ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

September 2015, Volume 24, Number 3 [DOI: 10.13164/re.2015-3]

Show all Hide all

M. Bozzi, L. Pierantoni, S. Bellucci [references] [full-text] [DOI: 10.13164/re.2015.0661] [Download Citations]
Applications of Graphene at Microwave Frequencies

In view to the epochal scenarios that nanotechnology discloses, nano-electronics has the potential to introduce a paradigm shift in electronic systems design similar to that of the transition from vacuum tubes to semiconductor devices. Since low dimensional (1D and 2D) nano-structured materials exhibit unprecedented electro-mechanical properties in a wide frequency range, including radio-frequencies (RF), microwave nano-electronics provides an enormous and yet widely undiscovered opportunity for the engineering community. Carbon nano-electronics is one of the main research routes of RF/microwave nano-electronics. In particular, graphene has shown proven results as an emblematic protagonist, and a real solution for a wide variety of microwave electronic devices and circuits. This paper introduces graphene properties in the microwave range, and presents a paradigm of novel graphene-based devices and applications in the microwave/RF frequency range.

  1. BENNETT, H. S., et al. Priorities for standards and measurements to accelerate innovations in nano-electrotechnologies: Analysis of the NIST-energetics-IEC TC 113 survey. Journal of Research of the National Institutes of Standards and Technology, Apr. 2009, vol. 114, no. 2, p. 99–135. DOI: 10.6028/jres.114.008
  2. THOMPSON, S. E., PARTHASARATHY, S. Moore’s law: the future of Si microelectronics. Materials Today, June 2006, vol. 9, no. 6, p. 20–25. DOI: 10.1016/S1369-7021(06)71539-5
  3. RUSSER, P., FICHTNER, N. Nanoelectronics in radio-frequency technology. IEEE Microwave Magazine, May 2010, vol. 11, no. 3, p. 119–135. DOI: 10.1109/MMM.2010.936077
  4. PIERANTONI, L. RF nanotechnology - Concept, birth, mission and perspectives. IEEE Microwave Magazine, June 2010, vol. 11. no. 4, p. 130–137. DOI: 10.1109/MMM.2010.936485
  5. NOVOSELOV, S K. S., GEIM, A. K., MOROZOV, S. V., JIANG, D., ZHANG, Y., DUBONOS, S. V., GRIGORIEVA, I. V., FIRSOV, A. A. Electric field effect in atomically thin carbon films. Science, 2004, vol. 306, no. 5696, p. 666–669. DOI: 10.1126/science.1102896
  6. GEIM, A. K., NOVOSELOV, K. S. The rise of graphene. Arxiv preprint cond-mat/0702595, 2007.
  7. MOROZOV, S. V., et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical Review Letters, 2008, vol. 100, no. 1, p. 16 602–16 605. DOI: 10.1103/PhysRevLett.100.016602
  8. BLAKE, P., HILL, E. W., CASTRO NETO, A. H., NOVOSELOV, K. S., JIANG, D., YANG, R., et al. Making graphene visible. Applied Physics Letters, 2007, vol. 91, 063124. DOI: 10.1063/1.2768624
  9. SON, Y.-W., COHEN, M. L., LOUIE, S. G. Energy gaps in graphene nanoribbons. Physical Review Letters, 2006, vol. 97, no. 21, p. 216803-4. DOI: 10.1103/PhysRevLett.97.216803
  10. PIERANTONI, L., COCCETTI, F., RUSSER, P. Nanoelectronics: The paradigm shift. IEEE Microwave Magazine, Dec. 2010, vol. 11, no. 17, p. 8–10. DOI: 10.1109/MMM.2010.938552
  11. LIN, Y. M., JENKINS, K. A., VALDES-GARCIA, A., SMALL, J. P., FARMER, D. B., AVOURIS, P. Operation of graphene transistors at gigahertz frequencies. Nano Letters, 2009, vol. 9, p. 422–426. DOI: 10.1021/nl803316h
  12. WANG, H., NEZICH, D., JING KONG, D., PALACIOS, T. Graphene frequency multipliers. IEEE Electron Device Letters, 2009, vol. 30, p. 547–549. DOI: 10.1109/LED.2009.2016443
  13. WANG, X., ZHI, L., MULLEN, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008, no. 8, p. 323–327. DOI: 10.1021/nl072838r
  14. VAKIL, A., ENGHETA, N. Transformation optics using graphene. Science, 2011, vol. 332, no. 6035, p. 1291–1294. DOI: 10.1126/science.1202691
  15. JABLAN, M., BULJAN, H., SOLJACIC, M. Plasmonics in graphene infrared frequencies. Physical Review B, 2009, vol. 80, p. 1–7. DOI: 10.1103/PhysRevB.80.245435
  16. MENG, J. N., FERNANDEZ, J. F., PICHONAT, E., LANCRY, O., VIGNAUD, D., DAMBRINE, G., HAPPY, H. RF characterization of epitaxial graphene nano ribbon field effect transistor. In IEEE MTT-S International Microwave Symposium Digest. Baltimore (MD, USA), June 2011, p. 1–3. DOI: 10.1109/MWSYM.2011.5972627
  17. OBRAZTSOV, A. N., et al. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007, vol. 45, no. 10, p. 2017–2021. DOI:10.1016/j.carbon.2007.05.028
  18. YU, Q., et al. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008, vol. 93, no. 11, p. 113103-3. DOI:10.1063/1.2982585
  19. MALESEVIC, A., et al. Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition. Nanotechnology, 2008, vol. 19, 305604. DOI: 10.1088/0957- 4484/19/30/305604
  20. BELLUCCI, S., MALESEVIC, A. Physics of carbon nanostructures. In Physical Properties of Ceramic and Carbon Nanoscale Structures Lecture Notes in Nanoscale Science and Technology 11, Springer: Berlin Heidelberg, 2011. ISBN 978-3-642-15778-3
  21. BELLUCCI, S., et al. Comparative field emission from vertically aligned few-layer graphene and carbon nanotubes. Nanoscience and Nanotechnology Letters, 2011, vol. 3, p. 907–912. DOI: 10.1166/nnl.2011.1253
  22. YAN, K., FU, L., PENG, H., LIU, Z. Designed CVD growth of graphene via process engineering. Accounts of Chemical Research, 2013, vol. 46, p. 2263–2274. DOI: 10.1021/ar400057n
  23. CAO, H., et al. Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Applied Physics Letters, 2010, vol. 96, 122106. DOI: 10.1063/1.3371684
  24. BABICHEV, A.V., et al. Contact properties to CVD-graphene on GaAs substrates for optoelectronic applications. Nanotechnology, 2014, vol. 25, 335707. DOI: 10.1088/0957-4484/25/33/335707
  25. MAFFUCCI, A., MICCIULLA, F., CATALDO, A., MIANO, G., BELLUCCI, S. Synthesis and electrical characterization of graphene nanoplatelets. In International Conference on Electromagnetics in Advanced Applications (ICEAA2015). Turin (Italy), 2015.
  26. MAFFUCCI, A., MICCIULLA, F., CATALDO, A., MIANO, G., BELLUCCI, S. Bottom-up realization and electrical characterization of a graphene-based device. Submitted to Nanotechnology, 2015.
  27. DABROWSKA, A., BELLUCCI, S., CATALDO, A., MICCIULLA, F., HUCZKO, A. Nanocomposites of epoxy resin with graphene nanoplates and exfoliated graphite: Synthesis and electrical properties. Physica Status Solidi B, 2014, vol. 251, no. 12, p. 2599–2602. DOI: 10.1002/pssb.201451175
  28. PIERANTONI, L., MENCARELLI, D., BOZZI, M., MORO, R., MOSCATO, S., PERREGRINI, L., MICCIULLA, F., CATALDO, A., BELLUCCI, S. Broadband microwave attenuator based on few layer graphene flakes. IEEE Transactions on Microwave Theory and Techniques, Aug. 2015, vol. 63, no. 8, p. 2491–2497. DOI: 10.1109/TMTT.2015.2441062
  29. HANSON, G. W. Dyadic Greens functions and guided surface waves for a surface conductivity of graphene. Journal of Applied Physics, 2008, vol. 103, 064302. DOI: 10.1063/1.2891452
  30. HWANG, J., CARBOTTE, J. P., TONGAY, S., HEBARD, A. F., TANNER, D. B. Ultrapure multilayer graphene in bromineintercalated graphite. Physical Review B, 2011, vol. 84, 041410. DOI: 10.1103/PhysRevB.84.041410
  31. XING, C.J., et al. Investigation on self-heating effect in carbon nanotubes field-effect transistors. IEEE Transactions on Electron Devices, 2010, vol. 58, no. 2, p. 523–529. DOI: 10.1109/TED.2010.2090528
  32. KIM, S., CHOI, T.-Y., SHIM, M., MOHAMMADI, S. A poly-Si gate carbon nanotube field effect transistor for high frequency applications. In IEEE MTT-S International Microwave Symposium Digest. June 2005. DOI: 10.1109/MWSYM.2005.1516586
  33. KOCABAS, C., et al. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Letters, 2009, vol. 9, no. 5, p.1937–1943. DOI: 10.1021/nl9001074
  34. LE LOUARN, A., et al. Intrinsic current gain cutoff frequency of 30 GHz with CNT transistors. Applied Physics Letters, 2007, vol. 90, 233108. DOI: 10.1063/1.2743402
  35. KESHAVARZI, A., et al. Carbon nanotube field-effect transistors for high-performance digital circuits; transient analysis, parasitics, and scalability. IEEE Transactions on Electron Devices, 2006, vol. 53, no. 11, p. 2718–2726. DOI: 10.1109/TED.2006.883813
  36. PESETSKI, A., et al. Carbon nanotube field-effect transistor operation at microwave frequencies. Applied Physics Letters, 2006, vol. 88, 113103. DOI: 10.1063/1.2185007
  37. BOURGOIN, J. P., et al. Directed assembly for carbon nanotube device fabrication. In International Electron Devices Meeting (IEDM 2006). San Francisco (USA), 2006. DOI: 10.1109/IEDM.2006.346805
  38. LLATSER, I., et al. Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures, 2012, vol. 10, no. 4, p. 353–358. DOI: 10.1016/j.photonics.2012.05.011
  39. GOMEZ-DIAZ, J. S., PERRUISSEAU-CARRIER, J. Microwave to THz properties of graphene and potential antenna applications. In International Symposium on Antennas and Propagation (ISAP2012). Nagoya (Japan), 2012, p. 239-242.
  40. DRAGOMAN, M., et al. Terahertz antenna based on graphene. Journal of Applied Physics, 2010, vol. 107, 104313. DOI: 10.1063/1.3427536
  41. MENCARELLI, D., DRAGOMAN, M., PIERANTONI, L., ROZZI, T., COCCETTI, F. Design of a coplanar graphene-based nano-patch antenna for microwave applications. In International Microwave Symposium (IMS), Microwave Symposium Digest (MTT). Seattle (WA, USA), June 2013, p. 1–4. DOI: 10.1109/MWSYM.2013.6697800
  42. DRAGOMAN, M., NECULOIU,, D., BUNEA, A.-C., DELIGEORGIS, G., ALDRIGO, M., VASILACHE, D., DINESCU, A., KONSTANTINIDIS, G., MENCARELLI, D., PIERANTONI, L., MODREANU, M. A tunable microwave slot antenna based on graphene. Applied Physics Letters, April 2015, vol. 106, no. 15, 153101. DOI: 10.1063/1.4917564
  43. BELLUCCI, S., MICCIULLA, F., LEVIN, V. M., PETRONYUK, YU. S., CHERNOZATONSKII, L. A., KUZHIR, P. P., PADDUBSKAYA, A. G., MACUTKEVIC, J., PLETNEV, M. A., FIERRO, V., CELZARD, A. Microstructure, elastic and electromagnetic properties of epoxy-graphite composites. AIP Advances, 2015, vol. 5, 067137. DOI: 10.1063/1.4922872
  44. BATRAKOV, K., KUZHIR, P., MAKSIMENKO, S., PADDUBSKAYA, A., VORONOVICH, S., LAMBIN, PH., KAPLAS, T., SVIRKO, YU. Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Scientific Reports, 2014, vol. 4, 7191. DOI: 10.1038/srep07191

Keywords: Nanotechnology, carbon nano-electronics, graphene, graphene nano-ribbons, plasmonics, ballistic electronics, graphene transistor, graphene antenna, graphene attenuator, graphene composites.

J. Dobes, J. Michal, J. Popp, D. Cerny, M. Grabner, F. Vejrazka, J. Kakona, S. Matejka [references] [full-text] [DOI: 10.13164/re.2015.0670] [Download Citations]
Precise Characterization and Multiobjective Optimization of Low Noise Amplifiers

Although practically all function blocks of the satellite navigation receivers are realized using the CMOS digital integrated circuits, it is appropriate to create a separate low noise antenna preamplifier based on a low noise pHEMT. Such an RF front end can be strongly optimized to attain a suitable tradeoff between the noise figure and transducer power gain. Further, as all the four principal navigation systems (GPS, GLONASS, Galileo, and COMPASS) work in similar frequency bands (roughly from 1.1 to 1.7 GHz), it is reasonable to create the low noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multiobjective optimization. A substantial improvement of a standard optimization method is also outlined to satisfy a uniform coverage of Pareto front. Moreover, for enhancing efficiency of many times repeated solutions of large linear systems during the optimization, a new modification of the Markowitz criterion is suggested compatible with fast modes of the LU factorization. Extraordinary attention was also given to the accuracy of modeling. First, an extraction of pHEMT model parameters was performed including its noise part, and several models were compared. The extraction was carried out by an original identification procedure based on a combination of metaheuristic and direct methods. Second, the equations of the passive elements (including transmission lines and T-splitters) were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Third, an optimal selection of the operating point and essential passive elements was performed using the improved optimization method. Finally, the s-parameters and noise figure of the amplifier were measured, and stability and third-order intermodulation products were also checked.

  1. SHORBAGY, M., MOUSA, A. A. A., FATHI, W. Hybrid Particle Swarm Algorithm for Multiobjective Optimization: Integrating Particle Swarm Optimization with Genetic Algorithms for Multiobjective Optimization. Saarbrucken (Germany): LAP (Lambert Academic Publishing), 2011. ISBN: 3847311492
  2. MOUSA, A. A. A. Study on Multiobjective Optimization Using Improved Genetic Algorithm: Methodology and Application. Saarbrucken (Germany): LAP (Lambert Academic Publishing), 2011. ISBN: 3846548898
  3. TLELO-CUAUTLE, E., GUERRA-GOMEZ, I., DE LA FRAGA, L. G., FLORES-BECERRA, G., POLANCO-MARTAGON, S., FAKHFAKH, M., REYES-GARCIA, C. A., RODRIGUES-GOMEZ, G., REYES-SALGADO, G. Evolutionary algorithms in the optimal sizing of analog circuits. Intelligent Computational Optimization in Engineering, Studies in Computational Intelligence. Berlin (Germany): Springer, 2011, vol. 366, p. 109–138. ISBN: 9783642217043. DOI: 10.1007/978-3-642-21705-0_5
  4. FAKHFAKH, M., SALLEM, A., BOUGHARIOU, M., BENNOUR, S., BRADAI, E., GADDOUR, E., LOULO,U M. Analogue circuit optimization through a hybrid approach. Intelligent Computational Optimization in Engineering, Studies in Computational Intelligence. Berlin (Germany): Springer, 2011, vol. 366, p. 297–327. ISBN: 9783642217043. DOI: 10.1007/978-3-642-21705-0_11
  5. HIRANO, H., YOSHIKAWA, T. A study on two-step search using global-best in PSO for multi-objective optimization problems. In Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems/13th International Symposium on Advanced Intelligent Systems (SCIS/ISIS). Kobe (Japan), 2012, p. 1894–1897. DOI: 10.1109/SCIS-ISIS.2012.6505349
  6. CHIBA, K. Performance comparison of evolutionary algorithms applied to hybrid rocket problem. In Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems/13th International Symposium on Advanced Intelligent Systems (SCIS/ISIS). Kobe (Japan), 2012, p. 1673–1678. DOI: 10.1109/SCISISIS.2012.6505130
  7. KOLO, B. Single & Multiple Objective Optimization. Weatherford (Oklahoma, USA): Weatherford Press, 2011. ISBN: 161580014X
  8. COLLETTE, Y., SIARRY, P. Multiobjective Optimization: Principles and Case Studies. 2nd ed., rev. Berlin (Germany): Springer, 2004. ISBN: 9783642072833
  9. MIETTINEN, K. M. Nonlinear Multiobjective Optimization. 4th ed. New York (New York, USA): Springer Science & Business Media, 2004. ISBN: 9781461375449
  10. MOOSAVIAN, S. A. A., GHAFARI, A., SALIMI, A., ABDI, N. Nonlinear multiobjective optimization for control of hydropower plants network. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Xi’an (China), 2008, p. 1278–1283. DOI: 10.1109/AIM.2008.4601846
  11. MIYAZAKI, R., HAMADA, N., NAGATA, Y., ONO, I. A new Pareto frontier covering strategy in FS-MOGA for multi-objective function optimization. In Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems/13th International Symposium on Advanced Intelligent Systems (SCIS/ISIS). Kobe (Japan), 2012, p. 1888–1893. DOI: 10.1109/SCIS-ISIS.2012.6505313
  12. ENGELN-MULLGES, G., UHLIG, F. Numerical Algorithms with C. Berlin (Germany): Springer, 1996. ISBN: 3540605304. DOI: 10.1007/978-3-642-61074-5
  13. PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., FLANNERY, B. P. Numerical Recipes: The Art of Scientific Computing, 3rd ed., rev. New York (New York, USA): Cambridge University Press, 2007. ISBN: 9780521884075
  14. BALLARIN, C., KAUERS, M. Solving parametric linear systems: an experiment with constraint algebraic programming. ACM SIGSAM Bulletin, 2004, vol. 38, no. 2, p. 33–46. ISSN: 0163-5824. DOI: 10.1145/1041791.1041793
  15. OSTIGUY, J.-F., NG, K.-Y. Optimized wakefield computations using a network model. In Proceedings of the XX International Linac Conference (LINAC). Monterey (California, USA), 2000, p. 275–277. OAI: CiteSeerX.psu:10.1.1.262.575
  16. DONGARRA, J. J., DUFF, I. S., SORENSEN, D. C., VAN DER VORST, H. A. Numerical Linear Algebra for High-Performance Computers. Philadelphia (Pennsylvania, USA): SIAM, 1998. ISBN: 0898714281. DOI: 10.1137/1.9780898719611
  17. MEMON, N. M., AHMED, M. M., REHMAN, F. A comprehensive four parameters I–V model for GaAs MESFET output characteristics. Solid-State Electronics, 2007, vol. 51, no. 3, p. 511–516. ISSN: 0038-1101. DOI: 10.1016/j.sse.2006.12.011
  18. MEMON, Q. D., AHMED, M. M., MEMON, N. M., RAFIQUE, U. An efficient mechanism to simulate DC characteristics of GaAs MESFETs using swarm optimization. In Proceedings of the IEEE 9th International Conference on Emerging Technologies (ICET). Islamabad (Pakistan), 2013, p. 1–5. DOI: 10.1109/ICET.2013.6743542
  19. DOBES, J., POSPISIL, L. Enhancing the accuracy of microwave element models by artificial neural networks. Radioengineering, 2004, vol. 13, no. 3, p. 7–12. ISSN: 1210-2512
  20. DOBES, J., GRABNER, M. Novel HEMT models with improved higher-order derivatives and extracting their parameters using multibias s-parameters. In Proceedings of the 33rd IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS). Waikoloa Village, Big Island (Hawaii, USA), 2011, p. 189–192. DOI: 10.1109/CSICS.2011.6062468
  21. DOBES, J., MICHAL, J., BIOLKOVA, V. Multiobjective optimization for electronic circuit design in time and frequency domains. Radioengineering, 2013, vol. 22, no. 1, p. 136–152. ISSN: 1210-2512
  22. DOBES, J., MICHAL, J., PANKO, V., POSPISIL, L. Reliable procedure for electrical characterization of MOS-based devices. Solid-State Electronics, 2010, vol. 54, no. 10, p. 1173–1184. ISSN: 0038-1101. DOI: 10.1016/j.sse.2010.05.034
  23. DOBES, J., CERNY, D., YADAV, A. A more efficient arrangement of the sparse LU factorization for the large-scale circuit analysis. In Proceedings of the IEEE/IFIP 19th International Conference on VLSI and System-on-Chip (VLSI-SoC). Hong Kong (China), 2011, p. 416–421. DOI: 10.1109/VLSISoC.2011.6081619
  24. AVAGO TECHNOLOGIES ATF-54143 Low Noise Enhancement Mode Pseudomorphic HEMT in a Surface Mount Plastic Package (datasheet). 16 pages. [Online] Cited 2012-06-08. Available at: http://www.avagotech.com/docs/AV02-0488EN
  25. AGILENT TECHNOLOGIES, INC. ADS 2008 Nonlinear Devices (datasheet). 728 pages. [Online] Cited 2008-01-31. Available at: http://cp.literature.agilent.com/litweb/pdf/ads2008/pdf/ccnld.pdf
  26. ALIAKBARI, H., ABDIPOUR, A., MIRZAVAND, R. Accurate timedomain modeling of multi-finger pHEMT transistor based on transmission line theory. AEU-International Journal of Electronics and Communications, 2015, vol. 69, no. 1, p. 215–225. ISSN: 1434-8411. DOI: 10.1016/j.aeue.2014.09.007
  27. CAPPY, A. Noise modeling and measurement techniques. IEEE Transactions on Microwave Theory and Techniques, 1988, vol. 36, no. 1, p. 1–10. ISSN: 0018-9480. DOI: 10.1109/22.3475
  28. AVAGO TECHNOLOGIES A 802.11a WLAN Driver Ampli- fier using Enhancement Mode PHEMT ATF-54143 Transistor (datasheet). 8 pages. [Online] Cited 2010-07-14. Available at: http://www.avagotech.com/docs/5988-5845EN

Keywords: Low noise amplifier, noise figure, transducer power gain, pHEMT, CAD, multiobjective optimization, goal attainment method, Pareto front, Markowitz criterion

J. Puskely, T. Urbanec, T. Mikulasek, Z. Raida, V. Rericha, J. Bartyzal [references] [full-text] [DOI: 10.13164/re.2015.0681] [Download Citations]
Novel Planar Horn Antenna for 75/85 GHz Experimental Wireless Link

In the paper, we describe a novel H-plane horn antenna for an experi¬mental wireless link operating in frequency bands 71 to 76 GHz and 81 to 86 GHz. The horn antenna was designed considering a substrate integrated waveguide (SIW) technology, The waveguide WR12 was used as a feeder. In order to improve transition between a thin-substrate SIW horn antenna and the air, we combined two approaches; a printed transition and a dielectric load. That way, a better impedance matching and better radiation properties were reached. In comparison with other planar horn antennas, we obtained a more directional radiation pattern with more than 5 dB higher gain and sufficient side lobe suppression in the E-plane. The novel planar H-plane horn antenna was compared with a designed conventional metallic horn antenna.

