ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2021, Volume 30, Number 2 [DOI: 10.13164/re.2021-2]

Show all Hide all

K. S. Mayer, J. A. Soares, D. S. Arantes [references] [full-text] [DOI: 10.13164/re.2021.0261] [Download Citations]
A Nonlinear Concurrent Butterfly Equalizer

Optical communication systems operating with high data rates and dual-polarization are frequently disrupted by chromatic and polarization mode dispersions. Fixed filters usually mitigate chromatic dispersion; on the other hand, polarization mode dispersion (PMD), due to its stochastic behavior, is reduced by adaptive filters, such as channel equalizers. In this context, this article proposes a novel blind equalization architecture, based on the nonlinear modified concurrent equalizer (NMCE) expanded to a butterfly structure. The proposed nonlinear concurrent butterfly equalizer (NCBE) combines the reduced uncertainty and the sharper decision regions of the NMCE in both X and Y polarizations, resulting in improved performance. The NCBE is compared with the constant modulus algorithm (CMA), the modified CMA (MCMA), and the concurrent CMA-SDD (soft direct decision), all of them in butterfly architectures and with fractionally-spaced equalization. Results show that the proposed solution presents a reduced bit error rate (BER) and steady-state mean squared error (MSE) figures compared with the CMA, MCMA, and CMA-SDD equalizers the NCBE cross-shaped noise of the nonlinear equalizer output. Also, the NCBE can operate at higher values of PMD compared to the least mean square (LMS) equalizer without the necessity of delaying polarization X, Y, or both.

  1. KNIEPS, G. Internet of Things, big data and the economics of networked vehicles. Telecommunications Policy, 2019, vol. 43, no. 2, p. 171–181. DOI: 10.1016/j.telpol.2018.09.002
  2. RAPTIS, T. P., PASSARELLA, A., CONTI, M. Data management in industry 4.0: State of the art and open challenges. IEEE Access, 2019, vol. 7, p. 97052–97093. DOI: 10.1109/ACCESS.2019.2929296
  3. ZOU, D., LI, Z., SUN, Y., et al. Computational complexity comparison of single-carrier DMT and conventional DMT in data center interconnect. Optics Express, 2019, vol. 27, no. 12, p. 17007–17016. DOI: 10.1364/OE.27.017007
  4. YUE, Y., WANG, Q., ANDERSON, J. Experimental investigation of 400 Gb/s data center interconnect using unamplified high-baud-rate and high-order QAM single-carrier signal. Applied Sciences, 2019, vol. 9, no. 12, p. 1–9. DOI: 10.3390/app9122455
  5. SONE, Y., NISHIZAWA, H., YAMAMOTO, S., et al. Systems and technologies for high-speed inter-office/datacenter interface. In Proceedings of SPIE Photonics West. San Francisco (United States), 2017, p. 73–80. DOI: 10.1117/12.2256553
  6. IP, E., KAHN, J. M. Digital equalization of chromatic dispersion and polarization mode dispersion. Journal of Lightwave Technology, 2007, vol. 25, no. 8, p. 2033–2043. DOI: 10.1109/JLT.2007.900889
  7. SAVORY, S. J. Digital coherent optical receivers: Algorithms and subsystems. IEEE Journal of Selected Topics in Quantum Electronics, 2010, vol. 16, no. 5, p. 1164–1179. DOI: 10.1109/JSTQE.2010.2044751
  8. MALEKIHA, M., TSELNIKER, I., PLANT, D. V. Chromatic dispersion mitigation in long-haul fiber-optic communication networks by sub-band partitioning. Optics Express, 2015, vol. 23, no. 25, p. 32654–32663. DOI: 10.1364/OE.23.032654
  9. YAN, L., HAUER, M. C., SHI, Y., et al. Polarization-modedispersion emulator using variable differential-group-delay (DGD) elements and its use for experimental importance sampling. Journal of Lightwave Technology, 2004, vol. 22, no. 4, p. 1051–1058. DOI: 10.1109/JLT.2004.825327
  10. CHI, C. Y., CHEN, C. Y., CHEN, C. H., et al. Batch processing algorithms for blind equalization using higher-order statistics. IEEE Signal Processing Magazine, 2003, vol. 20, no. 1, p. 25–49. DOI: 10.1109/MSP.2003.1166627
  11. GU, M., TONG, L. Geometrical characterizations of constant modulus receivers. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 10, p. 2745–2756. DOI: 10.1109/78.790656
  12. GODARD, D. Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, 1980, vol. 28, no. 11, p. 1867–1875. DOI: 10.1109/TCOM.1980.1094608
  13. LIU, N., JU, C., LI, C. Parallel implementation of hardwareefficient adaptive equalization for coherent PON systems. Optical and Quantum Electronics, 2021, vol. 53, no. 20, p. 1–16. DOI: 10.1007/s11082-020-02681-2
  14. FARUK, M. S. Blind equalization and carrier-phase recovery based on modified constant-modulus algorithm in PDM-QPSK coherent optical receivers. Optical and Quantum Electronics, 2015, vol. 48, no. 3, p. 1–9. DOI: 10.1007/s11082-015-0270-7
  15. MATSUDA, K., MATSUMOTO, R., SUZUKI, N. Hardwareefficient adaptive equalization and carrier phase recovery for 100-Gb/s/λ-based coherent WDM-PON systems. Journal of Lightwave Technology, 2018, vol. 36, no. 8, p. 1492–1497. DOI: 10.1109/JLT.2017.2784804
  16. JIANG, W.-J., KUZMIN, K. G., WAY, W. I. Effect of low oversampling rate on a 64Gbaud/DP-16QAM 100-km optical link. IEEE Photonics Technology Letters, 2018, vol. 30, no. 19, p. 1671–1674. DOI: 10.1109/LPT.2018.2864639
  17. MAYER, K. S., DE OLIVEIRA, M. S., MULLER, C., et al. Blind fuzzy adaptation step control for a concurrent neural network equalizer. Wireless Communications and Mobile Computing, 2019, vol. 2019, p. 1–11. DOI: 10.1155/2019/9082362
  18. MAYER, K. S., MULLER, C., DE CASTRO, M. C. F., et al. Nonlinear modified concurrent equalizer. Journal of Communication and Information Systems, 2019, vol. 34, no. 1, p. 200–205. DOI: 10.14209/jcis.2019.21
  19. MAYER, K. S., MULLER, C., DE CASTRO, F. C. C., et al. A new CPFSK demodulation approach for software defined radio. Journal of Circuits, Systems, and Computers, 2019, vol. 28, no. 14, p. 1–14. DOI: 10.1142/S0218126619502438
  20. MAYER, K. S., MOREIRA, V. R., SOARES, J. A., et al. High data-rates and high-order DP-QAM optical links can be efficiently implemented with concurrent equalization. In Proceedings of Photonics North (PN). Niagara Falls (Canada), 2020, p. 1. DOI: 10.1109/PN50013.2020.9167008
  21. AHMED, S., KHAN, Y. A review on training and blind equalization algorithms for wireless communications. Wireless Personal Communications, 2019, vol. 108, no. 3, p. 1759–1783. DOI: 10.1007/s11277-019-06495-8
  22. TANIZAWA, K., FUTAMI, F. Digital coherent 20-Gbit/s DP-PSK Y-00 quantum stream cipher transmission over 800-km SSMF. In Proceedings of Optical Fiber Communications Conference and Exposition (OFC). San Diego (United States), 2019, p. 1–3. DOI: 10.1364/OFC.2019.Th1J.7
  23. LU, J., WU, Q., JIANG, H. et al. Efficient timing/frequency synchronization based on sparse fast Fourier transform. Journal of Lightwave Technology, 2019, vol. 37, no. 20, p. 5299–5308. DOI: 10.1109/JLT.2019.2932075
  24. JIANG, L., YAN, L., YI, A, et al. Blind optical modulation format identification assisted by signal intensity fluctuation for autonomous digital coherent receivers. Optics Express, 2020, vol. 28, no. 1, p. 302–313. DOI: 10.1364/OE.372406
  25. OH, K. N., CHIN, Y. O. Modified constant modulus algorithm: Blind equalization and carrier phase recovery algorithm. In Proceedings IEEE International Conference on Communications (ICC). Seattle (USA), 1995, p. 498–502. DOI: 10.1109/ICC.1995.525219
  26. READY, M. J., GOOCH, R. P. Blind equalization based on radius directed adaptation. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Albuquerque (USA), 1990, p. 1699–1702. DOI: 10.1109/ICASSP.1990.115806
  27. WANG, D. A nonlinear modified constant modulus algorithm for blind equalization. In Canadian Conference on Electrical and Computer Engineering (CCECE). Calgary (Canada), 2010, p. 1–4. DOI: 10.1109/CCECE.2010.5575240
  28. DE CASTRO, F. C. C., DE CASTRO, M. C. F., ARANTES, D. S. Concurrent blind deconvolution for channel equalization. In IEEE International Conference on Communications (ICC). Helsinki (Finland), 2001, p. 366–371. DOI: 10.1109/ICC.2001.936964
  29. CHEN, S. Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind equalisation. IEE Proceedings - Vision, Image, and Signal Processing, 2003, vol. 150, no. 5, p. 312–320. DOI: 10.1049/ip-vis:20030619
  30. SILVA, M. T. M., ARENAS-GARCIA, J. A soft-switching blind equalization scheme via convex combination of adaptive filters. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 5, p. 1171–1182. DOI: 10.1109/TSP.2012.2236835
  31. KAMRAN, R., NAMBATH, N., MANIKANDAN, S., et al. Demonstration of a low-power, local-oscillator-less, and DSP-free coherent receiver for data center interconnects. Applied Optics, 2020, vol. 59, no. 7, p. 2031–2041. DOI: 10.1364/AO.383185
  32. GUIOMAR, F. P., AMADO, S. B., CARENA, A., et al. Fully blind linear and nonlinear equalization for 100G PM-64QAM optical system. Journal of Lightwave Technology, 2015, vol. 33, no. 7, p. 1265–1274. DOI: 10.1109/JLT.2014.2386653
  33. MACCHI, O., EWEDA, E. Convergence analysis of self-adaptive equalizers. IEEE Transactions on Information Theory, 1984, vol. 30, no. 2, p. 161–176. DOI: 10.1109/TIT.1984.1056896
  34. KONG, M., WANG, K., DING, J., et al. 640-Gbps/carrier WDM transmission over 6,400 km based on PS-16QAM at 106 Gbaud employing advanced DSP. Journal of Lightwave Technology, 2021, vol. 39, no. 1, p. 55–63. DOI: 10.1109/JLT.2020.3024771
  35. PFAU, T., HOFFMANN, S., NOE, R. Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for MQAM constellations. Journal of Lightwave Technology, 2009, vol. 27, no. 8, p. 989–999. DOI: 10.1109/JLT.2008.2010511
  36. GITLIN, R. D., WEINSTEIN, S. B. Fractionally-spaced equalization: An improved digital transversal equalizer. Bell System Technical Journal, 1981, vol. 60, no. 2, p. 275–296. DOI: 10.1002/j.1538-7305.1981.tb00240.x
  37. MAYER, K. S., SOARES, J. A., ARANTES, D. S. Complex MIMO RBF neural networks for transmitter beamforming over nonlinear channels. Sensors, 2020, vol. 20, no. 2, p. 1–15. DOI: 10.3390/s20020378
  38. JOHNSON, R., SCHNITER, P., ENDRES, T., et al. Blind equalization using the constant modulus criterion: a review.Proceedings of the IEEE, 1998, vol. 86, no. 10, p. 1927–1950. DOI: 10.1109/5.720246
  39. FAIG, H., SADOT, D., GANTZ, L., et al. An efficient stabilization process for analog fractionally spaced equalizers. IEEE Photonics Technology Letters, 2019, vol. 31, no. 9, p. 665–668. DOI: 10.1109/LPT.2019.2903275
  40. ZHANG, R., KUZMIN, K., JIAN, W.-J., et al. Impact of laser flicker noise and linewidth on 64 to 96 Gbaud/DP-nQAM metro coherent optical links. Optics Letters, 2020, vol. 45, no. 5, p. 1220–1223. DOI: 10.1364/OL.386267
  41. ZENG, T., HE, Z., MENG, L., et al. The real time implementation of a simplified 2-section equalizer with supernal SOP tracking capability. In Proceedings of Optical Fiber Communications Conference and Exposition (OFC). San Diego (United States), 2020, p. 1–3. DOI: 10.1364/OFC.2020.M2J.7
  42. NAMBATH, N., ASHOK, R., MANIKANDAN, S., et al. All-analog adaptive equalizer for coherent data center interconnects. Journal of Lightwave Technology, 2020, vol. 38, no. 21, p. 5867–5874. DOI: 10.1109/JLT.2020.2987140
  43. FATADIN, I., IVES, D., SAVORY, S. J. Blind equalization and carrier phase recovery in a 16-QAM optical coherent system. Journal of Lightwave Technology, 2009, vol. 27, no. 15, p. 3042–3049. DOI: 10.1109/JLT.2009.2021961
  44. CHEN, S., CHNG, E. S. Concurrent constant modulus algorithm and soft decision directed scheme for fractionally-spaced blind equalization. In IEEE International Conference on Communications. Paris (France), 2004, p. 2342–2346. DOI: 10.1109/ICC.2004.1312937
  45. HAYKIN, S. Unsupervised Adaptive Filtering. 2nd ed., rev. New York (United States): John Wiley & Sons, 2000. ISBN: 0471379417
  46. SAVORY, S. J. Digital filters for coherent optical receivers. Optics Express, 2008, vol. 16, no. 2, p. 804–817. DOI: 10.1364/OE.16.000804
  47. ANTONELLI, C., MECOZZI, A. Statistics of the DGD in PMD emulators. IEEE Photonics Technology Letters, 2004, vol. 16, no. 8, p. 1840–1842. DOI: 10.1109/LPT.2004.829771
  48. ZHU, Y., LI, A., PENG, W.-R., et al. Spectrally-efficient singlecarrier 400G transmission enabled by probabilistic shaping. In Proceedings of Optical Fiber Communications Conference and Exposition (OFC). Los Angeles (United States), 2017, p. 1–3. DOI: 10.1364/OFC.2017.M3C.1
  49. YUE, Y., WANG, Q., ANDERSON, J. Transmitter skew tolerance and spectral efficiency tradeoff in high baud-rate QAM optical communication systems. Optics Express, 2018, vol. 26, no. 12, p. 15045–15058. DOI: 10.1364/OE.26.015045
  50. PERIN, J. K., SHASTRI, A., KAHN, J. M. Design of lowpower DSP-free coherent receivers for data center links. Journal of Lightwave Technology, 2017, vol. 35, no. 21, p. 4650–4662. DOI: 10.1109/JLT.2017.2752079

Keywords: Data center interconnect, equalization architecture, blind equalizers, polarization mode dispersion

D. Perez-Calderon, V. Baena Lecuyer, A. C. Oria Oria, J. Garcia Doblado [references] [full-text] [DOI: 10.13164/re.2021.0271] [Download Citations]
Non-Uniform Constellations for Polarization Division Multiplexed CO-OFDM Systems

In this paper we propose a~transmission scheme for Coherent Optical Orthogonal Frequency Division Multiplexing (CO-OFDM) systems with Multiple Input - Multiple Output (MIMO) processing. Our proposal consists of the concatenation of two techniques, Non-Uniform Constellations (NUC) in the mapper, and Spatial Multiplexing (SM) in the implementation of Polarization-Division Multiplexed (PDM) systems. The main target of the proposed scheme is to reduce the overall performance loss introduced by Polarization Mode Dispersion (PMD) and Polarization Dependent Loss (PDL) in PDM-CO-OFDM systems. This approach will be compared to techniques traditionally used in CO-OFDM links as Golden codes and Silver codes as well as traditional SM. The full transmission chain has been modelled using Matlab. Simulations have been run to check the performance improvement achievable by our proposal showing a~gain of up to 0.82 dB in the carrier to noise compared to traditional schemes, with no additional hardware complexity at the receiver side.

  1. SHANNON, C. E. A mathematical theory of communication. Bell System Technical Journal, 1948, vol. 27, no. 3, p. 379–423 and p. 623–656. DOI: 10.1002/j.1538-7305.1948.tb01338.x
  2. ESSIAMBRE, R., KRAMER, G., WINZER, P.J., et al. Capacity limits of optical fiber networks. Journal of Lightwave Technology, 2010, vol. 28, no. 4, p. 662–701. DOI: 10.1109/JLT.2009.2039464
  3. WILLNER, A. E. Optical Fiber Telecommunications VII. Academy Press Elsevier, 2019. ISBN: 9780128165027
  4. WANG, Y., OKAMOTO, S., KASAI, K., et al. Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer. Optics Express, 2018, vol. 26, no. 13, p. 17015–17024. DOI: 10.1364/OE.26.017015
  5. KARLSSON, M., AGRELL, E. Four-dimensional optimized constellations for coherent optical transmission systems. In Proceedings of the European Conference on Optical Communications (ECOC). Torino (Italy), 2010, p. 1–6. DOI: 10.1109/ECOC.2010.5621574
  6. CHO, J., CHEN, X., CHANDRASEKHAR, S., et al. Trans-atlantic field trial using high spectral efficiency probabilistically shaped 64-QAM and single-carrier real-time 250-Gb/s 16-QAM. Journal of Lightwave Technology, 2018, vol. 36, no. 1, p. 103–113. DOI: 10.1109/JLT.2017.2776840
  7. QU, Z., DJORDJEVIC, I. B., ANDERSON, J. Two-dimensional constellation shaping in fiber-optic communications. Applied Sciences, 2019, vol. 9, no. 9, p. 1889–2001. DOI: 10.3390/APP900188
  8. ZHANG, S., YAMAN, F. Design and comparison of advanced modulation formats based on generalized mutualinformation. Journal of Lightwave Technology, 2018, vol. 36, no. 2, p. 416–423. DOI: 10.1109/JLT.2017.2779753
  9. ZHANG, S., QU, Z., YAMAN, F., et al. Flex-rate transmission using hybrid probabilistic and geometric shaped 32QAM. In Proceedings of the Optical Fiber Communication Conference (OFC). San Diego (USA), 2018, p. 1–3. DOI: 10.1364/ofc.2018.m1g.3
  10. STOTT, J. CM and BICM Limits for Rectangular Constellations. BBC Research and Development, White paper 257, 2013.
  11. EUROPEAN TELECOMMUNICATIONS STANDARD INSTITUTE ETSI YORK. Digital Video Broadcasting (DVB), Next Generation broadcasting system to Handheld, physical layer specification (DVB-NGH). Draft ETSI EN 303 105 V1.1.1, 2012.
  12. ADVANCED TELEVISION SYSTEMS COMMITTEE (ATSC). ATSC Standard: Physical Layer Protocol, document A/322:2020.
  13. GALLAGER, R. G. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, vol. 8, no. 1, p. 21–28. DOI: 10.1109/TIT.1962.1057683
  14. GISIN, N., HUTTNER, B. Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Optics Communications, 1997, vol. 142, no. 1–3, p. 119–125. DOI: 10.1016/S0030-4018(97)00236-8
  15. HUARD, S. Polarization of Light (in French). Paris (France): Masson, 1993. ISBN: 978-2-225-84300-6
  16. LIMA, A. O., LIMA, I. T., MENYUK, C. R., et al. Comparison of penalties resulting from first-order and all-order polarization mode dispersion distortions in optical fiber transmission systems. Optics Letters, 2003, vol. 28, no. 5, p. 310–312. DOI: 10.1364/OL.28.000310
  17. MORI, K., KATAOKA, T., KOBAYASHI, T., et al. Statistics and performance under combined impairments induced by polarizationdependent-loss in polarization-division-multiplexing digital coherent transmission. Optics Express, 2011, vol. 19, no. 26, p. 673–680. DOI: 10.1364/OE.19.00B673
  18. WINTERS, J. On the capacity of radio communication systems with diversity in a Rayleigh fading environment. IEEE Journal on Selected Areas on Communications, 1987, vol. 5, no. 5, p. 871–878. DOI: 10.1109/JSAC.1987.1146600
  19. TELATAR, I. E. Capacity of multi-antenna Gaussian channels. AT & T Bell Laboratories, 1999, vol. 10, no. 6, p. 585–595. DOI: 10.1002/ett.4460100604
  20. FOSCHINI, G. J., GANS, M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, vol. 6, p. 311–335. DOI: 10.1023/A:1008889222784
  21. BELFIORE, J. C., REKAYA, G.,VITERBO, E. The Golden Code: A 2 × 2 full-rate space-time code with non-vanishing determinants. IEEE Transactions on Information Theory, 2005, vol. 51, p. 1432–1436. DOI: 10.1109/TIT.2005.844069
  22. BIGLIERI, B., HONG, Y., VITERBO, E. On fast-decodable spacetime block codes. IEEE Transactions on Information Theory, 2009, vol. 55, no. 2, p. 524–530. DOI: 10.1109/TIT.2008.2009817
  23. FORNEY, G. D., WEI, L. F. Multidimensional constellations part: I: Introduction, figures of merit and generalized cross constellations. IEEE Journal on Selected Areas in Communications, 1989, vol. 1, no. 6, p. 877–892. DOI: 10.1109/49.29611
  24. HAFFENDEN, O. The Common Simulation Platform.BBC Research, White Paper 196, 2011.
  25. NELSON, L. E., ANTONELLI, C., MECOZZI, A., et al. Statistics of polarization dependent loss in an installed long-haul WDM system. Optics Express, 2011, vol. 19, no. 7, p. 6790–6796. DOI: 10.1364/OE.19.006790
  26. MECOZZI, A., SHTAIF, M. The statistics of polarization-dependent loss in optical communication systems. IEEE Photonics Technology Letters, 2002, vol. 14, no. 3, p. 313–315. DOI: 10.1109/68.986797
  27. EUROPEAN TELECOMMUNICATIONS STANDARD INSTITUTE ETSI YORK. Digital Video Broadcasting (DVB), Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB- T2), ETSI EN 302 755 V1.2.1., 2011.

