vectors. The mutated
particle positions undergo boundary checks to ensure they
remain within the feasible search space. By adjusting the
mutation probability to balance the mutation count, the algo-
rithm effectively adapts to the number of iterations. When the
number of iterations is limited to around 100, the algorithm
is more prone to getting trapped in local optima, requiring
more adaptive mutations to escape. When the number of iter-
ations reaches 1,000, the algorithm has sufficient iterations to
find the global optimum, necessitating fewer mutations. As
particle swarm optimization algorithms are inherently prone
to local optima, a certain number of adaptive mutations are
still required to escape these traps effectively.

The specific clustering process of the VRODDPSO al-
gorithm is shown in Algorithm 1.

Algorithm 1 VRODDPSO clustering process.
1: Input: 𝑃, 𝑤, 𝑁c, maxiter, velocitymax, other parameters
2: Output: Optimized cluster centroids and assignments
3: Initialize particles: X𝑖 = {C𝑖1, C𝑖2, . . . , C𝑖𝑁c }, ∀𝑖 ∈ [1, 𝑃]
4: Initialize velocity V𝑖 and fitness 𝑓 (X𝑖 )
5: while Iteration 𝑡 < maxiter do
6: for Each particle 𝑖 do
7: Compute distance: 𝑑 𝑗𝑘 = ∥x 𝑗 − C𝑖𝑘 ∥
8: Assign clusters: x 𝑗 → C𝑖𝑘 where 𝑘 = arg min 𝑑 𝑗𝑘

9: Evaluate fitness: 𝑓 (X𝑖 ) =
∑𝑁

𝑗=1 ∥x 𝑗 − C𝑖𝑘 ∥2

10: end for
11: Update: X𝑖 , V𝑖 based on 𝑝best and 𝑔best
12: Apply mutation to X𝑖

13: end while
14: return Optimized centroids C𝑘 and cluster assignments
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5. Site Selection and Capacity Deter-
mination Process

5.1 Process of Clustering
The first clustering phase plays a crucial role in group-

ing the areas to ensure that the locations of charging piles are
within a reasonable geographical range of the city. Yancheng
City, characterized by its irregular terrain with noticeable
bumps and depressions, requires this initial clustering step.
Without it, directly performing the second clustering might
result in some of the charging pile locations being placed in
depressed areas, thereby exceeding the city’s boundaries and
negatively impacting the overall layout. Moreover, by car-
rying out the first clustering, we can also effectively reduce
running time and improve operational efficiency.

Following the completion of the first clustering, the
second clustering is performed regionally. The primary ob-
jective of the second clustering is to identify the locations
of the charging piles within each region, and the number of
charging piles in each region is determined based on the ratio
of electric vehicles to public charging piles. At this stage, the
centroids of each cluster represents the required location of
a charging pile.

Given the substantial demand for charging piles, which
currently far exceeds the available public charging piles, the
second clustering is conducted based on the prevailing ratio
of electric vehicles to public charging piles in Yancheng City.
According to public data, this ratio is 6.6:1. Consequently,
demand points in different regions are clustered using a ratio
of 6.6:1. This allows for the determination of the number of
clusters, which corresponds to the number of charging piles
required in the selected locations. The number of charging
piles, in turn, becomes the new K-value for the clustering
process. To ensure the program runs smoothly, the popu-
lation size is adjusted based on the new K-value. All the
centroids from the clustering process are stored in a table,
with labels indicating the regions they represent for the third
clustering phase. The results of the clustering are presented
in Fig. 3, where the blue points represent the charging pile
locations after clustering. Figures 2 and 3 are very similar,
mainly because the number of demand points is large, and
the number of charging piles clustered out is similarly large,
and the local details are shown in Fig. 4. Figures 2 and 3 are
still different in local details.

Charging station capacity determination involves iden-
tifying the key parameters, such as the number and type of
charging piles and their corresponding charging power, re-
quired to meet the demand of electric vehicle users within
a specific area. When determining the capacity of a charg-
ing station, several factors must be considered, including the
number of electric vehicles in the region, their usage pat-
terns, the characteristics of charging demand, as well as the
construction costs and operational efficiency of the charging
infrastructure.