  1. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken (US-NJ), 2005, p. 739–810.
  2. LI, Z., CHEN, X.-P., WU, K. A surface mountable pyramidal horn antenna and transition to substrate integrated waveguide. In Proceedings of the International Symposium on Signals, Systems and Electronics (ISSSE). Montreal (Canada), February 2007, p. 607–610. DOI: 10.1109/ISSSE.2007.4294549
  3. WANG, H., FANG, D.-G., ZHANG, B., CHE, W.-Q. Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 3, p. 640–647. DOI: 10.1109/TAP.2009.2039298
  4. YOUSEFBEIKI, M., DOMENECH, A. A., MOSIG, J. R., FERNANDES, C. A. Ku-band dielectric-loaded SIW horn for vertically-polarized multisector antennas. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP). Prague (Czech Republic), March 2012, p. 2367–2371. DOI: 10.1109/EuCAP.2012.6206106
  5. CHE, W., FU, B., YAO, P., CHOW, Y. L., YUNG, E. K. N. A compact substrate integrated waveguide H-plane horn antenna with dielectric arc lens: Research articles. International Journal of RF and Microwave Computer-Aided Engineering, Sep. 2007, vol. 17, no. 5, p. 473–479. DOI: 10.1002/mmce.20237
  6. ESQUIUS-MOROTE, M., FUCHS, B., ZURCHER, J., MOSIG, J. R. Novel thin and compact H-plane SIW horn antenna. IEEE Transactions on Antennas and Propagation, June 2013, vol. 61, no. 6, p. 2911– 2920. DOI: 10.1109/TAP.2013.2254449
  7. Sivers IMA. FC1003E/03 81-86 GHz TX, 71-76/81-86 GHz RX Converter [online] Kista (Sweden): Sivers IMA AB, 2012. Cited 2013-20-8. Available at: http://www.siversima.com
  8. YAN, L., HONG, W., WU, K., CUI, T. J. Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines. IEE Proceedings on Microwaves, Antennas and Propagation, 2005, vol. 152, no. 1, p. 35–42. DOI: 10.1049/ip-map:20040726

Keywords: H-plane horn antenna, SIW technology, conventional metallic horn antenna, millimeter waves, wireless experimental link

P. Vsetula, Z. Raida, J. Lacik [references] [full-text] [DOI: 10.13164/re.2015.0688] [Download Citations]
Multi-Objective Synthesis of Filtering Dipole Array Based on Tuning-Space Mapping

In the paper, we apply tuning-space mapping to multi-objective synthesis of a filtering antenna. The antenna is going to be implemented as a planar dipole array with serial feeding. Thanks to the multi-objective approach, we can deal with conflicting requirements on gain, impedance matching, side-lobe level, and main-lobe direction. MOSOMA algorithm is applied to compute Pareto front of optimal solutions by changing lengths of dipoles and parameters of transmission lines connecting them into a serial array. Exploitation of tuning space mapping significantly reduces CPU-time demands of the multi-objective synthesis: a coarse optimization evaluates objectives using a wire model of the filtering array (4NEC2, method of moments), and a fine optimization exploits a realistic planar model of the array (CST Microwave Studio, finite integration technique). The synthesized filtering antenna was manufactured, and its parameters were measured to be compared with objectives. The number of dipoles in the array is shown to influence the match of measured parameters and objectives.

  1. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. New York: John Wiley & Sons, 2001.
  2. DIMOPOULOS, H. G. Analog Electronic Filters: Theory, Design and Synthesis (Analog Circuits and Signal Processing). Dordrecht: Springer, 2012.
  3. BAILEY, M. C. A stacked patch antenna design with strict band pass filter characteristics. In Proceedings of the APS International Symposium. Monterey (USA), 2004, p. 1599–1602. DOI: 10.1109/APS.2004.1330498
  4. WANG, Y. P., HALL, P. S., GARDNER, P., WU, J. H. Yagi antenna with improved out-of-band gain suppression. Electronics Letters, 2012, vol. 48, no. 10, p. 564–548. DOI: 10.1049/el.2012.0351
  5. ABUNJAILEH, A. I., HUNTER, I. C., KEMP, A. H. A circuittheoretic approach to the design of quadruple-mode broadband microstrip antennas. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 896–900. DOI: 10.1109/TMTT.2008.918137
  6. LIN, C. K., CHUNG, S. J. A compact filtering microstrip antenna with quasi-elliptic broadside antenna gain response. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 381–384. DOI: 10.1109/LAWP.2011.2147750
  7. WU, W. J., YIN, Y. Z., ZUO, S. L., ZHANG, Z. Y., XIE, J. J. A new compact filter-antenna for modern wireless communication systems. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1131–1134. DOI: 10.1109/LAWP.2011.2171469
  8. LIN, C. K., CHUNG, S. J. A filtering microstrip antenna array. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 11, p. 2856–2863. DOI: 10.1109/TMTT.2011.2160986
  9. KOZIEL, S., MENG, J., BANDLER, J. W., BAKR, M. H., CHENG, Q. S. Accelerated microwave design with tuning space mapping. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 2, p. 383–394. DOI: 10.1109/TMTT.2008.2011313
  10. VSETULA, P., RAIDA, Z. Dipole antenna array with synthesized frequency dependency of gain and reflection coefficient. In Proceedings of the ICEAA 2013 Conference. Torino (Italy), 2013, p. 1087–1090. DOI: 10.1109/ICEAA.2013.6632410
  11. KADLEC, P., RAIDA, Z. A novel multi-objective self-organizing migrating algorithm. Radioengineering, 2011, vol. 20, no. 4, p. 804–815.
  12. ABBOSH, A. M., KAN, H. K., BIALKOWSKI, M. E. Compact ultra-wideband planar tapered slot antenna for use in a microwave imaging system. Microwave and Optical Technology Letters, 2006, vol. 48, no. 11, p. 2212–2216. DOI: 10.1002/mop.21906
  13. KOZIEL, S., CHENG, Q. S., BANDLER, J. W. Space mapping. IEEE Microwave Magazine, 2008, vol. 9, no. 6, p. 105−122. DOI: 10.1109/MMM.2008.929554

Keywords: Dipole antenna array, filtering antenna, filtenna, multi-objective optimization, tuning-space mapping.

S. S. Olokede [references] [full-text] [DOI: 10.13164/re.2015.0695] [Download Citations]
A Quasi-Lumped Element Series Array Resonator Antenna

This paper presents a 6-element series array quasi-lumped element resonator antenna. The proposed antenna employs an interdigital capacitor in parallel with a straight strip conductor whose centre finger is shorted across the capacitor. An array configuration is imperative as the gain of a single quasi-lumped element arrangement was only moderate and specifically put at about 9.4 dBi which may not be adequate for long distance communications. Relevant Equations for radiation pattern of the quasi-lumped element resonator (QLER) were derived and presented. The proposed antenna array exhibits a gain enhancement up to about 29.47% with a noticed size reduction of 80 × 30 sq. mm. Compared to standard long wire antenna and other approaches of capacitive loaded long wire antennas, it was proved that the proposed antenna has a relatively better performance yet with significant size reduction. Consequently, it is an ideal candidate for MMIC designs and wireless communication applications.

  1. BAHL, I. Lumped Element for RF and Microwave Circuits. Artech House; 2003. ISBN 1-58053-309-4
  2. HARRINGTON, R. F. Time-harmonic Electromagnetic Fields. New York: McGraw Hill; 1961. ISBN: 978-0-471-20806-8
  3. AIN, M. F., HASSAN, S. I. Design of 2 GHz quasi-lumped element oscillator. In Proceedings of RF and Microwave Conference. 2004, p. 13–16, DOI: 10.1109/RFM.2004.1411061
  4. AIN, M. F., OLOKEDE, S. S., QASAYMEH, Y. M., MARZUKI, A., MOHAMMED, J. J., SREEKANTAN, S., HUTAGALUNG, S. D., AHMAD, Z. A., ABDULLA, M. Z., A novel 5.8 GHz quasilumped element resonator antenna. AEU - International Journal of Electronics and Communications, 2013, vol. 67, no. 7, p. 557-563. DOI:10.1016/J.AEUE.2012.12.008
  5. SCHNEIDER, M. V. Microstrip lines for microwave integrated circuits. The Bell System Technical Journal, 1969, vol. 48, no. 5, p. 1421–1444. DOI: 10.1002/j.1538-7305.1969.tb04274.x
  6. GANESAN, L., SREEJA-MOLE, S. S., Transmission Lines and Wave Guides. New Delhi: Tata McGraw Hill, 2010.
  7. DAWOUD, M. M., ANJAD, M. K. Analytical solution for mutual coupling in microstrip patch antenna arrays, The Arabian Journal for Science and Technology, Jan. 2005, vol. 31, no. 1B.
  8. HUANG, F., AVENHAUS, B., LANCASTER, M. J. Lumpedelement switchable superconducting filters. IEE Proceedings on Microwave, Antennas and Propagation, June 1999, vol. 146, no. 3, p. 299–233.DOI:10.1049/ip-map:19990357
  9. MEIXNER, J. The behaviour of electromagnetic fields at edges. IEEE Transactions on Antennas and Propagation, July 1972, vol. 20, no. 4, p. 442–446. DOI: 10.1109/TAP.1972.1140243
  10. MITTRA, R., LEE, S. W. Analytical Techniques in the Theory of Guided Waves. McMillan. 1971. ASIN: B0006C0E1M
  11. SHIH, Y. C., ITOH, T. Analysis of conductor-backed coplanar waveguide. Electronics Letters, June 1982, vol. 18, no. 12, p. 538 to 440. DOI: 10.1049/el:19820365
  12. ITOH, T., MENZEL, W. A full-wave analysis method for open microstrip structures. IEEE Transactions on Antennas and Propagation, Jan. 1981, vol. AP-29, no. 1, p. 63–68. DOI: 10.1109/TAP.1981.1142520
  13. BELANIS, C. A. Antenna Theory, Analysis and Design. 2nd ed. USA: John Wiley & Sons, 1997. ISBN: 978-0-471-66782-7
  14. SIMOVSKI, C. R., HE, S. Antennas based on modified metallic photonic bandgap structures consisting of capacitively loaded wires. Microwave and Optical Technology Letters, Nov. 2001, vol. 31, no. 3, p. 214–221. DOI: 10.1002/mop.1401
  15. HUANG, J. Microstrip antenna developments at JPL. IEEE Antennas and Propagation Magazine, June 1991, vol. 33, no. 3, p. 33–41. DOI: 10.1109/74.88219
  16. EVTIOUSHKINE, G. A., KIM, J. W., HAN, K. S. Very wideband printed dipole antenna array. Electronics Letters, Nov. 1998, vol. 34, no. 24, p. 2292–2293. DOI: 10.1049/el:19981615
  17. SLOMIAN, I., WINCZA, K., GRUSZCZYNSKI, S. Series-fed microstrip antenna array with inclined-slot couplers as three-way power dividers. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, no., p. 62–64. DOI: 10.1109/LAWP.2013.2238212

Keywords: Coupled structure, loop, microstrip patch, triangular antenna, quarter wavelength.

X. Guan, Y. Yuan, H. Liu, W. Huang [references] [full-text] [DOI: 10.13164/re.2015.0703] [Download Citations]
A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme

A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well.

  1. CHE, W. Q., LEI, X., WANG, D. P., et al. Equivalence between substrate-integrated (SIRW) rectangular waveguide short-circuit load and its equivalent rectangular waveguide short-circuit load. Microwave and Optical Technology Letters, 2006, vol. 48, no. 9, p. 1694–1698. DOI: 10.1002/mop.21805
  2. CHE, W. Q., DENG, K., YUNG, E. K. N., et al. H-plane 3-dB hybrid ring of high isolation in substrate integrated rectangular waveguide. Microwave and Optical Technology Letters, 2006, vol. 48, no. 3, p. 502–505. DOI: 10.1002/mop.21392
  3. CHEN, X. P., DROLET, D., WU, K. Substrate integrated waveguide filters for airborne and satellite system applications. In Canadian Conf. on Electrical and Computer Engineering. Vancouver (Canada), 2007, p. 659–662. DOI: 10.1109/CCECE.2007.169
  4. SHEN, W., YIN, W. Y., SUN, X. W., et al. Compact coplanar waveguide-incorporated substrate integrated waveguide filter. Journal of Electromagnetic Waves and Application, 2010, vol. 24, no. 7, p. 871–879. DOI: 10.1163/156939310791285164
  5. SZYDLOWSKI, L., LESZCZYNSKA, N., LAMECKI, A., et al. A substrate integrated waveguide (SIW) bandpass filter in a box configuration with frequency-dependent coupling. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 11, p. 556–558. DOI: 10.1109/LMWC.2012.2221690
  6. LI, R. Q., TANG, X. H., XIAO, F. Substrate integrated waveguide dual-mode filter using slot lines perturbation. Electronics Letters, 2010, vol. 46, no. 12, p. 845–846. DOI: 10.1049/el.2010.0629
  7. SHEN, K., WANG, G. M., FU, S. H., GU, G. D., Highly selective bandpass filter based on substrate integrated waveguide. Electronics Letters, 2009, vol. 45, no. 14, p. 746–748. DOI: 10.1049/el.2009.0785
  8. CHEN, X. P., HONG, W., CUI, T., CHEN, J., WU, K. Substrate integrated waveguide (SIW) linear phase filter. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 11, p. 787 to 789. DOI: 10.1109/LMWC.2005.859021
  9. SHEN, W., YIN, W. Y., SUN, X. W. Compact substrate integrated waveguide (SIW) filter with defected ground structure. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 2, p. 83–85. DOI: 10.1109/LMWC.2010.2091402
  10. CHEN, X. P., HAO, Z. C., HONG, W., et al. Planar asymmetric dual-mode filters based on substrate integrated waveguide (SIW). In IEEE MTT-S International Microwave Symposium Digest. USA, 2005, p. 12–17. DOI: 10.1109/MWSYM.2005.1516782
  11. CHEN, X.-P., WU, K., LI, Z.-L. Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasielliptic responses. IEEE Transactions on Microwave Theory and Technique, 2007, vol. 55, no. 12, p. 2569–2578. DOI: 10.1109/TMTT.2007.909603
  12. DESLANDES, D., WU, K. Substrate integrated waveguide dualmode filters for broadband wireless systems. In Proceedings of Radio and Wireless Conference RAWCON. Boston (USA), 2003, p. 385–388. DOI: 10.1109/RAWCON.2003.1227973
  13. ALMALKAWI, M., ZHU, L., DEVABHAKTUNI, V. Dual-mode substrate integrated waveguide (SIW) bandpass filters with an improved upper stopband performance. In Proceedings of 36th International Conference on Infrared, Millimeter and Terahertz Waves IRMMW-THz 2011. Houston (USA), 2011, p. 1–2. DOI: 10.1109/irmmw-THz.2011.6105128
  14. AMARI, S., ROSENBERG, U., BORNEMANN, J. Adaptive synthesis and design of resonators with source/load-multiresonator coupling. IEEE Transactions on Microwave Theory and Technique, 2002, vol. 50, no. 5, p. 1969–1978. DOI: 10.1109/TMTT.2002.801348
  15. SHEN, W., YIN, W. Y., SUN, X. W. Miniaturized dual-band substrate integrated waveguide filter with controllable bandwidths. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 8, p. 418–420. DOI: 10.1109/LMWC.2011.2158412

Keywords: Transmission zero, substrate integrated waveguide (SIW), degenerate mode, coupling matrix.

S. S. Karthikeyan, R. S. Kshetrimayum [references] [full-text] [DOI: 10.13164/re.2015.0708] [Download Citations]
Compact and Wide Stopband Lowpass Filter Using Open Complementary Split Ring Resonator and Defected Ground Structure

A compact (0.16 λg x 0.08 λg) and wide stop¬band lowpass filter design using open complementary split ring resonator (OCSRR) and defected ground structure (DGS) is presented in this paper. Low pass filter is con-structed using two cascaded stages of OCSRR. Since the rejection bandwidth of the OCSRR is narrow, tapered dumbbell shaped DGS section is placed under the OCSRR to enhance the bandwidth. The cutoff frequency (fc) of the proposed lowpass filter is 1.09 GHz. The rejection band¬width of the filter covers the entire ultra wideband spec¬trum. Hence the spurious passband suppression is achieved up to 10 fc. The designed filter has been fabri¬cated and validated by experimental results

  1. AHN, D., PARK, J.-S., KIM, C.-S., KIM, J., QIAN, Y., ITOH, T. A design of the low-pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 1, p. 86–93. DOI: 10.1109/22.899965
  2. ABDEL-RAHMAN, A. B., VERMA, A. K., BOUTEJDAR, A., OMAR, S. Control of bandstop response of Hi-Lo microstrip lowpass filter using slot in ground plane. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 3, p. 1008 to 1013. DOI: 10.1109/TMTT.2004.823587
  3. MANDAL, M., MONDAL, P., SANYAL, S., CHAKRABARTY, A. Low insertion-loss, sharp-rejection and compact microstrip lowpass filters. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 11, p. 600–602. DOI: 10.1109/LMWC.2006.884777
  4. WU, B., LI, B., LIANG, C. Design of lowpass filter using a novel split-ring resonator defected ground structure. Microwave and Optical Technology Letters, 2007, vol. 49, no. 2, p. 288–291. DOI: 10.1002/mop.22111
  5. LI, L., LI, Z.-F., WEI, Q.-F. Compact and selective lowpass filter with very wide stopband using tapered compact microstrip resonant cells. IEEE Electronics Letters, 2009, vol. 45, no. 5, p. 267–268. DOI: 10.1049/el:20092120
  6. AZNAR, F., VELEZ, A., BONACHE, J., MENES, J., MARTIN, F. Compact lowpass filters with very sharp transition bands based on open complementary split ring resonators. IEEE Electronics Letters, 2009, vol. 45, no. 6, p. 316–317. DOI: 10.1049/el.2009.2854
  7. LI, H.W., LI, Z.F., SUN, X.W., KURACHI, S., CHEN, J., YOSHIMASU, T. Theoretical analysis of dispersion characteristics of microstrip lines with defected ground structure. Journal of Active and Passive Electronic Devices, 2007, vol. 2, no. 4, p. 315–322.
  8. XU, S., MA, K., MENG, F., YEO, K.S. DGS embedded transformed radial stub for ultra-wide stopband lowpass ¿lter. IEEE Electronics Letters, 2012, vol. 48, no. 23, p. 1473–1475. DOI: 10.1049/el.2012.2568
  9. KARIMI, G., LALBAKHSH, A., SIAHKAMARI, H. Design of sharp roll-off lowpass filter with ultra wide stopband. Microwave and Wireless Components Letters, 2013, vol. 23, no. 6, p. 303 to 305. DOI: 10.1109/LMWC.2013.2261057

Keywords: Lowpass filter, defected ground structure (DGS), open complementary split ring resonator (OCSRR)

As. Abdipour, Ar. Abdipour, S. Lotfi [references] [full-text] [DOI: 10.13164/re.2015.0712] [Download Citations]
A Lowpass Filter with Sharp Roll - off and High Relative Stopband Bandwidth Using Asymmetric High - Low Impedance Patches

In this letter, a microstrip lowpass filter with -3 dB cut-off frequency at 1.286 GHz is proposed. By using two main resonators which are placed symmetrically around Y axis a sharp roll-off rate (250 dB/GHz) is obtained. The proposed resonators are consisted of two asymmetric high-low impedance patches. To achieve a high relative stopband bandwidth (1.82) four high - low impedance resonators and four radial stubs as suppressing cells are employed. Furthermore, a flat insertion loss in the passband and a low return loss in the stopband can prove desired in-band and out-band frequency response. The proposed LPF has a high FOM about 63483.