Keywords: MIMO, coherent optical OFDM systems, non-uniform constellations, polarization mode dispersion, polarization dependent loss

R. K. Dash, P. B. Saha, D. Ghoshal, G. Palai [references] [full-text] [DOI: 10.13164/re.2021.0278] [Download Citations]
CPW Fed Koch Modified Fractal Antenna Backed with Partial Ground for Multiband Wireless Applications

In this article, modified Koch fractal geometry-based patch antenna up to second iteration is implemented with partial ground configuration to achieve multiband response with wideband behavior at each of the resonating bands. The antenna is designed to operate over C and X bands that can be useful for Satellite, Radar and DBS TV applications. FR-4 epoxy substrate of maximum dimension 35×30×1.6 〖mm〗^3 (0.70λ_0×0.6λ_0×0.03λ_0 ) is used to simulate the antenna in HFSS 15 (λ_0 is the free space wavelength corresponding to the lowest resonance frequency). The design is started with a truncated star shape patch and ended up with five circular slots embedded Koch fractal through several design steps. In addition, coplanar waveguide (CPW) feeding is applied to achieve multiband response and wideband behavior over each operating band. The proposed antenna exhibits multiband response at 6.06 GHz, 9.76 GHz, 10.92 GHz, 11.68 GHz and 14.4 GHz with operating bands (5.8 – 6.31 GHz), (9.2 – 10.08 GHz), (10.78 – 12.36 GHz) and (13.64 – 15 GHz) respectively. A fabricated prototype of the proposed antenna is tested using Vector Network Analyzer (VNA). It has shown adequate amount of matching between the simulation and measured results.

  1. KAUSHAL, D., SHANMUGANANTHAM, T. A Vinayak slotted rectangular microstrip patch antenna design for C-band applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 8, p. 1833–1837. DOI: 10. 1002/mop.30628
  2. BADR, S., B., HAMAD, E. K. I. Design of multiband microstrip patch antenna for WiMax, C-band and X-band applications. Aswan Engineering Journal (AswEJ), 2018, p. 1–7.
  3. TAGHIZADEH, H., GHOBADI, CH., AZARM, B., et al. Grounded coplanar waveguide-fed compact MIMO antenna for wireless portable applications. Radioengineering, 2019, vol. 28, no. 3, p. 528–534. DOI: 10.13164/re.2019.0528
  4. ACHARJEE, J., SINGH, A. K., MANDAL, K., et al. Defected ground structure toward cross polarization reduction of microstrip patch antenna with improved impedance matching. Radioengineering, 2019, vol. 28, no. 1, p. 33–38. DOI: 10.13164/re.2019.0033
  5. BEIGI, P., MOHAMMADI, P. A novel small triple-band monopole antenna with crinkle fractal-structure. AEUInternational Journal of Electronics and Communications, 2016, vol. 70, no. 10, p. 1382–1387. DOI: 10.1016/j.aeue.2016.07.013
  6. KAKKAR, S., KAMAL, T. S., SINGH, A. P. On the design and analysis of I-shaped fractal antenna for emergency management. IETE Journal of Research, 2019, vol. 65, no. 1, p. 104–113. DOI: 10.1080/03772063.2017.1407270
  7. KRISHNA, CH. M., VARMA, P. K., VIJAY, J. P. Bandwidth enhancement of circular ring fractal antenna for wireless applications. In Panda, G., Satapathy, S., Biswal, B., et al. (eds.) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, 2019, vol. 521, p. 299 to 309. DOI: 10.1007/978-981-13-1906-8_31
  8. BHATIA, S. S., SIVIA, J. S., SHARMA, N. An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication, 2018, vol. 103, p. 1977–1991. DOI: 10.1007/s11277-018-5891-2
  9. GUPTA, M., MATHUR, V. Wheel shaped modified fractal antenna realization for wireless communications. AEU - International Journal of Electronics and Communications, 2017, vol. 79, p. 257–266. DOI: 10.1016/j.aeue.2017.06.017
  10. SARASWAT, R. K., KUMAR, M. Implementation of metamaterial loading to miniaturized UWB dipole antenna for WLAN and WiMAX applications with tunability characteristics. IETE Journal of Research, 2019, p. 1–14. DOI: 10.1080/03772063.2019.1684845
  11. SOLEIMANI, H., ORAIZI, H. Miniaturization and dual-banding of an elevated slotted patch antenna using the novel dual-reversearrow fractal. International Journal of RF and Microwave Computer Aided Engineering, 2017, vol. 27, no. 5, p. 1–9. DOI: 10.1002/mmce.21085
  12. DEVESH, T., ANSARI, J. A., SIDDIQUI, M. G., et al. Analysis of modified square Sierpinski gasket fractal microstrip antenna for wireless communications. AEU-International Journal of Electronics and Communications, 2018, vol. 94, p. 377–385. DOI: 10.1016/j.aeue.2018.07.027
  13. YASSEN, M. T., HUSSAN, M. R., HAMMAS, H. A., et al. A dual‑band printed antenna design based on annular Koch snowflake slot structure. Wireless Personal Communications, 2018, vol. 104, p. 649–662. DOI: 10.1007/s11277-018-6039-0
  14. KAUR, G., RATTAN, M., JAIN, C. Design and optimization of psi (Ψ) slotted fractal antenna using ANN and GA for multiband applications. Wireless Personal Communication, 2017, vol. 97, p. 4573–4585. DOI 10.1007/s11277-017-4739-5
  15. SUR, D., SHARMA, A., GANGWAR, R. K., et al. A novel wideband Minkowski fractal antenna with assistance of triangular dielectric resonator elements. International Journal of RF and Microwave Computer Aided Engineering, 2018, vol. 29, no. 2, p. 1–8. DOI: 10.1002/mmce.21524
  16. ANGUERA, J., DANIEL, J. P., BORJA, C., et al. Metallized foams for antenna design: Application to fractal-shaped Sierpinskicarpet monopole. Progress In Electromagnetics Research PIER, 2010, vol. 104, p. 239–251. DOI: 10.2528/PIER10032003
  17. ANGUERA, J., ANDUJAR, A., JAYASINGHE, J., et al. Fractal antennas: An historic perspective. Fractal and Fractional, 2020, vol. 4, no. 1, p. 1–26. DOI: 10.3390/fractalfract4010003
  18. IYAMPALAM, P., GANESAN, I. Low profile antenna based on a fractal shaped metasurface for public safety applications. International Journal of RF and Microwave Computer Aided Engineering, 2019, vol. 30, no. 2, p. 1–12. DOI: 10.1002/mmce.22048
  19. ELAVARASI, C., SHANMUGANANTHAM, T. SRR loaded periwinkle flower-shaped fractal antenna for multiband applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 10, p. 2518–2525. DOI: 10.1002/mop.30763
  20. SHARMA, N., BHATIA, S. S. Split ring resonator based multiband hybrid fractal antennas for wireless applications. AEUInternational Journal of Electronics and Communications, 2018, vol. 93, p. 39–52. DOI: 10.1016/j.aeue.2018.05.035
  21. BANGI, I. S., SIVIA, J. S., Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. International Journal of Electronics and Communications, 2018, vol. 85, p. 159–168. DOI: 10.1016/j.aeue.2018.01.005
  22. RAO, N., DINESH KUMAR, V. Miniaturization of microstrip patch antenna for satellite communication: A novel fractal geometry approach. Wireless Personal Communication, 2017, vol. 97, p. 3673–3683. DOI 10.1007/s11277-017-4691-4
  23. SONAK, R., AMEEN, M., CHAUDARY, R. K. Triple band omnidirectional miniaturized metamaterial inspired antenna using flipped rectangular stub for LTE, WiMAX, and WLAN applications. International Journal of RF and Microwave Computer Aided Engineering, 2019, vol. 29, no. 7, p. 1–9. DOI: 10.1002/mmce.21721

Keywords: CPW feeding, modified Koch fractal, multiband, partial ground, truncated patch, wideband

T. Duraisamy, S. Kamakshy, S. S. Karthikeyan, R. K. Barik, Q. S. Cheng [references] [full-text] [DOI: 10.13164/re.2021.0288] [Download Citations]
Compact Wideband SIW Based Bandpass Filter for X, Ku and K Band Applications

This paper presents a miniaturized bandpass filter (BPF) with characteristics of wider passband and stopband rejection using substrate integrated waveguide (SIW) technology. Slot loading mechanisms deployed on the upper layer of SIW and defective ground structure (DGS) on the ground plane are utilized to achieve wider passband and stopband respectively. The slots on the top layer along with DGS significantly enhances the selectivity of the filter by generating three transmission zeros (TZs) on the upper side of the passband. The proposed filter is simulated using full-wave simulators and the performance is validated through fabrication and testing of the prototype. The proposed SIW filter exhibits a low insertion loss of 1.52 dB over a wider passband from 9.17 GHz to 20.31 GHz with a 3 dB fractional bandwidth (FBW) of 76%. Further, a wider upper stopband is achieved with the rejection of more than 16 dB in the frequency range of 23 GHz to 40 GHz. The filter provides a flat group delay response of approximately 0.19 ns over the wider passband. The electrical size of the fabricated prototype is 1.05λg × 0.67λg, where λg denotes the guided wavelength in the dielectric substrate at the center frequency of 16 GHz.

  1. BOZZI, M., GEORGIADIS, A., WU, K. Review of substrateintegrated waveguide circuits and antennas. IET Microwaves Antennas & Propagation, 2011, vol. 5, no. 8, p. 909–920. DOI: 10.1049/iet-map.2010.0463
  2. CHOUDHARY, D. K., CHAUDHARY, R. K., A compact via-less metamaterial wideband bandpass filter using split circular rings and rectangular stub. Progress In Electromagnetics Research Letters, 2018, vol. 72, p. 99–106. DOI: 10.2528/PIERL17092503
  3. CHOUDHARY, D. K., CHAUDHARY, R. K., Vialess wideband bandpass filter using CRLH transmission line with semi-circular stub. In International Conference on Microwave and Photonics (ICMAP), Dhanbad (India), 2015. DOI:10.1109/ICMAP.2015.7408758
  4. CHOUDHARY, D. K., CHAUDHARY, R. K., A compact SIW based filtering power divider with improved selectivity using CSRR. In2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL), Singapore, 2017. DOI: 10.1109/PIERS-FALL.2017.8293337
  5. DANAEIAN, M., GHAYOUMI-ZADEH, H. Miniaturized substrate integrated waveguide filter using fractal open complementary split-ring resonators. International Journal of RF and Microwave Computer Aided Engineering, 2018, vol. 28, no. 5, p. 1–10. DOI: 10.1002/mmce.21249
  6. WONG, S. W., CHEN, R. S., WANG, K., et al. U-shape slots structure on substrate integrated waveguide for 40-GHz bandpass filter using LTCC technology. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 1, p. 128–134. DOI: 10.1109/TCPMT.2014.2367516
  7. HAO, Z. C., HONG, W., CHEN, J., et al. Compact super-wide bandpass substrate integrated waveguide (SIW) filters. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 9, p. 2968–2977. DOI: 10.1109/TMTT.2005.854232
  8. GENG, L., CHE, W., DENG, K. Wideband bandpass filter of folded substrate-integrated waveguide integrating with stripline compact resonant cell. Microwave Optical Technology Letters, 2008, vol. 50, no. 2, p. 390–393. DOI: 10.1002/mop.23117
  9. WU, L. S., ZHOU, X. L., YI, W. Y. Ultra- wideband bandpass filter using half-mode T-septum substrate integrated waveguide with electromagnetic bandgap structures. Microwave Optical Technology Letters, 2009, vol. 51, no. 7, p. 1751–1755. DOI: 10.1002/mop.24404
  10. WONG, S. W., CHEN, R. S., LIN, J. Y., et al. Substrate integrated waveguide quasi-elliptic filter using slot-coupled and microstripline cross-coupled structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 6, no. 12, p. 1881–1888. DOI: 10.1109/TCPMT.2016.2625744
  11. KIANI, S., REZAEI, P., KARAMI, M. Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electronic Letters, 2018, vol. 54, no. 10, p. 667–668. DOI: 10.1049/el.2018.0170
  12. LI, R., TANG, X., XIAO, F. Design of substrate integrated wavgeuide transversal filter with high selectivity. IEEE Microwave Wireless Component Letters, 2010, vol. 20, no. 6, p. 328–330. DOI: 10.1109/LMWC.2010.2047518
  13. ZHANG, P. J., LI, M. Q. Cascaded triSection substrate-integrated waveguide filter with high selectivity. Electronic Letters, 2014, vol. 50, no. 23, p. 1717–1719. DOI: 10.1049/el.2014.3456
  14. HE, Z., YOU, C. J., LENG, S., et al. Compact inline substrate integrated waveguide filter with enhanced selectivity using new non-resonating node. Electronic Letters, 2016, vol. 52, no. 21, p. 1778–1780. DOI: 10.1049/el.2016.2712
  15. KHAN, A. A., MANDAL, M. K. Narrowband substrate integrated waveguide bandpass filter with high selectivity. IEEE Microwave Wireless Component Letters, 2018, vol. 28, no. 5, p. 416–418. DOI: 10.1109/LMWC.2018.2820605
  16. AZAD, A. R., JHARIYA, D. K., MOHAN, A. Substrate-integrated waveguide cross-coupled filters with mixed electric and magnetic coupling structure. International of Journal Microwave and Wireless Technologies, 2018, vol. 10, no. 8, p. 896–903. DOI: 10.1155/2013/682707
  17. HO, M. H., LEE, K. Y., CHEN, Y. C. Miniaturized bandpass filter design using substrate integrated waveguide cavities with enhanced signal selectivity. Microwave Optical Technology Letters, 2019, vol. 61, no. 5, p. 1185–1188. DOI: 10.1002/mop.31730
  18. ZHANG, H., KANG, W., WU, W. Miniaturized dual-band SIW filters using E-shaped slotlines with controllable center frequencies. IEEE Microwave Wireless Component Letters, 2018, vol. 28, no. 4, p. 311–313. DOI: 10.1109/LMWC.2018.2811251
  19. SHEN, W., YIN, W. Y., SUN, X. W., et al. Substrate-integrated waveguide bandpass filters with planar resonators for systemon-package. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 3, no. 2, p. 253–261. DOI: 10.1109/TCPMT.2012.2224348
  20. LIU, X., ZHU, Z., LIU, Y., et al. Wideband substrate integrated waveguide bandpass filter based on 3-D ics. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, vol. 9, no. 4, p. 728–735. DOI: 10.1109/TCPMT.2018.2878863
  21. CHEN, R. S., WONG, S. W., ZHU, L., et al. Wideband bandpass filter uisng U-slotted substrate integrated waveguide (SIW) cavities. IEEE Microwave Wireless Component Letters, 2014, vol. 25, no. 1, p. 1–3. DOI: 10.1109/IEEE-IWS.2015.7164522
  22. MUCHHAL, N., SRIVASTAVA, S. Design of wideband comb shape substrate integrated waveguide multimode resonator bandpass filter with high selectivity and improved upper stop band performance. International of Journal RF and Microwave Computer Aided Engineering, 2019, vol. 29, no. 9, p. 1–9. DOI: 10.1002/mmce.21807
  23. LEE, B., LEE, T. H., LEE, K., et al. K-band substrate-integrated waveguide resonator filter with suppressed higher-order mode. IEEE Microwave Wireless Component Letters, 2015, vol. 25, no. 6, p. 367–369. DOI: 10.1109/LMWC.2015.2421313
  24. LI, J., HUANG, Y., WANG, H., et al. 38 GHz SIW filter based on the stepped-impedance face-to-face E-shaped DGSs for 5G application. Microwave Optical Technology Letters, 2019, vol. 61, no. 6, p. 1500–1504. DOI: 10.1002/mop.31799
  25. LIU, Z., XIAO, G., ZHU, L. Triple-mode bandpass filters on CSRRloaded substrate integrated waveguide cavities. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 6, no. 7, p. 1099–1105. DOI: 10.1109/TCPMT.2016.2574562
  26. HUANG, X., L., ZHOU, L., YUAN, Y., et al. Quintuple-mode Wband packaged filter based on a modified quarter-mode substrateintegrated waveguide cavity. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, vol. 9, no. 11, p. 2237–2247. DOI: 10.1109/TCPMT.2019.2925371
  27. LI, P., CHU, H., CHEN, R. S. Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, vol. 7, no. 6, p. 956–963. DOI: 10.1109/TCPMT.2017.2677958

Keywords: Substrate integrated waveguide, band pass filter, compact, transmission zero, bow-tie shaped slot

T. K. Das, S. Chatterjee [references] [full-text] [DOI: 10.13164/re.2021.0296] [Download Citations]
Harmonic Suppression by Using T-shaped Spur-Line in a Compact Hairpin-Line Bandpass Filter

This article exhibits the design of a fourth-order compact hairpin-line filter centered at 2.5 GHz and 3 dB fractional bandwidth of 5% along with a sharp roll-off factor and wide stopband characteristics required for Wireless Local Area Network (WLAN). Miniaturization of the conventional hairpin-line filter has been achieved by folding the open end arms twice towards the inward direction and accordingly, a size reduction of 42% has been obtained. Subsequently, T-shaped spur-lines with optimum dimensions have been incorporated at both the inner and outer edges of the coupled arms of the folded hairpin-line cell. Accordingly, two fourth-order folded filters with outer T-shaped and double T-shaped spur-lines have been designed and verified experimentally. An extended stopband with a rejection level of 39 dB up to 3.2f_0 along with a size reduction of 46% has been achieved.

  1. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York (NY, USA): John Willey & Sons, 2001, p. 84–86. ISBN 0-471-22161-9
  2. VAGNER, P., KASAL, M. A novel bandpass filter using a combination of open-loop defected ground structure and halfwavelength microstrip resonators. Radioengineering, 2010, vol. 19, no. 3, p. 392–396. ISSN: 1210-2512
  3. MAHARJAN, R. K., KIM, N. Y. Miniature stub-loaded square open-loop bandpass filter with asymmetrical feeders. Microwave and Optical Technology Letters, 2013, vol. 55, no. 2, p. 329–332. DOI: 10.1002/mop.27318
  4. BASTI, A., PERIGAUD, A., BILA, S., et al. Design of microstrip lossy filters for receivers in satellite transponders. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 9, p. 2014–2024. DOI: 10.1109/TMTT.2014.2337285
  5. BARAL, R. N., SINGHAL, P. K. Design of microstrip band pass fractal filter for suppression of spurious band. Radioengineering, 2008, vol. 17, no. 4, p. 34–38. ISSN: 1210-2512
  6. LIN, W. J., LI, J. Y., LIN, D. B., et al. Multi-suppression of microstrip bandpass filter using split-mode excitations. Journal of Electromagnetic Waves and Applications, 2010, vol. 24, no. 11–12, p. 1501–1510. DOI: 10.1163/156939310792149777
  7. NASER-MOGHADASI, N. M., ALAMOLHODA, M., RAHMATI, B. Spurious response suppression in hairpin filter using DMS integrated in filter structure. Progress in Electromagnetics Research C, 2011, vol. 18, p. 221–229. DOI: 10.2528/PIERC10110914
  8. LOTFI-NEYESTANAK, A. A., LALBAKHSH, A. Improved microstrip hairpin-line bandpass filters for spurious response suppression. Electronic Letters, 2012, vol. 48, no. 14, p. 858–859. DOI: 10.1049/el.2012.0967
  9. HUANG, T., SHAO, Z. A size-miniaturized bandpass filter with selectivity-enhanced and high harmonic suppression performance. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, p. 1809–1815. DOI: 10.1017/S1759078717000587
  10. HUANG, T., SHAO, Z. H., CHEN, Z. Miniaturized wideband bandpass filter with enhanced selectivity and stopband suppression. Microwave and Optical Technology Letters, 2018, vol. 60, p. 769–772. DOI: 10.1002/mop.31052
  11. CHATTERJEE, S., DAS, T. K. Compact hairpin-line bandpass filter with harmonic suppression by periodic grooves. In Proceedings of Mediterranean Microwave Symposium (MMS). Hammamet (Tunisia), 2019, p. 1–4. DOI: 10.1109/MMS48040.2019.9157328
  12. NGUYEN, C., HSIEH, C., BALL, D. W. Millimeter wave printed circuit spurline filters. In IEEE MTT-S International Microwave Symposium Digest. Boston (MA, USA), 1983, p. 98–100. DOI: 10.1109/MWSYM.1983.1130821
  13. LIU, H., SUN, L., SHI, Z. Dual-bandgap characteristics of spurline fitters and its circuit modeling, Microwave and Optical Technology Letters, 2007, vol. 49, no. 11, p. 2805–2807. DOI: 10.1002/mop.22862

Keywords: Folding, hairpin-line filters, spur-line, harmonic suppression

R. Yang, F. Wan, J. Nebhen, S. Lallechere, B. Ravelo [references] [full-text] [DOI: 10.13164/re.2021.0304] [Download Citations]
Parametric Geometrical Study of OOO-Microstrip Circuit with Dual-Band Bandpass NGD Behavior

This paper introduces a bandpass (BP) NGD circuit design engineering. The developed circuit is de¬signed and implemented using distributed microstrip tech-nology and operates with outstanding dual-band bandpass NGD performance added with low attenuation. The BP NGD topology presents an innovative geometrical shape represented by an OOO (triple O) structure composed of multi-parameter parallel transmission lines (TLs) based elements. The OOO type NGD circuit is mainly composed of different physical length TLs and two identical coupled lines (CLs). Then extensive parameter NGD analyses are elaborated to investigate on the influences of each physical size of OOO circuit on the NGD performances. Through the difference of physical length of transmission line, the delay can be adjusted. Through the results of simulation and measurement, it can be seen that the center frequency points are about 0.75 GHz and 1.46 GHz respectively, and the time delay is about –1.83 ns and –2.6 ns respectively.