Fig. 3. Clustering of charging piles location.

Fig. 4. Comparison between Fig. 2 and Fig. 3 in Yandu.

The objective of capacity determination is to calculate
the number of charging piles needed, taking into account
factors such as administrative divisions, user demand, and
the power grid load. Specific considerations for capacity
determination include the following:

1. The area share of the central urban area within the charg-
ing area within the clustered area.

2. The percentage of charging times in each administrative
area in a month, as well as the percentage relationship
between the administrative area and the clustered area
of charging.

3. The percentage of total power in each area, and the rela-
tionship between the percentage of administrative areas
and the clustered areas of charging.
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Districts Charging times (Proportion)
Tinghu 156215 (31.17%)
Yandu 72654 (14.50%)
Dafeng 65711 (13.11%)
Dongtai 48284 (9.63%)
Jianhu 19991 (3.99%)
Sheyang 52149 (10.41%)
Funing 20829 (4.16%)
Binhai 27419 (5.47%)
Xiangshui 37934 (7.56%)

Tab. 1. Charging times and their proportions.

Yancheng City consists of 9 administrative districts,
with Tinghu District and Yandu District representing the cen-
tral urban area, comprising approximately 10.37% of the total
area. The percentage of charging times in each administra-
tive district for a month is presented in Tab. 1, while the
percentage of power usage is shown in Tab. 2.

The three specific factors represent spatial, temporal,
and electrical power aspects, respectively. Therefore, the
weights of the three factors should be equal. Since the sum
of the three factors is still less than 1, the proportional values
of the three factors are added together and then increased by
1. This result is then multiplied by the number of charging
stations derived from the pile-to-station ratio, which gives the
determined capacity of the charging stations.The fraction of
the finalized volume was used as part of the reference index
for the third clustering.

If the weight of spatial factor accounts for a larger pro-
portion, the number of clustered charging stations will be
more in the administrative area with larger area and less in
the administrative area with smaller area, in this case, there
will be a small administrative area with fewer charging sta-
tions, but the number of stations will not be enough to satisfy
the users’ demand due to the larger number of charging times
or charging power. If the weight of the time factor is more
significant, the number of charging stations in the area will
increase due to the increase in the number of charging times.
Whereas it may happen that the charging power is higher
but the charging stations are occupied more frequently and
are not enough to give the user’s power needs, at the same
time, if the weight of the power factor has a larger share, the
number of charging stations in the area will increase because
of the elevated power usage, but if a certain administrative
area is very large and the charging station coverage is very
low, it will lead to a more difficult time for the user to find
a charging station.

If the number of charging stations that can be estab-
lished is fixed at a specific value, this algorithm can still
complete the clustering, and it only needs to modify the
number of clustering centers for the third clustering to this
specific value to complete the clustering, and the siting result
will not be a problem.

According to the pile-station ratio of 8.8:1 in Yancheng
city and the capacity fixing method mentioned above, the
number of clusters of the third clustering can be obtained,

Districts Charging power (Proportion)
Tinghu 3813527 (30.00%)
Yandu 1835633 (14.44%)
Dafeng 1971446 (15.50%)
Dongtai 1155967 (9.09%)
Jianhu 470333 (3.70%)
Sheyang 1274350 (10.03%)
Funing 486770 (3.83%)
Binhai 678604 (5.34%)
Xiangshui 1024522 (8.07%)

Tab. 2. Charging power and its proportions.

Fig. 5. Clustering of charging station location.

i.e. the number of charging stations corresponding to the
number of demanded charging piles. The result is shown
in Fig. 5. Where the green color is the clustered charging
stations.

5.2 Establishment of New Evaluation Indica-
tors

The comprehensive utilization rate is derived by consid-
ering the time utilization rate and power utilization rate of the
charging station together, assuming that the time utilization
rate is 𝑇𝑟 and the power utilization rate is 𝑃𝑟, the formula for
the comprehensive utilization rate 𝐶𝑟 is shown in (10).

