ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

December 2017, Volume 26, Number 4 [DOI: 10.13164/re.2017-4]

Show all Hide all

M. Palandoken [references] [full-text] [DOI: 10.13164/re.2017.0917] [Download Citations]
Compact Bioimplantable MICS and ISM Band Antenna Design for Wireless Biotelemetry Applications

A compact dual-band bioimplantable antenna with novel resonator geometry is designed for dual-band wireless biotelemetry applications in MICS and ISM bands. The radiating element geometry is based on an L-shaped transmission line fed anti-spiral resonator structure, which is loaded with the spiral resonator at the end to increase the effective electrical length. The effect of resonator geometric parameters on the return loss is discussed with the inclusion of three layered lossy human model in the numerical calculations. The footprint size of the optimized bioimplantable antenna is 15 x 15 x 1.92 mm^3, having the total surface area of λ0/20 x λ0/20, where λ0 is the free space wavelength at 403 MHz in MICS band. The compact dual-band antenna has the impedance bandwidth of 24.81% at 403 MHz and 14.7% at 2.45 GHz with the gain values -12.25dBi and -12.4 dBi in MICS and ISM bands, respectively. The average SAR values at the resonance frequencies are numerically computed to find out the input power delivered to the antenna for the reliable operation. The radiation parameters and 3D radiation patterns indicate the potential use of the proposed implantable antenna with the permissible gain in dual-band wireless biotelemetry applications.

  1. SKRIVERVIK, A. K. Implantable antennas: The challenge of efficiency. In The 7th European Conference on IEEE Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 3627 to 3631.
  2. ASILI, M., GREEN, R., SERAN, S., et al. A small implantable antenna for MedRadio and ISM bands. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1683–1685. DOI: 10.1109/LAWP.2013.2241723
  3. International Telecommunications Union-Radio Communications, (ITUR), Radio Regulations, SA.1346, ITU, Geneva (Switzerland).
  4. Medical Implant Communication Service (MICS) Federal Register, Rules Regulations, 64, 240, December 1999, p. 69926 to 69934.
  5. European Radiocommunications Commission Recommendation 70-03 Relating to the Use of Short Range Devices. In European Conference of Postal and Telecommunications Administration, CEPT/ERC 70-03, Annex 12, 1997.
  6. FERDOUS, N., NAINEE, N. T., HOQUE, R. Design and performance of miniaturized meandered patch antenna for implantable biomedical applications. In The 2nd IEEE International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). Dhaka (Bangladesh), 2015. DOI: 10.1109/ICEEICT.2015.7307370
  7. SHAKIB, M., MOGHAVVEMI, M., MAHADI, W., et al. Design of a tri-band implantable antenna for wireless telemetry applications. In IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio). London (UK), 2014. DOI: 10.1109/IMWS-BIO.2014.7032451
  8. LI, H., GUO, Y.-X., XIAO, S.-Q. Broadband circularly polarised implantable antenna for biomedical applications. Electronics Letters, 2016, vol. 52, no. 7, p. 504–506. DOI: 10.1049/el.2015.4445
  9. SHARMA, M., PARINI, C. G. A miniature wideband antenna for wearable systems. In IEEE Antennas and Propagation Conference (LAPC). Loughborough (UK), 2013, p. 619–623. DOI: 10.1109/LAPC.2013.6711975
  10. HUANG, C.-Y., TSAI, C. –L., YANG, C.–L. Compact folded meander PIFA antennas in MedRadio bands. In Progress In Electromagnetics Research Symposium Proceedings. Tapei, 2013, p. 756–759.
  11. UNG, J., KARACOLAK, T. A dual-band meandered dipole antenna for medical telemetry applications. Progress In Electromagnetics Research C, 2016, vol. 63, p. 85–94. DOI: 10.2528/PIERC16012603
  12. MERLI, F., BOLOMEY, L., ZURCHER, J.-F., et al. Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 10, p. 3544–3555. DOI: 10.1109/TAP.2011.2163763
  13. LIU, C., GUO, Y.-X., JEGADEESAN R., et al. In vivo testing of circularly polarized implantable antennas in rats. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 783–786. DOI: 10.1109/LAWP.2014.2382559
  14. PALANDOKEN, M. Artificial Materials Based Microstrip Antenna Design. Chapter 3 in Microstrip Antennas. Ed. Nasimuddin, N. INTECH Open Access Publisher, 2011, ISBN: 978-953-307-247-0
  15. PALANDOKEN, M., HENKE, H. Fractal negative-epsilon metamaterial. In IEEE International Workshop on Antenna Technology (iWAT). Lisbon (Portugal), 2010. DOI: 10.1109/IWAT.2010.5464790
  16. PALANDOKEN, M., HENKE, H. Fractal spiral resonator as magnetic metamaterial. In IEEE Applied Electromagnetics Conference (AEMC). Kolkata (India), 2009. DOI: 10.1109/AEMC.2009.5430645
  17. POZAR, D. M. Microwave Engineering. 4th ed., John Wiley & Sons, 2011. ISBN-10: 0470631554
  18. PALANDOKEN, M. Metamaterial-Based Compact Filter Design. Chapter 19 in Metamaterial. Ed. Xun-Ya Jiang. INTECH Open Access Publisher, 2012. ISBN: 978-953-51-0591-6
  19. LOKTONGBAM, P., LAISHRAM, R. Performance and design analysis of an implantable antenna for biotelemetry. International Journal of Scientific and Research Publications, 2017, vol. 7, no. 6, p. 105–114. ISSN: 2250-3153
  20. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed., Wiley-Interscience, 2005. ISBN-13:978-0471667827