  1. KANG, S.-M., CHEN, H. Y. A global delay model for domino cmos circuits with application to transistor sizing. International Journal of Circuit Theory and Applications, 1990, vol. 18, no. 3, p. 289–306. DOI: 10.1002/cta.4490180306
  2. HWANG, M-E., JUNG, S-O., ROY, K. Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2009, vol. 56, no. 7, p. 1428–1441. DOI: 10.1109/TCSI.2008.2006217
  3. RAVELO, B. Delay modelling of high-speed distributed interconnect for the signal integrity prediction. European Physical Journal Applied Physics, 2012, vol. 57, no. 3, p. 1–8. DOI: 10.1051/epjap/2012110374
  4. GROENEWOLD, G. Noise and group delay in active filters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2007, vol. 54, no. 7, p. 1471–1480. DOI: 10.1109/TCSI.2007.900181
  5. MYOUNG, S.-S., KWON, B.-S., KIM, Y.-H., et al. Effect of group delay in RF BPF on impulse radio systems. IEICE Transactions on Communications, 2007, vol. 90, no. 12, p. 3514 to 3522. DOI: 10.1093/ietcom/e90-b.12.3514
  6. HEYDE, E. C. Theoretical methodology for describing active and passive recirculating delay line systems. Electronics Letters, 1995, vol. 31, no. 23, p. 2038–2039. DOI: 10.1049/el:19951356
  7. VEMAGIRI, J., CHAMARTI, A., AGARWAL, M., et al. Transmission line delay-based radio frequency identification (RFID) tag. Microwave and Optical Technology Letters, 2007, vol. 49, no. 8, p. 1900–1904. DOI: 10.1002/mop.22599
  8. WIJENAYAKE, C., XU, Y., MADANAYAKE, A., et al. RF analog beamforming fan filters using CMOS all-pass time delay approximations. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 5, p. 1061–1073. DOI: 10.1109/TCSI.2012.2185294
  9. NOTO, H., YAMAUCHI, K., NAKAYAMA, M., et al. Negative group delay circuit for feed-forward amplifier. In Proceedings of IEEE/MTT-S International Microwave Symposium. Honolulu (HI, USA), 2007, p. 1103–1106. DOI: 10.1109/MWSYM.2007.380286
  10. CHOI, H., JEONG, Y., KIM, C. D., et al. Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 5, p. 1116–1125. DOI: 10.1109/TMTT.2010.2045576
  11. CHOI, H., JEONG, Y., KIM, C. D., et al. Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit. Progress In Electromagnetics Research, 2010, vol. 105, p. 253–272. DOI: 10.2528/PIER10041808
  12. WU, C.-T. M., GHARAVI, S., ITOH, T. Negative group delay circuit based on a multisection asymmetrical directional coupler. In Proceedings of Asia-Pacific Microwave Conference Proceedings (APMC). Seoul (Korea), 2013, p. 333–334. DOI: 10.1109/APMC.2013.6695137
  13. ALOMAR, W., MORTAZAWI, A. Elimination of beam squint in uniformly excited serially fed antenna arrays using negative group delay circuits. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. Chicago (IL, USA), 2012, p. 1–2. DOI: 10.1109/APS.2012.6348803
  14. TASLIMI, A., ALOMAR, W., MORTAZAWI, A. Phase compensated serially fed array using the antenna as a part of negative group delay. In Proceedings of 2015 IEEE MTT-S International Microwave Symposium. Phoenix (AZ, USA), 2015, p. 1–4. DOI: 10.1109/MWSYM.2015.7166902
  15. MIRZAEI, H., ELEFTHERIADES, G. V. Arbitrary-angle squint-free beamforming in series-fed antenna arrays using non-Foster elements synthesized by negative-group-delay networks. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 1997–2010. DOI: 10.1109/TAP.2015.2408364
  16. RAVELO, B. Recovery of microwave-digital signal integrity with NGD circuits. Photonics and Optoelectronics, 2013, vol. 2, no. 1, p. 8–16.
  17. MIRZAEI, H., ELEFTHERIADES, G. V. Realizing non-Foster reactances using negative-group-delay networks and applications to antennas. In Proceedings of IEEE Radio and Wireless Symposium (RWS). Newport Beach (CA, USA), 2014, p. 58–60. DOI: 10.1109/RWS.2014.6830144
  18. ZHU, M., WU, C.-T. M. A tunable non-Foster T-network loaded transmission line using distributed amplifier-based reconfigurable negative group delay circuit. In Proceedings of 2018 Asia-Pacific Microwave Conference (APMC). Kyoto (Japan), 2018, p. 720 to 722. DOI: 10.23919/APMC.2018.8617553
  19. MAO, H., YE, L., WANG, L. G. High fidelity of electric pulses in normal and anomalous cascaded electronic circuit systems. Results in Physics, 2019, vol. 13, p. 1–9. DOI: 10.1016/j.rinp.2019.102348
  20. WANG, J.-W., FENG, Z.-H. Time-domain nature of group delay. Chinese Physics B, 2015, vol. 24, no. 10, p. 1–5. DOI: 10.1088/1674-1056/24/10/100301
  21. KANDIC, M., BRIDGES, G. E. Limits of negative group delay phenomenon in linear causal media. Progress In Electromagnetics Research, 2013, vol. 134, p. 227–246. DOI: 10.2528/PIER12082915
  22. CHAUDHARY, G., JEONG, Y. Low signal-attenuation negative group-delay network topologies using coupled lines. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 10, p. 2316–2324. DOI: 10.1109/TMTT.2014.2345352
  23. WU, C.-T.-M., ITOH, T. Maximally flat negative group-delay circuit: A microwave transversal filter approach. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 6, p. 1330–1342,. DOI: 10.1109/TMTT.2014.2320220
  24. CHAUDHARY, G., JEONG, Y. Negative group delay phenomenon analysis using finite unloaded quality factor resonators. Progress In Electromagnetics Research, 2016, vol. 156, p. 55–62. DOI: 10.2528/PIER16041111
  25. WAN, F., LI, N., RAVELO, B., et al. S-parameter model of three parallel interconnect lines generating negative group-delay effect. IEEE Access, 2018, vol. 6, p. 57152–57159 DOI: 10.1109/ACCESS.2018.2872732
  26. SHAO, T., WANG, Z., FANG, S., et al. A compact transmission line self-matched negative group delay microwave circuit. IEEE Access, 2017, vol. 5, p. 22836–22843. DOI: 10.1109/ACCESS.2017.2761890
  27. RAVELO, B. Similitude between the NGD function and filter gain behaviours. International Journal of Circuit Theory and Applications, 2014, vol. 42, no. 10, p. 1016–1032. DOI: 10.1002/cta.1902
  28. CHOI, H., JEONG, Y., LIM, J., et al. A novel design for a dual-band negative group delay circuit. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 1, p. 19–21. DOI: 10.1109/LMWC.2010.2089675
  29. CHAUDHARY, G., JEONG, Y., LIM, J. Miniaturized dual-band negative group delay circuit using dual-plane defected structures. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 8, p. 521–523. DOI: 10.1109/LMWC.2014.2322445
  30. SHAO, T., FANG, S., WANG, Z., et al. A compact dual-band negative group delay microwave circuit. Radioengineering, 2018, vol. 27, no. 4, p. 1070–1076. DOI: 10.13164/re.2018.1070
  31. DAS, R., ZHANG, Q., LIU, H. Lossy coupling matrix synthesis approach for the realization of negative group delay response. IEEE Access, 2017, vol. 6, p. 1916–1926. DOI: 10.1109/ACCESS.2017.2780888
  32. CHAUDHARY, G., JEONG, Y. Transmission-type negative group delay networks using coupled line doublet structure. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 8, p. 748–754. DOI: 10.1049/iet-map.2014.0351
  33. POZAR, D. Microwave Engineering. 4th ed. New York: Wiley, 2011. ISBN: 978-0-470-63155-3
  34. EUDES, T., RAVELO, B., LOUIS, A. Transient response characterization of the high-speed interconnection RLCG-model for the signal integrity analysis. Progress In Electromagnetics Research, 2011, vol. 112, p. 183–197. DOI: 10.2528/PIER10111805
  35. RAVELO, B. Behavioral model of symmetrical multi-level T-tree interconnects. Progress In Electromagnetics Research B, 2012, vol. 41, p. 23–50. DOI: 10.2528/PIERB12040205
  36. ZHU, M., WU, C.-T. M. A tunable series negative capacitor using distributed amplifier-based reconfigurable negative group delay circuit. In Proceedings of the 48th European Microwave Conference (EuMC). Madrid (Spain), 2018, p. 616–619. DOI: 10.23919/EuMC.2018.8541404

Keywords: Negative group delay (NGD), bandpass NGD function, dual-band frequency, OOO-microstrip circuit, parametric analyses

K. F. Ji, J. Gao, X. Cao, J. Han, H. Yang [references] [full-text] [DOI: 10.13164/re.2021.0314] [Download Citations]
Design of Ultra-wideband Low RCS Reflecting Screen Based on Phase Gradient Metasurface

In order to realize full phase coverage of 360° and abnormal reflection of incident wave, one kind of metasurface unit-cell with double diagonal opening cross petal and two types of one and two dimensional phase gradient metasurface with elements arranged on 6×6 array whose phase difference is 60°, were designed and constructed in this paper based on the abnormal reflection principle of phase gradient metasurface. By rotating the two phase gradient metasurfaces and arranging them in a spiral manner, three types of ultra-wideband low Radar Cross Section (RCS) reflecting screens with different unit configurations were devised. HFSS 14.0 was used for simulation experiment and the relative bandwidth of RCS reduction above 10 dB is respectively 34.5%、28.8% and 28.1%. Moreover, the peak value of RCS reduction can reach 44.9 dB. After testing the three reflecting screens in a microwave anechoic chamber, it was found that the measured results were basically in agreement with the simulation data, which verified the feasibility of the design. The design of reflecting screen proposed in this paper can provide a new method and approach for new ultra-wideband stealth technology.

  1. YU, N. F., GENEVET, P., KATS, M. A., et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, vol. 334, no. 6054, p. 333–337. DOI: 10.1126/science.1210713
  2. SUN, S. L., YANG, K. Y., WANG, C. M., et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters, 2012, vol. 12, no. 12, p. 6223–6229. DOI: 10.1021/nl3032668
  3. WANG, J. F., QU, S. B., MA, H., et al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces. Applied Physics Letters, 2012, vol. 101, no. 20, p. 1–4. DOI: 10.1063/1.4767219
  4. SUN, S. L., HE, Q., XIAO, S. Y., et al. Gradient-index metasurfaces as a bridge linking propagating waves and surface waves. Nature Materials, 2012, vol. 11, p. 426–431. DOI: 10.1038/nmat3292
  5. LI, Y. F., ZHANG, J. Q., QU, S. B., et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Applied Physics Letters, 2014, vol. 104, no. 22, p. 1–5. DOI: 10.1063/1.4881935
  6. SHI, H. Y., LI, J. X., ZHANG, A. X., et al. Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 104–107. DOI: 10.1109/LAWP.2014.2356483
  7. ZHUANG, Y. Q., WANG, G. M., ZHANG, C. X., et al. Design and experimental verification of single-layer high-efficiency transmissive phase-gradient metasurface. Acta Physica Sinica, 2016, vol. 65, no. 15, p. 1–6. (In Chinese) DOI: 10.7498/aps.65.154101
  8. ZHUANG, Y. Q., WANG, G. M., ZHANG, X. K., et al. Design of reflective linear-circular polarization converter based on phase gradient metasurface. Acta Physica Sinica, 2016, vol. 65, no. 15, p. 1–6. (In Chinese) DOI: 10.7498/aps.65.154102
  9. FAN, Y., QU, S. B., WANG, J. F., et al. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, vol. 64, no. 18, p. 1–6. (In Chinese) DOI: 10.7498/aps.64.184101
  10. ZHENG, Q. Q., LI, Y. F., ZHANG, J. Q., et al. Wideband, wideangle coding phase gradient metasurfaces based on PancharatnamBerry phase. Scientific Reports, 2017, vol. 7, p. 1–13. DOI: 10.1038/srep43543
  11. GONG, S. X., LIU, Y., ZHANG, P. F., et al. Prediction and Reduction of Antenna Radar Cross Section. Xi’an(China): Xi’dian University Press, 2010
  12. PENDRY, J. B., HOLDEN, A. J., STEWART, W. J., et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, vol. 76, no. 25, p. 4773–4776. DOI: 10.1103/PhysRevLett.76.4773
  13. PENDRY, J. B., HOLDEN, A. J., ROBBINS, D. J., et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2075–2084. DOI: 10.1109/22.798002
  14. HOLLOWAY, C. L., KUESTER, E. F., GORDON, J. A., et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 2, p. 10–35. DOI: 10.1109/MAP.2012.6230714
  15. WU, C. J., CHENG, Y. Z., WANG, W. Y., et al. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, vol. 64, no. 16, p. 1–4. (In Chinese) DOI: 10.7498/aps.64.164102
  16. LI, T. J., LIANG, J. G., LI, H. P., et al. Ultra-thin single-layer transparent geometrical phase gradient metasurface and its application to high-gain circularly-polarized lens antenna. Chinese Physics B, 2016, vol. 25, no. 9, p. 1–5. DOI: 10.1088/1674- 1056/25/9/094101
  17. GUO, W. L., WANG, G. M., LI, H. P., et al. A novel broad gradient metasurface. Journal of Microwaves, 2016, vol. 32, no. 3, p. 51–59. (In Chinese) DOI: 10.14183/j.cnki.1005- 6122.201603012
  18. LI, C., CHEN, M. Design of a ultra-wideband reflective phase gradient metasurface. Research & Progress of SSE, 2020, vol. 40, no. 2, p. 127–130. (In Chinese) DOI: 10.19623/j.cnki.rpsse.2020.02.010
  19. ZHANG, W. B., LIU, Y., GONG, S. X., et al. Wideband RCS reduction of a slot array antenna using phase gradient metasurface. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 12, p. 2193–2197. DOI: 10.1109/LAWP.2018.2870863
  20. LIANG, J. J., HUANG, G. L., ZHAO, J. N., et al. Wideband phase-gradient metasurface antenna with focused beams. IEEE Access, 2019, vol. 7, p. 20767–20772. DOI: 10.1109/ACCESS.2019.2898550
  21. CHEN, W. G., BALANIS, C. A., BIRTCHER, C. R. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 6, p. 2636–2645. DOI: 10.1109/TAP.2015.2414440
  22. SU, J. X., LU, Y., LIU, J. Y., et al. A novel checkerboard metasurface based on optimized multielement phase cancellation for super-wideband RCS reduction. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 7091–7099. DOI: 10.1109/TAP.2018.2870372
  23. ZHU, B. O., ZHAO, J. M., FENG, Y. J. Active impedance metasurface with full 360° reflection phase tuning. Scientific Reports, 2013, vol. 3, p. 1–6. DOI: 10.1038/srep03059
  24. GE, C. C., CHENG, Y. Z., WANG, X., et al. Design and radar cross section reduction experimental verification of a double band phase gradient meta-surface. Journal of Microwaves, 2017, vol. 33, no. 1, p. 36–40. (In Chinese) DOI: 10.14183/j.cnki.1005- 6122.201701008

Keywords: Phase gradient metasurface, ultra-wideband, low RCS

T. Liu, L. Zhang, Z. G. Zeng, S. J. Wei [references] [full-text] [DOI: 10.13164/re.2021.0323] [Download Citations]
Study on the Composite Electromagnetic Scattering from 3D Conductor Multi-Objects above the Rough Surface

The traditional algorithm for the composite electromagnetic scattering from 3D conductor multi-objects above the rough surface has such weaknesses as slow computation speed and large memory consumption. On the basis of the fast algorithm integrated with the traditional coupling method of moment and physical optics method, this paper uses the multilevel fast multipole method (MLFMA) and fast far-field approximation (FAFFA) to accelerate the multiplication of matrix vector between the object and environment, which greatly improves the computation speed and reduces the memory consumption. This paper adopts the dual Debye sweater permittivity model simulate the real sea surface environment, establishes the coupling MoM-PO model of composite scattering from multi-objects on and above the sea surface, and obtains the composite electromagnetic scattering coefficient in virtue of the interaction between object area and rough surface area calculated by the MLFMA and FAFFA. At the same time, the changes of composite scattering coefficient along with the change of object spacing, size, incident angles, tilt angle, type and sea surface wind speed are analyzed in detail. The computation results show that the hybrid method consisting of the method of moment accelerated by MLFMA and FAFFA and physical optics method brings higher accuracy and computation efficiency (the computation time and memory consumption are 62% and 82% of the method of moment respectively).

  1. ZAMANI, H., TAVAKOLI, A., DEHMOLLAIAN, M. Scattering from layered rough surfaces: Analytical and numerical investigations. IEEE Transactions on Geoscience and Remote Sensing, 2016, vol. 54, no. 6, p. 3685–3696. DOI: 10.1109/TGRS.2016.2524639
  2. WEI, P., TEKIC, J., YANG, Y., et al. The friction phenomena in underdamped three layers Frenkel–Kontorova model. Waves in Random and Complex Media, 2016. vol. 26, no 4, p. 592–598. DOI: 10.1080/17455030.2016.1179354
  3. XU, R. W., GUO, L. X., HE, H. J., et al. A hybrid FEM/MoM technique for 3-D electromagnetic scattering from a dielectric object above a conductive rough surface. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 3, p. 314–318. DOI: 10.1109/LGRS.2015.2508500
  4. MARTINO, G. D., IODICE, A., RICCIO, D., et al. Ocean monitoring with SAR: An overview. In IEEE OCEANS 2015. Genova (Italy), 2015, p. 1–5. DOI: 10.1109/OCEANSGenova.2015.7271622
  5. XIE, T., PERRIE, W., ZHAO, S. Z., et al. Electromagnetic backscattering from one-dimensional drifting fractal sea surface II: Electromagnetic backscattering model. Chinese Physics B, 2016, vol. 25, no. 7, p. 1–6.
  6. KIM, K., KIM, J. H., CHO, D. S. Radar cross section analysis of marine targets using a combining method of physical optics/geometric optics and a Monte-Carlo simulation. Ocean Engineering, 2009, vol. 36, no. 11, p. 821–830. DOI: 10.1016/j.oceaneng.2009.05.005
  7. BAKR, S. A., MANNSETH, T. An approximate hybrid method for electromagnetic scattering from an underground target. IEEE Transactions on Geoscience & Remote Sensing, 2013, vol. 51, no. 1, p. 99–107. DOI: 10.1109/TGRS.2012.2198068
  8. REN, X. C., ZHU, X. M., LIU, P., et al. Wide-band composite electromagnetic scattering from the earth soil surface and multiple targets shallowly buried. Acta Physica Sinica, 2016. vol. 65, p. 1–9. (In Chinese) DOI: 10.7498/aps.65.204101
  9. WANG, X., GAN, Y. B., LI, L. W. Electromagnetic scattering by partially buried PEC cylinder at the dielectric rough surface interface: TM case. IEEE Antennas & Wireless Propagation Letters, 2003, vol. 2, p. 319–322. DOI: 10.1109/LAWP.2003.822200
  10. HESTENES, M. R., STIEFEL, E. L. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards (United States), 1952, vol. 49, no. 6, p. 409–436. DOI: 10.6028/jres.049.044
  11. JIN, Y. Q., LI, Z. Numerical simulation of radar surveillance for the ship target and oceanic clutters in two-dimensional model. Radio Science, 2003, vol. 38, no. 3, p. 1–6. DOI: 10.1029/2002RS002692
  12. EL-SHENAWEE, M., RAPPAPORT, C. M. Monte Carlo simulations for clutter statistics in minefields: AP-Mine-LikeTarget buried near a dielectric object beneath 2-D random rough ground surfaces. IEEE Transactions on Geoscience & Remote Sensing, 2002. vol. 40, no. 6, p. 1416–1426. DOI: 10.1109/TGRS.2002.800275
  13. STUTZMAN, W. L., THIELE, G. A. Antenna Theory and Design, New York: John Wiley and Son, 1998. ISBN: 0471025909
  14. KOUYOUMJIAN, R. G., PATHAK, P. H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proceedings of the IEEE, 1974, vol. 62, no. 11, p. 1448–1461. DOI: 10.1109/PROC.1974.9651
  15. LING, H., CHOU, R. C., LEE, S. W. High frequency RCS of open cavities with rectangular and circular cross sections. IEEE Transaction and Antennas Propagations, 1989, vol. 37, no. 5, p. 648–654. DOI: 10.1109/8.24193
  16. BURKHOLDER, R. J., TOKGOZ, C., REDDY, C. J., et al. Iterative physical optics for radar scattering predictions. Application Computation Electromagnetic Society Journal, 2009, vol. 24, no. 2, p. 241–258. ISSN: 10544887
  17. RASHIDI-RANJBAR, E., DEHMOLLAIAN, M. Target above random rough surface scattering using a parallelized IPO accelerated by MLFMM. IEEE Geoscience & Remote Sensing Letters, 2015, vol. 12, no. 7, p. 1481–1485. DOI: 10.1109/LGRS.2015.2409555
  18. XIANG, D. P., BOTHA, M. M. MLFMM-based, fast multiplereflection physical optics for large-scale electromagnetic scattering analysis. Journal of Computational Physics, 2018, vol. 368, p. 69 to 91. DOI: 10.1016/j.jcp.2018.04.054
  19. RUI, W., GUO, L., QIN, S., et al. Hybrid method for investigation of electromagnetic scattering interaction between the conducting target and rough sea surface. Acta Physica Sinica, 2008, vol. 57, no. 6, p. 3473–3480. (In Chinese) DOI: 10.7498/aps.57.3473
  20. ZHANG, Y., YANG, Y. E., BRAUNISCH, H., et al. Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique. Journal of Electromagnetic Waves and Applications, 1999, vol. 13, no. 7, p. 983–984. DOI: 10.1163/156939399X00457
  21. LI, J., GUO, L. X., HE, Q. Hybrid FE-BI-KA method in analysing scattering from dielectric object above sea surface. Electronics Letters, 2011, vol. 47, no. 20, p. 1147–1148. DOI: 10.1049/el.2011.1444
  22. LI, J., LI, K., GUO, L. X., et al. A hybrid IEM–PO method for composite scattering from a PEC object above a dielectric sea surface with large wind speed: HH polarization. Waves in Random & Complex Media, 2017, vol. 28, no. 4, p. 630–642. DOI: 10.1080/17455030.2017.1380333
  23. YE, H., JIN, Y. Q. A hybrid KA-MoM algorithm for computation of scattering from a 3-D PEC target above a dielectric rough surface. Radio Science, 2008, vol. 43, no. 3, p. 1–15. DOI: 10.1029/2007RS003702
  24. WEI, T., REN, X. C., GUO, L. X. Study on composite electromagnetic scattering from the double rectangular crosssection columns above rough sea surface using hybrid method. Acta Physica Sinica, 2015, vol. 64, no. 17, p. 1–6. (In Chinese) DOI: 10.7498/aps.64.174101
  25. TIAN, G. L., TONG, M. C., LIU, H., et al. An improved MoM-PO hybrid method for scattering from multiple 3D targets above the 2D random conducting rough surface. Electromagnetics, 2019, vol. 39, no. 5, p. 375–392. DOI: 10.1080/02726343.2019.1619231
  26. CHEW, W. C., CUI, T. J., SONG, J. M. A FAFFA-MLFMA algorithm for electromagnetic scattering. IEEE Transactions on Antennas and Propagation, 2002, vol. 50, no. 11, p. 1641–1649. DOI: 10.1109/TAP.2002.802162
  27. LIU, Z. L., WANG, C. F. Efficient iterative Method of Moments— Physical Optics hybrid technique for electrically large objects. IEEE Transactions on Antennas & Propagation, 2012, vol. 60, no. 7, p. 3520–3525. DOI: 10.1109/TAP.2012.2196963
  28. SONG, J. M., LU, C. C., CHEW, W. C. et al. Multilevel fast multipole algorithm for electromagnetic. IEEE Transactions on Antennas & Propagation, 1997, vol. 45, no. 10, p. 1488–1493. DOI: 10.1109/8.633855
  29. FRANCESCHETTI, G., IODICE, A., MIGLIACCIO, M., et al. Scattering from natural rough surfaces modeled by fractional Brownian motion two-dimensional processes. IEEE Transactions on Antennas & Propagation, 1999, vol. 47, no. 9, p. 1405–1415. DOI: 10.1109/8.793320
  30. MEISSNER, T., WENTZ, J. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Transactions on Geoscience & Remote Sensing, 2004, vol. 42, p. 1836–1849. DOI: 10.1109/TGRS.2004.831888
  31. TSANG, L., KONG, J. A., DING, K. H., et al. Scattering of Electromagnetic Waves: Numerical Simulations. New York: John Wiley & Sons, 2001, p. 278. DOI: 10.1002/0471224308