𝐶𝑟 = 𝑇𝑟 × 𝑃𝑟. (10)

The effect of charging stations clustered by VROD-
DPSO and K-Means++ algorithms should need to be com-
pared with other algorithms, while all algorithms have their
advantages in terms of charging station locations based on
theoretical demand points. This paper hereby proposes a new
comparison method that can effectively compare the results
of using different algorithms based on demand points.
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In practice, charging stations have 2 indicators for evalu-
ating their profitability and efficiency, which are time utiliza-
tion rate and power utilization rate, and the comprehensive
utilization rate of each charging station can be obtained after
calculation by (10). The charging stations clustered in this
study can be tested based on the comprehensive utilization
rate of existing charging stations. By removing the new sta-
tions with a combined utilization rate of 0, the remaining sta-
tions can be used for testing. All the stations that have actually
been built are divided into four categories with a combined
utilization rate of 0–5%, 5%–10%, 10%–15%, and 15% to
100% charging stations. Since the number of stations with
a combined utilization rate of 15% or more is small, these
stations are consolidated and grouped into one category.

In this paper, we set the efficiency of charging stations
with a combined utilization rate of less than 5% to be low,
5%–10% to be moderately efficient, 10%–15% to be well uti-
lized, and 15% or more to be extremely efficient; therefore,
the number of demand points clustered in the 0–5% interval
of the combined utilization rate should be as small as possi-
ble, and the 5%–10%, 10%–15%, and 15% or more intervals
of the cluster should be as small as possible. number of de-
mand points should be as high as possible. Therefore, the
actual charging stations in various different utilization inter-
vals are used as the center of the circle, and 100, 300, 500,
and 700 meters are used as the radius to draw the circle. If
the number of charging stations clustered by demand points
within the circle center of efficient charging stations is more,
the algorithm proves to be more effective. Similarly, the
fewer the number of charging stations clustered by demand
points within the center of the circle of inefficient charging
stations, the better the algorithm proves to be.

For example, if Algorithm A clusters 10% of the charg-
ing stations within 500 meters of the charging stations with
a combined utilization of 15% or more, and 5% of the charg-
ing stations within 500 meters of the charging stations with
a combined utilization of 0–5%, and Algorithm B clusters
1% of the charging stations within 500 meters of the charg-
ing stations with a combined utilization of 15% or more, and
40% of the charging stations within 500 meters of the charg-
ing stations with a combined utilization of 0–5%, then it can
be argued that Algorithm A is more effective. range, then
it can be assumed that Algorithm A clusters better charging
station sites than Algorithm B.

6. Experiment and Performance
Analysis

6.1 VRODDPSO Performance Improvement
In this paper, the trend of the fitness curve is employed

to evaluate the performance of the algorithm. A rapid decline
in the fitness curve during the early stages suggests that the

particles are quickly approaching the optimal solution, result-
ing in faster convergence. When the fitness curve gradually
flattens, it implies that the algorithm is nearing convergence,
although it may only be around a local optimum. If the fitness
value continues to decrease steadily, it indicates that the algo-
rithm is consistently optimizing the solution, moving closer
to the problem’s optimal solution. Conversely, if the fitness
value stabilizes, the algorithm has likely reached the optimal
solution, and further improvement is improbable. Significant
fluctuations in the fitness value suggest that the algorithm is
affected by noise or the problem’s complexity. When the
fitness curve stabilizes to a constant value, it signifies that
the algorithm has successfully identified a global optimal
solution. If there is a significant decrease in the curve at
some point, it suggests that the algorithm is making progress
toward finding a global optimum. A comparison of the fit-
ness curves for RODDPSO, VRODDPSO, and other particle
swarm optimization algorithms is illustrated in Fig. 6. In
this figure, the horizontal axis represents the number of iter-
ations, while the vertical axis reflects the logarithmic change
in fitness value.

The test function used in this study is the Schaffer F7
function, a standard benchmark function widely applied for
evaluating the performance and effectiveness of optimization
algorithms. This function can be either single-dimensional
or multi-dimensional, making it a versatile tool for testing op-
timization algorithms. In Fig. 6, the blue line represents the
particle swarm optimization algorithm with inertia weights
(WCPSO) [19], the orange line represents the particle swarm
optimization algorithm without inertia weights (CPSO) [20],
the yellow line represents the multi scale co-variant adaptive
particle swarm optimization algorithm (MAEPSO) [21], the
green line represents the RODDPSO algorithm, and the red
line represents the VRODDPSO algorithm. As shown in
Fig. 6, VRODDPSO demonstrates a more aggressive search
capability for the global optimal solution compared to ROD-
DPSO and outperforms both WCPSO and CPSO.