Keywords: Dual-band bioimplantable antennas, MICS and ISM bands, human body model, electrically small resonator

A. Lamecki, A. Dziekonski, L. Balewski, G. Fotyga, M. Mrozowski [references] [full-text] [DOI: 10.13164/re.2017.0924] [Download Citations]
GPU-Accelerated 3D Mesh Deformation for Optimization Based on the Finite Element Method

This paper discusses a strategy for speeding up the mesh deformation process in the design-by-optimization of high-frequency components involving electromagnetic field simulations using the 3D finite element method (FEM). The mesh deformation is assumed to be described by a linear elasticity model of a rigid body; therefore, each time the shape of the device is changed, an auxiliary elasticity finite-element problem must be solved. In order to accomplish this in a very short time numerical integration and the solution of the resulting system of equations are performed using a graphics processing unit (GPU). The performance of the proposed algorithm is illustrated are verified using a complex example involving 3D FEM analysis of a dielectric-resonator filter.

  1. FOTYGA, G., NYKA, K. Efficient analysis of structures with rotatable elements using model order reduction. Radioengineering, 2016, vol. 25, no. 1, p. 73–80. DOI: 10.13164/re.2016.0073
  2. STATEN, M. L., OWEN, S. J., SHONTZ, S. M., et al. A comparison of mesh morphing methods for 3D shape optimization. In Proceedings of the 20th International Meshing Roundtable. 2012, p. 293–311. DOI: 10.1007/978-3-642-24734-7_16
  3. LAMECKI, A. A mesh deformation technique based on solid mechanics for parametric analysis of high-frequency devices with 3-D FEM. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 11, p. 3400–3408. DOI: 10.1109/TMTT.2016.2605672
  4. ZYGIRIDIS, T. T. High-order error-optimized FDTD algorithm with GPU implementation. IEEE Transactions on Magnetics, 2013, vol. 49, no. 5, p. 1809–1812. DOI: 10.1109/TMAG.2013.2241410
  5. LIVESEY, M., STACK, J. F., COSTEN, F., et al. Development of a CUDA implementation of the 3D FDTD method. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 5, p. 186–195. DOI: 10.1109/MAP.2012.6348145
  6. MU, X., ZHOU, H.-X., CHEN, K., et al. Higher order method of moments with a parallel out-of-core LU solver on GPU/CPU platform. IEEE Antennas and Propagation Magazine, 2014, vol. 62, no. 11, p. 5634–5646. DOI: 10.1109/TAP.2014.2350536
  7. ZHANG, J., SHEN, D. GPU-based implementation of finite element method for elasticity using CUDA. In Proceedings of the IEEE 10th International Conference on High Performance Computing and Communications and IEEE International Conference on Embedded and Ubiquitous Computing. 2013, p. 1003–1008. DOI: 10.1109/HPCC.and.EUC.2013.142
  8. MENG, H. T., NIE, B. L., WONG, S., et al. GPU accelerated finite-element computation for electromagnetic analysis. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 2, p. 39–62. DOI: 10.1109/MAP.2014.6837065
  9. DINH, Q., MARECHAL, Y. Toward real-time finite-element simulation on GPU. IEEE Transactions on Magnetics, 2016, vol. 52, no. 3, p. 1–4. DOI: 10.1109/TMAG.2015.2477602
  10. GUAN, J., YAN, S., JIN, J. M. An accurate and efficient fi- nite element-boundary integral method with GPU acceleration for 3-D electromagnetic analysis. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6325–6336. DOI: 10.1109/TAP.2014.2361896