Keywords: Hybrid method, 3D multiple targets, composite scattering

T. Okan [references] [full-text] [DOI: 10.13164/re.2021.0335] [Download Citations]
A Wideband Conductor Backed Coplanar Waveguide Fed Implantable Antenna Operable in Different Tissues for Biotelemetry Applications

A wideband biocompatible implanted antenna is designed for wireless biotelemetry applications at industrial, scientific and medical (ISM) band (2.4-2.48 GHz). The antenna is fed by a conductor backed coplanar waveguide (CB-CPW) structure and two H-shaped slots are etched side by side on the patch of the antenna to create a resonance at the desired frequency. The experimental and simulation measurements are performed by using skin, fat and muscle tissue layers. The impedance bandwidth (S_11≤-10 dB) of the proposed antenna is measured as 0.406 GHz (2.272 - 2.678 GHz), when the fabricated antenna is implanted inside a three-layered human body mimicking gel. By using the advantage of having a wide bandwidth, the designed antenna is analyzed inside different tissue types and tissue thicknesses. For every obtained simulation and experimental result, it is observed that the antenna always covers the ISM band, which is the most significant contribution of this study. The size of the implantable antenna is 16×13×1.93 mm3, where both sides of the antenna is covered by a superstrate material to extend the life of the antenna inside the tissue.

  1. TARBOUCH, M., EL AMRI, A., TERCHOUNE, H. Compact CPW-Fed microstrip octagonal patch antenna with H slot for WLAN and WIMAX applications. In Proceedings of the International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morocco), 2017, p. 1–6. DOI: 10.1109/WITS.2017.7934638
  2. SHARMA, S., SAXENA, V. N., GOODWILL, K., et al. CPW fed rectangular slot antenna with dual H-slot on ground for wideband wireless applications. In Proceedings of the International Conference on Signal Processing and Communication. Noida (India), 2015, p. 439–442. DOI: 10.1109/ICSPCom.2015.7150693
  3. SAHA, P., MITRA, D., PARUI, S. K. A frequency and polarization agile disc monopole wearable antenna for medical applications. Radioengineering, 2020, vol. 29, no. 1, p. 74–80. DOI: 10.13164/re.2020.0074
  4. TONG, X., LIU, C., GUO, H., et al. A triple-mode reconfigurable wearable repeater antenna for WBAN applications. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 29, no. 3, p. 1–8. DOI: 10.1002/mmce.21615
  5. KIOURTI, A., COSTA, J. R., FERNANDES, C. A., et al. A broadband implantable and a dual-band on-body repeater antenna: Design and transmission performance. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 2899–2908. DOI: 10.1109/tap.2014.2310749
  6. BHATTACHARJEE, S., MAITY, S., METYA, S. K., et al. Performance enhancement of implantable medical antenna using differential feed technique. International Journal of Engineering, Science and Technology, 2016, vol. 19, no. 1, p. 642–650. DOI: 10.1016/j.jestch.2015.09.001
  7. OKAN, T., AKÇAM, N. Wideband low cost FR4 epoxy based antenna with H-shaped slot for V-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, vol. 31, no. 2, p. 1–9. DOI: 10.1002/mmce.22348
  8. DOGANCI, E., UCAR, M. H. B., SONDAS, A. Preparation of a human skin-mimicking gels for in vitro measurements of the dual-band medical implant antenna. Journal of the Turkish Chemical Society Section A: Chemistry, 2016, vol. 3, no. 1, p. 583–596. DOI: 10.18596/jotcsa.72855
  9. SUKHIJA, S., SARIN, R. K. Design and performance of twosleeve low profile antenna for bio-medical applications. Journal of Electrical Systems and Information Technology, 2017, vol. 4, no. 1, p. 49–61. DOI: 10.1016/j.jesit.2016.10.013
  10. OKAN, T. A compact octagonal‐ring monopole antenna for super wideband applications. Microwave and Optical Technology Letters, 2019, vol. 62, no. 3, p. 1237–1244. DOI: 10.1002/mop.32117
  11. PALANDOKEN, M. Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications. Radioengineering, 2017, vol. 26, no. 4, p. 917–923. DOI: 10.13164/re.2017.0917
  12. SOONTORNPIPIT, P., FURSE, C. M., CHUNG, Y. C. Design of implantable microstrip antenna for communication with medical implants. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 8, p. 1944–1951. DOI: 10.1109/tmtt.2004.831976
  13. ASHOK KUMAR, S., SHANMUGANANTHAM, T. Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications. AEU - International Journal of Electronics and Communications, 2014, vol. 68, no. 7, p. 661–666. DOI: 10.1016/j.aeue.2014.02.010
  14. ASHOK KUMAR, S., SHANMUGANANTHAM, T., SASIKALA, G. Design and development of implantable CPW fed monopole U slot antenna at 2.45 GHz ISM band for biomedical applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 7, p. 1604–1608. DOI: 10.1002/mop.29151
  15. SCARPELLO, M. L., KURUP, D., ROGIER, H., et al. Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 10, p. 3556–3564. DOI: 10.1109/tap.2011.2163761
  16. KARACOLAK, T., HOOD, A. Z., TOPSAKAL, E. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 1001–1008. DOI: 10.1109/tmtt.2008.919373
  17. KIM, J., RAHMAT-SAMII, Y. Implanted antennas inside a human body: Simulations, designs, and characterizations. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 8, p. 1934–1943. DOI: 10.1109/tmtt.2004.832018
  18. XIA, W., SAITO, K., TAKAHASHI, M., et al. Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 4, p. 894–899. DOI: 10.1109/tap.2009.2014579
  19. MATHEW, J., ABRAHAM, M., MATHEW, T. Triple band printed modified bow-tie antenna for RFID reader/ISM applications. Procedia Computer Science, 2016, vol. 93, p. 48–52. DOI: 10.1016/j.procs.2016.07.180
  20. HASHEMI, S., RASHED-MOHASSEL, J. Design and miniaturization of dual band implantable antennas. Biocybernetics and Biomedical Engineering, 2018, vol. 38, no. 4, p. 868–876. DOI: 10.1016/j.bbe.2018.06.008
  21. SOONTORNPIPIT, P. A dual-band compact microstrip patch antenna for 403.5 MHz and 2.45 GHz on-body communications. Procedia Computer Science, 2016, vol. 86, p. 232–235. DOI: 10.1016/j.procs.2016.05.105
  22. MIRAN, M. M., ARIFIN, F. Design and performance analysis of a miniaturized implantable PIFA for wireless body area network applications. In International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST). Dhaka (Bangladesh), 2019, p. 253–257. DOI: 10.1109/ICREST.2019.8644216
  23. BALANIS, C. A. Antenna Theory: Analysis and Design. New York: J. Wiley, 2005. ISBN-13: 978-0471667827

Keywords: Biomedical applications, coplanar waveguide (CPW), implantable antennas, industrial scientific medical (ISM) band

S. Bijimanzil Abdulkareem, S. Gopalakrishnan [references] [full-text] [DOI: 10.13164/re.2021.0342] [Download Citations]
Modelling of a Polarization Insensitive UWB FSS with Band Stop Response

This paper presents a compact ultra-wideband frequency selective surface (FSS) with band stop response. The proposed single layer FSS is printed on FR-4 substrate with a unit cell periodicity of 0.138λ_0 × 0.138λ_0, corresponding to its lowest operating frequency. The developed FSS exhibits stable response for plane waves with normal and oblique incidence with TE and TM polarization for angles varying from 0° to 60°. The FSS offers -10dB bandwidth of 141 % covering the entire ultra-wideband frequency range from 2.39 GHz to 13.67 GHz. The structural parameters are optimized, and an equivalent circuit is modelled to analyze the performance of FSS. The simulated results are validated by the measured values.

  1. MUNK, B.A. Frequency Selective Surfaces: Theory and Design. New York (USA): Wiley, 2000. ISBN: 9780471370475
  2. ABDULKAREEM, S. B., GOPALAKRISHNAN, S. Development of multilayer partially reflective surfaces for highly directive cavity antennas: a study. Wireless Communications and Mobile Computing, 2020, p. 1–14. DOI: 10.1155/2020/9578031
  3. ANWAR, R. S., MAO, L., NING, H. Frequency selective surfaces: A review. Applied Sciences, 2018, vol. 8, no. 9, p. 1–46. DOI: 10.3390/app 8091689
  4. RASHID, A. K., LI, B., SHEN, Z. An overview of threedimensional frequency-selective structures. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 3, p. 43–67. DOI: 10.1109/map.2014.6867682
  5. SAMPATH, S. S., SIVASAMY, R. A. Single-layer UWB frequency-selective surface with band-stop response. IEEE Transactions on Electromagnetic Compatibility, 2020, vol. 62, no. 1, p. 276–279. DOI: 10.1109/temc.2018.2886285
  6. CHATTERJEE, A., PARUI, S. K. A dual layer frequency selective surface reflector for wideband applications. Radioengineering, 2016, vol. 25, no. 1, p. 67–72. DOI: 10.13164/re.2016.0067
  7. RADONIĆ, V., CRNOJEVIĆ-BENGIN, V., SCHOEMAN, D., et al. Multi-layer frequency selective surfaces with wideband response and their modelling. In 22nd Telecommunication Forum TELFOR. Belgrade (Serbia), 2014, p. 757–760. DOI: 10.1109/TELFOR.2014.7034517
  8. TAYLOR, P. S., BATHELOR, J. C., PARKER, E. A. A passively switched dual-band circular FSS slot array. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). Rome (Italy), 2011, p. 507–510. DOI: 10.1109/APWC.2011.6046790
  9. ESPARZA-AGUILAR, T. E., RODRIGUEZ-CUEVAS, J., MARTYNYUK, A. E., et al. Switchable ring slot frequency selective surfaces with low-disruptive bias circuits. In International Symposium on Antennas and Propagation (APSURSI). Fajardo (Puerto Rico, USA), 2016, p. 775–776. DOI: 10.1109/APS.2016.7696096
  10. DOKEN, B., KARTAL, M. An active frequency selective surface design having four different switchable frequency characteristics. Radioengineering, 2019, vol. 28, no. 14, p. 114–120. DOI: 10.13164/re.2019.0114
  11. UNALDI, S., TESNELI, N. B., CIMEN, S. A novel miniaturized polarization independent frequency selective surface with UWB response. Radioengineering, 2018, vol. 27, no. 4, p. 1012–1017. DOI: 10.13164/re.2018.1012
  12. RANGA, Y., MATEKOVITS, L., WEILY, A. R., et al. A lowprofile dual-layer ultra-wideband frequency selective surface reflector. Microwave and Optical Technology Letters, 2013, vol. 55, no. 6, p. 1223–1227. DOI: 10.1002/mop.27583
  13. ABDULHASAN, R. A., ALIAS, R., RAMLI, K. N., et al. High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 8, p. 1–15. DOI: 10.1002/mmce.21757
  14. KUNDU, S., CHATTERJEE, A., JANA, S. K., et al. A Compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface. Radioengineering, 2018, vol. 27, no. 2, p. 448–454. DOI: 10.13164/re.2018.0448
  15. PAZOKIAN, M., KOMJANI, N., KARIMIPOUR, M. Broadband RCS reduction of microstrip antenna using coding frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 8, p. 1382–1385. DOI: 10.1109/LAWP.2018.2846613
  16. SHANG, Y., XIAO, S., WANG, B.-Z. Radar cross-section reduction design for a microstrip antenna. Microwave and Optical Technology Letters. 2014, vol. 56, no. 5, p. 1200–1204. DOI: 10.1002/mop.28288
  17. YADAV, S., JAIN, C. P., SHARMA, M. M. Polarization independent dual-bandpass frequency selective surface for WiMax applications. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 28, no. 6, p. 1–7. DOI: 10.1002/mmce.21278
  18. SOOD, D., TRIPATHI, C. C. Polarization insensitive compact wide stopband frequency selective surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2018, vol. 17, no. 1, p. 53–64. DOI: 10.1590/2179- 10742018v17i11128
  19. YAHYA, R., NAKAMURA, A., ITAMI, M., et al. A novel UWB FSS-based polarization diversity antenna. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2525–2528. DOI: 10.1109/LAWP.2017.2730161
  20. HUA, B., HE, X., H., YANG, Y. Polarisation-independent UWB frequency selective surface based on 2.5D miniaturised hexagonal ring. IET Electronic Letters, 2017, vol. 53, no. 23, p. 1502–1504. DOI: 10.1049/el.2017.2921
  21. SIVASAMY, R., MOORTHY, B., KANAGASABAI, M., et al. Polarization-independent single-layer ultra-wideband frequencyselective surface. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 1, p. 93–97. DOI: 10.1017/S1759078715001439
  22. ZABRI, S. N., CAHILL, R., SCHUCHINSKY, A. Polarisation independent split ring frequency selective surface. IET Electronic Letters, 2013, vol. 49, no. 4, p. 245–246. DOI: 10.1049/el.2012.4428
  23. BISWAS, A. N., BALLAV, S., CHATTERJEE, A., et al. Evolution of low-profile ultra-wideband frequency selective surface with a stable response and sharp roll off at lower band for C, X and Ku band applications. Radioengineering, 2020, vol. 29, no. 3, p. 494–503. DOI: 10.13164/re.2020.0494
  24. MAJIDZADEH, M., GHOBADI, C., NOURINIA, J. Ultra-wide band electromagnetic shielding through a simple single layer frequency selective surface. Wireless Personal Communications, 2017, vol. 95, no. 3, p. 2769–2783. DOI: 10.1007/s11277-017- 3960-6
  25. SOHAIL, I., RANGA, Y., ESSELLE, K. P., et al. A frequency selective surface with a very wide stop band. In The 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 2146–2148. ISBN: 978-88-907018-3-2
  26. LANGLEY, R. J., PARKER, E. A. Equivalent-circuit model for arrays of square loops. IET Electronic Letters, 1982, vol. 18, no. 7, p. 294–296. DOI: 10.1049/el:19820201
  27. KUSHWAHA, N., KUMAR, R., KRISHNA, R. Design and analysis of new compact UWB frequency selective surface and its equivalent circuit. Progress In Electromagnetic Research C, 2014, vol. 46, p. 31–39. DOI: 10.2528/PIERC13100908
  28. VARKANI, A. R., FIROUZEH, Z. H., NEZHAD, A. Z. Equivalent circuit model for array of circular loop FSS structures at oblique angles of incidence. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 5, p. 749–755. DOI: 10.1049/ietmap.2017.1004

Keywords: Frequency selective surface, periodic structure, ultrawideband, bandstop, wireless communication

T. Satitchantrakul, D. Torrungrueng [references] [full-text] [DOI: 10.13164/re.2021.0349] [Download Citations]
Design of Reactance-to-Reactance Impedance Transformers Based on Conjugately Characteristic-Impedance Transmission Lines (CCITLs) and Meta-Smith Charts (MSCs)

This paper proposes a novel technique to miniaturize the size of any reactance-to-reactance transformers (RRTs). These transformers are designed based on conjugately characteristic-impedance transmission lines (CCITLs) and Meta-Smith charts (MSCs). Note that the proposed technique can be effectively applied to popular microwave circuits; i.e., open-circuited and short-circuited tuning stubs as special cases. Numerical results are calculated, analyzed and compared with those of conventional stubs. In addition, the RRT prototype based on CCITLs is designed, simulated and measured to verify the proposed technique. It is found that the properly designed RRT prototype based on CCITLs can provide shorter electrical and physical lengths than those of the conventional RRT prototype indeed.

  1. POZAR, D. M. Microwave Engineering. 4th ed. New Jersey: John Wiley & Sons, 2012. ISBN: 0-471-64451-X
  2. KIM, T., CHOI, J. Miniaturized multi-section crossover with open stub. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 1014–1015. DOI: 10.1109/APS.2015.7304910
  3. MAHARAJAN, R. K., KIM, N. Y. Miniature stubs-loaded square open-loop bandpass filter with asymmetrical feeders. Microwave and Optical Technology Letters, 2012, vol. 55, no. 2, p. 329–332. DOI: 10.1002/mop.27318
  4. SAKAGAMI, I., HAGA, M., MUNEHIRO, T. Reduced branchline coupler using eight two-step stubs. IEE ProceedingsMicrowaves Antennas and Propagation, 1999, vol. 146, no. 6, p. 455–460. DOI: 10.1049/ip-map:19990785
  5. ZHANG, Y., SONG, H. Broadband miniaturized bandpass filter with circular stubs for compact wireless and mobile communication systems. Journal of Electromagnetic Waves and Applications, 2013, vol. 5, no. 3, p. 109–113. DOI: 10.4236/jemaa.2013.53018
  6. YU, J. J., CHEW, S. T., LEONG, M. S., et al. New class of microstrip miniaturised filter using triangular stub. Electronics Letters, 2001, vol. 37, no. 19, p. 1169–1170. DOI: 10.1049/el:20010793
  7. KUSUMA, Y., ISOZAKI, R. Compact and broadband microstrip band-stop filters with single rectangular stubs. Applied Sciences, 2019, vol. 9, no. 2, p. 1–12. DOI: 10.3390/app9020248
  8. XU, K., LI, M., LIU, Y., et al. Compact microstrip triple-mode bandpass filters using dual-stub-loaded spiral resonators. Radioengineering, 2017, vol. 26, no. 1, p. 23–29. DOI: 10.13164/re.2017.0023
  9. MEZAAL, Y. S., ALI, J. K., EYYUBOGLU, H. T. Miniaturised microstrip bandpass filters based on Moore fractal geometry. International Journal of Electronics, 2014, vol. 102, no. 8, p. 1306–1319. DOI: 10.1080/00207217.2014.971351
  10. TORRUNGRUENG, D., THIMAPORN, C. Applications of the Z‐YT‐chart for nonreciprocal stub tuners. Microwave and Optical Technology Letters, 2005, vol. 45, no. 3, p. 259–262. DOI: 10.1002/mop.20789
  11. TORRUNGRUENG, D., THIMAPORN, C., LAMULTREE, S., et al. Theory of small reflections for conjugately characteristicimpedance transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 10, p. 659–661. DOI: 10.1109/LMWC.2008.2003450
  12. TORRUNGRUENG, D., LAMULTREE, S., PHONGCHAROENPANICH, C., et al. In-depth analysis of reciprocal periodic structures of transmission lines. IET Microwave Antennas and Propagation, 2009, vol. 3, no. 4, p. 591–600. DOI: 10.1049/ietmap.2008.0205
  13. LIMSAENGRUCHI, S., SILAPUNT, R., TORRUNGRUENG, D. CCITL implementation using two-section microstrip transmission lines. In Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation. Chicago (IL, USA), 2012, p. 1–2. DOI: 10.1109/APS.2012.6348901
  14. JONGSUEBCHOKE, I., AKKARAEKTHALIN, P., TORRUNGRUENG, D. Theory and design of quarter-wave-like transformers implemented using conjugately characteristicimpedance transmission lines. Microwave and Optical Technology Letters, 2016, vol. 58, no. 11, p. 2614–2619. DOI: 10.1002/mop.30120
  15. SATITCHANTRAKUL, T., CHUDPOOTI, N., AKKARAEKTHALIN, P., et al. An implementation of compact quarterwave-like transformers using multi-section transmission line. Radioengineering, 2018, vol. 27, no. 1, p. 101–109. DOI: 10.13164/re.2018.0101
  16. SATITCHANTRAKUL, T., AKKARAEKTHALIN, P., SILAPUNT, R., et al. Compact wideband multi-section quarterwave-like transformers. Journal of Electromagnetic Waves and Applications, 2018, vol. 32, no. 15, p. 1911–1924. DOI: 10.1080/09205071.2018.1482239
  17. TORRUNGRUENG, D. Meta-Smith Charts and Their Potential Applications. La Vergne (TN): Morgan & Claypool, 2010. DOI: 10.2200/S00276ED1V01Y201009ANT010 ISBN: 978-616-7019- 09-6
  18. AWR Software. https://www.awr.com
  19. CST Microwave Studio. htttp://www.cst.com

Keywords: Conjugately characteristic-impedance transmission line, reactance-to-reactance transformer, open-circuited stub, short-circuited stub, Meta-Smith charts

F. Paulu, J. Hospodka [references] [full-text] [DOI: 10.13164/re.2021.0357] [Download Citations]
Design of Fully Analogue Artificial Neural Network with Learning Based on Backpropagation

A fully analogue implementation of training algorithms would speed up the training of artificial neural networks.A common choice for training the feedforward networks is the backpropagation with stochastic gradient descent. However, the circuit design that would enable its analogue implementation is still an open problem. This paper proposes a fully analogue training circuit block concept based on the backpropagation for neural networks without clock control. Capacitors are used as memory elements for the presented example. The XOR problem is used as an example for concept-level system validation.