  1. VELIDI, V. K., SANYAL, S. Sharp roll-off lowpass filter with wide stopband using stub-loaded coupled-line hairpin unit. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 6, p. 301–303. DOI: 10.1109/LMWC.2011.2132120
  2. CUI, H., WANG, J., ZHANG, G. Design of microstrip lowpass filter with compact size and ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 856–857. DOI: 10.1049/el.2012.1097
  3. MA, K., YEO, K. S. New ultra-wide stopband low-pass ¿lter using transformed radial stubs. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 3, p. 604–611. DOI: 10.1109/TMTT.2010.2095031
  4. WANG, J., XU, L.-J., ZHAO, S., GUO, Y.-X., WU, W. Compact quasi-elliptic microstrip lowpass filter with wide stopband. Electronics Letters, 2010, vol. 46, no. 20, p. 1384–1385. DOI: 10.1049/el.2010.1569
  5. WANG, J., CUI, H., ZHANG, G. Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 854–856. DOI: 10.1049/el.2012.1362
  6. LUO, S., ZHU, L., SUN, S. Stopband-expanded low-pass ¿lters using microstrip coupled-line hairpin units. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 8, p. 506–508. DOI: 10.1109/LMWC.2008.2001004
  7. WEI, X. B., WANG, P., LIU, M. Q., SHI, Y. Compact widestopband lowpass filter usi
  8. VELIDI, V. K., SANYAL, S. Sharp roll-off lowpass filter with wide stopband using stub-loaded coupled-line hairpin unit. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 6, p. 301–303. DOI: 10.1109/LMWC.2011.2132120
  9. CUI, H., WANG, J., ZHANG, G. Design of microstrip lowpass filter with compact size and ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 856–857. DOI: 10.1049/el.2012.1097
  10. MA, K., YEO, K. S. New ultra-wide stopband low-pass ¿lter using transformed radial stubs. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 3, p. 604–611. DOI: 10.1109/TMTT.2010.2095031
  11. WANG, J., XU, L.-J., ZHAO, S., GUO, Y.-X., WU, W. Compact quasi-elliptic microstrip lowpass filter with wide stopband. Electronics Letters, 2010, vol. 46, no. 20, p. 1384–1385. DOI: 10.1049/el.2010.1569
  12. WANG, J., CUI, H., ZHANG, G. Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 854–856. DOI: 10.1049/el.2012.1362
  13. LUO, S., ZHU, L., SUN, S. Stopband-expanded low-pass ¿lters using microstrip coupled-line hairpin units. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 8, p. 506–508. DOI: 10.1109/LMWC.2008.2001004
  14. WEI, X. B., WANG, P., LIU, M. Q., SHI, Y. Compact widestopband lowpass filter using stepped impedance hairpin resonator with radial stubs. Electronics Letters, 2011, vol. 47, no. 15, p. 862 to 863. DOI: 10.1049/el.2011.1414
  15. GOMEZ-GARCIA, R., SANCHEZ-SORIANO, M. A., SANCHEZ RENEDO, M., TORREGROSA PENALVA, G., BRONCHALO, E. Extended-stopband microstrip lowpass filter using rat-race directional couplers. Electronics Letters, 2013, vol. 49, no. 4, p. 272–274. DOI: 10.1049/el.2012.4245
  16. WANG, C.-J., LIN, C.-H. Compact lowpass filter with sharp transition knee by utilising a quasi-ʌ-slot resonator and open stubs. IET Microwaves Antennas and Propagation, 2010, vol. 4, no. 4, p. 512–517. DOI: 10.1049/iet-map.2009.0001
  17. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, Inc., 2001. ng stepped impedance hairpin resonator with radial stubs. Electronics Letters, 2011, vol. 47, no. 15, p. 862 to 863. DOI: 10.1049/el.2011.1414
  18. GOMEZ-GARCIA, R., SANCHEZ-SORIANO, M. A., SANCHEZ RENEDO, M., TORREGROSA PENALVA, G., BRONCHALO, E. Extended-stopband microstrip lowpass filter using rat-race directional couplers. Electronics Letters, 2013, vol. 49, no. 4, p. 272–274. DOI: 10.1049/el.2012.4245
  19. WANG, C.-J., LIN, C.-H. Compact lowpass filter with sharp transition knee by utilising a quasi-ʌ-slot resonator and open stubs. IET Microwaves Antennas and Propagation, 2010, vol. 4, no. 4, p. 512–517. DOI: 10.1049/iet-map.2009.0001
  20. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, Inc., 2001.

Keywords: High-low impedance patches, lowpass filter, resonator, radial stub

K. V. Phani Kumar, S. S. Karthikeyan [references] [full-text] [DOI: 10.13164/re.2015.0717] [Download Citations]
A Compact 1:4 Lossless T-Junction Power Divider Using Open Complementary Split Ring Resonator

This paper presents the size miniaturized and harmonic suppressed lossless 1:4 T-junction unequal power divider using an open complementary split ring resonator (OCSRR). By embedding the OCSRR structure in the microstrip transmission line, slow wave effect is introduced and thereby size reduction is achieved. The dimensions of OCSRR are optimized to reduce the length of high impedance and low impedance quarter-wavelength transmission lines. In our design high impedance line length is reduced to 58.6%, and low impedance line length is reduced to 12% when compared to the conventional quarter wavelength lines. The proposed power divider is having small dimensions of 0.18 λg × 0.33 λg and is 51.94% smaller than the conventional unequal power divider.

  1. LIM, J.-S., LEE, S.-W., PARK, J.-S., AHN, D., NAM, S. A 4:1 unequal Wilkinson power divider. IEEE Microwave and Wireless Components Letters, 2001, vol. 11, p. 124–126. DOI: 10.1109/7260.915624
  2. ORAIZI, H., ESFAHLAN, M. S. Miniaturization of Wilkinson power divider by using defected ground structures. Progress In Electromagnetics Research Letters, 2008, vol. 4, p. 113–120. DOI: 10.2528/PIERL08060701
  3. PACKIARAJ, D., BHARGAVI, A., RAMESH, M., KALGHATGI, A. T. Compact power divider using defected ground structure for wireless applications. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Networking. Chennai (China), 2008, p. 25–29. DOI: 10.1109/ICSCN.2008.4447155
  4. SHUM, K. M., XUE, Q., CHAN, C. H. A Novel microstrip ring hybrid incorporating a PBG cell. IEEE Microwave and Wireless Components Letters, 2001, vol. 11, p. 258–260. DOI: 10.1109/7260.928931
  5. LIN, C.-M., SU, H.-H., CHIU, J.-C., WANG, Y.-H. Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, p. 700–702. DOI: 10.1109/LMWC.2007.905595
  6. CHANG, C.-P., SU, C.-C., HUNG, S.-H., WANG, Y.-H. A 6:1 unequal Wilkinson power divider with EBG CPW. Progress In Electromagnetics Research Letters, 2009, vol. 8, p. 151–159. DOI: 10.2528/PIERL09032801
  7. SAENZ, E., CANTORA, A., EDERRA, I., GONZALO, R., DE MAAGT, P. A metamaterial T-junction power divider. IEEE Microwave Wireless Component Letters, 2007, vol. 17, p. 172–174. DOI: 10.1109/LMWC.2006.890447
  8. GARCIA-GARCIA, J., MARTIN, F., FALCONE, F., ET AL. Spurious passband suppression in microstrip coupled line bandpass filters by means of split ring resonators. IEEE Microwave Wireless Component Letters, 2004, vol. 14, p. 416–418. DOI: 10.1109/LMWC.2004.832066
  9. GARCIA-GARCIA, J., MARTIN, F., FALCONE, F., ET AL. Microwave filters with improved stopband based on sub-wavelength resonators. IEEE Transaction Microwave Theory Technology, 2005, vol. 53, p. 1997–2006. DOI: 10.1109/TMTT.2005.848828
  10. KARTHIKEYAN, S. S., KSHETRIMAYUM, R. S. Performance enhancement of microstrip bandpass filter using CSSRR. In International Conference on Advances in Computing, Control and Telecommunication Technologies ACT. Trivandrum (India), 2009, p. 67–70. DOI: 10.1109/ACT.2009.27
  11. ZHANG, J., CUI, B., GU, J.-Z., SUN, X.-W. A harmonic suppressed Wilkinson power divider using complementary split ring resonator. Journal of Electromagnetic Waves and Application, 2007, vol. 21, p. 811–819. DOI: 10.1163/156939307780749165
  12. AZNAR-BALLESTA, F., GARCIA-PEREZ, O., GONZALEZPOSADAS, V., SEGOVIA-VARGAS, D. Recursive active filter with metamaterial unequal Wilkinson power dividers. In European Microwave Conference. Paris (France), 2010, p. 930–933. ISBN: 9781424472321
  13. VELEZ, A., AZNAR, F., BONACHE, J., ET AL. Open complementary split ring resonators (OCSRRs) and their application to wideband CPW bandpass filters. IEEE Microwave Wireless Component Letters, 2009, vol. 19, no. 4, p. 197–199. DOI: 10.1109/LMWC.2009.2015490
  14. AZNAR, F., VELEZ, A., BONACHE, J., ET AL. Compact low pass filter with very sharp transition bands based on open complementary split ring resonator. Electronics Letters, 2009, vol. 45, no. 6, p. 316–317. DOI: 10.1049/el.2009.2854
  15. AZNAR, F., VELEZ, A., DURAN-SINDREU, M., ET AL. Elliptic-function CPW low pass filters implemented by means of open complementary split ring resonators (OCSRRs). IEEE Microwave Wireless Component Letters, 2009, vol. 19, no. 11, p. 689–691. DOI: 10.1109/LMWC.2009.2032000
  16. KARTHIKEYAN, S. S., KSHETRIMAYUM, R. S. Compact, deep and wide rejection bandwidth low-pass filter using open complementary split ring resonator. Microwave and Optical Technology Letters, 2011, vol. 53, no. 4, p. 845–848. DOI: 10.1002/mop.25874
  17. LIU, J. X., YIN, W. Y., HE, S. L. A new defected ground structure and its applications for miniaturized switchable antenna. Progress in Electromagnetic Research, 2010, vol. 107, p. 115–128. DOI: 10.2528/PIER10050904

Keywords: Open complementary split ring resonator (OCSRR), power divider, size miniaturization

P. Jankowski-Mihulowicz, D. Kawalec, M. Weglarski [references] [full-text] [DOI: 10.13164/re.2015.0722] [Download Citations]
Antenna Design for Semi-Passive UHF RFID Transponder with Energy Harvester

A novel microstrip antenna which is dedicated to UHF semi-passive RFID transponders with an energy harvester is presented in this paper. The antenna structure designed and simulated by using Mentor Graphics HyperLynx 3D EM software is described in details. The modeling and simulation results along with comparison with experimental data are analyzed and concluded. The main goal of the project is the need to eliminate a traditional battery form the transponder structure. The energy harvesting block, which is used instead, converts ambient energy (electromagnetic energy of typical radio communication system) into electrical power for internal circuitry. The additional function (gathering extra energy) of the transponder antenna causes the necessity to create new designs in this scope.

  1. FINKENZELLER, K. RFID Handbook. 3rd ed., Wiley, 2010. ISBN: 9780470695067
  2. BROWN, D. RFID Implementation. McGraw-Hill, 2007. ISBN: 9780072263244
  3. CHEN, J. C., CHENG, C.-H., HUANG, P. B., WANG, K.-J., HUANG, C.-J., TING, T.-C. Warehouse management with lean and RFID application: a case study. International Journal of Advanced Manufacturing Technology, 2013, vol. 69, no. 1–4, p. 531–542. DOI: 10.1007/s00170-013-5016-8
  4. JONES, E., CHUNG, C. RFID in Logistics - A Practical Introduction. CRC, 2008. ISBN: 9780849385261
  5. KOCHENDORFER, P. Entering a secure future. Global Identification, Oct. 2012, p. 24–26.
  6. WHEELER, M. Automating processes with RFID. Global Identification, Feb. 2013, p. 10–13.
  7. JANKOWSKI-MIHUàOWICZ, P., KALITA, W., PAWàOWICZ, B. Problem of dynamic change of tags location in anticollision RFID systems. Microelectronics Reliability, 2008, vol. 48, no. 6, p. 911–918. DOI: 10.1016/j.microrel.2008.03.006
  8. SHAO, S., BURKHOLDER, R. J., VOLAKIS, J. L. Design approach for robust UHF RFID tag antennas mounted on a plurality of dielectric surfaces. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 5, p. 158–166. DOI: 10.1109/MAP.2014.6971931
  9. GOUDOS, S. K., SIAKAVARA, K., SAHALOS, J. N. Novel spiral antenna design using artificial bee colony optimization for UHF RFID applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 528–531. DOI: 10.1109/LAWP.2014.2311653
  10. CHOO, J., RYOO, J. UHF RFID tag applicable to various objects. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 922–925. DOI: 10.1109/TAP.2013.2290051
  11. SUN, X.-B., XIE, J., CAO, M.-Y. RFID tag antenna design based on an improved coupling source shape. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 532–534. DOI: 10.1109/LAWP.2013.2255856
  12. ZAMORA, G., ZUFFANELLI, S., PAREDES, F., MARIN, F., BONACHE, J. Design and synthesis methodology for UHF-RFID tags based on the T-match network. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 12, p. 4090–4098. DOI: 10.1109/TMTT.2013.2287856
  13. GS1 EPCglobal. EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID; Specification for RFID Air Interface Protocol for Communications at 860 MHz – 960 MHz. Ver. 2.0.0, Nov-2013. [Online] Available at: http://www.gs1.org/epcglobal
  14. PHAN, N. D., CHANG, I. J., LEE, J. W. A 2-Kb one-time programmable memory for UHF passive RFID tag IC in a standard 0.18ௗȝm CMOS process. IEEE Transactions on Circuits and Systems I, 2012, vol. 60, no. 7, p. 1810–1822. DOI: 10.1109/TCSI.2012.2230500
  15. SLOSARyIK, S., VEHEC, I., KALITA, W., BAUER, R., SABAT, W. 3D shaped module with integrated pressure sensor ATP Journal plus, 2007, vol. 1, p. 228–230. ISSN: 1336-5010 (in Slovak).
  16. LEE, C. W., LEE, S. J., KIM, M., KYUNG, Y., EOM, K. Capacitive humidity sensor tag smart refrigerator system using the capacitive to voltage converter (CVC). International Journal of Science and Advanced Technology, 2011, vol. 36, p. 15–26. ISSN: 2221-8386
  17. ABAD, E., MAZZOLAI, B., JUARROS, A., GOMEZ, D., MONDINI, A., SAYHAN, I., KRENKOW, A., BECKER, T. Fabrication process for a flexible tag microlab. Proceedings of SPIE, vol. 6589, Smart Sensors, Actuators, 2007, 65890O. DOI: 10.1117/12.723737
  18. OPREA, A., BÂRSAN, N., WEIMAR, U., BAUERSFELD, M. L., EBLING, D., WOLLENSTEIN, J. Capacitive humidity sensors on flexible RFID labels. Sensors and Actuators B, 2008, vol. 132, no. 2, p. 404–410. DOI: 10.1016/j.snb.2007.10.010
  19. VOLK, T., JANSEN, D., SPELETZ, H., FLEINER, B., BAU, D., KREKER, A., RISKE, A. Active RFID sensor with integrated file system for logistic applications. In Proceedings of 2010 European Workshop on Smart Objects: Systems, Technologies and Applications. Ciudad (Spain), 2010, p. 1–7. ISBN: 9783800732821
  20. KIM, S., CHO, J. H., KIM, H. S., KIM, H., KANG, H. B., HONG, S. K. An EPC Gen 2 compatible passive/semi-active UHF RFID transponder with embedded FeRAM and temperature sensor. In Proc. of IEEE Asian Solid-State Circuits Conference. Jeju (South Korea), 2007. p. 135–138. DOI: 10.1109/ASSCC.2007.4425750
  21. DE VITA, G., IANNACCONE, G. Design criteria for the RF section of UHF and microwave passive RFID transponders. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 9, p. 2978–2990. DOI: 10.1109/TMTT.2005.854229
  22. WEI, P., CHE, W., BI, Z., WEI, C., NA, Y., QIANG, L., HAO, M. High-efficiency differential RF front-end for a Gen2 RFID tag. IEEE Transactions on Circuits and Systems II, 2011, vol. 58, no. 4, p. 189–194. DOI: 10.1109/TCSII.2011.2124530
  23. AMS. SL900A EPC Class 3 Sensory Tag Chip - For Automatic Data Logging. AMS Datasheet, 2014-May-06, v1-01.
  24. RAMTRON. WM72016 – 16Kbit Secure F-RAM Memory with Gen-2 RFID Access & Serial Port Direct Memory Access. Product Specification, Rev. 3.0, Sep. 2012.
  25. MARROCCO, G. The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas and Propagation Magazine, 2008 vol. 50, no. 1, p. 66–79. DOI: 10.1109/MAP.2008.4494504
  26. KIM, D, YEO, J. Dual-band long-range passive RFID tag antenna using an AMC ground plane. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2620–2626. DOI: 10.1109/TAP.2012.2194638
  27. MOHAMMED, N. A., DEMAREST, K., DEAVOURS, D. D. Analysis and synthesis of UHF RFID antennas using the embedded T-match. In Proceedings of the IEEE International Conference on RFID. Orlando, (FL, USA), 2010, p. 230–236. DOI: 10.1109/RFID.2010.5467276
  28. JANKOWSKI-MIHUàOWICZ, P., WĉGLARSKI, M. Determination of passive and semi-passive chip parameters required for synthesis of interrogation zone in UHF RFID systems. Elektronika ir Elektrotechnika (Electronics and Electrical Engineering), 2014, vol. 20, no. 9, p. 65–73. DOI: 10.5755/j01.eee.20.9.5007
  29. JANKOWSKI-MIHUàOWICZ, P., PITERA, G., WĉGLARSKI, M. The impedance measurement problem in antennas for RFID technique. Metrology and Measurement Systems, 2014, vol. XXI, no 3, p. 509–520. DOI: 10.2478/mms-2014-0043

Keywords: Antenna design, semi-passive chip, RFID technique, microstrip antenna, energy harvesting

K. Kamardin, M. K. A. Rahim, P. S. Hall, N. A. Samsuri, M. E. Jalil, M. F. Abd Malek [references] [full-text] [DOI: 10.13164/re.2015.0729] [Download Citations]
Textile Diamond Dipole and Artificial Magnetic Conductor Performance under Bending, Wetness and Specific Absorption Rate Measurements

Textile diamond dipole and Artificial Magnetic Conductor (AMC) have been proposed and tested under wearable and body centric measurements. The proposed antenna and AMC sheet are entirely made of textiles for both the substrate and conducting parts, thus making it suitable for wearable communications. Directive radiation patterns with high gain are obtained with the proposed AMC sheet, hence minimizing the radiation towards the human body. In this study, wearable and body centric measurements are investigated which include bending, wetness and Specific Absorption Rate (SAR). Bending is found not to give significant effect to the antenna and AMC performance, as opposed to wetness that yields severe performance distortion. However, the original performance is retrieved once the antenna and AMC dried. Moreover, notable SAR reduction is achieved with the introduction of the AMC sheet, which is appropriate to reduce the radiation that penetrates into human flesh.

  1. HALL, P. S., HAO, Y. Antennas and Propagation for Body Centric Communications Systems. 2nd ed. London (UK): Artech House, 2012, p. 63–64. ISBN: 1608073769
  2. ZHU, S., LANGLEY, R. Dual-band wearable antennas over EBG substrate. Electronic Letter, 2007, vol. 43, no. 3, p. 141–142. ISSN: 0013-5194. DOI: 10.1049/el:20073151
  3. SALONEN, P., YANG, F., RAHMAT-SAMII, Y., KIVIKOSKI, M. WEBGA - Wearable Electromagnetic Band-Gap Antenna. In IEEE International Symposium on Antennas and Propagation. 2004, p. 451–454. DOI: 10.1109/APS.2004.1329671
  4. MANTASH, M., TAROT, A.-C., COLLARDEY, S., MAHDJOUBI, K. Investigation of flexible textile antennas and AMC reflectors. International Journal of Antennas Propagation, 2012, vol. 2012, p. 1–10. DOI: 10.1155/2012/236505
  5. SOH, P. J., VANDENBOSCH, G. A. E., OOI, S. L., RAIS, N. H. M. Design of a broadband all-textile slotted PIFA. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 379–384. ISSN: 0018-926X. DOI: 10.1109/TAP.2011.2167950
  6. ROH, J.-S., CHI, Y.-S., LEE, J.-H., TAK, Y., NAM, S., KANG, T.J. Embroidered wearable multiresonant folded dipole antenna for FM reception. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 803–806. ISSN: 1536-1225. DOI: 10.1109/LAWP.2010.2064281
  7. SUBRAMANIAM, S., GUPTA, B. Design and development of body-worn applications and its performance study under flat and bent positions. Microwave and Optical Technology Letters, 2011, vol. 53, no. 9, p. 2004–2011. DOI: 10.1002/mop.26188
  8. OSMAN, M. A. R., RAHIM, M. K. A., SAMSURI, N. A., ELBASHEER, M. K., ALI, M. E. Textile UWB antenna bending and wet performances. International Journal of Antennas and Propagation, 2012, vol. 2012, p. 1–12. DOI: 10.1155/2012/251682
  9. CHAHAT, N., LEDUC, C., ZHADOBOV, M., SAULEAU, R. Antennas and interaction with the body for body centric wireless communications at millimeter waves. In 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 772–775.
  10. GHOSH, D., DE, A., TAYLOR, M. C., SARKAR, T. K., WICKS, M. C., MOKOLE, E. L. Transmission and reception by ultrawideband (UWB) antennas. IEEE Antennas and Propagation Magazine, 2006, vol. 48, no. 5, p. 67–99. ISSN: 1045-9243. DOI: 10.1109/MAP.2006.277157
  11. PERRUISSEAU-CARRIER, J., HEE, T. W., HALL, P. S. Dualpolarized broadband dipole. IEEE Antennas and Wireless Propagation Letters, 2003, vol. 2, no. 1, p. 310–312. ISSN: 1536- 1225. DOI: 10.1109/LAWP.2004.824165
  12. AKHOONDZADEH-ASL, L., KERN, D. J., HALL, P. S., WERNER, D. H. Wideband dipoles on electromagnetic bandgap ground planes. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 9, p. 2426–2434. ISSN: 0018-926X. DOI: 10.1109/TAP.2007.904071
  13. JALIL, M.E., RAHIM, M.K.A., SAMSURI, N.A., MURAD, N.A., OTHMAN, N., MAJID, H.A. On-body investigation of dual band diamond textile antenna for wearable applications at 2.45 GHz and 5.8 GHz. In 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 414–417.
  14. AKHOONDZADEH-ASL, L. , NOURINIA, J. , GHOBADI, C., HALL, P.S. Influence of element shape on the bandwidth of artificial magnetic conductors. Journal of Electromagnetic Waves and Applications, 2007, vol. 21, no. 7, p. 929–946. DOI: 10.1163/156939307780748995
  15. KERN, D. J., WERNER, D. H., MONORCHIO, A., LANUZZA, L., WILHELM, M. J. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 8–17. ISSN: 0018-926X. DOI: 10.1109/TAP.2004.840540
  16. KWOK, C., CLEVELAND, R. F. Jr., MEANS, D. L. Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields Supplement C (datasheet). Federal Communications Commission Office of Engineering & Technology, 42 pages. [Online]. Cited 1997-12-01. Available at: https://www.comsearch.com/articles/oet65c.pdf
  17. International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic. Health Physics, 1998, vol. 74, no. 4, p. 494–522, ISSN: 0017-9078.