Fig. 6. Comparison of fitness curves of SchafferF7.
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In terms of final results, VRODDPSO and ROD-
DPSO achieve lower fitness values than the other al-
gorithms. The logarithmic fitness values for WCPSO,
CPSO, MAEPSO, RODDPSO, and VRODDPSO are
2.184, 2.606,−0.549,−4.017, and −7.786, respectively.
This highlights the superior performance of the VRODDPSO
algorithm in finding the global optimal solution.

Additionally, when applying RODDPSO for clustering,
the algorithm tends to fall into local optima during the early
iterations. As illustrated in Fig. 6, RODDPSO becomes
trapped in a local optimum between iterations 100 and 300,
with a limited search range. VRODDPSO addresses this issue
by efficiently searching for a better global optimal solution.
This improvement demonstrates that VRODDPSO enhances
the effectiveness of finding the global optimum compared
to RODDPSO, making it more suitable for solving complex
optimization problems.

VRODDPSO also demonstrates a clear advantage over
RODDPSO in terms of convergence speed. As shown in
Fig. 6, while the RODDPSO algorithm takes more iterations
to find its corresponding optimal fitness value, the VROD-
DPSO algorithm achieves the same fitness value in fewer iter-
ations and continues searching for an even better solution. In
subsequent iterations, VRODDPSO successfully identifies its
corresponding globally optimal solution, whereas the ROD-
DPSO algorithm becomes trapped in a local optimum. This
highlights the superior efficiency and robustness of VROD-
DPSO in converging to the global optimal solution within
a shorter computational time frame.

6.2 Rationality Verification of Site Selection
and Capacity Determination

In Fig. 7, blue points represent the location points ob-
tained from clustering, while orange points indicate the loca-
tions of actual charging stations.

Taking the 500-meter radius as an example, the val-
idation of the clustering results for the two algorithms is
shown in Figs. 8 and 9. In these figures, yellow points repre-
sent the real-world charging stations, which are categorized
based on their comprehensive utilization rates into intervals
of 0%–5%, 5%–10%, 10%–15%, and 15%–100%. The black
circles indicate the 500-meter radius around the actual charg-
ing stations. The green points represent the charging stations
clustered by the two algorithms: those clustered using the
K-Means algorithm in one figure and those clustered us-
ing the fused K-Means++ and VRODDPSO algorithm in
the other.

The statistical results of the number of actual public
charging stations with comprehensive utilization rates across
the four categories, within various ranges containing charg-
ing stations clustered by the two algorithms, are shown in
Fig. 10.

The results show that the number of charging stations
clustered using the K-Means algorithm is more than the
number of charging stations clustered by the fusion of the
K-Means++ and VRODDPSO algorithms near the actual sta-
tions with a combined utilization rate of 0–5%, while near
the actual stations with a combined utilization rate of the
interval of 5%–15%, the results of the clustering of the
K-Means++ and VRODDPSO algorithms are significantly
superior to those of the K- Means algorithm, and near the ac-
tual stations with more than 15% combined utilization rate,
the results of K-Means++ with VRODDPSO algorithm clus-
tering are significantly better than K-Means algorithm. As
an example, the number of clustered charging stations within
500 meters of a realistic charging station with a combined uti-
lization rate of 15% or more is only 141 using the K-Means
algorithm, while the number of clustered charging stations
using the K-Means++ with VRODDPSO algorithm is 231,
which is a performance improvement of 63.8%. In summary,
the clustering results using the fused K-Means++ and VROD-
DPSO algorithms are effectively demonstrated to be superior
to those using the K-Means algorithm by this comparison
method.

Literature [22] provides a new charging station layout
planning evaluation strategy, a city, the largest flow of peo-
ple, traffic flow in the area are often the city’s central urban
area, so the article will be site selection derived from the
central urban area of the number of charging stations and the
overall number of charging stations of the ratio as a criterion
for evaluating the advantages and disadvantages of the site
selection.