  1. NARAYANAN, P., FUMAROLA, A., SANCHES, L. L., et al. Toward on-chip acceleration of the backpropagation algorithm using nonvolatile memory. IBM Journal of Research and Development, 2017, vol. 61, no. 4/5, p. 1–11. DOI: 10.1147/JRD.2017.2716579
  2. ROSENTHAL, E., GRESHNIKOV, S., SOUDRY, D., et al. A fully analog memristor-based neural network with online gradient training. In IEEE International Symposium on Circuits and Systems (ISCAS). Montreal (Canada), 2016, p. 1394–1397. DOI: 10.1109/ISCAS.2016.7527510
  3. PANTAZI, A., WOŚNIAK, S., TUMA, T., et al. All-memristive neuromorphic computing with level-tuned neurons. Nanotechnology, 2016, vol. 27, no. 35, p. 355205. DOI: 10.1109/ISCAS.2016.7527510
  4. SHAFIEE, A., NAG, A., MURALIMANOHAR, N., et al. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture News, 2016, vol. 44, no. 3, p. 14–26. DOI: 10.1145/3007787.3001139
  5. SHI, W., CAO, J., ZHANG, Q., et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 2016, vol. 3, no. 5, p. 637–646. DOI: 10.1109/JIOT.2016.2579198
  6. KRESTINSKAYA, O., JAMES, A. P. Binary weighted memristive analog deep neural network for near-sensor edge processing. In IEEE International Conference on Nanotechnology (IEEE-NANO). Cork (Ireland), 2018, p. 1–4. DOI: 10.1109/NANO.2018.8626224
  7. KRESTINSKAYA, O., SALAMA, K. N., JAMES, A. P. Learning in memristive neural network architectures using analog backpropagation circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, vol. 66, no. 2, p. 719–732. DOI: 10.1109/TCSI.2018.2866510
  8. VERLEYSEN, M., JESPERS, P. G. An analog VLSI implementation of Hopfield’s neural network. IEEE Micro, 1989, vol. 9, no. 6, p. 46–55. DOI: 10.1109/40.42986
  9. MURRAY, A. F., DEL CORSO, D., TARASSENKO, L. Pulse-stream VLSI neural networks mixing analog and digital techniques. IEEE Transactions on Neural Networks, 1991, vol. 2, no. 2, p. 193–204. DOI: 10.1109/72.80329
  10. KRESTINSKAYA, O., SALAMA, K. N., JAMES, A. P. Analog backpropagation learning circuits for memristive crossbar neural networks. In IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), 2018, p. 1–5. DOI: 10.1109/ISCAS.2018.8351344
  11. CANCELO G., HANSEN S. Analog neural network development system with fast on line training capabilities. In Proceedings of the Annual Conference of IEEE Industrial Electronics (IECON). Bologna (Italy), 1994, p. 1396–1400. DOI: 10.1109/IECON.1994.397999
  12. GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. MIT press, 2016. ISBN: 978-0262035613
  13. RUDER, S. An overview of gradient descent optimization algorithms. arXiv preprint, 2016. arXiv:1609.04747
  14. DITZLER, G., ROVERI, M., ALIPPI, C., et al. Learning in nonstationary environments: A survey. IEEE Computational Intelligence Magazine, 2015, vol. 10, no. 4, p. 12–25. DOI: 10.1109/MCI.2015.2471196
  15. MORIE, T., AMEMIYA, Y. An all-analog expandable neural network LSI with on-chip backpropagation learning. IEEE Journal of Solid-State Circuits, 1994, vol. 29, no. 9, p. 1086–1093. DOI: 10.1109/4.309904
  16. MIKHAILENKO, D., LIYANAGEDERA, C., JAMES, A. P., et al. M2CA: Modular memristive crossbar arrays. In IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), 2018, p. 1–5. DOI: 10.1109/ISCAS.2018.8351112
  17. ERNST, O. K. Stochastic Gradient Descent Learning and the Backpropagation Algorithm (Technical Report). University of California, San Diego, La Jolla, CA, 2014.
  18. PAULU, F., HOSPODKA, J. Web-based application for analysis of electrical circuits and systems. In New Trends in Signal Processing (NTSP). Liptovsky Mikulas (Slovakia), 2018, p. 1–4). DOI: 10.23919/NTSP.2018.8524039
  19. CHIBLE, H., GHANDOUR, A. CMOS VLSI hyperbolic tangent function & its derivative circuits for neuron implementation. International Journal of Electronics and Computer Science Engineering, 2013, vol. 2, no. 4, p. 1162–1170. ISSN: 2277-1956
  20. WANG, Y. E., WEI, G. Y., BROOKS, D. Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv preprint, 2019. arXiv:1907.10701
  21. RAJPOOT, J., MAHESHWARI, S. High performance fourquadrant analog multiplier using DXCCII. Circuits, Systems, and Signal Processing, 2019, vol. 39, no. 1, p. 1–11. DOI: 10.1007/s00034-019-01179-x

Keywords: Fully analogue, analogue circuit, neural network, neuromorphic, backpropagation

J. Kubak, J. Stastny, P. Sovka [references] [full-text] [DOI: 10.13164/re.2021.0364] [Download Citations]
An Embedded Implementation of Discrete Zolotarev Transform Using Hardware-Software Codesign

The Discrete Zolotarev Transform (DZT) brings an improvement in the field of spectral analysis of non-stationary signals. However, the transformation algorithm called Approximated Discrete Zolotarev Transform (ADZT) suffers from high computational complexity. The Short Time ADZT (STADZT) requires high segment length, 512 samples, and more, while high segment overlap to prevent information loss, 75 % at least. The STADZT requirements along with the ADZT algorithm computational complexity result in a rather high computational load. The algorithm computational complexity, behavior, and quantization error impacts are analyzed. We present a solution which deals with high computational load employing co-design methods targeting Field Programmable Gate Array (FPGA). The system is able to compute one-shot DZT spectrum 2 048 samples long in ≈ 22ms. Real-time STADZT spectrum of a mono audio signal of 16 kHz sampling frequency can be computed with overlap of 91 %.

  1. JANIK, J., TURON, V., SOVKA, P., et al. A way to a new multispectral transform. In Recent Advances in Signal Processing, Computational Geometry and Systems Theory (ISCGAV’11, ISTASC’11). Florence (Italy), 2011, p. 177–182. ISBN: 9781618040268
  2. TURON, V., JANIK, J., SPETIK, R., et al. Study of ADZT properties for spectral analysis. In Recent Advances in Signal Processing, Computational Geometry and Systems Theory (ISCGAV’11, ISTASC’11). Florence (Italy), 2011, p. 171–176. ISBN: 9781618040268
  3. VLCEK, M., UNBEHAUEN, R. Zolotarev polynomials and optimal FIR filters. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 3, p. 717–730. DOI: 10.1109/78.747778
  4. MASA, P., SOVKA, P., VLCEK, M., et al. Using ADZT for a signal reconstruction. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD). Dresden (Germany), 2013, p. 1–4. DOI: 10.1109/ECCTD.2013.6662335
  5. TURON, V. Description of Spectral Analysis Based on Zolotarev Polynomials (in Czech). Ph.D. dissertation, Czech Technical University in Prague, Faculty of Electrical Engineering, 2016.
  6. TURON, V. A study of parameters setting of the STADZT. Acta Polytechnica, 2012, vol. 52, no. 5, p. 106–111. DOI: 10.14311/1654
  7. TURON, V., JANIK, J., SPETIK, R., et al. Comparison of two spectral methods for acoustic signal analysis (in Czech). Akusticke listy, 2011, vol. 17, no. 4, p. 26–30. ISSN 1212-4702
  8. BAJPEYEE, B., SHARMA, S. Detection of bearing faults in induction motors using short time approximate discrete Zolotarev transform. In Proceedings of the International Conference on Signal Processing (ICSP). Chengdu (China), 2016, p. 1–7. DOI: 10.1049/cp.2016.1467
  9. Novel Selective Transforms For Non-Stationary Signal Processing. Available at: http://amber.feld.cvut.cz/selectivetransforms
  10. KUO, S. M., LEE, B. H., TIAN, W. Real-Time Digital Signal Processing. John Wiley & Sons, Ltd., 2001. ISBN: 9781118414323
  11. CUPAIUOLO, T., LO IACONO, D. A flexible and fast software implementation of the FFT on the BPE platform. In Design, Automation Test in Europe Conference Exhibition (DATE). Dresden (Germany), 2012, p. 1467–1470. DOI: 10.1109/DATE.2012.6176598
  12. SHETTI, K., KOH, C., AUNG, M., et al. Development and code partitioning in a software configurable processor. In IEEE Region 10 Conference (TENCON). Singapore, 2009, p. 1–5. DOI: 10.1109/TENCON.2009.5396149
  13. BAAS, B. A low-power, high-performance, 1024-point FFT processor. IEEE Journal of Solid-State Circuits, 1999, vol. 34, no. 3, p. 380–387. DOI: 10.1109/4.748190
  14. CHENG, C., PARHI, K. High-throughput VLSI architecture for FFT computation. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, vol. 54, no. 10, p. 863–867. DOI: 10.1109/TCSII.2007.901635
  15. HE, S., TORKELSON, M. Design and implementation of a 1024- point pipeline FFT processor. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC). Santa Clara (USA), 1998, p. 131–134. DOI: 10.1109/CICC.1998.694922
  16. TEICH, J. Hardware/software codesign: The past, the present, and predicting the future. Proceedings of the IEEE, 2012, vol. 100, no. Special Centennial Issue, p. 1411–1430. DOI: 10.1109/JPROC.2011.2182009
  17. TSAI, T.-H., YANG, Y.-C., LIU, C.-N. A hardware/software codesign of MP3 audio decoder. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 2005, vol. 41, no. 1, p. 111–127. DOI: 10.1007/s11265-005-6254-2
  18. GENTLEMAN, W. M., SANDE, G. Fast Fourier transforms: For fun and profit. In Proceedings of the AFIPS Fall Joint Computer Conference. New York (NY, USA), 1966, p. 563–578. DOI: 10.1145/1464291.1464352
  19. RHOADS, S. Plasma - Most MIPS I(TM) Opcodes. 2016. Available at: http://opencores.org/project,plasma,overview
  20. MIPS TECHNOLOGIES. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set. 2001. Available at: http://www.mips.com/
  21. CHANG, Y.-N., PARHI, K. High-performance digit-serial complexnumber multiplier-accumulator. In Proceedings of the International Conference on Computer Design: VLSI in Computers and Processors (ICCD). Austin (TX, USA), 1998, p. 211–213. DOI: 10.1109/ICCD.1998.727050
  22. PALASCAK, J. FFT Core Implementation (in Czech). Master’s thesis, Czech Technical University in Prague, Faculty of Electrical Engineering, 2010.
  23. BERGERON, J. Writing Testbenches: Functional Verification of HDL Models. 2nd ed. Norwell (MA, USA): Kluwer Academic Publishers, 2003. ISBN: 1402074018
  24. DIGILENT. AtlysTM Board Reference Manual. 2013. Available at: https://www.xilinx.com/support/documentation/university/ XUP%20Boards/XUPAtlys/documentation/Atlys_rm.pdf
  25. DIGILENT. Digilent Parallel Interface Model Reference Manual. 2004. Available at: https://reference.digilentinc.com/_media/reference/software/adept/ adept-2/dpimref_programmers_manual.pdf
  26. XILINX. Spartan-6 Family Overview. 2011. Available at: http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
  27. XILINX. Spartan-6 FPGA DSP48A1 Slice. 2014. Available at: www.xilinx.com/support/documentation/user_guides/ug389.pdf

Keywords: Discrete Zolotarev Transform (DZT), Approximated Discrete Zolotarev Transform (ADZT), embedded hardware, hardware-software co-design, Field Programmable Gate Array (FPGA), VHDL

M. Sajedin, I. Elfergani, J. Rodriguez, M. Violas, A. Asharaa, R. Abd-Alhameed, M. Fernandez-Barciela, A. M. Abdulkhaleq [references] [full-text] [DOI: 10.13164/re.2021.0372] [Download Citations]
Multi-Resonant Class-F Power Amplifier Design for 5G Cellular Networks

This work integrates a harmonic tuning mechanism in synergy with the GaN HEMT transistor for 5G mobile transceiver applications. Following a theoretical study on the operational behavior of the Class-F power amplifier (PA), a complete amplifier design procedure is described that includes the proposed Harmonic Control Circuits for the second and third harmonics and optimum loading conditions for phase shifting of the drain current and voltage waveforms. The performance improvement provided by the Class-F configuration is validated by comparing the experimental and simulated results. The designed 10W Class-F PA prototype provides a measured peak drain efficiency of 64.7% at 1dB compression point of the PA at 3.6 GHz frequency.

  1. RODRIGUEZ, J., RADWAN, A., BARBOSA, C., et al. SECRET—Secure Network Coding for Reduced Energy next generation mobile small cells: A European Training network in wireless communications and networking for 5G. In 2017 Internet Technologies and Applications (ITA). Wrexham (UK), 2017, p. 329–333. DOI: 10.1109/ITECHA.2017.8101964
  2. SNIDER, D. M. A theoretical analysis and experimental confirmation of the optimally loaded and overdriven RF power amplifiers. IEEE Transactions on Electron Devices, 1967, vol. 14, no. 12, p. 851–857. DOI: 10.1109/T-ED.1967.16120
  3. CRIPPS, S. C. RF Power Amplifiers for Wireless Communications. London (UK): Artech House, 2006. ISBN: 0890069891, 9780890069899
  4. CRIPPS, S. C., TASKER, P. J., CLARKE, A. L., et al. On the continuity of high efficiency modes in linear RF power amplifiers. IEEE Microwave and Wireless Component Letters, 2009, vol. 19, no. 10, p. 665–667. DOI: 10.1109/LMWC.2009.2029754
  5. COLANTONIO, P., GARCIA, J. A., GIANNINI, F., et al. High efficiency and high linearity power amplifier design. International Journal of RF and Microwave Computer Aided Engineering, 2005, vol. 15, no. 5, p. 453–468. DOI: 10.1002/mmce.20111
  6. LEE, Y., LEE, M., JEONG, Y. High-efficiency class-F GaN HEMT amplifier with simple parasitic-compensation circuit. IEEE Microwave and Wireless Component Letters, 2008, vol. 18, no. 1, p. 55–57. DOI: 10.1109/LMWC.2007.912023
  7. DHAR, S. K., SHARMA, T., ZHU, N., et al. Design methodology of broadband continuous class-F power amplifiers for sub-6-GHz 5G applications. IEEE Transactions on Microwave Theory and Techniques, 2020, vol. 68, no. 7, p. 3120–3133. DOI: 10.1109/TMTT.2020.2984603
  8. WREN, M., BRAZIL, T. J. Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model. Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 5, p. 1723–1731. DOI: 10.1109/TMTT.2005.847108
  9. OZALAS, M. T. High efficiency class-F MMIC power amplifiers at Ku-band. In The 2005 IEEE Annual Conference Wireless and Microwave Technology. Clearwater Beach (FL, USA), 2005, p. 24–28. DOI: 10.1109/WAMIC.2005.1528402
  10. YANG, Z., YAO, Y., LI, M., et al. A precise harmonic control technique for high efficiency concurrent dual-band continuous class-F power amplifier. IEEE Access, 2018, vol. 6, p. 51864 to 51874. DOI: 10.1109/ACCESS.2018.2870865
  11. SAJEDIN, M., ELFERGANI, I., RODRIGUEZ, J., et al. Energy efficient and wideband class-J Doherty power amplifier. In 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Porto (Portugal), 2020, p. 1–6. DOI: 10.1109/CSNDSP49049.2020.9249642
  12. COLANTONIO, P., GIANNINI, F., LEUZZI, G., et al. Multiharmonic manipulation for highly efficient microwave power amplifiers. International Journal of RF and Microwave Computer Aided Engineering, 2001, vol. 11, no. 6, p. 366–384. DOI: 10.1002/mmce.1045
  13. RAAB, F. H. Class-f power amplifiers with maximally flat waveforms. IEEE Transactions on Microwave Theory and Techniques, 1997, vol. 45, no. 11, p. 2007–2012. DOI: 10.1109/22.644215
  14. PEDRO, J. C., CARVALHO, N. B., FAGER, C., et al. Linearity versus efficiency in mobile handset power amplifiers: A battle without a loser. Microwave Engineering Europe, 2004. p. 19–26.
  15. COLANTONIO, P., GIANNINI, F., LEUZZI, G., et al. On the class-F power amplifier design. International Journal of RF and Microwave Computer Aided Engineering, 1999, vol. 9, no. 2, p. 129–149. DOI: 10.1002/(SICI)1099- 047X(199903)9:2<129::AID-MMCE7>3.0.CO;2-U
  16. KAZIMIERCZUK, M. RF Power Amplifier. New York (USA): Wiley, 2008. Ch. 8, p. 267–289. ISBN: 9781118844373
  17. SAJEDIN. M., ELFERGANI, I., RODRIGUEZ, J., et al. A survey on RF and microwave Doherty power amplifier for mobile handset applications. Electronics, 2019, vol. 8, no. 6, p. 1–31. DOI: 10.3390/electronics8060717
  18. BAHL, I., BHARTIA, P. Microwave Solid State Circuit Design. Canada: John Wiley & Sons. 2003. ISBN: 978-0-471-20755-9
  19. SAJEDIN, M., ELFERGANI, I., RODRIGUEZ, J., et al. Advancement of a highly efficient class-F power amplifier for 5G Doherty architectures. In 2019 IEEE 2nd 5G World Forum (5GWF). Dresden (Germany), 2019, p. 86–90. DOI: 10.1109/5GWF.2019.8911678
  20. GIANNINI, F., LEUZZI, G. Nonlinear Microwave Circuit Design. UK: John Wiley & Sons, 2004. ISBN: 978-0-470-84701-5
  21. CABRAL, P. M., PEDRO, J. C., CARVALHO, B. Nonlinear device model of microwave power GaN HEMTs for high poweramplifier design. IEEE Transactions on Microwave Theory and Techiques, 2004, vol. 52, no. 11, p. 2585–2592. DOI: 10.1109/TMTT.2004.837196
  22. ABDULKHALEQ, A. M., YAHYA, M. A., MCEWAN, N., et al. Recent developments of dual-band Doherty power amplifiers for upcoming mobile communications systems. Electronics, 2019, vol. 8, no. 6, p. 1–19. DOI: 10.3390/electronics8060638
  23. DU, X., HELAOUI, M., YOU, C. J., et al. Analytical design space of power amplifiers including the class-A/B/J continuum for dynamic load modulation. IEEE Access, 2019, vol. 7, p. 71933–71942. DOI: 10.1109/ACCESS.2019.2919379
  24. MOON, J., JEE, S., KIM, J., et al. Behaviors of class-F and classF–1 amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 6, p. 1937–1951. DOI: 10.1109/TMTT.2012.2190749
  25. AGGRAWAL, E., RAWAT, K., ROBLIN, P. Investigating continuous class-F power amplifier using nonlinear embedding model. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 6, p. 593–595. DOI: 10.1109/LMWC.2017.2701316
  26. KURODA, K., ISHIKAWA, R., HONJO, K. High-efficiency GaN-HEMT class-F amplifier operating at 5.7 GHz. In 2008 38th European Microwave Conference. Amsterdam (Netherlands), 2008, p. 440–443. DOI: 10.1109/EUMC.2008.4751483
  27. NICKANDISH, G., BABAKRPUR, E., MEDI, A. A harmonic termination technique for single- and multi band high-efficiency class-F MMIC power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 5, p. 1212–1220. DOI: 10.1109/TMTT.2014.2315591
  28. TUFFY, N., GUAN, L., ZHU, A., et al. A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers, IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 6, p. 1952–1963. DOI: 10.1109/TMTT.2012.2187534

Keywords: Power amplifiers, GaN HEMT, class-F, power dissipation, heat transfer

R. Dastanian, M. Askari [references] [full-text] [DOI: 10.13164/re.2021.0381] [Download Citations]
A 0.5V 110nW Sensor for Temperature Monitoring of Perishable Foods

Real-time monitoring solution is essential for the perishable food to estimate the food quality and to predict its shelf life. In this paper an on-chip temperature sensor which is applicable for UHF RFID passive tag is proposed. MOSFET is used as the sensitive element to the temperature. Since the transistors are biased in sub-threshold region, the power consumption is decreased. To converting proportional-to-absolute-temperature (PTAT) and complimentary-to-absolute-temperature (CTAT) voltages to the digital code, the delay generator and 8-bit ripple counter are utilized. For designing binary counter, a low power and high speed D-flip flap (D-FF) based on gate diffusion input (GDI) technique is employed. The proposed temperature sensor dissipates 110nW power while the supply voltage is 0.5 V. Simulated in TSMC 0.18 µm CMOS technology, the total chip area is 0.0104 mm^2 and the error is -0.3/0.7°C in the temperature range of -20°C to 10°C.