Keywords: Textile antenna, diamond dipole, textile artificial magnetic conductor, bending, wetness, Specific Absorption Rate

Chunhui Zhao, Yunlong Xu, Hui Huang [references] [full-text] [DOI: 10.13164/re.2015.0739] [Download Citations]
Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-M&N schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust.

  1. BAHL, P., PADMANABHAN, V. N. RADAR: an in-building RFbased user location and tracking system. In Proceedings of the 19th Annual Joint Conference of IEEE Computer and Communications Societies (INFOCOM). Tel Aviv (Israel), 2000, p. 775–784. DOI: 10.1109/INFCOM.2000.832252
  2. BERGAMO, P., MAZZINI, G. Localization in sensor networks with fading and mobility. In Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Lisboa (Portugal), 2002, p. 750–754. DOI: 10.1109/PIMRC.2002.1047322
  3. PRIYANTHA, N. B., CHAKRABORTY, A., BALAKRISHNAN, H. The cricket location-support system. In Proceedings of ACM International Conference on Mobile Computing Networking (MOBICOM). Boston (USA), 2000, p. 32–43. DOI: 10.1145/345910.345917
  4. NICULESCU, D., NATH, B. Ad Hoc Positioning System (APS) using AoA. In Proceedings of the 22nd Annual Joint Conference of IEEE Computer and Communication Societies (INFOCOM). San Francisco (USA), 2003, p. 1734–1743. DOI: 10.1109/ INFCOM.2003.1209196
  5. NASIPURI, A., LI, K. A directionality based location discovery scheme for wireless sensor networks. In Proceedings of ACM International Workshop on Wireless Sensor Networks Applications (WSNA). Atlanta (Georgia, USA), 2002, p. 105–111. DOI: 10.1145/570738.570754
  6. BRIDA, P., MACHAJ, J., BENIKOVSKY, J. Wireless sensor localization using enhanced DV-AoA algorithm. Turkish Journal of Electrical Engineering and Computer Sciences, 2014, vol. 22, no. 3, p. 679–689. DOI: 10.3906/elk-1204-28
  7. BRIDA, P., MATULA, M., DUHA, J. Using proximity technology for localization in wireless sensor networks. Communications, Scientific Letters of the University of Zilina, 2007, vol. 9, no. 4, p. 50–54.
  8. BULUSU, N., HEIDEMANN, J., ESTRIN, D. GPS-less low cost outdoor localization for very small devices. IEEE Personal Communications, 2000, vol. 7, no. 5, p. 28–34. DOI: 10.1109/98.878533
  9. JUN, W., URRIZA, P., HAN, Y. X., et al. Weighted centroid localization algorithm: Theoretical analysis and distributed implementation. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 10, p. 3403–3413. DOI: 10.1109/TWC.2011.081611.102209
  10. YANG, X. Y., KONG, Q. R., DAI, X. J. An improved weighted centroid location algorithm. Journal of Xi’An Jiaotong University, 2010, vol. 44, no. 8, p. 1–4.
  11. NICULESCU, D., NATH, B. DV based positioning in ad hoc networks. Kluwer Journal of Telecommunications Systems, 2003, vol. 22, no. 1, p. 267–280.
  12. SAVARESE, C., RABAEY, J., LANGENDOEN, K. Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In Proceedings of USENIX Annual Technical Conference. Monterey (CA, USA), 2002, p. 317–327.
  13. BULUSU, N., BYEHKOVSKIY, V., ESTRIN, D. Sealable ad hoc deployable RF-based localization. In Proceedings of Grace Hopper Celebration of Women in Computing Conference. Vancouver (Canada), 2002.
  14. TRAN, D. A., NGUYEN, T. Localization in wireless sensor networks based on support vector machines. IEEE Transactions on Parallel and Distributed Systems, 2008, vol. 19, no. 7, p. 981–994. DOI: 10.1109/TPDS. 2007.70800
  15. SICHITIU, M. L., RAMADURAI, V. Localization of wireless sensor networks with a mobile beacon. In Proceedings of IEEE International Conference on Mobile Ad-Hoc Sensor Systems. Fort Lauderdale (FL, USA), 2004, p. 174–183. DOI: 10.1109/MAHSS. 2004.1392104
  16. SUN, G. L., GUO, W. Comparison of distributed localization algorithms for sensor network with a mobile beacon. In Proceedings of IEEE International Conference on Networking, Sensing and Control (ICNSC). Taipei (Taiwan), 2004, vol. 1, p. 536–540. DOI: 10.1109/ICNSC.2004.1297496
  17. XIA, Z., CHEN, C. A localization scheme with mobile beacon for wireless sensor networks. In Proceedings of International Conference ITS Telecommunications. Chengdu (China), 2006, p. 1017-1020. DOI: 10.1109/ITST.2006.288725
  18. XIAO, B., CHEN, H. K., ZHOU, S. G. Distributed localization using a moving beacon in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2008, vol. 19, no. 5, p. 587–560. DOI: 10.1109/TPDS.2007.70773
  19. OU, C. H. A localization scheme for wireless sensor networks using mobile anchors with directional antennas. IEEE Sensors Journal, 2011, vol. 11, no. 7, p. 1607–1616. DOI: 10.1109/JSEN.2010.2102748
  20. SSU, K. F., OU, C. H., JIAU, H. C. Localization with mobile anchor points in wireless sensor networks. IEEE Transactions on Vehicular Technology, 2005, vol. 54, no. 3, p. 1187–1197. DOI: 10.1109/TVT.2005.844642.
  21. LEE, S., KIM, E., KIM, C., et al. Localization with a mobile beacon based on geometric constraints in wireless sensor networks. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 12, p. 5801–5805. DOI: 10.1109/ISSNIP.2007.4496820.
  22. LIAO, W. H., LEE, Y. C., KEDIA, S. P. Mobile anchor positioning for wireless sensor networks. IET Communications, 2011, vol. 5, no. 7, p. 914–921. DOI: 10.1049/iet-com.2010.0336
  23. CANDS, E. Compressive sampling. In International Congress of Mathematicians, 2006, vol. 3, p. 1433–1452
  24. CANDS, E., WAKIN, M. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, vol. 25, no. 2, p. 21–30. DOI: 10.1109/ MSP.2007.914731
  25. FENG, C., VALAEE, S., TAN, Z. H. Multiple target localization using compressive sensing. In Proceedings of the 28th IEEE Conference on Global Telecommunications. Honolulu (USA), 2009, p. 4356–4361. DOI: 10.1109/GLOCOM.2009.5425808
  26. ZHAO, C. H., XU, Y. L. Energy constraint Bayesian compressive sensing detection algorithm. Journal on Communications, 2012, vol. 33, no. 10, p. 1–6. DOI: 10.3969/j.issn.1000- 436X.2012.10.001
  27. ZHANG, B., CHENG, X., ZHANG, N., et al. Sparse target counting and localization in sensor networks based on compressive sensing. In Proceedings of the IEEE International Conference on Computer and Communications Societies (INFOCOM). Shanghai (China), 2011, p. 2255–2263. DOI: 10.1109/INFCOM.2011. 5935041
  28. CHEN, S. S., DONOHO, D. L., SAUNDERS, M. A. Atomic decomposition by basis pursuit. Society for Industrial and Applied Mathematics, 2001, vol. 43, no. 1, p. 129–159. DOI: 10.1137/S003614450037906X
  29. MALLAT, S. G., ZHANG, Z. F. Matching pursuit with timefrequency dictionaries. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 12, p. 3397–3415. DOI: 10.1109/78.258082
  30. TROPP, J. A., GILBERT, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, vol. 53, no. 12, p. 4655–4666. DOI: 10.1109/TIT.2007.909108
  31. CHENG, L., WU, C., ZHANG, Y., et al. A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks, 2012, p. 1–12. DOI: 10.1155/2012/962523
  32. STOJMENOVIC, I. Handbook of Sensor Networks: Algorithms and Architectures. New York: Wiley, 2005.
  33. BU, C. J., LOU, Y. S. Matrix Theory. Harbin: Harbin Engineering University Press, 2008, p. 83–85.
  34. ALINE, B., KOEN, L. Monte-Carlo localization for mobile wireless sensor networks. Ad Hoc Networks, 2006, vol. 6, no. 5, p. 718–733. DOI: 10.1016/j.adhoc. 2007.06.004
  35. BROCH, J., MALTZ, D. A., JOHNSON, D. B., et al. A performance comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom). Dallas (TX, USA), 1998, p. 85–97. DOI: 10.1145/288235.288256
  36. IEEE Standard online resource provided by IEEE 802.15 WPAN. [Online]. Available: http://www. ieee802.org/15 /pub/TG4.html.
  37. JARDOSH, A., BELDING-ROYER, E. M., ALMEROTH, K. C., et al. Towards realistic mobility models for mobile ad hoc networks. In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom 2003). San Diego (CA, USA), 2003, p. 217–229. DOI: 10. 1145/ 938985. 939008
  38. Geodetic Survey Division—Geodesy—GPS Accuracy Levels. [Online]. Available: http://www. geod.nrcan. gc.ca /edu/geod/gps/gps13_e.php.
  39. HE, T., HUANG, C., BLUM, B. M., et al. Range-free localization schemes for large scale sensor network. ACM Transactions on Embedded Computing Systems, 2005, vol. 4, no. 4, p. 877–906. DOI: 10. 1145/ 938985. 938995

Keywords: Wireless sensor network, mobile beacon, localization, LU decomposition, compressive sensing

M. Kenyeres, J. Kenyeres, V. Skorpil [references] [full-text] [DOI: 10.13164/re.2015.0749] [Download Citations]
Split Distributed Computing in Wireless Sensor Networks

We designed a novel method intended to improve the performance of distributed computing in wireless sensor networks. Our proposed method is designed to rapidly increase the speed of distributed computing and decrease the number of the messages required for a network to achieve the desired result. In our analysis, we chose Average consensus algorithm. In this case, the desired result is that every node achieves the average value calculated from all the initial values in the reduced number of iterations. Our method is based on the idea that a fragmentation of a network into small geographical structures which execute distributed calculations in parallel significantly affects the performance.

  1. FERRI, R., KIM, M., YEE, E. Wireless Sensor Network. U.S. Patent Application 10/856,684.
  2. YANG, S.-H. Wireless Sensor Networks. London Springer, 2014. DOI: 10.1007/978-1-4471-5505-8
  3. KENYERES, J., KENYERES, M., RUPP, M., et al. WSN implementation of the average consensus algorithm. In 11th European Wireless Conference 2011-Sustainable Wireless Technologies (European Wireless). Vienna (Austria), 2011, p. 1–8. ISBN: 978-3-8007-3343-9
  4. CONTRERAS, R., RESTREPO, S. E., PEZOA, J. E. Implementing the distributed consensus-based estimation of environmental variables in unattended wireless sensor networks. In SPIE Proceedings, Vol. 9248. Amsterdam (Netherland), Oct. 2014, p. 321–329. DOI: 10.1117/12.2069822
  5. YUGANDHAR, B., KRISHNAIAH, P. Enhancing the life time of sensor node in a wireless sensor network. International Journal of Scientific Engineering and Technology Research, 2014, vol. 3, no. 43, p. 8631–8635. ISSN: 2319-8885
  6. BAKR, B. A., LILIEN, L. T. Extending lifetime of wireless Sensor networks by management of spare nodes. Procedia Computer Science, 2014, vol. 34, no. 1, p. 493–498. DOI: 10.1016/j.procs.2014.07.053
  7. BIGGS, N. Algebraic Graph Theory. 2nd ed., rev. Cambridge (UK): Cambridge University Press, 1993. DOI: 10.1017/cbo9780511608704
  8. ANDRASFAI, B. Graph Theory: Flows, Matrices. 1st ed. Boca Raton (FL, USA): CRC Press, 1991. ISBN: 0852742223.
  9. FOULDS, L. R. Graph Theory Applications. 1st ed. New York (USA): Springer Verlag, 1992. DOI: 10.1007/978-1-4612-0933-1
  10. BENJAMIN, A., CHARTRAND, G., ZHANG, P. The Fascinating World of Graph Theory. Princeton (NJ, USA): Princeton University Press, 2015. ISBN: 9780691163819
  11. SWAMI, A., ZHAO, Q., HONG, Y., et al. Wireless Sensor Networks: Signal Processing and Communications. 1st ed. Hoboken (NJ, USA): John Wiley & Sons, 2007. ISBN: 9780470035573
  12. BENEZIT, F. Distributed average consensus for wireless sensor networks. PhD Thesis. Ecole Polytechnique Federale de Lausanne, Switzerland, 2009.
  13. PRIOLO, A., GASPARRI, A., MONTIJANO, E., et al. A distributed algorithm for average consensus on strongly connected weighted digraphs. Automatica, 2014, vol. 50, no. 3, p. 946–951. DOI: 10.1016/j.automatica.2013.12.026
  14. GIBBONS, A. Algorithmic Graph Theory. 5th ed., rev. New York (USA): Cambridge University Press, 1985. ISBN: 0521288819
  15. BAPAT, R. B. Graphs and Matrices. New York (NY): Springer, 2010. DOI: 10.1007/978-1-84882-981-7
  16. KENYERES, J., KENYERES, M., RUPP, M. Experimental node failure analysis in WSNs. In IEEE 18th International Conference on Systems, Signals and Image Processing (IWSSIP) 2011. Sarajevo (BH), 2011, p. 1–5. ISBN: 9781457700743
  17. HORN, R., JOHNSON, CH. Matrix Analysis. 2nd ed., rev. New York (NY): Cambridge University Press, 2012. ISBN: 9780521839402
  18. XIAO, L., BOYD, S., KIM, S.-J. Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing, 2007, vol. 67, no. 1, p. 215–233. DOI: 10.1016/j.jpdc.2006.08.010
  19. KENYERES, M., KENYERES, J., SKORPIL, V. Effect of the Speed of the Algorithm's Convergence on the Quality of Distributed Computing in WSN. 5 pages. [Online] Cited 2015-06-26. Available at: http://access.feld.cvut.cz/view.php?nazevclanku= effect-of-the-speed-of-the-algorithms-convergence-on-the-qualityof-distributed-computing-in-wsn&cisloclanku=2015040001
  20. SLUCIAK, O., HILAIRE, T., RUPP, M. A general formalism for the analysis of distributed algorithms. In IEEE International Conf. on Acoustics Speech and Signal Processing (ICASSP). Dallas (TX, USA), 2010, p. 2890–2893. DOI: 10.1109/icassp.2010.5496169
  21. KENYERES, M., KENYERES, J., SKORPIL, V. Effects of System Topologies’ Attributes on Average Consensus Algorithm - part I. 10 pages. [Online] Cited 2015-07-01. Available at: http://access.feld.cvut.cz/view.php?nazevclanku=effects-ofsystem-topologies%E2%80%99-attributes-on-average-consensusalgorithm-part-i&cisloclanku=2015060002
  22. KENYERES, M., KENYERES, J., SKORPIL, V. Effects of System Topologies’ Attributes on Average Consensus Algorithm - part 2. 7 pages. [Online] Cited 2015-07-01. Available at: http://access.feld.cvut.cz/view.php?nazevclanku=effects-ofsystem-topologies%E2%80%99-attributes-on-average-consensusalgorithm-part-ii&cisloclanku=2015060003
  23. KENYERES, J., KENYERES, M., RUPP, M., et al. Connectivitybased self-localization in WSNs. Radioengineering, 2013, vol. 22, no. 3, p. 818–827.

Keywords: Wireless sensor networks, distributed computing, improvement of distributed computing

S. A. Hosseini, B. Abolhassani, S. M. S. Sadough [references] [full-text] [DOI: 10.13164/re.2015.0757] [Download Citations]
A New Protocol for Cooperative Spectrum Sharing in Mobile Cognitive Radio Networks

To optimize the usage of limited spectrum resources, cognitive radio (CR) can be used as a viable solution. The main contribution of this article is to propose a new protocol to increase throughput of mobile cooperative CR networks (CRNs). The key challenge in a CRN is how the nodes cooperate to access the channel in order to maximize the CRN's throughput. To minimize unnecessary blocking of CR transmission, we propose a so-called new frequency-range MAC protocol (NFRMAC). The proposed method is in fact a novel channel assignment mechanism that exploits the dependence between signal's attenuation model, signal's frequency, communication range, and interference level. Compared .to the conventional methods, the proposed algorithm considers a more realistic model for the mobility pattern of CR nodes and also adaptively selects the maximal transmission range of each node over which reliable transmission is possible. Simulation results indicate that using NFRMAC leads to an increase of the total CRN's throughput by 6% and reduces the blocking rate by 10% compared to those of conventional methods.