Fig. 7. Result of the third clustering with real stations.
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Fig. 8. Result of K-Means++.

Fig. 9. Result of VRODDPSO and K-Means++.

Fig. 10. Number of demand charging stations in different ranges
for the four categories of comprehensive utilization rate
charging stations.
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Region K-Means Hybrid algorithms
Tinghu 44 49
Yandu 27 32

Tab. 3. The number of public charging stations selected in dif-
ferent areas under the two algorithms.

The central city of Yancheng has Tinghu District and
Yandu District. The public charging stations in the two
administrative areas resulting from the two algorithms are
counted, and the statistical results are shown in Tab. 3. The
locations of charging stations in the two administrative areas
are shown in Figs. 11 and 12. The blue color is the location of
public charging stations from the K-Means algorithm and the
green color is the location of public charging stations from
the fusion of K-Means++ and VRODDPSO algorithms.

Based on the data presented in the table above, the total
number of public charging stations sited using the K-Means
algorithm is 71, whereas the number of stations sited using
the fusion of K-Means++ and VRODDPSO algorithms is 81.
In terms of percentage, the number of stations sited in the ur-
ban centre area by the two algorithms is 14.69% for K-Means
and 16.77% for the fusion of K-Means++ and VRODDPSO,
respectively. This indicates that the public charging sta-
tions sited using the fusion of K-Means++ and VRODDPSO
algorithms are more effective in terms of optimal location
selection.

The siting of EV charging stations has garnered in-
creasing attention, with rising expectations for the optimiza-
tion of station layouts to improve the overall utilization rate.
This paper investigates the fusion of the K-Means++ and
VRODDPSO algorithms for selecting optimal locations for
charging stations. The study focuses on the most frequently
used public charging stations for net car groups, extracting
demand points and clustering the theoretically suitable loca-
tions for the establishment of charging stations. The results
of clustering using the fusion of K-Means++ and VROD-
DPSO are validated to outperform those obtained using the
K-Means algorithm alone, by comparing them with real-life
EV charging stations that demonstrate high comprehensive
utilization rates. The research presented in this paper not only
contributes to identifying potential charging station sites but
also highlights the significant revenue that can be generated
through the establishment of these stations.

The site selection methodology proposed in this paper
provides a foundational framework for the layout of electric
vehicle charging stations, as well as for subsequent evaluation
and recommendation processes. As electric vehicles repre-
sent a key direction for future development in new energy
technologies, the strategic siting of charging stations will of-
fer essential support for the ongoing expansion and network
planning of electric vehicles. In the future, we will try to
use other more data, in-depth study to complete the charg-
ing station site layout. The code for the above experiment is
available on [23] for clustering results with different data and
parameter settings.

Fig. 11. Location map of public charging stations selected by
two algorithms in Tinghu.

Fig. 12. Location map of public charging stations selected by
two algorithms in Yandu.

7. Conclusions
The siting of EV charging stations has garnered in-

creasing attention, with rising expectations for the optimiza-
tion of station layouts to improve the overall utilization rate.
This paper investigates the fusion of the K-Means++ and
VRODDPSO algorithms for selecting optimal locations for
charging stations. The study focuses on the most frequently
used public charging stations for net car groups, extracting
demand points and clustering the theoretically suitable loca-
tions for the establishment of charging stations. The results
of clustering using the fusion of K-Means++ and VROD-
DPSO are validated to outperform those obtained using the
K-Means algorithm alone, by comparing them with real-life
EV charging stations that demonstrate high comprehensive
utilization rates. The research presented in this paper not only
contributes to identifying potential charging station sites but
also highlights the significant revenue that can be generated
through the establishment of these stations.
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The site selection methodology proposed in this paper
provides a foundational framework for the layout of electric
vehicle charging stations, as well as for subsequent evaluation
and recommendation processes. As electric vehicles repre-
sent a key direction for future development in new energy
technologies, the strategic siting of charging stations will of-
fer essential support for the ongoing expansion and network
planning of electric vehicles.
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