  1. HADDARA, M., STAABY, A. RFID applications and adoptions in healthcare: A review on patient safety. Procedia Computer Science, 2018, vol. 138, p. 80–88. DOI: 10.1016/j.procs.2018.10.012
  2. VAZ, A., UBARRETXENA, A., ZALBIDE, I., et al. Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Transactions on Circuits and Systems II: Express Briefs, 2010, vol. 57, no. 2, p. 95–99. DOI: 10.1109/TCSII.2010.2040314
  3. ALFIAN, G., SYAFRUDIN, M., FAROOQ, U., et al. Improving efficiency of RFID-based traceability system for perishable food by utilizing IoT sensors and machine learning model. Food Control, 2020, vol. 110, p. 1–11. DOI: 10.1016/j.foodcont.2019.107016
  4. ATHAUDA, T., CHANDRA, K. N. Review of RFID-based sensing in monitoring physical stimuli in smart packaging for food-freshness applications. Wireless Power Transfer, 2019, vol. 6, no. 2, p. 161–174. DOI: 10.1017/wpt.2019.6
  5. LAW, M. K., BERMAK, A., LUONG, H. C. A sub-µW embedded CMOS temperature sensor for RFID food monitoring application. IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 6, p. 1246–1255. DOI: 10.1109/JSSC.2010.2047456
  6. SOURI, K., MAKINWA, K. A 0.12 mm2 7.4 µW micropower temperature sensor with an inaccuracy of ±0.2°C (3σ) from –30°C to 125°C. IEEE Journal of Solid-State Circuits, 2011, vol. 46, no. 7, p. 1693–1700. DOI: 10.1109/JSSC.2011.2144290
  7. SOURI, K., CHAE, Y., MAKINWA, K. A CMOS temperature sensor with a voltage-calibrated inaccuracy of ± 0.15°C (3σ ) from –55°C to 125°C. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 1, p. 292–301. DOI: 10.1109/JSSC.2012.2214831
  8. AITA, A. L., PERTIJS, M. A. P., MAKINWA, K. A., et al. Lowpower CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (±3σ) from –70°C to 130°C. IEEE Sensors Journal, 2013, vol. 13, no. 5, p. 1840–1848. DOI: 10.1109/JSEN.2013.2244033
  9. YIN, J., YI, J., LAW, M. K., et al. A system-on-chip EPC gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 11, p. 2404 to 2420. DOI: 10.1109/JSSC.2010.2072631
  10. TAN, Y., LIU, Z., HAO, X., et al. A 1.3-µW −0.3/+0.27°C inaccuracy fully-integrated temperature sensor based on a precharge relaxation oscillator for IoT applications. In IEEE AsiaPacific Microwave Conference (APMC). Singapore, 2019, p. 42 to 44. DOI: 10.1109/APMC46564.2019.9038760
  11. KIM, K., LEE, H., KIM, C. 366-kS/s 1.09-nJ 0.0013 mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, vol. 21, no. 10, p. 1950 to 1954. DOI: 10.1109/TVLSI.2012.2220389
  12. CHEN, P., CHEN, C.-C., TSAI, C.-C., et al. A time-to-digitalconverter-based CMOS smart temperature sensor. IEEE Journal of Solid-State Circuits, 2005, vol. 40, no. 8, p. 1642–1648. DOI: 10.1109/JSSC.2005.852041
  13. HWANG, S., KOO, J., KIM, K., et al. A 0.008 mm2 500 µW 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 9, p. 2241–2248. DOI: 10.1109/TCSI.2013.2246254
  14. PARK, S., MIN, C., CHO, S. A 95nW ring oscillator-based temperature sensor for RFID tags in 0.13µm CMOS. In Proceedings of IEEE International Symposium on Circuits and Systems. Taipei (Taiwan), 2009, p. 1153–1156. DOI: 10.1109/ISCAS.2009.5117965
  15. OSAKI, Y., HIROSE, T., KUROKI, N., et al. 1.2-V supply, 100- nW, 1.09-V bandgap and 0.7-V supply, 52.5-nW, 0.55-V subbandgap reference circuits for nanowatt CMOS LSIs. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 6, p. 1530–1538. DOI: 10.1109/JSSC.2013.2252523
  16. ZHANG, H., LI, D., WANG, Q., et al. A resistor-less bandgap reference with improved PTAT generator for ultra-low-power LSIs. In IEEE Faible Tension Faible Consommation Conference. Monaco (Monaco), 2014, p. 1–4. DOI: 10.1109/FTFC.2014.6828605
  17. SALEHI, M. R., DASTANIAN, R., ABIRI, E., et al. A 147µW, 0.8V and 7.5 (mV/V) LIR regulator for UHF RFID application. AEU - International Journal of Electronics and Communications, 2015, vol. 69, no. 1, p. 133–140. DOI: 10.1016/j.aeue.2014.08.004
  18. LIN, Y., SYLVESTER, D., BLAAUW, D. An ultra-low power 1V, 220nW temperature sensor for passive wireless applications. In Proceedings of IEEE Custom Integrated Circuits Conference. San Jose (CA, USA) 2008, p. 507–510. DOI: 10.1109/CICC.2008.4672133

Keywords: UHF RFID, on-chip temperature sensor, low power consumption, perishable food, CTAT, PTAT

M. M. Pishrow, J. Abouei, H. Ghaferi [references] [full-text] [DOI: 10.13164/re.2021.0388] [Download Citations]
Design of Matched and Mismatched Filters Based on Peak Sidelobe Level Minimization

‎This paper focuses on the design of matched filters with low peak sidelobe level as well as mismatched‎ ‎filters with low loss in processing gain and peak sidelobe level‎, ‎for phase codes‎. ‎We propose an algorithm ‎which employs the least-p-th norm minimax based on the genetic algorithm‎, ‎and a method based on the‎ ‎semidefinite programming to deal respectively with the resulting matched and mismatched optimization problems‎. A framework is also presented to design mismatched filters that are robust to Doppler shifts. ‎Simulation results show that using the proposed methods for finding matched filters leads to better peak sidelobe‎ ‎level and integrated sidelobe level for binary and polyphase codes compared to previous works‎. ‎In addition‎, ‎the mismatched filters designed by the proposed methods have very low peak sidelobe level in‎ ‎the binary and polyphase cases‎.

  1. MIDDLETON, D. Non-Gaussian Statistical Communication Theory. 1st ed. New York (USA): John Wiley and Sons, 2012. ISBN: 978-1-118-16195-1
  2. CHITGARHA, M. M., RADMARD, M., MAJD, M. N., et al. MIMO radar signal design to improve the MIMO ambiguity function via maximizing its peak. ELSEVIER Signal Processing, 2016, vol. 118, p. 139–152. DOI: 10.1016/j.sigpro.2015.06.024
  3. RICHARDS, M. A. Fundamentals of Radar Signal Processing. 2nd ed. New York (USA): McGraw-Hill, 2014. ISBN: 9780071798327
  4. LEVANON, N., MOZESON, E. Radar Signals. 1st ed. Hoboken (USA): John Wiley and Sons, 2004. ISBN 0-471-47378-2
  5. CHANG, G., YU, X., YU, C. Discrete frequency and phase coding waveform for MIMO radar. Radioengineering, 2017, vol. 26, no. 3, p. 835–841. DOI: 10.13164/re.2017.0835
  6. WANG, Z., LIAO, G., YANG, Z. Space-frequency modulation radarcommunication and mismatched filtering. IEEE Access, 2018, vol. 6, p. 24837–24845. DOI: 10.1109/ACCESS.2018.2829731
  7. XU, L., ZHOU, S., LIU, H., et al. Distributed multipleinput-multiple-output radar waveform and mismatched filter design with expanded mainlobe. In 2016 CIE International Conference on Radar (RADAR). Guangzhou (China), 2016, p. 1–5. DOI: 10.1109/RADAR.2016.8059149
  8. WANG, H., LI, W., WANG, H., et al. Radar waveform strategy based on game theory. Radioengineering, 2019, vol. 28, no. 4, p. 757–764. DOI: 10.13164/re.2019.0757
  9. BADEN, J., COHEN, M. Optimal peak sidelobe filters for biphase pulse compression. In Proceedings of IEEE International Radar Conference. Arlington (USA), 1990, p. 249–252. DOI: 10.1109/RADAR.1990.201171
  10. SAHOO, A. K., PANDA, G., PRADHAN, P. M. Efficient design of pulse compression codes using multi objective genetic algorithm. In Proceedings of World Congress on Nature & Biologically Inspired Computing. Coimbatore (India), 2009, p. 324–329. DOI: 10.1109/NABIC.2009.5393731
  11. BADEN, J., DAVIS, M. S., SCHMIEDER, L. Efficient energy gradient calculations for binary and polyphase sequences. In Proceedings of IEEE Radar Conference. Arlington (USA), 2015, p. 304–309. DOI: 10.1109/RADAR.2015.7131014
  12. AITTOMAKI, T., KOIVUNEN, V. Mismatched filter design and interference mitigation for MIMO radars. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 2, p. 454–466. DOI: 10.1109/TSP.2016.2620960
  13. BADEN, J. M., O’DONNELL, B., SCHMIEDER, L. Multi objective sequence design via gradient descent methods. IEEE Transactions on Aerospace and Electronic Systems, 2018, vol. 54, no. 3, p. 1237–1252. DOI: 10.1109/TAES.2017.2780538
  14. YU, G., LIANG, J., LI, J., et al. A. Sequence set design with accurately controlled correlation properties. IEEE Transactions on Aerospace and Electronic Systems, 2018, vol. 54, no. 6, p. 3032–3046. DOI: 10.1109/TAES.2018.2836778
  15. ALAIE, M. B., OLAMAEI, S. A. Waveform design for TDM-MIMO radar systems. ELSEVIER Signal Processing, 2020, vol. 167, p. 1–8. DOI: 10.1016/j.sigpro.2019.107307
  16. FAN, W., LIANG, J., YU, G., et al. Minimum local peak sidelobe level waveform design with correlation and/or spectral constraints. ELSEVIER Signal Processing, 2020, vol. 171, p. 2–8. DOI: 10.1016/j.sigpro.2019.107450
  17. SONG, X., ZHOU, S., WILLETT, P. Reducing the waveform cross correlation of MIMO radar with space time coding. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4213–4224. DOI: 10.1109/TSP.2010.2048207
  18. BOYD, S., VANDENBERGHE, L. Convex Optimization. 1st ed. Cambridge (UK): Cambridge University Press, 2004. ISBN: 978-0-521-83378-3
  19. LOFBERG, J. YALMIP: A toolbox for modeling and optimization in Matlab. In Proceedings of IEEE International Conference on Robotics and Automation. Taipei (Taiwan), 2004. DOI: 10.1109/CACSD.2004.1393890
  20. LIN, R., SOLTANALIAN, M., TANG, B., et al. Efficient design of binary sequences with low autocorrelation sidelobes. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 24, p. 6397–6410. DOI: 10.1109/TSP.2019.2954525
  21. STOICA, P., HE, H., LI, J. New algorithms for designing unimodular sequences with good correlation properties. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 4, p. 1415–1425. DOI: 10.1109/TSP.2009.2012562

Keywords: Matched filter‎, ‎mismatched filter‎, ‎peak sidelobe level‎, ‎loss in processing gain‎, ‎Doppler robustness

Y. S. Yan, W.-Q. Wang, A. Basit, J. Y. Cai [references] [full-text] [DOI: 10.13164/re.2021.0396] [Download Citations]
Airborne FDA-MIMO Radar Modeling and Detection Performance Analysis

In the conventional frequency diverse array (FDA) radar designs, generalized likelihood ratio test (GLRT) detection utilizes coherent pulses. However, the impacts of an FDA multiple-input multiple-output (FDA-MIMO) radar system for detection with incoherent pulses have not been systematically investigated. In this paper, we present an incoherent square-law detector to analyse the performance of both the coherent and non-coherent airborne FDA-MIMO radars in a Neyman-Pearson sense. Moreover, the closed-form expressions of an incoherent square-law detector for the FDA-MIMO radars are derived. For a coherent FDA-MIMO radar, the optimal performance is achieved at a high signal-to-noise ratio (SNR), whereas the superiority of a non-coherent FDA-MIMO radar in distinguishing range dependent targets is validated. The corresponding theoretical derivations are verified by the extensive numerical results to show an improved performance.

  1. WARD, J. Space-time adaptive processing for airborne radar. In International Conference on Acoustics, Speech, and Signal Processing. Detroit (USA), 1995, p. 2809–2812. DOI: 10.1109/ICASSP.1995.479429
  2. KLEMM, R. Space-time adaptive processing: principles and applications [book review]. Electronics Communication Engineering Journal, 1999, vol. 11, no. 4, p. 172–172. DOI: 10.1049/ecej:19990404
  3. GUERCI, J. R. Theory and application of covariance matrix tapers for robust adaptive beamforming. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 4, p. 977–985. DOI: 10.1109/78.752596
  4. SWINDLEHURST, A. L., STOICA, P. Maximum likelihood methods in radar array signal processing. Proceedings of the IEEE, 1998, vol. 86, no. 2, p. 421–441. DOI: 10.1109/5.659495
  5. FISHLER, E., HAIMOVICH, A., BLUM, R., et al. Mimo radar: An idea whose time has come. In Proceedings of the IEEE National Radar Conference. Philadelphia (USA), 2004, p. 71–78. DOI: 10.1109/NRC.2004.1316398
  6. FISHLER, E., HAIMOVICH, A., BLUM, R., et al. Performance of MIMO radar systems: Advantages of angular diversity. In Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 2004, p. 305–309. DOI: 10.1109/ACSSC.2004.1399142
  7. BEKKERMAN, I., TABRIKIAN, J. Spatially coded signal model for active arrays. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Montreal (Canada), 2004, p. 209–212. DOI: 10.1109/ICASSP.2004.1326231
  8. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. Mimo radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  9. XU, J., LIAO, G., HUANG, L., et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 4, p. 973–984. DOI: 10.1109/tsp.2016.2628340
  10. BEKKERMAN, I., TABRIKIAN, J. Target detection and localization using mimo radars and sonars. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3873–3883. DOI: 10.1109/TSP.2006.879267
  11. ANTONIK, P., WICKS, M. C., GRIFFITHS, H. D., et al. Frequency diverse array radars. In Proceedings of the IEEE Radar Conference. Verona (USA), 2006, p. 215–217. DOI: 10.1109/RADAR.2006.1631800
  12. WICKS, M. C., ANTONIK, P. Frequency Diverse Array with Independent Modulation of Frequency, Amplitude, and Phase. U.S.A Patent no. US7319427B2, January 15, 2008.
  13. SECMEN, M., DEMIR, S., HIZAL, A., et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle. In Proceedings of the IEEE Radar Conference. Waltham (USA), 2007, p. 427–430. DOI: 10.1109/RADAR.2007.374254
  14. WANG, W.-Q., SO, H. C., FARINA, A. An overview on time/frequency modulated array processing. IEEE Journal of Selected Topics in Signal Processing, 2017, vol. 11, no. 2, p. 228–246. DOI: 10.1109/JSTSP.2016.2627182
  15. WANG, W.-Q., SHAO, H. Z. A flexible phased-MIMO array antenna with transmit beamforming. International Journal of Antennas and Propagation, 2012, vol. 2012, p. 1–10. DOI: 10.1155/2012/609598
  16. ABDALLA, A., WANG, W.-Q., ZHAO, Y., et al. Subarray-based FDA radar to counteract deceptive ECM signals. EURASIP Journal on Advances in Signal Processing, 2016, vol. 2016, no. 1, p. 1–11. DOI: 10.1186/s13634-016-0403-6
  17. WANG, W.-Q., SO, H. C. Transmit subaperturing for range and angle estimation in frequency diverse array radar. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 8, p. 2000–2011. DOI: 10.1109/TSP.2014.2305638
  18. XU, J., ZHU, S., LIAO, G. Range ambiguous clutter suppression for airborne FDA-STAP radar. IEEE Journal of Selected Topics in Signal Processing, 2015, vol. 9, no. 8, p. 1620–1631. DOI: 10.1109/JSTSP.2015.2465353
  19. LAN, L., LIAO, G., XU, J., et al. Suppression approach to mainbeam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection. IEEE Access, 2018, vol. 6, p. 34582–34597. DOI: 10.1109/ACCESS.2018.2850816
  20. XU, J., LIAO, G., ZHANG, Y., et al. An adaptive range-angle-doppler processing approach for fda-mimo radar using three-dimensional localization. IEEE Journal of Selected Topics in Signal Processing, 2017, vol. 11, no. 2, p. 309–320. DOI: 10.1109/JSTSP.2016.2615269
  21. WEN, C., TAO, M., PENG, J., et al. Clutter suppression for airborne FDA-MIMO radar using multi-waveform adaptive processing and auxiliary channel STAP. Signal Processing, 2019, vol. 154, p. 280–293. DOI: 10.1016/j.sigpro.2018.09.016
  22. GUI, R., WANG, W., SHAO, H. General receiver design for FDA radar. In IEEE Radar Conference (RadarConf). Oklahoma City (USA), 2018, p. 280–285. DOI: 10.1109/RADAR.2018.8378571
  23. GUI, R., WANG, W., CUI, C., et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 1, p. 200–214. DOI: 10.1109/TSP.2017.2764860
  24. ZHU, Y., LIU, L., LU, Z., et al. Target detection performance analysis of FDA-MIMO radar. IEEE Access, 2019, vol. 7, p. 164276–164285. DOI: 10.1109/ACCESS.2019.2943082
  25. GUI, R., WANG, W.-Q., ZHENG, Z. Low-complexity GLRT for FDA radar without training data. Digital Signal Processing, 2020, vol. 107, p. 1–11. DOI: 10.1016/j.dsp.2020.102861
  26. LAN, L., MARINO, A., AUBRY, A., et al. GLRT-based adaptive target detection in FDA-MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 2020, vol. 57, no. 1, p. 597–613. DOI: 10.1109/TAES.2020.3028485
  27. YAN, Y., WANG, W.-Q., ZHANG, S., et al. Range-ambiguous clutter characteristics in airborne FDA radar. Signal Processing, 2019, vol. 170. DOI: 10.1016/j.sigpro.2019.107407
  28. SKOLNIK, M. Introduction to Radar Systems. New York (USA): McGrow-Hill, 2001. ISBN: 9780070579057
  29. FISHLER, E., HAIMOVICH, A., BLUM, R. S., et al. Spatial diversity in radars-models and detection performance. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 823–838. DOI: 10.1109/TSP.2005.862813

Keywords: Coherent and non-coherent FDA-MIMO radar, airborne radar, square-law detector, incoherent pulses, Neyman-Pearson sense, detection performance, range dependent targets

Y. Gong, C. Cui [references] [full-text] [DOI: 10.13164/re.2021.0407] [Download Citations]
A Measurement Set Partitioning Algorithm Based on CFSFDP for Multiple Extended Target Tracking in PHD Filter

The extended target probability hypothesis den¬sity (ET-PHD) filter is a promising approach for multiple extended target tracking. One crucial problem of the ET-PHD filter is partitioning the measurement set. This paper proposes a partitioning algorithm based on clustering by fast search and find density peaks (CFSFDP). Firstly, we adopt CFSFDP algorithm to partition the measurement set and the field theory is introduced to determine the cutoff distance of the CFSFDP algorithm. Then, the cluster center of the CFSFDP algorithm is determined according to solved cutoff distance and measurement rate. Finally, as the CFSFDP algorithm cannot handle the case in which targets are spatially close, an improved sub-partitioning method is implemented. Simulation results show that the proposed algorithm has less computational complexity and stronger robustness than the existing algorithm without losing tracking performance.