  1. FCC Report of the Spectrum Efficiency Working Group. Federal Communications Commission Spectrum Policy Task Force, Nov. 2002.
  2. ZHANG, Z., WU, Q., Wang, J. Optimal energy-efficient cooperative spectrum sensing in cognitive radio networks. Radioengineering, 2013, vol. 22, no. 4, p. 1150–1155.
  3. AKYILDIZ, I. F., LEE, W. Y., VURAN, M. C., MOHANTY, S. A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 2008, vol. 46, no. 4, p. 40–48. DOI: 10.1109/MCOM.2008.4481339
  4. AKYILDIZ, I. F., LEE, W. Y., VURAN, M. C., MOHANTY, S. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Computer Networks, 2006, vol. 50, no. 13, p. 2127–2159. DOI: 10.1016/j.comnet.2006.05.001
  5. ZHAO, Q., SADLER, B. M. A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 2007, vol. 24, no. 4, p. 79–89. DOI: 10.1109/MSP.2007.361604
  6. CHEN, Y.-S., CHO, C.-H. YOU, I., CHAO, H.-C. A cross-layer protocol of spectrum mobility and handover in cognitive LTE networks. Simulation Modelling Practice and Theory, 2011, vol. 19, no.8, p. 1723–1744. DOI:10.1016/j.simpat.2010.09.007
  7. KASH, I., MURTY, R., PARKES, D. Enabling spectrum sharing in secondary market auctions. IEEE Transactions on Mobile Computing, 2014, vol. 13, no. 3, p. 556–568. DOI: 10.1109/TMC.2013.17
  8. LUO, T., LIN, F. JIANG, T., CHEN W. Multicarrier modulation And cooperative communication in multihop cognitive radio network. IEEE Wireless Communications, 2011, vol. 18, no. 1, p. 38-45. DOI: 10.1109/MWC.2011.5714024
  9. HAYKIN, S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  10. LIAO, S. H., CHIU, C. C., HO, M. H., LIU, C. L. Channel capacity of multipleǦinput multipleǦoutput ultraǦwideband systems with single coǦchannel interference. International Journal of Communication Systems, 2010, vol. 23, no. 12, p. 1600-1612. DOI: 10.1002/dac.1131
  11. KLOZAR, L., POLAK, L., KALLER, O., PROKOPEC. J. Effect of co-existence interferences on QoS of HSPA/ WCDMA mobile networks. In 23rd International Conference on Radioelektronika 2013. Pardubice (Czech Republic), 2013, p. 312-315. DOI: 10.1109/RadioElek.2013.6530937.
  12. NASIPURI, A., DAS, S. R. Performance of multichannel wireless ad hoc networks. International Journal of Wireless and Mobile Computing, 2006, vol. 1, no. 3, p. 191-203.
  13. SHU, T., CUI, S., KRUNZ, M. WLC05-3: medium access control for multi-channel parallel transmission in cognitive radio networks. In IEEE Global Telecommunications Conference GLOBECOM'06. San Francisco (CA, USA), 2006, p. 1-5. DOI: 10.1109/GLOCOM.2006.641
  14. ZHAO, Q., TONG, L., SWAMI, A. Decentralized cognitive mac for dynamic spectrum access. In 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2005). Baltimore (MD, USA), 2005, p. 224–232. DOI:10.1109/DYSPAN.2005.1542638
  15. NGUYEN-THANH, N., PHAM, A. T., NGUYEN, V.-T. Medium access control design for cognitive radio networks: A survey. IEICE Transactions on Communications, 2014, vol. E97-B, no. 2, p. 359–374. DOI: 10.1587/transcom.E97.B.359
  16. CLANCY, T. C. Achievable capacity under the interference temperature model. In 26th IEEE International Conference on Computer Communications (INFOCOM 2007). Anchorage (AK, USA), 2007, p. 794–802. DOI: 10.1109/INFCOM.2007.98
  17. BANY SALAMEH, H. A., KRUNZ, M., YOUNIS, O. Cooperative adaptive spectrum sharing in cognitive radio networks. IEEE/ACM Transactions on Networking, 2010, vol. 18, no. 4, p. 1181–1194. DOI:10.1109/TNET.2009.2039490
  18. JAIN, N., DAS, S. R., NASIPURI, A. A multichannel CSMA MAC protocol with receiver-based channel selection for multi-hop wireless networks. In Proceedings of the Tenth International Conference on Computer Communications and Networks. Scottsdale (AZ, USA), 2001, p. 432–439. DOI: 10.1109/ICCCN.2001.956301
  19. BETTSTETTER, H., HARENSTEIN, H., PEREZ-COSTA, X. Stochastic properties of the random waypoint mobility model. Wireless Networks, 2004, vol. 10, no. 5, p. 555–567. DOI: 10.1023/B:WINE.0000036458.88990.e5.
  20. BETTSTETTER, C., RESTA, G., SANTI, P. The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 2003, vol. 2, no. 3, p. 257–269. DOI: 10.1109/TMC.2003.1233531
  21. DANG, D. N. M., DANG, H. N., DO, C. T., HONG C. S. An enhanced multi-channel mac for vehicular ad hoc networks. In IEEE Wireless Communications and Networking Conference (WCNC). Shanghai, 2013, 2013, p. 351–355. DOI: 10.1109/WCNC.2013.6554589.
  22. XU, K., GERLA, M., BAE, S. Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks. Ad Hoc Networks, 2003, vol. 1, no. 1, p. 107–123. DOI: 10.1016/S1570- 8705(03)00015-5
  23. RAPPAPORT, T. S. Wireless Communications: Principles and Practice. Vol. 2. Prentice Hall PTR New Jersey, 2001.
  24. SIZUN, H. Radio Wave Propagation for Telecommunication Applications. Springer, 2005.
  25. ZHAO, H.S. ZHANG, J.Z., ZHUANG, W.H. A joint link and channel assignment routing scheme for cognitive radio networks. Radioengineering, 2013, vol. 22, no. 4, p. 1128–1137.
  26. ARIKAN, E. Some complexity results about packet radio networks (Corresp.). IEEE Transactions on Information Theory, 1984, vol. 30, p. 681–685. DOI: 10.1109/TIT.1984.1056928

Keywords: Blocking rate, cognitive radio, cooperative spectrum sharing, secondary users, spectrum sharing.

Dinh-Thuan Do [references] [full-text] [DOI: 10.13164/re.2015.0765] [Download Citations]
Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network.

  1. PARK, J., CLERCKX, B. Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Transactions on Communication, 2013, vol. 12, no.8, p. 4210–4221. DOI: 10.1109/twc.2013.071913.130084.
  2. DOHLER, M., LI Y. Cooperative Communications: Hardware, Channel and PHY. John Wiley & Sons, 2010.
  3. AHMED, I., IKHLEF, A., SCHOBER, R., MALLIK, R. K. Joint power allocation and relay selection in energy harvesting AF relay systems. IEEE Wireless Communication Letters, 2013, vol. 2, no. 2, p. 239–242. DOI: 10.1109/WCL.2013.012513.130007
  4. YIN, S., ZHANG, E., QU, Z., YIN, L., LI, S. Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Communication, 2014, vol. 13, no. 9, p. 4693–4707. DOI: 10.1109/twc.2014.2322972
  5. WANG, Z., CHEN, Z., LUO, L., HU, Z., XIA, B., LIU, H. Outage analysis of cognitive relay networks with energy harvesting and information transfer. In Proc. of International Conference on Communication (ICC). Sydney (Australia), 2014, p. 4348–4352. DOI: 10.1109/icc.2014.6884004
  6. GU, Y., AISSA, S. Interference aided energy harvesting in Decode-and-Forward relaying systems. In Proc. of the IEEE International Conference on Communications (ICC). Sydney (Australia), 2014, p. 5378–5382. DOI: 10.1109/icc.2014.6884176
  7. ZHONG, C., SURAWEERA, H. A., ZHENG, G., KRIKIDIS, I., ZHANG, Z. Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communication, 2014, vol. 62, p. 3447–3461.
  8. DO, D. T. Time power switching based relaying protocol in energy harvesting mobile node: optimal throughput analysis. Mobile Information System, 2015, vol. 2015. DOI: 10.1155/2015/769286.
  9. TUTUNCUOGLU, K., VARAN, B., YENER, A. Optimum transmission policies for energy harvesting two-way relay. In Proc. of IEEE International Conference on Communications (ICC). Budapest (Hungary), 2013, p. 586–590. DOI: 10.1109/iccw.2013.6649301
  10. NASIR, A., ZHOU, X., DURRANI, S., KENNEDY, R. A. Relaying protocols for wireless energy harvesting and information processing, IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 7, p. 3622–3636. DOI: TWC.2013.062413.122042
  11. LUO, S., ZHANG, R., LIM, T. J. Optimal save-then-transmit protocol for energy harvesting wireless transmitters. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 3, p. 1196–1217. DOI: 10.1109/TWC.2013.012413.120488
  12. ZHOU, X., ZHANG, R., HO, C. K. Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 2013, vol. 61, no. 11, p. 4754–4767. DOI: 10.1109/TCOMM.2013.13.120855
  13. AL-QAHTANI, F. S., YANG, J., RADAYDEH, R. M., ALNUWEIRI, H. On the capacity of two-hop AF relaying in the presence of interference under Nakagami-m fading. IEEE Communication Letters, 2013, vol. 17, no. 1, p. 19–22. DOI: 10.1109/LCOMM.2012.111612.121151
  14. HWANG, K.-S., JU, M., ALOUINI, M.-S. On the outage performance of two-way Amplify-and-Forward relaying with outdated CSI over multiple relay network. In Proc. of IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Comm. London (UK), 2013, p. 1–5. DOI: 10.1109/pimrc.2013.6666318
  15. IKKI, S. S., AISSA, S. Performance analysis of two-way amplify-and-forward relaying in the presence of co-channel interferences. IEEE Transactions on Communication, 2012, vol. 60, no. 4, p. 933–939. DOI: 10.1109/TCOMM.2012.013112.110188
  16. LOUIE, R., LI, Y., SURAWEERA, H. A., VUCETIC, B. Performance analysis of beamforming in two-hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 6, p. 3131–3142. DOI: 10.1109/TWC.2009.080807
  17. NASIR, A. A., ZHOU, X., DURRANI, S., KENNEDY, R. A. Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In Proc. of IEEE International Conference on Communications (ICC). Sydney (Australia), 2014, p. 1–6. DOI: 10.1109/icc.2014.6883957
  18. LI, J., MATTHAIOU, M., SVENSSON, T. I/Q imbalance in two-way AF relaying. IEEE Transactions on Communication, 2014, vol. 62, no. 7, p. 2271–2285. DOI: 10.1109/TCOMM.2014.2325036
  19. MEDARD, M. The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel. IEEE Transaction on Communication, 2000, vol. 46, no. 3, p. 933–946. DOI: 10.1109/18.841172
  20. LIU, Y., WANG, L., ELKASHLAN, M., DUONG, T. Q., NALLANATHAN, A. Two-way relaying networks with wireless power transfer: policies design and throughput analysis. In Proc. of IEEE Global Communications Conference (GLOBECOM'14). Austin (USA, TX), 2014, p. 4030–4035. DOI: 10.1109/glocom.2014.7037438
  21. POPOVSKI, P., YOMO, H. Physical network coding in two-way wireless relay channels. In Proc. of International Conference on Communication (ICC). Glasgow (UK), June 2007, p. 707–712. DOI: 10.1109/icc.2007.121
  22. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series, and Products. New York, NY, USA: Academic, 2000.

Keywords: Amplify-and-forward, energy harvesting, two-way relaying network, wireless powered communication networks

P. Fiala, R. Linhart [references] [full-text] [DOI: 10.13164/re.2015.0772] [Download Citations]
Symbol Synchronization for SDR Using a Polyphase Filterbank Based on an FPGA

This paper is devoted to the proposal of a highly efficient symbol synchronization subsystem for Software Defined Radio. The proposed feedback phase-locked loop timing synchronizer is suitable for parallel implementation on an FPGA. The polyphase FIR filter simultaneously performs matched-filtering and arbitrary interpolation between acquired samples. Determination of the proper sampling instant is achieved by selecting a suitable polyphase filterbank using a derived index. This index is determined based on the output either the Zero-Crossing or Gardner Timing Error Detector. The paper will extensively focus on simulation of the proposed synchronization system. On the basis of this simulation, a complete, fully pipelined VHDL description model is created. This model is composed of a fully parallel polyphase filterbank based on distributed arithmetic, timing error detector and interpolation control block. Finally, RTL synthesis on an Altera Cyclone IV FPGA is presented and resource utilization in comparison with a conventional model is analyzed.

  1. DICK, CH., HARRIS, F. J., RICE, M. Synchronization in software radios - Carrier and timing recovery using FPGAs. In IEEE Symposium on Field-Programmable Custom Computing Machines. Napa Valley (CA, USA), 2000, p. 195–204. DOI: 10.1109/FPGA.2000.903406
  2. GAEDDERT, J., VOLOS, H. I., CORMIER D., REED, J. H. Multi-rate synchronization of digital receivers in software-defined radios. In Proceeding of the SDR 07 Technical Conference and Product Exposition. Denver (USA), 2007, p. 195–200.
  3. HARRIS, F. J., RICE, M. Multi-rate digital filters for symbol timing synchronization in software defined radios. IEEE Journal on Selected Areas in Communications, 2001, vol. 19, no. 12, p. 2346–2357. DOI: 10.1109/49.974601
  4. AWAN, M., KOCH, P. Combined matched filter and arbitrary interpolator for symbol timing synchronization in SDR receivers. In IEEE 13th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). Vienna (Austria), 2010, p. 153–156. DOI: 10.1109/DDECS.2010.5491797
  5. MENGALI, U., D’ANDREA A. N. Synchronization Techniques for Digital Receivers. New York: Plenum, 1997.
  6. RICE, M. Digital Communications: A Discrete-Time Approach. New York: Prentice Hall, 2009.
  7. MEYER-BAESE, U. Digital Signal Processing with Field Programmable Gate Arrays. Heidelberg: Springer, 2007.
  8. Altera Corporation, San Jose USA. Internal Memory (RAM and ROM) User Guide (datasheet). 64 pages. [Online] Cited 2015-03- 08. Available at: www.altera.com/literature/ug/ug_ram_rom.pdf
  9. Altera Corporation, San Jose USA. Memory Blocks in Cyclone IV Devices (datasheet). 18 pages. [Online] Cited 2015-03-08. Available at: http://www.altera.com/literature/hb/cyclone-iv/cyiv- 51003.pdf
  10. GARDNER, F. A BPSK/QPSK timing-error detector for sampled receivers. IEEE Transactions on Communications, 1986, vol. 34, no. 5, p. 423–429. DOI: 10.1109/TCOM.1986.1096561
  11. GARDNER, F. Interpolation in digital modems – Part I: Fundamentals. IEEE Transactions on Communications, 1993, vol. 41, no. 3, p. 501–507. DOI: 10.1109/26.221081
  12. ERUP, L., GARDNER, F., HARRIS, R. A. Interpolation in digital modems – Part II: Implementation and performance. IEEE Transactions on Communications, 1993, vol. 41, no. 6, p. 998–1008. DOI: 10.1109/26.231921
  13. Ettus Research, Santa Clara USA. USRP N200 Networked Series Datasheet. 2 pages. [Online] Cited 2015-03-08. Available at: http://www.ettus.com/content/files/07495_Ettus_N200-210_DS_ Flyer _HR.pdf
  14. MONTAZERI, A., KIASALEH, K. Design and performance analysis of a low complexity digital clock recovery algorithm for software defined radio applications. IEEE Transactions on Consumer Electronics, 2010, vol. 56, no. 3, p. 1258–1263. DOI: 10.1109/TCE.2010.5606256
  15. LIN, CH., ZHANG, J., SHAO, B. A high speed parallel timing recovery algorithm and its FPGA implementation. In 2nd International Symposium on Intelligence Information Processing and Trusted Computing (IEEE IPTC). Hubei (China), 2011, p. 63–66. DOI: 10.1109/IPTC.2011.23
  16. KIM, S. C., PLISHKER, W. L., BHATTACHARYYA, S. S., CAVALLARO, J. R. GPU-based acceleration of symbol timing recovery. In Design and Architectures for Signal and Image Processing (IEEE DASIP). Karlsruhe (Germany), 2012, p. 1–8.
  17. HUA, J., ZHOU, L., CHEN, CH., JIANG, L. Synchronization for QDPSK Costas loop and Gardner algorithm using FPGAs. In 13th Internat. Conf. on Computer and Information Science. Taiyuan (China), 2014, p. 27–31. DOI: 10.1109/ICIS.2014.6912102

Keywords: Digital communication, digital filters, FPGA, signal processing, synchronization, VHDL

T. Palenik, P. Farkas, M. Rakus, J. Dobos [references] [full-text] [DOI: 10.13164/re.2015.0783] [Download Citations]
Analysis of Minimal LDPC Decoder System on a Chip Implementation

This paper presents a practical method of potential replacement of several different Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes with one, with the intention of saving as much memory as required to implement the LDPC encoder and decoder in a memory-constrained System on a Chip (SoC). The presented method requires only a very small modification of the existing encoder and decoder, making it suitable for utilization in a Software Defined Radio (SDR) platform. Besides the analysis of the effects of necessary variable-node value fixation during the Belief Propagation (BP) decoding algorithm, practical standard-defined code parameters are scrutinized in order to evaluate the feasibility of the proposed LDPC setup simplification. Finally, the error performance of the modified system structure is evaluated and compared with the original system structure by means of simulation.

  1. DEUTSCH, L. J. The effects of Reed-Solomon code shortening on the performance of coded telemetry systems. NASA, 1983. Available at: https://archive.org/details/nasa_techdoc_19840005335.
  2. LIU X., WU, X., ZHAO, C. Shortening for irregular QC-LDPC codes. IEEE Communication Letters, Aug. 2009, vol. 13, no. 8, p. 612–614.
  3. XU, Y., LIU, B., GONG, L., RONG, B., GUI, L. Improved shortening algorithm for irregular QC-LDPC codes using known bits. IEEE Transactions on Consumer Electronics, August 2011, vol. 57, no. 3, p. 1057–1063. DOI: 10.1109/TCE.2011.6018855
  4. LAN/MAN Standards Committee, IEEE Std 802.15.4TM-2011: Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs). Sep. 2011, New York, USA. ISBN: 978-0-7381-6683-4.
  5. LAN/MAN Standards Committee, IEEE Std 802.16™-2012: IEEE Standard for Air Interface for Broadband Wireless Access Systems. Aug. 2012, New York, USA. ISBN: 978-0-7381-7291-0.
  6. LAN/MAN Standards Committee, IEEE Std 802.11™-2012: Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. March 2012, New York, USA, ISBN: 978-0-7381-7245-3.
  7. HA, J., KIM, J., KLINC, D., MC LAUGHLIN, S. W. Ratecompatible punctured low-density parity-check codes with short block lengths. IEEE Transactions on Information Theory, Feb. 2006, vol. 52, no. 2, p. 728–738. DOI: 10.1109/TIT.2005.862118
  8. KWON, J., KLINC, D, HA, J., MC LAUGHLIN, S. W. Fast decoding of rate-compatible punctured LDPC codes. In Proceedings of IEEE International Symposium on Information Theory ISIT 2007. Nice (France), June 2007, p. 216–220. DOI: 10.1109/ISIT.2007.4557229
  9. MOON, T. K. Error Correction Coding - Mathematical Methods and Algorithms. New Jersey: Wiley, 2005. ISBN 978-0471648000.
  10. HUANG, X. Single-scan Min-Sum algorithms for fast decoding of LDPC codes. In IEEE Information Theory Workshop ITW '06. Chengdu (China), October 2006, p. 140–143. DOI: 10.1109/ITW2.2006.323774
  11. HALFHILL, T. R. Parallel processing with CUDA. In Microprocessor Report. Arizona, USA, January 2008. Available at: http://www.nvidia.com/docs/IO/55972/220401_Reprint.pdf.

Keywords: LDPC code shortening, System on a Chip, fixed nodes decoder, Adaptive Coding and Modulation

Wei-Qiang Pan, Xiao-Feng Liu, Xiao-Lan Zhao [references] [full-text] [DOI: 10.13164/re.2015.0791] [Download Citations]
Novel Compact Three-Way Filtering Power Divider Using Net-Type Resonators

In this paper, we present a novel compact three-way power divider with bandpass responses. The proposed power divider utilizes folded net-type resonators to realize dual functions of filtering and power splitting as well as compact size. Equal power ratio with low magnitude imbalance is achieved due to the highly symmetric structure. For demonstration, an experimental three way filtering power divider is implemented. Good filtering and power division characteristics are observed in the measured results of the circuit. The area of the circuits is 14.5 mm x 21.9 mm or 0.16 λg x 0.24 λg, where the λg is the guide wavelength of the center frequency at 2.1 GHz.

  1. PUSKELY, J., MIKULASEK, T., RAIDA, Z. Design of a compact wideband antenna array for microwave imaging applications. Radioengineering, 2013, vol. 22, no. 4, p. 1224–1232.
  2. OLOKEDE, S. S., ADAMARIKO, C. A., ALMOHAMMAD, T. A., JIYA, E. A. A novel T-fed 4-element quasi-lumped resonator antenna array. Radioengineering, 2014, vol. 23, no. 2, p. 717–723.
  3. GUO, H., GUO, C.-J., DING, J. Pattern synthesis of dual-band shared aperture interleaved linear antenna arrays. Radioengineering, 2014, vol. 23, no. 3, p. 798–804.
  4. SHAO, J.-Y., HUANG, S.-C., PANG, Y.-H. Wilkinson power divider incorporating quasi-elliptic filters for improved out-ofband rejection. Electronics Letters, 2011, vol. 47, p. 1288–1289. DOI: 10.1049/el.2011.2766
  5. GOMEZ-GARCIA, R., SANCHEZ-RENEDO, M., MUNOZFERRERAS, J.-M. Microwave filtering power-distribution planar networks. In IEEE MTT-S International Microwave Symposium Digest. Baltimore (MD), 2011, p. 1–4. DOI: 10.1109/MWSYM.2011.5973153
  6. LI, Y.-C., XUE, Q., ZHANG, X.-Y. Single and dual-band power dividers integrated with bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, p. 69–76. DOI: 10.1109/TMTT.2012.2226600
  7. GAO, L., ZHANG, X.-Y. Novel 2:1 Wilkinson power divider integrated with bandpass filter. Microwave and Optical Technology Letters, 2013, vol. 55, no. 3, p. 646–648. DOI: 10.1002/mop.27395
  8. WANG, K.-X., ZHANG, X.-Y., HU, B.-J. Gysel power divider with arbitrary power ratios and filtering responses using coupling structure. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, p. 431–440. DOI: 10.1109/TMTT.2014.2300053
  9. ZHANG, X.-Y., WANG, K.-X., HU, B.-J. Compact filtering power divider with enhanced second-harmonic suppression. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 9, p. 483–485. DOI: 10.1109/LMWC.2013.2274993
  10. CHEN, C.-F., HUANG, T.-Y., WU, R.-B. Novel compact net-type resonators and their applications to microstrip bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 2, p. 755–762. DOI: 10.1109/TMTT.2005.862626
  11. CHEN, C.-F., LIN, C.-Y. Compact microstrip filtering power dividers with good in-band isolation performance. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 1, p. 17–19. DOI: 10.1109/LMWC.2013.2287243
  12. ABBOSH, A. M. A compact UWB three-way power divider. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 8, p. 598–600. DOI: 10.1109/LMWC.2007.901777
  13. WANG, X.-L., IWATA, S., KENSAKU, T., SHINGO, O. A planar three-way dual-band power divider using two generalized open stub Wilkinson dividers. In Proceedings of Asia-Pacific Microwave Conference. Yokohama (Japan), 2010, p. 714–717.
  14. SHAMAILEH, K. A., QAROOT, A., DIB, N., SHETA, A., ALKANHAL, M. A. Analysis and design of ultra-wideband 3-way Bagley power divider using tapered lines transformers. International Journal of Microwave Science and Technology, vol. 2012, 6 p. DOI: 10.1155/2012/197416

Keywords: Power divider, bandpass response, three-way division, compact size,miniaturization.

Sovuthy Cheab, Peng Wen Wong [references] [full-text] [DOI: 10.13164/re.2015.0795] [Download Citations]
Design and Synthesis of Quasi Dual-mode, Elliptic Coaxial Filter

This article introduces the design of a novel quasi dual-mode, elliptic coaxial filter. The transfer function is mapped to a generalized Chebyshev prototype with symmetrically located transmission zeros (TZs) where the coupling values are extracted. Furthermore, the miniaturization is achieved by incorporating stepped-impedance coaxial line with inductive element shunted at the center to exhibit a quasi dual-mode property. Theoretical analysis together with experimental prototype is presented. The center frequency of the filter is 2.7 GHz. The simulated and measured insertion loss/return loss are 1.2 dB/ 15 dB and 2.5 dB/11.5 dB respectively. Both theoretical and measured results show a very good agreement.

  1. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, Inc. 2001.
  2. BARAL, R. N., SINGHAL, P. K. Recent techniques in design and implementation of microwave planar filters. Radioengineering, 2008, vol. 17, no. 4, p. 392–396.
  3. VAGNER, P., KASAL, M. A novel bandpass filter using a combination of open-loop defected ground structure and half-wavelength microstrip resonators. Radioengineering, 2010, vol. 19, no. 3, p. 392– 396.
  4. DURAN-SINDREU, M., VELEZ, P., BONACHE, J., MARTIN, F. Broadband microwave filters based on open split ring resonators (OSRRs) and open complementary split ring resonators (OCSRRs): Improved models and design optimization. Radioengineering, 2011, vol. 20, no. 4, p. 775–784.
  5. MATTHAEI, G. L., YOUNG, L., JONES, E. M. T. Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House, Norwood, MA, 1980.
  6. MATTHAEI, G. L. Comb-line bandpass filters for narrow or moderate bandwidth. Microwave Journal, 1963, vol. 6, p. 82–91.
  7. MANSOUR, R. R. Filter technologies for wireless base stations. IEEE Microwave Magazine, 2004, vol. 5, no. 1, p. 68–74. DOI: 10.1109/MMW.2004.1284945.
  8. RUIZ-CRUZ, J. A., FAHMI, M. M., MANSOUR, R. R. Dualresonance combline resonator for dual-band filters. In IEEE MTTS International Microwave Symposium Digest (MTT). Montreal (Canada), 2012 , p. 1–3. DOI: 10.1109/MWSYM.2012.6259436
  9. POZAR, D. M. Microwave Engineering. John Wiley, 2000, p. 187.
  10. CAMERON, R. J., KUDSIA, C. M., MANSOUR, R. R. Microwave Filters for Communication Systems: Fundamentals, Design and Applications. New Jersey: John Wiley & Sons, 2007.
  11. HFSS, 3D Full Wave Electromagnetic Field Simulation, Ansoft Designer.
  12. MAKIMOTO, M., SADAHIKO, Y. Corrections to compact bandpass filters using stepped impedance resonators. Proceeding of the IEEE, 1979, vol. 67, no. 11, p. 1568, DOI: 10.1109/PROC.1979.11521
  13. SH-ASANJAN, D., MANSOUR, R. R. A novel coaxial resonator for high power applications. In 44th European IEEE MTT-S International Microwave Conference (EuMC). Rome (Italy), 2014, p. 295– 298. DOI: 10.1109/EuMC.2014.6986428
  14. WOLANSKY, D., TKADLEC, R. Coaxial filters optimization using tuning space mapping in CST Studio. Radioengineering, 2011, vol. 20, no. 1, p. 289–294.
  15. CHEAB SOVUTHY, WONG, P. W. Stepped impedance dual mode coaxial filter. In IEEE International RF and Microwave Conference (RFM). Penang (China), 2013, p. 165–167. DOI: 10.1109/RFM.2013.6757240
  16. ATHUKORALA, L., BUDIMIR, D. Compact dual-mode open loop microstrip resonators and filters. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 11, p. 698–700. DOI: 10.1109/LMWC.2009.2032003

Keywords: Bandpass filter, coaxial filter, elliptic, quasi dual-mode, source-load coupling

M. Rezvanyvardom, E. Farshidi [references] [full-text] [DOI: 10.13164/re.2015.0800] [Download Citations]
A Novel Cyclic Time to Digital Converter Based on Triple-Slope Interpolation and Time Amplification

This paper investigates a novel cyclic time-to-digital converter (TDC) which employs triple-slope analog interpolation and time amplification techniques for digitizing the time interval between the rising edges of two input signals(Start and Stop). The proposed converter will be a 9-bit cyclic time-to-digital converter that does not use delay lines in its structure. Therefore, it has a low sensitivity to temperature, power supply and process (PVT) variations. The other advantages of the proposed converter are low circuit complexity, and high accuracy compared with the time-to-digital converters that have previously been proposed. Also, this converter improves the time resolution and the dynamic range. In the same resolution, linear range and dynamic range, the proposed cyclic TDC reduces the number of circuit elements compared with the converters that have a similar circuit structure. Thus, the converter reduces the chip area, the power consumption and the figure of merit (FoM). In this converter, the integral nonlinearity (INL) and differential nonlinearity (DNL) errors are reduced. In order to evaluate the idea, the proposed time-to-digital converter is designed in TSMC 45 nm CMOS technology and simulated. Comparison of the theoretical and simulation results confirms the benefits of the proposed TDC.

  1. NONIS, R., GROLLITSCH, W., SANTA, T., et al. digpll-lite: A low-complexity, low-jitter fractional-N digital PLL architecture. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 12, p. 3134–3145. DOI: 10.1109/JSSC.2013.2272340
  2. JEONG, C. H., KWON, C. K., KIM, H., et al. Low-power, widerange time-to-digital converter for all digital phase-locked loops. Electronics Letters, 2013, vol. 49, no. 2, p. 96–97. DOI: 10.1049/el.2012.3434
  3. HAN, Y., LIN, D., GENG, S., et al. All-digital PLL with ǻȈ DLL embedded TDC. Electronics Letters, 2013, vol. 49, no. 2, p. 93 to 94. DOI: 10.1049/el.2012.3017
  4. ROBERTS, G. W., ALI-BAKHSHIAN, M. A brief introduction to time-to-digital and digital-to-time converters. IEEE Transactions on Circuits and Systems, 2010, vol. 57, no. 3, p. 153–157. DOI: 10.1109/TCSII.2010.2043382
  5. CHEN, P., CHEN, C. C., TSAI, C. C., LU, W. F. A time-to-digitalconverter-based CMOS smart temperature sensor. IEEE Journal of Solid-State Circuits, 2005, vol. 40, no. 8, p. 1642–648. DOI: 10.1109/JSSC.2005.852041
  6. LAI, C. M., CHEN, Y. C., HUANG, P. C. Time-domain analog-todigital converters with domino delay lines. In International Symposium on VLSI Design, Automation, and Test (VLSI-DAT). Hsinchu, 2013, p. 1–4. DOI: 10.1109/VLDI-DAT.2013.6533841
  7. LU, P., ANDREANI, P., LISCIDINI, A. A 90 nm CMOS gatedring oscillator-based Vernier time-to-digital converter for DPLLs. In Proceedings of the ESSCIRC. Helsinki (Finland), 2011, p. 459 to 462. DOI: 10.1109/ESSCIRC.2011.6045006
  8. LISCIDINI, A., VERCESI, L., CASTELLO, R. Time to digital converter based on a 2-dimensions Vernier architecture. In Custom Integrated Circuits Conference (CICC). San Jose (USA), 2009, p. 45–48. DOI: 10.1109/CICC.2009.5280922
  9. KIM, M., LEE, H., WOO, J. K., et al. A low-cost and low-power time-to-digital converter using triple-slope time stretching. IEEE Transactions on Circuits and Systems: Express Briefs, 2011, vol. 58, no. 3, p. 169–173. DOI: 10.1109/TCSII.2011.2106353
  10. CHEN, P., CHEN, C. C., SHEN, Y. S. A low-cost low-power CMOS time-to-digital converter based on pulse stretching. IEEE Transactions on Nuclear Science, 2006, vol. 53, no. 4, p. 2215 to 2220. DOI: 10.1109/TNS.2006.876051
  11. MARKOVIC, B., TISA, S. F. A., VILLA, F.A., et al. A high-linearity, 17ps precision time-to-digital converter based on a singlestage Vernier delay loop fine interpolation. IEEE Transactions on Circuits and Systems I, 2013, vol. 60, no. 3, p. 557–569. DOI: 10.1109/TCSI.2012.2215737
  12. XU, S., LIM, Y. C., WONG, J. H., LAM, Q. H. Massively parallel time-stretched analog-to-digital converter. In Constantinides International-Workshop on Signal Processing (CIWSP 2013). London (UK), 2013, p. 1–4. DOI: 10.1049/ic.2013.0013
  13. KIM, K., YU, W., CHO, S. A 9 bit, 1.12 ps resolution 2.5 b/stage pipelined time-to-digital converter in 65 nm CMOS using timeregister. IEEE Journal of Solid-State Circuits, 2014, vol. 49, no. 4, p. 1007–1016. DOI: 10.1109/JSSC.2013.2297412
  14. KIM, J. S., SEO, Y. H., SUH, Y., PARK, H. J., SIM, J. Y. A 300- MS/s, 1.76-ps-resolution, 10-b asynchronous pipelined time-todigital converter with on-chip digital background calibration in 0.13-μm CMOS. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 2, p. 516–526. DOI: 10.1109/JSSC.2012.2217892
  15. WU, J., CHEN, C. Y., LI, T., HE, L., et al. A 240-mW 2.1-GS/s 52-dB SNDR pipeline ADC using MDAC equalization. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 8, p. 1818–1828. DOI: 10.1109/JSSC.2013.2259013
  16. LEE, M., ABIDI, A. A. A 9 b, 1.25 ps resolution coarse–fine timeto-digital converter in 90 nm CMOS that amplifies a time residue. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 4, p. 769 to 777. DOI: 10.1109/JSSC.2008.917405
  17. SEO, Y. H., KIM, J. S., PARK, H. J., SIM, J. Y. A 1.25 ps resolution 8b cyclic TDC in 0.13μm CMOS. IEEE Journal of Solid-State Circuits, 2012, vol. 47, no. 3, p. 736–743. DOI: 10.1109/JSSC.2011.2176609
  18. YUAN, J. Modeling, quantitative analysis, and design of switchedcurrent pipeline A/D converters. IEEE Transactions on Circuits and Systems, 2009, vol. 56, no. 4, p. 727–739. DOI: 10.1109/TCSI.2008.2003379
  19. KIM, K. S., KIM, Y. H., YU, W. S., CHO, S. H. A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 4, p. 1009–1017. DOI: 10.1109/JSSC.2013.2237996
  20. KIM, J. S., SEO, Y. H., SUH, Y., PARK, H. J., SIM, J. Y. A 300- MS/s, 1.76-ps-resolution, 10-b asynchronous pipelined time-todigital converter with on-chip digital background calibration in 0.13 umCMOS. IEEE Journal of Solid-State Circuits, 2013, vol. 48, no. 2, p. 516–526. DOI: 10.1109/JSSC.2012.2217892

Keywords: Time-to-digital converter (TDC), cyclic TDC, analog interpolation, time amplifier (TA)

J. Yu, Y. Li, X. Mu, J. Zhang, X. Miao, S. Wang [references] [full-text] [DOI: 10.13164/re.2015.0808] [Download Citations]
Modeling the AgInSbTe Memristor

The AgInSbTe memristor shows gradual resistance tuning characteristics, which makes it a potential candidate to emulate biological plastic synapses. The working mechanism of the device is complex, and both intrinsic charge-trapping mechanism and extrinsic electrochemical metallization effect are confirmed in the AgInSbTe memristor. Mathematical model of the AgInSbTe memristor has not been given before. We propose the flux-voltage controlled memristor model. With piecewise linear approximation technique, we deliver the flux-voltage controlled memristor model of the AgInSbTe memristor based on the experiment data. Our model fits the data well. The flux-voltage controlled memristor model and the piecewise linear approximation method are also suitable for modeling other kinds of memristor devices based on experiment data.

  1. CHUA, L. O. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. ISSN: 0018-9324. DOI: 10.1109/TCT.1971.1083337
  2. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, no. 4, p. 765–783. ISSN: 0947-8396. DOI: 10.1007/s00339-011-6264-9
  3. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. ISSN: 0018- 9219. DOI: 10.1109/PROC.1976.10092
  4. DI VENTRA, M., PERSHIN, Y. V., CHUA, L. O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 2009, vol. 97, no. 10, p. 1717–1724. ISSN: 0018-9219. DOI: 10.1109/JPROC.2009.2021077
  5. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., et al. The missing memristor found. Nature, 2008, vol. 453, no. 7191, p. 80–83. ISSN: 0028-0836. DOI: 10.1038/nature06932
  6. PERSHIN, Y. V., DI VENTRA, M. Spin memristive systems: spin memory effects in semiconductor spintronics. Physical Review B, 2008, vol. 78, no. 11, p. 113309. ISSN: 1098-0121. DOI: 10.1103/PhysRevB.78.113309
  7. STRACHAN, J. P., TORREZAN, A. C., MIAO, F., et al. State dynamics and modeling of tantalum oxide memristors. IEEE Transactions on Electron Devices, 2013, vol. 60, no. 7, p. 2194–2202. ISSN: 0018-9383. DOI: 10.1109/TED.2013.2264476
  8. ZHANG, J. J., SUN, H. J., LI, Y., et al. AgInSbTe memristor with gradual resistance tuning. Applied Physics Letters, 2013, vol. 102, no. 18, p. 183513. ISSN: 0003-6951. DOI: 10.1063/1.4804983
  9. PICKETT, M. D., STRUKOV, D. B., BORGHETTI, J. L., et al. Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 2009, vol. 106, no. 7, p. 1–6. ISSN: 0021-8979. DOI: 10.1063/1.3236506
  10. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., et al. A memristor device model. IEEE Electron Device Letters, 2011, vol. 32, no. 10, p. 1436–1438. ISSN: 0741-3106. DOI: 10.1109/LED.2011.2163292
  11. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., et al. TEAM: threshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 1, p. 211–221. ISSN: 1549-8328. DOI: 10.1109/TCSI.2012.2215714
  12. ASCOLI, A., CORINTO, F., SENGER, V., et al. Memristor model comparison. IEEE Circuits and Systems Magazine, 2013, vol. 13, no. 2, p. 89–105. ISSN: 1531-636X. DOI: 10.1109/MCAS.2013.2256272
  13. CHUA, L. O., DENG, A. C. Canonical piecewise-linear modeling. IEEE Transactions on Circuits and Systems, 1986, vol. 33, no. 5, p. 511–525. ISSN: 0098-4094. DOI: 10.1109/TCS.1986.1085952
  14. ITOH, M., CHUA, L. O. Memristor oscillators. International Journal of Bifurcation and Chaos, 2008, vol. 18, no. 11, p. 3183–3206. ISSN: 0218-1274. DOI: 10.1142/S0218127408022354
  15. YU, J., MU, X., XI, X., et al. A memristor model with piecewise window function. Radioengineering, 2013, vol. 22, no. 4, p. 969– 974. ISSN: 1210-2512
  16. MA, C., XIE, S., JIA, Y., et al. Macromodeling of the memristor using piecewise Volterra series. Microelectronics Journal, 2014, vol. 45, no. 3, p. 325–329. ISSN: 0026-2692. DOI: 10.1016/j.mejo.2013.11.017
  17. MU, X., YU, J., WANG, S. Modeling the memristor with piecewise linear function. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2015, vol. 28, no. 1, p. 96–106. ISSN: 0894-3370. DOI: 10.1002/jnm.1987
  18. LIN, Z., WANG, H. Image encryption based on chaos with PWL memristor in Chua’s circuit. In International Conference on Communications, Circuits and Systems. Chengdu (China), 2009, p. 964–968. ISBN: 978-1-4244-4886-9. DOI: 10.1109/ICCCAS.2009.5250354
  19. BREIMAN, L. Hinging hyperplanes for regression, classification, and function approximation. IEEE Transactions on Information Theory, 1993, vol. 39, no. 3, p. 999–1013. ISSN: 0018-9448. DOI: 10.1109/18.256506
  20. WANG, S., HUANG, X., JUNAID, K. M. Configuration of continuous piecewise-linear neural networks. IEEE Transactions on Neural Networks, 2008, vol. 19, no. 8, p. 1431–1445. ISSN: 1045-9227. DOI: 10.1109/TNN.2008.2000451
  21. MU, X., YU, J., WANG, S. Modeling the flux-charge relation of memristor with neural network of smooth hinge functions. Radioengineering, 2014, vol. 23, no. 3, p. 939–943. ISSN: 1210-2512
  22. VIELMA, J. P., AHMED, S., NEMHAUSER, G. Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Operations Research, 2010, vol. 58, no. 2, p. 303–315. ISSN: 0030-364X. DOI: 10.1287/opre.1090.0721
  23. HUANG, X., XU, J., MU, X., et al. The hill detouring method for minimizing hinging hyperplanes functions. Computers & Operations Research, 2012, vol. 39, no. 7, p. 1763–1770. ISSN: 0305-0548. DOI: 10.1016/j.cor.2011.10.017
  24. SUN, Z. Stability of piecewise linear systems revisited. Annual Reviews in Control, 2010, vol. 34, no. 2, p. 221–231. ISSN: 1367-5788. DOI: 10.1016/j.arcontrol.2010.08.003
  25. LIU, M., ABID, Z., WANG, W., et al. Multilevel resistive switching with ionic and metallic filaments. Applied Physics Letters, 2009, vol. 94, no. 23, p. 233106–233106. ISSN: 0003-6951. DOI: 10.1063/1.3151822
  26. PUCAR, P., SJOBERG, J. On the hinge-finding algorithm for hingeing hyperplanes. IEEE Transactions on Information Theory, 1998, vol. 44, no. 3, p. 1310–1319. ISSN: 0018-9448. DOI: 10.1109/18.669422
  27. JO, S. H., CHANG, T., EBONG, I., et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano letters, 2010, vol. 10, no. 4, p. 1297–1301. ISSN: 1530-6984. DOI: 10.1021/nl904092h
  28. LI, Y., ZHONG, Y., XU, L., et al. Ultrafast synaptic events in a chalcogenide memristor. Scientific Reports, 2013, vol. 3, no. 1619, p. 1–7. ISSN: 2045-2322. DOI: 10.1038/srep01619
  29. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., KOLKA, Z. Modeling of TiO2 memristor: from analytic to numerical analyses. Semiconductor Science and Technology, 2014, vol. 29, no. 12, p. 125008. ISSN: 0268-1242. DOI: 10.1088/0268-1242/29/12/125008
  30. HUANG, X., MU, X., WANG, S. Continuous piecewise linear identification with moderate number of subregions. In 16th IFAC Symposium on System Identification. Brussels (Belgium), 2012, p. 535–540. DOI: 10.3182/20120711-3-BE-2027.00251

Keywords: Memristor, mathematical model, piecewise linear

M. Guzan [references] [full-text] [DOI: 10.13164/re.2015.0814] [Download Citations]
Variations of Boundary Surface in Chua’s Circuit

The paper compares the boundary surfaces with help of cross-sections in three projection planes, for the four changes of Chua’s circuit parameters. It is known that due to changing the parameters, the Chua’s circuit can be characterized in addition to a stable limit cycle also by one double scroll chaotic attractor, two single scroll chaotic attractors or other two stable limit cycles. Chua’s circuit can even start working as a binary memory. It is not known yet, how changes in parameters and conseqently in attractors in the circuit will affect the morphology of the boundary surface. The boundary surface separates the double scroll chaotic attractor from the stable limit cycle. In a variation of the parameters presented in this paper the boundary surface will separate even single scroll chaotic attractors from each other. Dividing the state space into regions of attractivity for different attractors, however, remains fundamentally the same.