  1. MAHLER, R. Statistical Multisource-Multitarget Information Fusion. Norwood (MA): Artech House, 2007. ISBN: 9781596930933
  2. LIU, M. Q., LAN, J. Advanced Theory and Application of Target Tracking. Science Press, 2015. (in Chinese). ISBN: 9787030426338
  3. LUNDQUIST, C., GRANSTROM, K., ORGUNER, U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation. IEEE Journal of Selected Topics in Signal Processing, 2013, vol. 7, no. 3, p. 472–483. DOI: 10.1109/JSTSP.2013.2245632
  4. MAHLER, R. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 4, p. 1152–1178. DOI: 10.1109/TAES.2003.1261119
  5. MAHLER, R. PHD filters for nonstandard targets, I: Extended targets. In Proceedings of the 12th International Conference on Information Fusion. Seattle (WA, USA), July 2009, p. 915–921. ISBN: 9780982443804
  6. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 4, p. 3268–3286. DOI: 10.1109/TAES.2012.6324703
  7. LI, Y. X., XIAO, H. T., SONG, Z. Y., et al. A new multiple extended target tracking algorithm using PHD filter. Signal Processing, 2013, vol. 93, no. 12, p. 3578–3588. DOI: 10.1016/j.sigpro.2013.05.011
  8. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. A Gaussian mixture PHD filter for extended target tracking. In Proceedings of the 13th International Conference on Information Fusion. Edinburgh (Scotland, UK), July 2010, p. 1–8. DOI: 10.1109/ICIF.2010.5711885
  9. ZHANG, Y. Q., JI, H. B. A novel fast partitioning algorithm for extended target tracking using a Gaussian mixture PHD filter. Signal Processing, 2013, vol. 93, no. 11, p. 2975–2985. DOI: 10.1016/j.sigpro.2013.04.006
  10. YANG, J. L., LIU, F. M., GE, H. W., et al. Multiple extended target tracking algorithm based on GM-PHD filter and spectral clustering. EURASIP Journal on Advances in Signal Processing, 2014, p. 1–8. DOI: 10.1186/1687-6180-2014-117
  11. YANG, J. L., LIU, F. M., WANG, D., et al. Affinity propagation based measurement partition algorithm for multiple extended target tracking. Journal of Radars, 2015, vol. 4, no. 4, p. 452–459. (in Chinese) DOI:10.12000/JR15003
  12. ZHANG, T., WU, R. B. Affinity propagation clustering of measurements for multiple extended target tracking. Sensors, 2015, vol. 15, no. 9, p. 22646–22659. DOI: 10.3390/s150922646
  13. LI, P., GE, H. W., YANG, J. L. Adaptive measurement partitioning algorithm for a Gaussian inverse wishart PHD filter that tracks closely spaced extended targets. Radioengineering, 2017, vol. 26, no. 2, p. 573–580. DOI: 10.13164/re.2017.0573
  14. YAN, B., XU, N., XU, L. P., et al. An improved partitioning algorithm based on FCM algorithm for extended target tracking in PHD filter. Digital Signal Processing, 2019, vol. 90, p. 54–70. DOI: 10.1016/j.dsp.2019.04.002
  15. RODRIGUEZ, A., LAIO, A. Clustering by fast search and find of density peaks. Science, 2014, vol. 344, no. 6191, p. 1492–1496. DOI: 10.1126/science.1242072
  16. GILHOLM, K., GODSILL, S., MASKELL, S., et al. Poisson models for extended target and group tracking. In Proceedings of Signal and Data Processing of Small Targets. San Diego (CA, USA), SPIE, Aug 2005, p. 230–241. DOI: 10.1117/12.618730
  17. LI, P. Q., DENG, X. L., ZHANG, L. Y., et al. Sparse learning based on clustering by fast search and find of density peaks. Multimedia Tools and Applications, 2019, vol. 78, no. 23, p. 33261–33277. DOI: 10.1007/s11042-019-07885-7
  18. WANG, S. L., GAN, W. Y., LI, D. Y., et al. Data field for hierarchical clustering. International Journal of Data Warehousing and Mining, 2011, vol. 7, no. 4, p. 43–63. DOI: 10.4018/jdwm.2011100103
  19. WANG, S. L., WANG, D. K., LI, C. Y., et al. Clustering by fast search and find of density peaks with data field. Chinese Journal of Electronics, 2016, vol. 25, no. 3, p. 397–402. DOI: 10.1049/cje.2016.05.001
  20. BARANY, I., VU, V. Central limit theorems for Gaussian polytopes. Annals of Probability, 2007, vol. 35, no. 4, p. 1593 to 1621. DOI: 10.1214/009117906000000791
  21. GRANSTROM, K., ORGUNER, U. Implementation of the GIWPHD Filter. Technical Report from the Automatic Control at Linkoping Universitet, 2012, p. 1–9.
  22. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447 to 3457. DOI: 10.1109/TSP.2008.920469
  23. ZHU, Y. Q., ZHOU, S. L., GAO, G., et al. Extended emitter target tracking using GM-PHD filter. PLOS ONE, 2014, vol. 9, no. 12, p. 1–18. DOI: 10.1371/journal.pone.0114317
  24. GRANSTROM, K., ORGUNER, U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 11, p. 5657–5671. DOI: 10.1109/TSP.2012.2212888

Keywords: Probability hypothesis density filter, extended target tracking, measurement set, cutoff distance, sub-partitioning

J. Ahmad, I. Touqir, A. M. Siddiqui [references] [full-text] [DOI: 10.13164/re.2021.0417] [Download Citations]
Efficient Dark Channel Prior Based Blind Image De-blurring

Dark channel prior for blind image de-blurring has attained considerable attention in recent past. An interesting observation in blurring process is that the value of dark channel increases after averaging with adjacent high intensity pixels. Lo regularization is proposed to curtail the value of dark channel. Half quadratic splitting method is used to solve the non-convex behavior of Lo regularization. Furthermore, Discrete Wavelet Transform has been incorporated prior to de-blurring to increase the efficiency of algorithm. The most significant finding of this paper is a universal blind image de-blurring algorithm with reduced computational complexity. Experiments are performed and their results are comparable with state of the art de-blurring methods to evaluate the performance of algorithm. Experimental results also reveals that wavelet based dark channel prior image de-blurring is efficient for both uniform and nonuniform blur

  1. CORCHADO, E., YIN, H., BOTTI, V., et al. Intelligent Data Engineering and Automated Learning–IDEAL 2006. Berlin (Germany): Springer Berlin Heidelberg, 2011. ISBN: 978-3-540-45485-4
  2. LEVIN, A., WEISS, Y., DURAND, F., et al. Efficient marginal likelihood optimization in blind deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition 2011. Providence (USA), 2011, p. 2657–2664. DOI: 10.1109/CVPR.2011.5995308
  3. CHAN, T. F., WONG, C. K. Total variation blind deconvolution.IEEE transactions on Image Processing, 1998, vol. 7, no. 3, p. 370–375. DOI: 10.1109/83.661187
  4. KRISHNAN, D., TAY, T., FERGUS, R. Blind deconvolution using a normalized sparsity measure. In IEEE Conference on Computer Vision and Pattern Recognition 2011. Providence (USA), 2011, p. 233–240. DOI: 10.1109/CVPR.2011.5995521
  5. PAN, J., HU, Z., SU, Z., et al. Deblurring text images via L0- regularized intensity and gradient prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus (USA), 2014, p. 2901–2908. DOI: 10.1109/CVPR.2014.371
  6. XU, L., JIA, J. Two-phase kernel estimation for robust motion deblurring. In European Conference on Computer Vision. Berlin (Germany), 2010, p. 157–170. DOI: 10.1007/978-3-642-15549-9_12
  7. LEVIN, A., WEISS, Y., DURAND, F., et al. Understanding and evaluating blind deconvolution algorithms. In IEEE Conference on Computer Vision and Pattern Recognition. Miami (USA), 2009, p. 1964–1971. DOI: 10.1109/CVPR.2009.5206815
  8. MICHAELI, T., IRANI, M. Blind deblurring using internal patch recurrence. In European Conference on Computer Vision. Zurich (Switzerland), 2014, p. 783–798. DOI: 10.1007/978-3-319-10578-9_51
  9. CHO, H., WANG, J., LEE, S. Text image deblurring using text-specific properties. In European Conference on Computer Vision. Berlin (Germany), 2012, p. 524–537. DOI: 10.1007/978-3-642-33715-4_38
  10. HU, Z., CHO, S., WANG, J., et al. Deblurring low-light images with light streaks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus (USA), 2014, p. 3382–3389. DOI: 10.1109/CVPR.2014.432
  11. PAN, J., HU, Z., SU, Z., et al. Deblurring face images with exemplars. In European Conference on Computer Vision. Zurich (Switzerland), 2014, p. 47–62. DOI: 10.1007/978-3-319-10584-0_4
  12. SONG, Y., ZHANG, J., GONG, L., et al. Joint face hallucination and deblurring via structure generation and detail enhancement. International Journal of Computer Vision, 2019, vol. 127, no. 6-7, p. 785–800. DOI: 10.1007/s11263-019-01148-6
  13. PAN, J., REN, W., HU, Z., et al. Learning to deblur images with exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, vol. 41, no. 6, p. 1412–1425. DOI: 10.1109/TPAMI.2018.2832125
  14. PAN, J., SUN, D., PFISTER, H., et al. Deblurring images via dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40, no. 10, p. 2315–2328. DOI: 10.1109/TPAMI.2017.2753804
  15. XU, L., ZHENG, S., JIA, J. Unnatural l0 sparse representation for natural image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland (USA), 2013, p. 1107–1114. DOI: 10.1109/CVPR.2013.147
  16. ZHONG, L., CHO, S., METAXAS, D., et al. Handling noise in single image deblurring using directional filters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland (USA), 2013, p. 612–619. DOI: 10.1109/CVPR.2013.85
  17. CHO, S., LEE, S. Fast motion deblurring. ACM Transactions on Graphics (TOG), 2009, vol. 28, no. 5, p. 1–8. DOI: 10.1145/1661412.1618491
  18. KOHLER, R., HIRSCH, M., MOHLER, B., et al. Recording and playback of camera shake: benchmarking blind deconvolution with a realworld database. In European Conference on Computer Vision. Florence (Italy), 2012, p. 27–40. DOI: 10.1007/978-3-642-33786-4_3

Keywords: dark channel prior, Discrete Wavelet Transform (DWT), latent image, blur kernel, sparsity

R. S. Rabaca, F. Jerji, C. Akamine [references] [full-text] [DOI: 10.13164/re.2021.0422] [Download Citations]
Implementation of a 3-layer LDM Broadcast System Backward-compatible with ISDB-TB

This paper presents an implementation of a 3-layer transmitter and receiver using Layer Division Multiplexing (LDM), in Software Defined Radio (SDR). The main idea of this work is to show another point of view of the traditional LDM technique that uses two layers. This proposal uses an attenuated intermediate layer, called Middle Layer (ML), between the highest power layer, called Upper Layer (UL), and the most attenuated layer, called Lower Layer (LL). The UL is fully compatible with the Integrated Services Digital Broadcasting Terrestrial - Version B (ISDB-TB). The ML, with greater robustness, and LL, with higher capacity, use powerful channel coders, a custom frame size and an adapted bit interleaver. With the use of this modified LDM, it is possible to develop a system with different robustness levels between layers and with lower layers that complement each other, to achieve bit rates that allow for the deployment of High Definition Television (HDTV), in the UL, and Ultra High Definition Television (UHDTV), in the ML and LL. In addition, a system was also implemented with three layers, but with the ML with higher capacity and the LL with greater robustness. The performance of the 3-layer system was compared with the 2-layer LDM technique and there was an improvement in the system modularity, without a decrease in the bit rate.

  1. WU, Y., HIRAKAWA, S., REIMERS, U. H., et al. Overview of digital television development worldwide. Proceedings of the IEEE, 2006, vol. 94, no. 1, p. 8–21. DOI: 10.1109/JPROC.2005.861000
  2. WU, Y., RONG, B., SALEHIAN, K., et al. Cloud transmission: a new spectrum-reuse friendly digital terrestrial broadcasting transmission system. IEEE Transactions on Broadcasting, 2012, vol. 58, no. 3, p. 329–337. DOI: 10.1109/TBC.2012.2199598
  3. EL-HAJJAR, M., HANZO, L. A survey of digital television broadcast transmission techniques. IEEE Communications Surveys Tutorials, 2013, vol. 15, no. 4, p. 1924–1949. DOI: 10.1109/SURV.2013.030713.00220
  4. ZHANG, L., LI, W., WU, Y., et al. Layered-division-multiplexing: Theory and practice. IEEE Transactions on Broadcasting, 2016, vol. 62, no. 1, p. 216–232. DOI: 10.1109/TBC.2015.2505408
  5. MONTALBAN, J., ZHANG, L., GIL, U., et al. Cloud transmission: System performance and application scenarios. IEEE Transactions on Broadcasting, 2014, vol. 60, no. 2, p. 170–184. DOI: 10.1109/TBC.2014.2304153
  6. DIONISIO, V. M., AKAMINE, C. Comparison of terrestrial DTV systems: ISDB-TB and ATSC 3.0. SET International Journal of Broadcast Engineering, 2017, vol. 3, no. 3, p. 8–14. DOI: 10.18580/setijbe.2017.1
  7. GALLAGER, R. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, vol. 8, no. 1, p. 21–28. DOI: 10.1109/TIT.1962.1057683
  8. DIGITAL TERRESTRIAL MULTIMEDIA BROADCAST (DTMB). Framing Structure, Channel Coding and Modulation for Digital Television Terrestrial Broadcasting System - GB Standard 20600- 2006 (national standard). [Online] Cited 2020-12-14. Available at: https://www.chinesestandard.net/PDF/English.aspx/GB20600-2006
  9. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Service, News Gathering and Other Broadband Satellite Applications (DVB-S2) - ETSI EN Standard 302 307 (standard). [Online] Cited 2020-12-14. Available at: https://www.etsi.org/deliver/etsi_en/302300_302399/302307/ 01.03.01_60/en_302307v010301p.pdf
  10. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Frame Structure, Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2) - ETSI EN Standard 302 755 (standard). [Online] Cited 2020-12-14. Available at: https://www.etsi.org/deliver/etsi_en/302700_302799/302755/ 01.03.01_60/en_302755v010301p.pdf
  11. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Next Generation Broadcasting System to Handheld, Physical Layer Specification (DVB-NGH) - DVB document A160 (standard). [Online] Cited 2020-12-14. Available at: https://dvb.org/wpcontent/uploads/2019/12/A160_DVB-NGH_Spec.pdf
  12. ADVANCED TELEVISION SYSTEMS COMMITTEE (ATSC). ATSC Standard: Physical Layer Protocol (A/322) - Doc. A/322:2017 (standard). [Online] Cited 2020-12-14. Available at: https://www.atsc.org/wp-content/uploads/2016/10/A322-2017aPhysical-Layer-Protocol-1.pdf
  13. MACKAY, D. J. C., WILSON, S. T., DAVEY, M. C. Comparison of constructions of irregular gallager codes. IEEE Transactions on Communications, 1999, vol. 47, no. 10, p. 1449–1454. DOI: 10.1109/26.795809
  14. FOSSORIER, M. P. C., MIHALJEVIC, M., IMAI, H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications, 1999, vol. 47, no. 5, p. 673–680. DOI: 10.1109/26.768759
  15. MYUNG, S., PARK, S., KIM, K., et al. Offset and normalized min-sum algorithms for ATSC 3.0 LDPC decoder. IEEE Transactions on Broadcasting, 2017, vol. 63, no. 4, p. 734–739. DOI: 10.1109/TBC.2017.2686011
  16. RABAÇA, R. S., OLIVEIRA, G. H. M. G. d., JERJI, F., et al. Implementation of a real-time ISDB-TB LDM receiver using SDR. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Jeju (South Korea), 2019, p. 1–6. DOI: 10.1109/BMSB47279.2019.8971858
  17. ASSOCIATION OF RADIO INDUSTRIES AND BUSINESSES (ARIB). Transmission System for Digital Terrestrial Broadcasting - STD-B31 - V1.6 E2 (standard). [Online] Cited 2020-12-14. Available at: https://www.arib.or.jp/english/html/overview/doc/6-STDB31v1_6-E2.pdf
  18. BRAZILIAN ASSOCIATION OF TECHNICAL STANDARDS (ABNT). NBR 15601: Digital terrestrial television - Transmission system (standard). (in Portuguese). [Online] Cited 2020-12-14. Available at: https://www.normas.com.br/visualizar/abnt-nbrnm/26689/abnt-nbr15601-televisao-digital-terrestre-sistema-detransmissao
  19. MONTALBAN, J., RONG, B., PARK, S. I., et al. Cloud transmission: System simulation and performance analysis. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). London (UK), 2013, p. 1–5. DOI: 10.1109/BMSB.2013.6621714
  20. DA SILVA, L. F., AKAMINE, C., MACIEL, Y. P., et al. A proposal to use cloud transmission technique into the ISDB-T system. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Ghent (Belgium), 2015, p. 1–5. DOI: 10.1109/BMSB.2015.7177246
  21. MARANHÃO GARCIA DE OLIVEIRA, G. H., AKAMINE, C., MACIEL, Y. P. Implementation of ISDB-T LDM broadcast system using LDPC codes. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Nara (Japan), 2016, p. 1–4. DOI: 10.1109/BMSB.2016.7521986
  22. RABAÇA, R. S., AKAMINE, C., MARANHÃO GARCIA DE OLIVEIRA, G. H., et al. Implementation of LDM/ISDB-T broadcast system using diversity at reception. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Cagliari (Italy), 2017, p. 1–4. DOI: 10.1109/BMSB.2017.7986130
  23. RABAÇA, R. S., AKAMINE, C., MARANHÃO GARCIA DE OLIVEIRA, G. H., et al. Robustness against the effects of multipath in an ISDB-T LDM broadcast system using diversity at reception. SET International Journal of Broadcast Engineering, 2017, vol. 3, no. 3, p. 36–43. DOI: 10.18580/setijbe.2017.5
  24. RABAÇA, R. S., MARANHÃO GARCIA DE OLIVEIRA, G. H., GANZAROLI, G. R., et al. Implementation of an ISDB-TB LDM broadcast system using the BICM stage of ATSC 3.0 on enhanced layer and diversity at reception. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Valencia (Spain), 2018, p. 1–6. DOI: 10.1109/BMSB.2018.8436637
  25. MONTALBAN, J., ANGULO, I., VELEZ, M., et al. Error propagation in the cancellation stage for a multi-layer signal reception. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Beijing (China), 2014, p. 1–5. DOI: 10.1109/BMSB.2014.6873554
  26. ZHANG, L., WU, Y., LI, W., et al. Enhanced DFT-based channel estimation for LDM systems over SFN channels. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Ghent (Belgium), 2015, p. 1–6. DOI: 10.1109/BMSB.2015.7177253
  27. MONTALBAN, J., IRADIER, E., ANGUEIRA, P., et al. Channel estimation: Key factor for LDM based local content delivery on SFNs. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Valencia (Spain), 2018, p. 1–6. DOI: 10.1109/BMSB.2018.8436729
  28. MONTALBAN, J., IRADIER, E., ROMERO, D., et al. New semi-blind channel estimation for LDM-LSI. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Jeju (South Korea), 2019, p. 1–6. DOI: 10.1109/BMSB47279.2019.8971906
  29. MONTALBAN, J., IRADIER, E., FANARI, L., et al. Improved semiblind channel estimation with time domain cancellation for LDM-LSI. IEEE Transactions on Broadcasting, 2020, vol. 66, no. 3, p. 613–619. DOI: 10.1109/TBC.2020.2984995
  30. REGUEIRO, C., BARRUECO, J., MONTALBAN, J., et al. Enhanced DFT-based channel estimation for LDM systems over SFN channels. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Ghent (Belgium), 2015, p. 1–6. DOI: 10.1109/BMSB.2015.7177224
  31. MISRA, K., SEGALL, A., ZHAO, J., et al. Spatially scalable HEVC for layered division multiplexing in broadcast. In 2017 Data Compression Conference (DCC). Snowbird (USA), 2017, p. 3–12. DOI: 10.1109/DCC.2017.81
  32. LEE, J., PARK, S. I., KWON, S., et al. Scalable HEVC over layered division multiplexing for the next generation terrestrial broadcasting. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Cagliari (Italy), 2017, p. 1–4. DOI: 10.1109/BMSB.2017.7986176
  33. LEE, J., PARK, S. I., KWON, S., et al. Efficient transmission of multiple broadcasting services using LDM and SHVC. IEEE Transactions on Broadcasting, 2018, vol. 64, no. 2, p. 177–187. DOI: 10.1109/TBC.2017.2755264
  34. GOMEZ-BARQUERO, D., SIMEONE, O. LDM Versus FDM/TDM for unequal error protection in terrestrial broadcasting systems: An information-theoretic view. IEEE Transactions on Broadcasting, 2015, vol. 61, no. 4, p. 571–579. DOI: 10.1109/TBC.2015.2459665
  35. MOUHOUCHE, B., BARJAU, C., LEE, H. Design of non uniform constellations for layered division multiplexing. In IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Abu Dhabi (United Arab Emirates), 2015, p. 247–251. DOI: 10.1109/ISSPIT.2015.7394337.
  36. KIM, P., PARK, S., KIM, H., et al. Layered division multiplexing for satellite broadcasting system. In International Conference on Information and Communication Technology Convergence (ICTC). Jeju (South Korea), 2016, p. 1224–1226. DOI: 10.1109/ICTC.2016.7763413.
  37. GARRO, E., GIMENEZ, J. J., KLENNER, P., et al. Information-theoretic analysis and performance evaluation of optimal demappers for multi-layer broadcast systems. IEEE Transactions on Broadcasting, 2018, vol. 64, no. 4, p. 781–790. DOI: 10.1109/TBC.2018.2799300
  38. GARRO, E., BARJAU, C., GOMEZ-BARQUERO, D., et al. Layered division multiplexing with distributed multiple-input single-output schemes. IEEE Transactions on Broadcasting, 2019, vol. 65, no. 1, p. 30–39. DOI: 10.1109/TBC.2018.2823643
  39. KIM, H., KIM, J., PARK, S. I., et al. Capacity analysis for LDM-based multiple-PLP configurations in ATSC 3.0. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Jeju (South Korea), 2019, p. 1–5. DOI: 10.1109/BMSB47279.2019.8971903
  40. LEE, J., PARK, S. I., KWON, S., et al. Layered division multiplexing for ATSC 3.0: Implementation and memory use aspects. IEEE Transactions on Broadcasting, 2019, vol. 65, no. 3, p. 496–503. DOI: 10.1109/TBC.2019.2897750
  41. GARRO, E., BARJAU, C., GOMEZ-BARQUERO, D., et al. Study on the optimum co-located MIMO scheme for LDM in ATSC 3.0: Use cases and core layer performance. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Valencia (Spain), 2018, p. 1–4. DOI: 10.1109/BMSB.2018.8436920
  42. PARK, S., LEE, J., LIM, B., et al. Field comparison tests of LDM and TDM in ATSC 3.0. IEEE Transactions on Broadcasting, 2018, vol. 64, no. 3, p. 637–647. DOI: 10.1109/TBC.2017.2755375
  43. MYUNG, S., KIM, K., LEE, J., et al. Efficient decoding of LDM core layer at fixed receivers in ATSC 3.0. IEEE Transactions on Broadcasting, 2017, vol. 63, no. 4, p. 727–733. DOI: 10.1109/TBC.2017.2731040
  44. HWANG, Y., CHO, S., MYUNG, S., et al. Efficient decoding schemes of LDPC codes for the layered-division multiplexing systems in ATSC 3.0. IEEE Transactions on Broadcasting, 2017, vol. 63, no. 1, p. 1–10. DOI: 10.1109/TBC.2016.2606896
  45. CHO, S., HWANG, Y., MYUNG, S., et al. Low-complexity decoding algorithms for the LDM core layer at fixed receivers in ATSC 3.0. IEEE Transactions on Broadcasting, 2017, vol. 63, no. 1, p. 293–303. DOI: 10.1109/TBC.2016.2606879
  46. ZHANG, L., LI, W., WU, Y., et al. Two-layer mobile service performance in LDM-based ATSC 3.0 system. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Nara (Japan), 2016, p. 1–7. DOI: 10.1109/BMSB.2016.7521990
  47. LIU, L., XU, Y., WU, Y., et al. Capacity analysis of 3-layer layered division mulplexing system. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). Jeju (South Korea), 2019, p. 1–5. DOI: 10.1109/BMSB47279.2019.8971843
  48. BAE, J., KWON, S., KIM, Y., et al. Reception complexity and power consumption reduction with ASK in 3- layer LDM. In IEEE 9th International Conference on Consumer Electronics (ICCE). Berlin (Germany), 2019, p. 152–157. DOI: 10.1109/ICCE-Berlin47944.2019.8966160
  49. LARROCA, F., FLORES-GURIDI, P., GOMEZ, G., et al. An open and free ISDB-T full seg receiver implemented in GNU radio. In Wireless Innovation Forum Conference on Wireless Communications Technologies and Software Defined Radio (WInnComm 16). Virginia (USA), 2019, p. 1–10.
  50. BEDICKS, G., YAMADA, F., SUKYS, F., et al. Results of the ISDBT system tests, as part of digital TV study carried out in Brazil. IEEE Transactions on Broadcasting, 2006, vol. 52, no. 1, p. 38–44. DOI: 10.1109/TBC.2005.856729
  51. NORDIG. NorDig Unified Test Plan for Integrated Receiver Decoders for use in Cable, Satellite, Terrestrial and IP-Based Networks - ver 2.6.0 (manual). [Online] Cited 2020-12-14. Available at: https://nordig.org/wp-content/uploads/2017/12/NorDigUnified_Test_Plan_ver_2.6.0.pdf
  52. BRAZILIAN SOCIETY OF TELEVISION ENGINEERING (SET). Integrating HEVC Video Compression with a High Dynamic Range Video Pipeline - SET Magazine - SET EXPO 2016 (technical report). [Online] Cited 2020-12-14. Available at: https://set.org.br/artigos/ed162/paper_smpte.pdf
  53. SIQUEIRA, I., CORREA, G., GRELLERT, M. Rate-distortion and complexity comparison of HEVC and VVC video encoders. In IEEE 11th Latin American Symposium on Circuits & Systems (LASCAS). San Jose (Costa Rica), 2020, p. 1–4. DOI: 10.1109/LASCAS45839.2020.9069036
  54. KUFA, J., KALLER, O., ZACH, O., et al. Objective models for performance comparison of compression algorithms for 3DTV. Radioengineering, 2019, vol. 28, no. 1, p. 207–219. DOI: 10.13164/re.2019.0207
  55. INTERNATIONAL TELECOMMUNICATION UNION - TELECOMMUNICATION STANDARDIZATION SECTOR (ITU-T). High Efficiency Video Coding - Recommendation ITU-T H.265 (manual). [Online] Cited 2020-12-14. Available at: lhttps://www.itu.int/ITUT/recommendations/rec.aspx?rec=14107&lang=en
  56. INTERNATIONAL TELECOMMUNICATION UNION - TELECOMMUNICATION STANDARDIZATION SECTOR (ITU-T). Versatile Video Coding - Recommendation ITU-T H.266 (manual). [Online] Cited 2020-12-14. Available at: https://www.itu.int/ITU-T/recommendations/rec.aspx?id=14336