  1. Chua's Circuit and Chua's Equation. [Online] Cited 2013-05-31. Available at: http://www.eecs.berkeley.edu/~chua/circuitrefs.html.
  2. BILOTTA, E., PANTANO, P. A. Gallery of Chua Attractors. World Scientific Series on Nonlinear Science Series A, 2008, vol. 61. ISBN: 978-981-279-062-0
  3. FORTUNA, L., et al. Chua's Circuit Implementations. World Scientific Series on Nonlinear Science Series A, 2009, vol. 65. ISBN: 978-981-283-924-4
  4. KILIÇ, R. A. Practical Guide for Studying Chua's Circuits. World Scientific Series on Nonlinear Science Series A, 2010, vol. 71, ISBN: 978-981-4291-13-2
  5. ADAMATZKY, A., CHEN, G. Chaos, CNN, Memristors and Beyond. World Scientific, 2013. ISBN: 978-981-4434-79-9
  6. MKAOUAR, H., BOUBAKER, O. On electronic design of the piecewise linear characteristic of the Chua’s diode: Application to chaos synchronization. In Proceedings of the 16th IEEE Mediterranean Electrotechnical Conference (MELECON). 2012, p. 197–200. DOI: 10.1109/MELCON.2012.6196412
  7. FEKI, M., El GAMMOUDI, I. Chaos in Chua circuit with fractional order low pass filter. In Proceedings of the 8th International Multi-Conference on Systems, Signals and Devices (SSD). 2011, p. 1–4. DOI: 10.1109/SSD.2011.5986785
  8. XIAORAN LIN, SHANGBO ZHOU, HUA, LI. Chaos in complex-order Chua’s system and its application to secure communication. In Proceedings of the Second International Conference on Communication Systems, Networks and Applications (ICCSNA). Hong Kong, 2010, p. 204–207. DOI: 10.1109/ICCSNA.2010.5588689
  9. GONG-BIN QIAN, QING-FENG JIANG, SHUI-SHENG QIU. A new image encryption scheme based on DES algorithm and Chua’s circuit. In Proceedings of the IEEE International Workshop on Imaging Systems and Techniques (IST). Shenzhen (China), 2009, p. 168–172. DOI: 10.1109/IST.2009.5071626
  10. SPANY, V. The analysis of the one-tunnel diode binary. Proceedings of the IEEE, 1967, vol. 55, no. 6, p. 1089–1090. DOI: 10.1109/PROC.1967.5737
  11. SPANY, V. Special surfaces and trajectories of the multidimensional state space. In Proceedings of Scientific Works of VST in Kosice, part. 1. Kosice (Slovakia), 1978, p. 123–152. (In Slovak)
  12. SPANY, V. Multistable systems and special surfaces of the mdimensional state space. Elektrotechnicky þasopis, 1982, vol. 33, no. 7, p. 551–565. (In Slovak)
  13. SPANY, V., GALAJDA, P., GUZAN, M. Boundary surfaces of one-port memories. In Proceedings of Conference Tesla III Millennium. Belgrade (Yugoslavia), 1996, p. IV-131–137.
  14. GALAJDA, P., GUZAN, M., SPANY, V. The state space mystery with negative load. Radioengineering, 1999, vol. 8, no. 2, p. 2–7. ISSN 1210-2512.
  15. GUZAN, M. Boundary surface and stable manifold in sequential circuits. In Proceedings of 21th International Conference Radioelektronika 2011. Brno (Czech Republic), 2011, p. 219–222. DOI: 10.1109/RADIOELEK.2011.5936476
  16. GUZAN, M., SOBOTA, B. Boundary surface of multiple-valued memory in 3D. In Proceedings of the International Conference of Teachers of Electrical Engineering SEKEL. 2012, p. 75–80. (In Slovak)
  17. GUZAN, M. Boundary surface of 5-valued memory. Journal of Engineering, Hindawi Publishing Corporation, 2013, vol. 2013, p. 1–7. DOI: 10.1155/2013/626824
  18. GALAJDA, P., GUZAN, M., SPANY, V. The control of a memory cell with the multiple stable states. In Proceedings of the 21st International Conference Radioelektronika. Brno (Czech Republic), 2011, p. 211–214. DOI: 10.1109/RADIOELEK.2011.5936469
  19. GUZAN, M. Boundary surface of a ternary memory in the absence of limit cycles, In Proceedings of the 22nd International Conference Radioelektronika 2012. Brno (Czech Republic), 2012, p. 1–4. DOI: 10.1109/RADIOELEK.2011.5936469
  20. GALAJDA, P., SPANY, V., GUZAN, M. The state space mystery with virtual saddle point in memory cell. In Proceedings of the DSP - MCOM 2005. Kosice (Slovakia), 2005, p. 147–150.
  21. GALAJDA, P., GUZAN, M., SPANY, V. The state space description of the MVL memory circuits. In Proceedings of the International Conference Education, Science and Economics at Universities: Integration to International Educational AREA. Plock (Poland), 2010, p. 351–359. ISBN 978-83-60662-38-0.
  22. TONDL, A. Domains of Attraction for Non-linear Systems. Monographs and memoranda No. 8. National Research Institute for Machine Design, BCchovice, 1970.
  23. PETRZELA, J. Optimal piecewise-linear approximation of the quadratic chaotic dynamics. Radioengineering, 2012, vol. 21, no. 1, p. 20–28. ISSN 1210-2512.
  24. GALIAS, Z. Basins of attraction for periodic solutions of discretized sliding mode control systems. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS). Paris (France), 2010, p. 693–696.
  25. COLOMBO, A., GALVANETTO, U. On the boundaries of basins of attraction in piecewise smooth systems. In Proceedings of the Complexity in Engineering COMPENG '10. Rome (Italy), 2010, p. 100–102. DOI: 10.1109/COMPENG.2010.41
  26. YUJIAO HUANG, ZHANSHAN WANG, HUAGUANG ZHANG, TIE ZHANG. Multistability and enlarged basins of attraction in bidirectional associative memory neural networks. In Proceedings of the International Conf. on Networking, Sensing and Control (ICNSC). Chicago (IL, USA), 2010, p. 376–381. DOI: 10.1109/ICNSC.2010.5461531
  27. WENLIAN LU, LILI WANG, TIANPING CHEN. On attracting basins of multiple equilibria of a class of cellular neural networks. IEEE Transactions on Neural Networks, 2011, vol. 22, no. 3, p. 381–394. DOI: 10.1109/TNN.2010.2102048
  28. RUZ-HERNANDEZ, J. A., SUAREZ-DURAN, M. U, GARCIAHERNANDEZ, R., et al. A comparative analysis-based on basins of attraction for neural associative memories. In Proceedings of the World Automation Congress (WAC). Puerto Vallarta (Mexico), p. 1–6, 2012. ISBN: 978-1-4673-4497-5
  29. KAPITANIAK, T., CZOLCZYNSKI, K. Impacting oscillators - the problem of visualization of basins of attraction. In Proceedings of the International Conference Physics and Control. 2003, vol. 2, p. 657–662. DOI: 10.1109/PHYCON.2003.1236912
  30. SPANY, V., PIVKA, L. Dynamic properties of flip-flop sensors. Journal of Electrical Engineering, 1996, vol. 47, no. 7-8, p. 169– 178.
  31. KALAKAJ, P., SPANY, V., SOLTYS, R. Flip-flop sensors with feedback. In Proceedings of the International Conference Tesla III Millennium. Belgrade (Yugoslavia), 1996, p. 145–149.
  32. KOLLAR, M., SPANY, V., GABAS T. Autocompensative system for measurement of the capacitances. Radioengineering, 2002, vol. 11, no. 2, p. 26–30. ISSN 1210-2512.
  33. LEVICKY, D., MICHAELI, L., SPANY, V., PIVKA, L., KALAKAJ, P. Autocompensative system with flip-flop sensor. In Proceedings of the International Conference. Napoli (Italy), 1996, p. 185–189.
  34. SPANY, V., PIVKA, L., GALAJDA, P., GUZAN, KALAKAJ, P., SAK, A. The calculation of symmetrizing voltage in flip flop sensors. In Proceedings of the International Conference Radioelectronics. Kosice (Slovakia), 1994, p. 22–27.
  35. KOLLAR, M. Flip-Flop sensor controlled by slow-rise control pulse. Radioengineering, 2001, vol. 10, no. 3, p. 34–38. ISSN 1210-2512.
  36. MATSUMOTO, T., CHUA, L., KOMURO, M. The double scroll. IEEE Transactions on Circuits and Systems, 1985, vol.CAS-32, p. 797-818. DOI: 10.1109/TCS.1985.1085791
  37. SPANY, V., PIVKA, L. Boundary surfaces in sequential circuits. International Journal of Circuit Theory and Applications, 1990, vol. 18, no. 4, p. 349–360. DOI: 10.1002/cta.4490180404
  38. GALAJDA, P., KOCUR, D. Chua‘s circuit in spread spectrum communication systems. Radioengineering, 2002, vol. 11, no. 2, p. 6–10. ISSN 1210-2512.
  39. SPANY, V., GALAJDA, P., GUZAN, M., PIVKA, L., OLEJAR, M. Chua's singularities: Great miracle in circuit theory. International Journal of Bifurcation and Chaos, 2010, vol. 20, no. 10, p. 2993–3006. DOI: 10.1142/S0218127410027544
  40. PETRZELA, J., GOTTHANS, T., GUZAN, M. Dynamical tangles in third-order oscillator with single jump function. The Scientific World Journal, 2014, vol. 2014, p. 1–12, DOI: 10.1155/2014/239407
  41. GUZAN, M., SOBOTA, B. 3D visualization of Chua’s circuit dynamics. Journal of Information, Control and Management Systems, 2010, vol. 8, no. 4, p. 311–316.
  42. KENNEDY, P. Robust op amp realization of Chua’s circuit. Frequenz, 1992, vol. 46, no. 3-4, p. 66–80. ISSN: 0016-1136.
  43. PETRZELA, J., HRUBOS, Z., GOTTHANS, T. Modeling deterministic chaos using electronic circuits. Radioengineering, 2011, vol. 20, no. 2, p. 438–444. ISSN 1210-2512.
  44. AZIZ-ALAOUI, M. A. Multispiral chaos. In Proc. of the 2nd Internat. Conf. Control of Oscillations and Chaos. St. Petersburg (Russia), 2000, p. 88–91. DOI: 10.1109/COC.2000.873517

Keywords: Chua's circuit, boundary surface, chaos

R. Yao, G. Li, J. Xu, L. Wang [references] [full-text] [DOI: 10.13164/re.2015.0824] [Download Citations]
Space Alignment Based on Regularized Inversion Precoding in Cognitive Transmission

For a two-tier Multiple-Input Multiple-Output (MIMO) cognitive network with common receiver, the precoding matrix has a compact relationship with the capacity performance in the unlicensed secondary system. To increase the capacity of secondary system, an improved precoder based on the idea of regularized inversion for secondary transmitter is proposed. An iterative space alignment algorithm is also presented to ensure the Quality of Service (QoS) for primary system. The simulations reveal that, on the premise of achieving QoS for primary system, our proposed algorithm can get larger capacity in secondary system at low Signal-to-Noise Ratio (SNR), which proves the effectiveness of the algorithm.

  1. HONG, X. M., CHEN, Z. M., WANG, C. X., et al. Cognitive radio networks. IEEE Vehicular Technology Magazine, 2009, vol. 4, no. 4, p. 76–84. DOI: 10.1109/MVT.2009.934672
  2. ZHANG, R., LIANG, Y.-C. Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2008, vol. 2, no. 1, p. 88–102. DOI: 10.1109/JSTSP.2007.914894
  3. PHAN, K. T., VOROBYOV, S. A., SIDIROPOULOS, N. D., et al. Spectrum sharing in wireless networks via QoS-aware secondary multicast beamforming. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 6, p. 2323–2335. DOI: 10.1109/TSP.2009.2016262
  4. CADAMBE, V. R., JAFAR, S. A. Interference alignment and degrees of freedom for the K-uer interference channel. IEEE Transactions on Information Theory, 2008, vol. 54, no. 8, p. 3425–3441. DOI: 10.1109/TIT.2008.926344
  5. PERLAZA, S. M., DEBBAH, M., LASAULCE, S., et al. Opportunistic interference alignment in MIMO interference channels. In Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Cannes (France), 2008, p. 2484–2488. DOI: 10.1109/PIMRC.2008.4699872
  6. PERLAZA, S. M., FAWAZ, N., LASAULCE, S., et al. From spectrum pooling to space pooling: opportunistic interference alignment in MIMO cognitive networks. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 7, p. 3728–3741. DOI: 10.1109/TSP.2010.2046084
  7. HUPPERT, C. Opportunistic resource allocation in MIMO cognitive systems with multiple users. In Proceedings of 2011 International ITG Workshop on Smart Antennas (WSA). Aachen (Germany), 2011, p. 1–6. DOI: 10.1109/WSA.2011.5741931
  8. KRIKIDIS, I. Space alignment for cognitive transmission in MIMO uplink channels. EURASIP Journal on Wireless Communications and Networking, 2010, vol. 2010. DOI: 10.1155/2010/465157
  9. MASO, M., CARDOSO, L. S., DEBBAH, M., et al. Cognitive orthogonal precoder for two-tiered networks deployment. IEEE Journal on Selected Areas in Communications, 2011, vol. 31, no. 11, p. 2338–2348. DOI: 10.1109/JSAC.2013.131108
  10. PEEL, C. B., HOCHWALD, B. M., SWINDLEHURST, A. L. A vector-perturbation technique for near-capacity multiantenna multiuser communication - Part I: channel inversion and regularization. IEEE Transactions on Communications, 2005, vol. 53, no. 1, p. 195–202. DOI: 10.1109/TCOMM.2004.840638
  11. MASO, M., CARDOSO, L. S., DEBBAH, M., et al. Channel estimation impact for LTE small cells based on MU-VFDM. In Proceedings of 2012 IEEE Wireless Communications and Networking Conference (WCNC). Shanghai (China), 2012, p. 2560–2565. DOI: 10.1109/WCNC.2012.6214230
  12. PANTISANO, F., BENNIS, M., SAAD, W., et al. Improving macrocell-small cell coexistence through adaptive interference draining. IEEE Transactions on Wireless Communications, 2013, vol. 13, no. 2, p. 942–955. DOI: 10.1109/TWC.2013.120613.130617
  13. CHO, Y. S., KIM, J., YANG, W. Y., et al. MIMO-OFDM Wireless Communications With MATLAB. 1st ed. Singapore (Singapore): John Wiley & Sons (Asia) Pte Ltd, 2010. ISBN: 9780070825617
  14. BAI, X. J. Space alignment for cognitive transmission with multiple primary users. Electronics Letters, 2013, vol. 49, no. 25, p. 1619–1620. DOI: 10.1049/el.2013.2524
  15. JEFFREY, A., ZWILLINGER, D. Table of Integrals, Series, and Products. 7th ed. Salt Lake City (USA): Academic Press, 2007. ISBN: 9780123736376

Keywords: Cognitive network, Multiple-Input Multiple-Output (MIMO), space alignment, precoding, channel capacity

A. Samcovic [references] [full-text] [DOI: 10.13164/re.2015.0830] [Download Citations]
Model for Estimation of Bounds in Digital Coding of Seabed Images

This paper proposes the novel model for estimation of bounds in digital coding of images. Entropy coding of images is exploited to measure the useful information content of the data. The bit rate achieved by reversible compression using the rate-distortion theory approach takes into account the contribution of the observation noise and the intrinsic information of hypothetical noise-free image. Assuming the Laplacian probability density function of the quantizer input signal, SQNR gains are calculated for image predictive coding system with non-adaptive quantizer for white and correlated noise, respectively. The proposed model is evaluated on seabed images. However, model presented in this paper can be applied to any signal with Laplacian distribution.

  1. HUCK, F. O., FALES, C. L., ALTER-GANTERBERG, R., PARK, S. K., RAHMAN Z. Information-theoretic assessment of sampled imaging systems. Journal Optical Engineering, 1999, vol. 38, no. 5, p. 742–762. DOI: 10.1117/1.602264
  2. AIAZZI, B., ALPARONE, L., BARDUCCI, A., BARONTI, S., PIPPI, I. Assessment of noise variance and information content of multi-/hyper-spectral imagery. ISPRS International Archives Photogrammetry and Remote Sensing, 1999, vol. 32, p. 164–174.
  3. AIAZZI, B., ALPARONE, L., BARDUCCI, A., BARONTI, S., PIPPI, I. Estimating noise and information of multispectral imagery. Journal Optical Engineering, 2002, vol. 41, no. 3, p. 656–668. DOI: 10.1117/1.1447547
  4. BLAHUT, R. E. Principles of Information Theory. Reading (MA): Addison-Wesley, 1987.
  5. SHANNON, C. E., WEAVER, W. The Mathematical Theory of Communication. Urbana (IL): University of Illinois Press, 1949.
  6. PARK, S. K., RAHMAN, Z. Fidelity analysis of sampled imaging systems. Journal Optical Engineering, 1999, vol. 38, no. 5, p. 786–800. DOI: 10.1117/1.602047
  7. RAGESH, N. K., ANIL, A. R., RAJESH, R. Digital image denoising in medical ultrasound images: a survey. In Proceedings of the ICGST AIML-11 Conference. Dubai (UAE), 2011, p. 67–73.
  8. FAN, G., XIA, X. G. Image denoising using a local contextual hidden Markov model in the wavelet domain. IEEE Signal Processing Letters, 2001, vol. 8, no. 5, p. 125–128. DOI: 10.1109/97.917691
  9. BERGER, T. Rate-Distortion Theory. John Wiley & Sons, 1971.
  10. O’NEAL, J. B. Predictive quantizing systems/DPCM for the transmission of television signals. Bell Systems Technology Journal, 1966, vol. 45, p. 689–721.
  11. KIVANC, M., KOZINTSEV, M., RAMCHANDRAN, I., MOULIN, P. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters, 1999, vol. 6, no. 12, p. 300–303. DOI: 10.1109/97.803428
  12. AIAZZI, B., ALPARONE, L., BARONTI, S., LOTTI, F., SANTURI, L. A model for estimating noise and information of digital signals: an evaluation on medical images. In Proceedings of the International TICSP Workshop on Spectral methods and Multirate Signal Processing SMMSP 2003. Barcelona (Spain), September 2003, p. 83–88.
  13. KOLMOGOROV, A. N. Theory of transmission of information. Annales Mathematical Society Translations, 1963, vol. 33, no. 2, p. 291–321.
  14. JERZMAN, B., KICINSKI, W. Kernel estimation of probability density function: properties and parameters optimization. Metrology and Measurement Systems, 2009, vol. XVI, no. 1, p. 85–105.
  15. JAYANT, N. S., NOLL, P. Digital Coding of Waveforms: Principles and Applications to Speech and Video. Englewood Cliffs (NJ): Prentice-Hall, 1984.
  16. ISAR, A., MOGA, S., ISAR, D. Denoising sonar images using a bishrink filter with reduced sensitivity. Rev. Roum. Sci. Techn. – Electrotechn. Et Energ., Bucharest, 2011, vol. 55, no. 2, p. 181 to 190.
  17. ISAR, A., FIROIU, I., NAFORNITA, C., MOGA, S. Sonar images denoising. Sonar Systems, edited by Nikolai Kolev, InTech, 2011. ISBN: 978-953-307-345-3
  18. SHI, HONG, CHUNHUI ZHAO., ZHENGYAN SHEN, GUANGYU LIU. Sonar image fusion denoising method based on multiple morphological wavelet packets. Advanced Electrical and Electronics Engineering, Springer Berlin Heidelberg, 2011, vol. 2, p. 689–696. ISBN: 978-3-642-19711-6
  19. BOJKOVIû, Z. Upper bound on signal/quantising-noise ratio for television D.P.C.M. systems. Electronics Letters, 1975, vol. 11, no. 1, p. 29–30. DOI: 10.1049/el:19750021
  20. HABIBI, A. Hybrid coding of pictorial data. IEEE Transactions on Communications, 1974, vol. 22, no. 5, p. 614–624. DOI: 10.1109/TCOM.1974.1092258
  21. WOOD, R. C. On optimum quantization. IEEE Transactions on Information Theory, 1969, vol. IT-15, no. 2, p. 248–252. DOI: 10.1109/TIT.1969.1054285
  22. PANTER, P. F., DITE, W. Quantization distortion in pulse-count modulation with nonuniform spacing of levels. Proceedings IRE, 1951, vol. 39, p. 44–48.
  23. NITADORI, K. Statistical analysis of DPCM. Journal Electron. Communications Japan, vol. 48, 1965.
  24. WEINBERGER, M. J., RISSANEN, J. J., ARPS, R. B. Applications of universal context modeling to lossless compression of gray-scale images. IEEE Transactions on Image Processing, 1996, vol. 5, no. 4, p. 575–586. DOI: 10.1109/83.491334
  25. BENNETT, W. R. Spectra of quantized signals. Bell Systems Technology Journal, 1948, vol. 27, no. 3, p. 446–472.
  26. MILOVANOVIû, D., BOJKOVIû, Z., SAMyOVIû, A. Upper bound on SNR gain in wavelet transform predictive-entropy image coding. Journal of Circuits, Systems and Computers, 1998, vol. 8, no. 2, p. 267–272. DOI: 10.1142/S0218126698000109
  27. SAMyOVIû, A., BOJKOVIû, Z. Redundancy reduction in entropy coding of wavelet images. In Proceeding of the Symposium on Electronics and Telecommunications Etc.'98. Timisoara (Romania), September 1998, vol. II, p. 176–180.
  28. MILOVANOVIû, D., BOJKOVIû, Z., SAMyOVIû, A., RELJIN, B. Upper bound on redundancy reduction in predictive-entropy subband image coding. China Journal of Image and Graphics, 1997, vol. 2, no. 4, p. 239–249.
  29. CUSCHIERI, J. M., LEBLANC, L. R., PAZOL, B., PHAM, H. Forward look Sonars for AUV’s, 2000.
  30. CHANUSSOT, J., MAUSSANG, F., HETET, A. Scalar image processing filters for speckle reduction on synthetic aperture sonar images. In Proceedings of the Oceans ’02 MST/IEEE. 2002, vol. 4, p. 2294-2301. DOI: 10.1109/OCEANS.2002.1191987
  31. MODALAVALASA, N., RAO G. S., SATYA PRASAD, K. A novel approach for segmentation of sector scan sonar images using adaptive thresholding. International Journal of Information Sciences and Techniques, July 2012, vol. 2, no. 4, p. 113–119. DOI: 10.5121/ijist.2012.2411
  32. NEGAHDARIPOUR, S., FIROOZFAM, P., SABZMEYDANI, P. On processing and registration of forward-scan acoustic video imagery. In Proceedings of the 2nd Canadian Conference on Computer and Robot Vision CRV’05. 9-11 May 2005, p. 452–459. DOI: 10.1109/CRV.2005.57
  33. DANKOVIû, N., PERIû, Z. Probability of stability estimation of DPCM system with the first order predictor. Facta Universitatis, Series: Automatic Control and Robotics, 2013, vol. 12, no. 2, p. 131–138. ISSN: 1820-6417
  34. ZOGAS, D., KARAGIANNIDIS, G. K., KOTSOPOULOS, S. A. On the average output SNR in selection combining with three correlated branches over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 2004, vol. 3, no. 1, p. 25–28. DOI: 10.1109/TWC.2003.821219
  35. LUO, J., LIU, H., HUANG, C., GU, J., XIE, S., LI, H. Denoising and tracking of sonar video imagery for underwater security monitoring systems. In Proceedings of the IEEE International Conference on Robotics and Biomimetics ROBIO 2013. Shenzhen (China), 12-14 December 2013, p. 2203–2208. DOI: 10.1109/ROBIO.2013.6739796
  36. WONG, L. S., ALLEN, G., EVANS, B. Sonar data compression using non-uniform quantization and noise shaping. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers. Pacific Grove (CA, USA), 2-5 November 2014, p. 1895–1899. DOI: 10.1109/ACSSC.2014.7094798

Keywords: Image coding, entropy coding, image denoising, rate distortion theory, signal to noise ratio

F. Shen, G. Xu, J. W. Cheong, H. Feng [references] [full-text] [DOI: 10.13164/re.2015.0840] [Download Citations]
Unambiguous Acquisition and Tracking Technique for General BOC Signals

This article presents a new unambiguous acquisition and tracking technique for general Binary Offset Carrier (BOC) ranging signals, which will be used in modern GPS, European Galileo system and Chinese BeiDou system. The test criterion employed in this technique is based on a synthesized correlation function which completely removes positive side peaks while keeping the sharp main peak. Simulation results indicate that the proposed technique completely removes the ambiguity threat in the acquisition process while maintaining relatively higher acquisition performance for low order BOC signals. The potential false lock points in the tracking phase for any order BOC signals are avoided by using the proposed method. Impacts of thermal noise and multipath on the proposed technique are investigated; the simulation results show that the new method allows the removal of false lock points with slightly degraded tracking performance. In addition, this method is convenient to implement via logic circuits.