Keywords: ISDB-TB, LDM, Low-Density Parity-Check (LDPC), SDR

S. K. Koduri , T. K. Kumar [references] [full-text] [DOI: 10.13164/re.2021.0435] [Download Citations]
DWT-DCT-Based Data Hiding for Speech Bandwidth Extension

The limited narrowband frequency range, about 300-3400Hz, used in telephone network channels results in less intelligible and poor-quality telephony speech. To address this drawback, a novel robust speech bandwidth extension using Discrete Wavelet Transform- Discrete Cosine Transform Based Data Hiding (DWTDCTBDH) is proposed. In this technique, the missing speech information is embedded in the narrowband speech signal. The embedded missing speech information is recovered steadily at the receiver end to generate a wideband speech of considerably better quality. The robustness of the proposed method to quantization and channel noises is confirmed by the mean square error test. The enhancement in the quality of reconstructed wideband speech of the proposed method over conventional methods is reasserted by subjective listening and objective tests.

  1. JAX, P., VARY, P. Bandwidth extension of speech signals: A catalyst for the introduction of wideband speech coding? IEEE Communications Magazine, 2006, vol. 44, no. 5, p. 106–111. DOI: 10.1109/MCOM.2006.1637954
  2. JAX, P. Enhancement of bandlimited speech signals: Algorithms and theoretical bounds. PhD Thesis. RWTH Aachen University, Aachen, Germany, 2002.
  3. PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of speech signals: A comprehensive review. International Journal of Intelligent Systems and Applications, 2016, vol. 8, no. 2, p. 45–52. DOI: 10.5815/ijisa.2016.02.06
  4. LING, Z.-H., AI, Y., GU, Y., et al. Waveform modelling and generation using hierarchical recurrent neural networks for speech bandwidth extension. IEEE/ACM Transaction on Audio, Speech, and Language Processing, 2018, vol. 26, no. 5, p. 883–894. DOI: 10.1109/TASLP.2018.2798811
  5. LEE, B.-K., NOH, K., CHANG, J.-H., et al. Sequential deep neural networks ensemble for speech bandwidth extension. IEEE Access, 2018, vol. 6, p. 27039–27047. DOI: 10.1109/ACCESS.2018.2833890
  6. ABEL, J., FINGSCHEIDT, T. A DNN regression approach to speech enhancement by artificial bandwidth extension. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA). New Paltz (NY, USA), 2017, p. 219–223. DOI: 10.1109/WASPAA.2017.8170027
  7. WANG, Y., ZHAO, S., QU, D., et al. Using conditional restricted Boltzmann machines for spectral envelope modelling in speech bandwidth extension. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Shanghai (China), 2016, p. 5930–5934. DOI: 10.1109/ICASSP.2016.7472815
  8. JAX, P., VARY, P. An upper bound on the quality of artificial bandwidth extension of narrowband speech signals. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando (FL, USA), 2002, p. 237–240. DOI: 10.1109/ICASSP.2002.5743698
  9. CHEN, S., LEUNG, H. Artificial bandwidth extension of telephony speech by data hiding. In Proceedings of the IEEE International. Symposium on Circuits and Systems. Kobe, (Japan), 2005, p. 3151–3154. DOI: 10.1109/ISCAS.2005.1465296
  10. CHEN, S., LEUNG, H. Speech bandwidth extension by data hiding and phonetic classification. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu (Hawaii, USA), 2007, p. 593–596. DOI: 10.1109/ICASSP.2007.366982
  11. GEISER, B., VARY, P. Speech bandwidth extension based on inband transmission of higher frequencies. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver (Canada), 2013, p. 7507–7511. DOI: 10.1109/ICASSP.2013.6639122
  12. GEISER, B., VARY, P. Backwards compatible wideband telephony in mobile networks: CELP watermarking and bandwidth extension. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu, (Hawaii, USA), 2007, p. 533–536. DOI: 10.1109/ICASSP.2007.366967
  13. BHATT, N., KOSTA, Y. A novel approach for artificial bandwidth extension of speech signals by LPC technique over proposed GSM FR NB coder using high band feature extraction and various extension of excitation methods. International Journal of Speech Technology, 2015, vol. 18, no. 1, p. 57–64. DOI: 10.1007/s10772-014-9249-1
  14. BHATT, N. Simulation and overall comparative evaluation of performance between different techniques for high band feature extraction based on artificial bandwidth extension of speech over proposed global system for mobile full rate narrow band coder. International Journal of Speech Technology, 2016, vol. 19, no. 4, p. 881–893. DOI: 10.1007/s10772-016-9378-9
  15. PRASAD, N., KISHORE KUMAR, T. Speech bandwidth extension aided by spectral magnitude data hiding. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 11, p. 4512–4540. DOI: 10.1007/s00034-017-0526-5
  16. KODURI, S. K., KUMAR, T. K. Speech bandwidth extension aided by hybrid model transform domain data hiding. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo (Japan), 2019, p. 1–5. DOI: 10.1109/ISCAS.2019.8702323
  17. CHEN, S., LEUNG, H., DING, H. Telephony speech enhancement by data hiding. IEEE Transactions on Instrumentation and Measurement, 2007, vol. 56, no. 1, p. 63–74. DOI: 10.1109/TIM.2006.887409
  18. CHEN, Z., ZHAO, C., GENG, G., et al. An audio watermarkbased speech bandwidth extension method. EURASIP Journal on Audio, Speech, and Music Processing, 2013, vol. 2013, no. 10, p. 1–8. DOI: 10.1186/1687-4722-2013-10
  19. SAGI, A., MALAH, D. Bandwidth extension of telephone speech aided by data embedding. EURASIP Journal on Advances in Signal Processing, 2007, vol. 2007, no. 1, p. 37–52. DOI: 10.1155/2007/64921
  20. REKIK, S., GUERCHI, D., SELOUANI, S. A., et al. Speech steganography using wavelet and Fourier transforms. EURASIP Journal on Audio, Speech, and Music Processing, 2012, vol. 2012, no. 20, p. 1–14. DOI: 10.1186/1687-4722-2012-20
  21. HASSAN, A. A., HERSHEY, J. E., SAULNIER, G. J. Perspectives in Spread Spectrum. Boston/Dordrecht/London: Kluwer Academic Publishers, 1998. ISBN: 978-0-792-38265-2
  22. HANZO, L. L, SOMERVILLE, F. C. A., WOODARD, J. P. Voice Compression and Communications: Principles and Applications for Fixed and Wireless Channels. New York (USA): John Wiley & Sons, 2001. ISBN: 978-0-471-15039-8 (electronic)
  23. NILSSON, M., KLEIJN, W. B. Avoiding overestimation in bandwidth extension of telephony speech. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City (UT, USA), 2001, vol. 2, p. 869–872. DOI: 10.1109/ICASSP.2001.941053
  24. JAX, P., VARY, P. On artificial bandwidth extension of telephone speech. Signal Processing, 2003, vol. 83, no. 8, p. 1707–1719. DOI: 10.1016/S0165-1684(03)00082-3
  25. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI) STANDARD. Speech Processing, Transmission and Quality Aspects (STQ); Distributed Speech Recognition; Front-end Feature Extraction Algorithm; Compression Algorithms. ETSI ES 201 108 V1.1.2, April 2000.
  26. GAROFOLO, J. S., LAMEL, L. F., FISHER, W. M, et al. Getting Started with the DARPA TIMIT CD-ROM: An Acoustic Phonetic Continuous Speech Database. Gaithersburg, (MD, USA): National Institute of Standards and Technology (NIST), 1993. ISBN: 1-58563-019-5
  27. INTERNATIONAL TELECOMMUNICATIONS UNION. Perceptual objective listening quality assessment: An advanced objective perceptual method for end-to-end listening speech quality evaluation of fixed, mobile, and IP-based networks and speech codecs covering narrowband, wideband, and superwideband signals. ITU-T Recommendation P.863, January 2011.
  28. KEISER, B. E., STRANGE, E. Digital Telephony and Network Integration. New York: Van Nostrand Reinhold, 1995. ISBN 978-1-4615-1787-0 (electronic)
  29. PRASAD, N., KUMAR, T. K. Bandwidth extension of narrowband speech using integer Wavelet transform. IET Signal Processing, 2017, vol. 11, no. 4, p. 437–445. DOI: 10.1049/ietspr.2016.0453
  30. PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of telephone speech using magnitude spectrum data hiding. International Journal of Speech Technology, 2017, vol. 20, no. 1, p. 151–162. DOI: 10.1007/s10772-016-9393-x
  31. CHEN, S., LEUNG, H. Concurrent data transmission through analog speech channel using data hiding. IEEE Signal Processing Letters, 2005, vol. 12, no. 8, p. 581–584. DOI: 10.1109/LSP.2005.851259
  32. CHEN, S., LEUNG, H. A bandwidth extension technique for signal transmission using chaotic data hiding. Circuits, Systems, and Signal Processing, 2008, vol. 27, no. 6, p. 893–913. DOI: 10.1007/s00034-008-9066-3
  33. GEISER, B., JAX, P., VARY, P. Artificial bandwidth extension of speech supported by watermark-transmitted side information. In Proceedings of the 9th European Conference on Speech Communication and Technology. Lisbon (Portugal), 2005, p. 1497–1500.
  34. INTERNATIONAL TELECOMMUNICATIONS UNION. Methods for subjective determination of transmission quality. ITUT Recommendation P.800, August 1996.
  35. INTERNATIONAL TELECOMMUNICATIONS UNION. Software tools for speech and audio coding standardization. ITU-T Recommendation G.191, September 2005.
  36. DINAN, E. H. JABBARI, B. Spreading codes for direct sequence CDMA and wideband CDMA cellular networks. IEEE Communications Magazine, 1998, vol. 36, no. 9, p. 48–54. DOI: 10.1109/35.714616
  37. GOLDSMITH, A. Wireless Communications. New York (USA): Cambridge University Press, 2005. ISBN: 978-0521837163

Keywords: Telephone networks, speech bandwidth extension, telephony speech enhancement, speech quality, DWT-DCT-based data hiding.

I. E. Lager, M. Stumpf [references] [full-text] [DOI: 10.13164/re.2021.0443] [Download Citations]
Amplitude-modulated, Cosine PE and WP Pulses: Theory and Applicability

The amplitude-modulated, cosine power-exponential (PE) and windowed-power (WP) pulses are discussed, by insisting on their time-domain normalization. Illustrative examples of signatures and their correspondent frequency-domain behavior are given. These examples compellingly demonstrate the possibility to replace non-causal pulses of prevalent use by causal, or even time-windowed, pulses with closely resembling signatures.

  1. VARGA, L. Pulse shape discrimination. Nuclear Instruments and Methods, 1961, vol. 14, p. 24–32. DOI: 10.1016/0029-554X(61)90047-7
  2. ROUSH, M. L., WILSON, M. A., HORNYAK, W. F. Pulse shape discrimination. Nuclear Instruments and Methods, 1964, vol. 31, p. 112–124. DOI: 10.1016/0029-554X(64)90333-7
  3. LANGEVELD, W. G. J., KING, M. J., KWONG, J., et al. Pulse shape discrimination algorithms, figures of merit, and Gamma-rejection for liquid and solid scintillators. IEEE Transactions on Nuclear Science, 2017, vol. 64, no. 7, p. 1801–1809. DOI: 10.1109/TNS.2017.2681654
  4. LAGER, I. E., STASZEWSKI, R. B., SMOLDERS, A. B., et al. Ultra-high data-rate wireless transfer in a saturated spectrum – new paradigms. In Proceedings of the 44th European Microwave Conference (EuMC). Rome (Italy), 2014, p. 917–920. DOI: 10.1109/EuMC.2014.6986585
  5. MCLEAN, J. S. FOLTZ, F., SUTTON, R. Pattern descriptors for UWB antennas. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 553–2215. DOI: 10.1109/TAP.2004.838757
  6. KWON, D.-H. Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 8, p. 2208–2215. DOI: 10.1109/TAP.2006.879189
  7. RAMBABU, K., TAN, A. E., CHAN, K. K., et al. Estimation of antenna effect on ultra-wideband pulse shape in transmission and reception IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51, no. 3, p. 604–610. DOI: 10.1109/TEMC.2009.2023364
  8. ZHANG, X., LARSON, L. E., ASBECK, P. M. Design of Linear RF Outphasing Power Amplifiers. Norwood (USA, MA): Artech House, 2003. ISBN: 9781580536127
  9. HAN, J. NGUYEN, C. A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 6, p. 206–208. DOI: 10.1109/LMWC.2002.1009996
  10. XIA, T., VENKATACHALAM, A. S., HUSTON, D. A highperformance low-ringing ultrawideband monocycle pulse generator. IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, no. 1, p. 261–266. DOI: 10.1109/TIM.2011.2161022
  11. VALIZADE, A., REZAEI, P., OROUJI, A. A. A design of UWB reconfigurable pulse transmitter with pulse shape modulation. Microwave and Optical Technology Letters, 2016, vol. 58, no. 9, p. 2221–227. DOI: 10.1002/mop.30016
  12. SHARMA, A., SHARMA, S. K. Spectral efficient pulse shape design for UWB communication with reduced ringing effect and performance evaluation for IEEE 802.15.4a channel. Wireless Networks, 2019, vol. 25, no. 5, p. 2723–2740. DOI: 10.1007/s11276-019-01989-6
  13. LAGER, I. E. Causal excitation in antenna simulations. Radioengineering, 2021, vol. 30, no. 1, p. 1–9. DOI: 10.13164/re.2021.0001
  14. LAGER, I. E., DE HOOP, A. T., KIKKAWA, T. Model pulses for performance prediction of digital microelectronic systems. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2012, vol. 2, no. 11, p. 1859–1870. DOI: 10.1109/TCPMT.2012.2216266
  15. WEISSTEIN, E. W. CRC Concise Encyclopedia of Mathematics. Boca Raton (USA, FL): CRC Press LLC, 1999. ISBN: 9780849319457
  16. LAGER, I. E., VAN BERKEL S. L. Finite temporal support pulses for EM excitation. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1659–1662. DOI: 10.1109/LAWP.2017.2662205
  17. ABRAMOWITZ, M., STEGUN, I. A. Handbook of Mathematical Functions. Mineola (USA, NY): Dover Publications, 1968. ISBN: 9780486612720
  18. FRANCESCHETTI, G., TATOIAN, J., GIBBS, G. Timed arrays in a nutshell. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 12, p. 4073–4082. DOI: 10.1109/TAP.2005.859765

Keywords: Causality, time-domain analysis, pulse generation

V. Platenka, A. Mazalek [references] [full-text] [DOI: 10.13164/re.2021.0449] [Download Citations]
CipherCAD Testbed

The CipherCAD testbed is a unique workplace for the development, design, testing, verification and teaching of the communications systems. CipherCAD is at the core of the workplace, which is an application primarily designed for solving cryptographic tasks. The application can also be used for communicating with hardware communications devices. The workplace is used in the Department of Communications Technologies at the University of Defense. The article will present selected exam-ples used in this workplace. The introduction introduces CipherCAD and the possibilities for creating simple models. The first model to be selected shows how to control SDR IZ225 and process the signals received. The next model shows how selected modulated signals are gener-ated in real time, and their transmission throughout the whole chain of communications. The models that follow show how they can be used in the field of communications protocols, VoIP transfer and changing any of the parameters of the transmitted information.

  1. BURG, A., CHATTOPADHYAY, A., LAM, K.-Y. Wireless communication and security issues for cyber–physical systems and the internet-of-things. Proceedings of the IEEE, 2018, vol. 106, no. 1, p. 38–60. DOI: 10.1109/JPROC.2017.2780172
  2. AHMAD, I., SHAHABUDDIN, S., KUMAR, T., et al. Security for 5G and beyond. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 4, p. 3682–3722. DOI: 10.1109/COMST.2019.2916180
  3. SARMILA, K. B., MANISEKARAN, S. V. A study on security considerations in IoT environment and data protection methodologies for communication in cloud computing. In International Carnahan Conference on Security Technology (ICCST). Chennai (India), 2019, p. 1–6. DOI: 10.1109/CCST.2019.8888414
  4. DULIK, M., DULIK, M. jr. Cyber security challenges in future military battlefield information network. AiMT Advances in Military Technology, 2019, vol. 14, no. 2, p. 263–277. DOI: 10.3849/aimt.01248
  5. RIIHONEN, T., KORPI, D., TURUNEN, M., et al. Tactical communication link under joint jamming and interception by same-frequency simultaneous transmit and receive radio. In IEEE Military Communications Conference (MILCOM). Los Angeles (CA, USA), 2018, p. 1–5. DOI: 10.1109/MILCOM.2018.8599793
  6. KLIMA, V., PLATENKA, V. The cryptographic software tool CipherCAD and cryptanalysis. In Proceedings of Security and Protection of Information 2011. Prague (Czech Republic), 2011, p. 54–65. ISBN: 978-80-7231-777-6
  7. INTRIPLE. IZ225. 1 page. [Online] Cited 2021-04-26. Available at: https://intriple.eu/product/show?productId=38
  8. INTRIPLE. IZ225 Programmer Manual – IZ225 SCPI Commands, Prague (Czech Republic), 2015.
  9. CipherCAD. [Online] Cited 2021-04-26. Available at: www.platenka.cz
  10. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications. Part 1: DVB-S2. European Telecommunications Standards Institute (ETSI), 650 Route des Lucioles, F-06921 Sophia Antipolis Cedex, France, 2014 [Online] Cited 2021-04-26. Available at: https://www.etsi.org/deliver/etsi_en/302300_302399/30230701/01 .04.01_60/en_30230701v010401p.pdf
  11. EMONA TIMS. [Online] Cited 2021-04-26. Available at: www.emona-tims.com
  12. URC SYSTEMS. AKRS RT - Radiosignal Analysis and Classification Application. [Online] Cited 2021-04-26. Available at: www.urc-systems.cz/en/product/akrs-rt
  13. MAZALEK, A., VRANOVA, Z., PLATENKA, V., et al. Testing of incorrect SIP messages processing. In International Conference on Military Technologies (ICMT). Brno (Czech Republic), 2017, p. 419–423. DOI: 10.1109/MILTECHS.2017.7988796
  14. PLATENKA, V., MAZALEK, A., VRANOVA, Z. The transfer of hidden information in data in the AMR-WB codec. In Communication and Information Technologies (KIT). Vysoke Tatry (Slovakia), 2019, p. 1–5. DOI: 10.23919/KIT.2019.8883461

Keywords: CipherCAD, communication systems, model, digital receiver, VoIP