  1. GODET, J., DE MATEO, J. C., ERHARD, P., et al. Assessing the radio frequency compatibility between GPS and Galileo. In Proceeding of U.S. Institute of Navigation GPS Conference. Portland (OR, USA), 2002, p. 1260–1269.
  2. BETZ, J. W. Binary offset carrier modulations for radionavigation. Navigation, Journal of the Institute of Navigation, 2002, vol. 48, no. 4, p. 227–246. DOI: 10.1002/j.2161-4296.2001.tb00247.x
  3. MARTIN, N., LEBLOND, V., GUILLOTEL, G., HEIRIES, V. BOC(x, y) signal acquisition technique and performances. In Proceedings of the 16th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS). Portland (OR, USA), 2003, p. 188–198.
  4. FISHMAN, P., BETZ, J. W. Predicting performance of direct acquisition for the M code signal. In Proceedings of the 2000 National Technical Meeting of The Institute of Navigation. Anaheim (CA, USA), 2000, p. 574–582.
  5. MAO, W.-L., HWANG., C.-S., HUNG, C.-W., et al. Unambiguous BPSK-like CSC method for Galileo acquisition. In 18th International Conference on Methods and Models in Automation and Robotics (MMAR). Miedzyzdroje (Poland), 2013, p. 627–632. DOI: 10.1109/MMAR.2013.6669983
  6. BENEDETTO, F., GIUNTA, G., LOHAN, E. S., RENFORS, M. A fast unambiguous acquisition algorithm for BOC-modulated signals. IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 3, p. 1350–1355. DOI: 10.1109/TVT.2012.2228681
  7. FINE, P., WILSON, W. Tracking algorithm for GPS offset carrier signals. In Proceedings of the 1999 National Technical Meeting of The Institute of Navigation. San Diego (CA, USA), 1999, p. 671–676.
  8. HODGART, M., BLUNT, P., UNWIN, M. Double estimator – a new receiver principle for tracking BOC signals. Inside GNSS, Spring 2008, p. 26–36.
  9. YAO, Z., LU, M., FENG, Z. Unambiguous sine-phased binary offset carrier modulated signal acquisition technique. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 2, p. 577–580. DOI: 10.1109/TWC.2010.02.091066
  10. ZHOU, Y. Ambiguity mitigating technique for cosine-phased binary offset carrier signal. IEEE Transactions on Wireless Communications, 2012, vol. 46, no. 4, p. 1981–1984. DOI: 10.1109/TWC.2012.041612.110531
  11. KIM, H., LEE, Y., YOON, S. An unambiguous acquisition scheme for binary offset carrier signals. In 2013 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS). Naha (Japan), 2013, p. 340–344. DOI: 10.1109/ISPACS.2013.6704573
  12. YAO, Z., et al. Pseudo-correlation function-based unambiguous tracking technique for sine-BOC signals. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 4, p. 1782–1796. DOI: 10.1109/TAES.2010.5595594
  13. XU, D., LIU, M., SHEN, F. Ambiguity mitigating technique for multiplexed binary offset carrier signal tracking. IEEE Communications Letters, 2013, vol. 17, no. 11, p. 2021–2024. DOI: 10.1109/LCOMM.2013.091113.131685
  14. WARD, P. W. A design technique to remove the correlation ambiguity in binary offset carrier (BOC) spread spectrum signals. In Proceedings of the 59th Annual Meeting of The Institute of Navigation and CIGTF 22nd Guidance Test Symposium. Albuquerque (NM, USA), 2003, p. 146–155.
  15. PHAM-VIET, H., DAO-NGOC, C., NGUYEN-VAN, K. A scheme of cosine-BOC(n,n) side peaks cancellation for navigation applications. In 2013 International Conference on Advanced Technologies for Communications (ATC’13). Ho Chi Minh City (Vietnam), 2013, p. 180–184. DOI: 10.1109/ATC.2013.6698101
  16. JULIEN, O., MACABIAU, C., CANNON, M. E., LACHAPELLE, G. ASPeCT: unambiguous sine-BOC(n,n) acquisition/tracking technique for navigation applications. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 1, p. 150–162. DOI: 10.1109/TAES.2007.357123
  17. BENEDETTO, F., GIUNTA, G. A self-synchronizing method for asynchronous code acquisition in band-limited spread spectrum communications. IEEE Transactions on Communications, 2006, vol. 57, no. 8, p. 2410–2419. DOI: 10.1109/TCOMM.2008.08.070030
  18. HEIRISES, V., ROVIRAS, D., RIES, L. Analysis of non-ambiguous BOC signal acquisition performance. In Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS). Long Beach (CA, USA), 2004, p. 671–676.
  19. LOHAN, E. S., BURIAN, A., RENFORS, M. Low-complexity unambiguous acquisition methods for BOC modulated CDMA signals. International Journal of Satellite Communications and Networking, 2008, vol. 26, p. 503–522. DOI: 10.1002/sat.922
  20. HOLMES, J. K. Coherent Spread Spectrum Communications. Melbourne (FL, USA): Krieger Publishing Co., 1990. ISBN: 9780071382151
  21. VAN DIERENDONCK, A. J. GPS receivers. In Global Positioning System: Theory and Applications. New York (USA): American Institute of Astronautics and Aeronautics, 1996, p. 329–408. ISBN: 978-1563471063
  22. WARD, P. Satellite signal acquisition and tracking. In Understanding GPS-Principles and applications. Norwood (MA, USA): Artech House, 1997, p. 119–218. ISBN: 978-1580538947
  23. HOLMES, J. K., RAGHAVAN, S. H., LAZAR, S. Acquisition and tracking performance of NRZ and square-wave modulated symbols for use in GPS. In Proceedings of the 54th Annual Meeting of The Institute of Navigation. Denver (CO, USA), 1998, p. 611–626.
  24. JULIEN, O., MACABIAU, C., CANNON, M. E., et al. New unambiguous BOC(n,n) tracking technique. In Proceeding of NaviTec Conference. Noordwidjk (The Netherlands), 2004, 8 pages.
  25. NUNES, F. D., SOUSA, F. M. G., LEITAO, J. M. N. Gating functions for multipath mitigation in GNSS BOC signals. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 3, p. 951–964. DOI: 10.1109/TAES.2007.4383585
  26. PANY, T., IRSIGLER, M., EISSFELLER, B. S-curve shaping: A new method for optimum discriminator based code multipath mitigation. In Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS). Long Beach (CA, USA), 2005, p. 2139–2154.

Keywords: Modern GPS, Galileo, BeiDou, BOC, unambiguous acquisition and tracking, multipath, thermal noise.

Y. J. Pan, X. F. Zhang, S. Y. Xie, J. J. Huang, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2015.0850] [Download Citations]
An Ultra-fast DOA Estimator with Circular Array Interferometer Using Lookup Table Method

The time-consuming phase ambiguity resolution makes the uniform circular array (UCA) interferometer not suitable for real-time direction-of-arrival (DOA) estimation. This paper introduces the lookup table (LUT) method to solve this problem. The key of the method is that we look up the ambiguity numbers instead of the eventual DOA from the table, and then the DOA is obtained by relatively small amount of calculation. This makes it possible that we are able to shrink the table size while maintain the DOA estimation accuracy. The table addresses cover all possible measured phase differences (PDs), which enables the method to be free of spatial scanning. Moreover, without adding frequency index to the lookup table, the estimator can realize wideband application. As an example, a field-programmable gate array (FPGA) based DOA estimator with the estimation time of 180 ns is presented, accompanied by the measured results. This method possesses the advantages of ultra-high speed, high accuracy and low memory usage.

  1. TUNCER, E., FRIEDLANDER, B. Classical and Modern Direction of Arrival Estimation. New York: Academic Press, 2009.
  2. CHANDRAN S. Advances in Direction-of-arrival Estimation. London: Artech House, 2006.
  3. MOSCA, E., SELENIA, S. P. A. Angle estimation in amplitude comparison monopulse systems. IEEE Transactions on Aerospace and Electronic Systems, 1969, vol. AES-5, no. 2, p. 205–212. DOI: 10.1109/TAES.1969.309906
  4. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. ISSN: 0018-926X. DOI: 10.1109/TAP.1986.1143830
  5. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. ISSN: 0096-3518. DOI: 10.1109/29.32276
  6. SEE, C. M. S. Method for array calibration in high-resolution sensor array processing. IEEE Proceedings on Radar, Sonar and Navigation, 1995, vol. 142, no. 90, p. 90–96. ISSN: 1350-2395. DOI: 10.1049/ip-rsn:19951793
  7. LIU, Z. M., ZHOU, Y. Y. An unified framework and sparse Bayesian perspective for Direction-of-Arrival estimation in the presence of array imperfections. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 15, p. 3786–3798. ISSN: 1053-587X. DOI: 10.1109/TSP.2013.2262682
  8. JACOBS, E., RALSTON, E. W. Ambiguity resolution in interferometry. IEEE Transactions on Aerospace and Electronic Systems, 1981, vol. AES-17, p. 766–779. ISSN: 0018-9251. DOI: 10.1109/TAES.1981.309127
  9. WANG, Q. Research on DF based on 5-element circular array phase interferometer. Aerospace Electronic Warfare, 2009, vol. 25, no. 5, p. 33–35 (in Chinese). ISSN: 1673-2421DOI: 10.3969/j.issn.1673- 2421.2009.05.010
  10. WEI, H. H., SHI, Y. G. Performance analysis and comparison of correlative interferometers for direction finding. In Proceedings of 10th International Conference on Signal Processing . Beijing (China), 2010, p. 190–193. DOI: 10.1109/ICOSP.2010.5657185
  11. ZHANG, H., LI, W. Direction finding and position by five channels phase interferometer implement using TMS320C6711. Application of Electronic Technique, 2003, vol. 29, no, 12, p. 28–31 (in Chinese). ISSN: 0258-7998. DOI: 10.3969/j.issn.0258-7998.2003.12.008
  12. MAHLOOJI, S., MOHAMMADI, K. Very high resolution digital instantaneous frequency measurement receiver. In Proceedings of 2009 International Conference on Signal Processing Systems . Singapore, 2009, p. 177–181. DOI: 10.1109/ICSPS.2009.43
  13. ANALOG DEVICES, AMERICA. AD8302 (datasheet). 24 pages. [online] Cited 2013-11-21. Available at: http://www.analog.com/media/cn/technical-documentation/datasheets/AD8302.pdf.

Keywords: Direction-of-arrival estimation, circular array interferometer, phase ambiguity resolution, lookup table, FPGA.

J. Zavrtalek, D. Kekrt, J. Hrad [references] [full-text] [DOI: 10.13164/re.2015.0857] [Download Citations]
New Concept of PLC Modems: Multi-Carrier System for Frequency Selective Slow-Fading Channels Based on Layered SCCC Turbocodes

The article introduces a novel concept of a PLC modem as a complement to the existing G3 and PRIME standards for communications using medium- or high-voltage overhead or cable lines. The proposed concept is based on the fact that the levels of impulse noise and frequency selectivity are lower on high-voltage lines than on low-voltage ones. Also, the demands for “cost-effective” circuitry design are not so crucial as in the case of modems for low-voltage level. In contract to these positive conditions, however, there is the need to overcome much longer distances and to take into account low SNR on the receiving side. With respect to the listed reasons, our concept makes use of MCM, instead of OFDM. The assumption of low SNR is compensated through the use of an efficient channel coding based on a serially concatenated turbo code. In addition, MCM offers lower latency and PAPR compared to OFDM. Therefore, when using MCM, it is possible to excite the line with higher power. The proposed concept has been verified during experimental transmission of testing data over a real, 5 km long, 22kV overhead line.

  1. CHUGG, K., ANASTASOPOULOS, A., CHEN, X. Iterative detection: Adaptivity, Complexity Reduction and Applications. Kluwer Academic Publishers, 2001. ISBN 0-729-37277-8. DOI: 10.1007/978-1-4615-1699-6.
  2. VUCETIC, B., JUAN, J. Space-Time Coding. Kluwer Academic Publishers, 2003. ISBN 0-470-84757-3. DOI: 10.1002/047001413X.
  3. VUCETIC, B., JUAN, J. Turbo Codes: Principles and Applications. Kluwer Academic Publishers, 2000. ISBN 0-792-37868-7. DOI: 10.1007/978-1-4615-4469-2.
  4. BERROU, C., GLAVIEUX, A., THITMAJSHIMA, P. Near Shannon limit error correcting coding and decoding: Turbo-codes. In Proceedings of the International Conference on Communications. Geneva (Switzerland), 1993, p. 1064–1070. DOI: 10.1109/ICC.1993.397441
  5. BAHL, L. R., COCKE., J., JELINEK, F., RAVIV, J. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory, 1974, vol.20, no. 2, p. 284–287. DOI: 10.1109/TIT.1974.1055186.
  6. HAGENAUER, J., HOEHER, P. A Viterbi algorithm with softdecision outputs and its applications. In Proceedings of IEEE Global Telecommunications Conference. Dallas (USA), 1989, p. 1680– 1686. DOI: 10.1109/GLOCOM.1989.64230
  7. FORNEY, J. D. The Viterbi algorithm. Proceedings of the IEEE, 1973, vol. 61, no. 3, p. 268–278. DOI: 10.1109/PROC.1973.9030.
  8. GUNTHER, J. H., KELLER, D., MOON, T. K. A generalized BCJR algorithm and its use in turbo synchronization. In Proceedings of Acoustics, Speech, and Signal Processing (ICASSP ’05). 2005, p. 837–840. DOI: 10.1109/ICASSP.2005.1415840.
  9. VALLES, E. L., WESEL, R. D, VILLASENOR, J. D., JONES, C. R. Carrier and timing synchronization of BPSK via LDPC code feedback. In Signals, Systems and Computers (ACSSC ’06). 2006, p. 2177–2181. DOI: 10.1109/ACSSC.2006.355154.
  10. GINI, F., GIANNAKIS, G. B. Frequency offset and symbol timing recovery in flat-fading channels: a cyclostationary approach. IEEE Transactions on Communications, 2002, vol. 46, no. 3, p. 400–411. DOI: 10.1109/26.662646.
  11. CASADEI, M., CIONI, S., CORAZZA, G. E. Advanced iterative symbol timing recovery for mobile DVB-RCS. In 65th IEEE Vehicular Technology Conference. Dublin (Ireland), 2007, p. 1425–1429. DOI: 10.1109/VETECS.2007.298.
  12. KEKRT, D., LUKES, T., KLIMA, M., FLIEGEL, K. 2D Iterative MAP detection: principles and applications in image restoration. Radioengineering, 2014, vol. 23, no. 2, p. 618–631.
  13. VARAHRAM, P., ALI, B. M. A low complexity partial transmit sequence for peak to average power ratio reduction in OFDM systems. Radioengineering, 2011, vol. 20, no. 3, p. 677–682.
  14. HERZET, C., RAMON, V., VANDENDORPE, L., MOENECLAEY, M. EM algorithm-based timing synchronization in turbo receivers. In Proceedings of IEEE Conference on Acoustic, Speech, and Signal Processing (ICASSP ’03). 2003, vol. 4, p. 612–615. DOI: 10.1109/ICASSP.2003.1202717.
  15. GUENACH, M., WYMEERSCH, H., MOENECLAY, M. Joint estimation of path delay and complex gain for coded systems using the EM algorithm. In 2004 International Zurich Seminar on Communications. Zurich (Switzerland), 2004, p. 216–219. DOI: 10.1109/IZS.2004.1287428.
  16. RAMON, V., HERZET, C., VANDENDORPE, L., MOENECLAEY, M. EM algorithm-based multiuser synchronization in turbo receivers. In Proceedings of IEEE Conference on Acoustic, Speech, and Signal Processing (ICASSP ’04). 2004, vol. 4, p. 849–852. DOI: 10.1109/ICASSP.2004.1326960.
  17. SYKORA, J., BURR, A. G. Iterative decoding networks with iteratively data eliminating SDD and EM based channel state estimator. In 15th IEEE Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC ’04). 2004, vol. 2, p. 785–790. DOI: 10.1109/PIMRC.2004.1373807.
  18. SYKORA, J., VCELAK, J. Iterative EM based IMD synchronization for fast time-variant channel with subspace order recursive LS iterator. In Asia-Pacific Conference on Communications, 2005, p. 921–925. DOI: 10.1109/APCC.2005.1554197
  19. ANASTASOPOULOS, A., CHUGG, K. M. Adaptive soft-input soft-output algorithms for iterative detection with parametric uncertainty. IEEE Transaction on Communications, 2000, vol. 48, no. 10, p. 1638–1649. DOI: 10.1109/26.871389
  20. NOELS, N., HERZET, C., DEJONGHE, A., LOTTICI, V., STEENDAM, H., MOENECLAEY, M., LUISE, M., VANDERDORPE, L. Turbo synchronization: an EM algorithm interpretation. In IEEE International Conference on Communications. 2003, vol. 4, p. 2933–2937. DOI: 10.1109/ICC.2003.1204575
  21. HERZET, C., WYMEERSCH, H., MOENECLAY, M., VANDERDORPE, L. On maximum-likelihood timing synchronization. IEEE Transactions on Communications, 2007, vol. 55, no. 6, p. 1116–1119. DOI: 10.1109/TCOMM.2007.898863
  22. HERZET, C., NOELS, N., LOTTICI, V., WYMEERSCH, H., LUISE, M., MOENECLAY, M., VANDERDORPE, L. Code-aided turbo synchronization. Proceedings of the IEEE, 2007, vol. 95, no. 6, p. 1255–1271. DOI: 10.1109/JPROC.2007.896518
  23. CARSON, J. R. Wave propagation in overhead wires with ground return. The Bell System Technical Journal, 1926, vol. 5, no. 4, p. 539–554. DOI: 10.1002/j.1538-7305.1926.tb00122.x
  24. ZIMMERMANN, M., DOSTERT, K. A multipath model for the power line channel. IEEE Transactions on Communications, 2002, vol. 50, no. 4, p. 553–559. DOI: 10.1109/26.996069
  25. HOCH, M. Comparison of PLC G3 and PRIME. IEEE International Symposium on Power Line Communications and Its Applications. Udine (Italy), 2011, p. 165–169. DOI: 10.1109/ISPLC.2011.5764384
  26. ALI, S. S., BHATTACHARYA, A., PODDAR, D. R. Design of bidirectional coupling circuit for broadband power-line communications. Journal of Electromagnetic Analysis and Applications, 2012, vol. 4, no. 4, p. 162–166. DOI: 10.4236/jemaa.2012.44021
  27. GUO, Y., XIE, Z., WANG, Y. A model for 10 kV overhead power line communication channel. In Proceedings of the Second Symposium International Computer Science and Computational Technology (ISCSCT ’09). Huangshan (China), 2009, p. 289-292.
  28. NASSAR, M., LIN, J., MORTAZAVI, Y., DABAK, A., KIM, H. I., EVANS, B. L. Local utility powerline communications in the 3-500 kHz band: channel impairments, noise, and standards. IEEE Signal Processing Magazine, 2012, vol. 29, no. 5, p. 116–127. DOI: 10.1109/MSP.2012.2187038

Keywords: Power line communication, multi-carrier modulation, serially concatenated convolutional codes, Iterative detection, BCJR forward-backward algorithm, soft-output Viterbi algorithm, soft-in soft-out module, expectation-maximization algorithm, soft decision directed synchronization, data aided synchronization, joint iterative synchronization and detection