  11. AKINCI, G., YILMAZ, A. E., KUZUOGLU, M. Excessive memory usage of the ELLPACK sparse matrix storage scheme throughout the finite element computations. Radioengineering, 2014, vol. 23, no. 4, p. 997–1004. ISSN: 1210-2512
  12. LIU, G. R., QUEK, S. S. The Finite Element Method: A Practical Course. 1st ed. Butterworth–Heinemann, 2003. ISBN: 9780750658669
  13. COOK, R. D. Finite Element Modelling for Stress Analysis. John Wiley & Sons, 1995. ISBN: 978-0471107743
  14. DZIEKONSKI, A., SYPEK, P., LAMECKI, A., et al. Generation of large finite-element matrices on multiple graphics processors. International Journal for Numerical Methods in Engineering, 2013, vol. 94, no. 2, p. 204–220. DOI: 10.1002/nme.4452
  15. DZIEKONSKI, A., LAMECKI, A., MROZOWSKI, M. Tuning a hybrid GPU-CPU V-cycle multilevel preconditioner for solving large real and complex systems of FEM equations. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 619–622. DOI: 10.1109/LAWP.2011.2159769
  16. BASTIOLI, S., SNYDER, R. V. Inline pseudoelliptic TE01δ -mode dielectric resonator filters using multiple evanescent modes to selectively bypass orthogonal resonators. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 12, p. 3988–4001. DOI: 10.1109/TMTT.2012.2222659
  17. LAMECKI, A., BALEWSKI, L., MROZOWSKI, M. An efficient framework for fast computer aided design of microwave circuits based on the higher-order 3D finite-element method. Radioengineering, 2014, vol. 23, p. 970–978. ISSN: 1210-2512
  18. EM INVENT, POLAND. Solutions for RF, Microwave Engineering and Computational Electromagnetics. [Online] Cited 2017-10-30. Available at: www.eminvent.com

Keywords: Finite element method, mesh deformation, mesh morphing, GPU computing

A. Bjelopera, E. Dumic, S. Grgic [references] [full-text] [DOI: 10.13164/re.2017.0930] [Download Citations]
Evaluation of Blur and Gaussian Noise Degradation in Images Using Statistical Model of Natural Scene and Perceptual Image Quality Measure

In this paper we present new method for classification of image degradation type based on Riesz transform coefficients and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) that employs spatial coefficients. In our method we use additional statistical parameters that gives us statistically better results for blur and all tested degradations together in comparison with previous method. A new method to determine level of blur and Gaussian noise degradation in images using statistical model of natural scene is presented. We defined parameters for evaluation of level of Gaussian noise and blur degradation in images. In real world applications reference image is usually not available therefore proposed method enables classification of image degradation by type and estimation of Gaussian noise and blur levels for any degraded image.

  1. ITU-R P.10/G.100 Vocabulary for performance and quality of service. International Telecommunication Union/ITU Radiocommunication Sector, 2006.
  2. LE CALLET, P., MOELLER, S., PERKINS, A. (eds.) Qualinet White Paper on Definitions of Quality of Experience. In COST Action IC 1003, Laussane (Switzerland), 2012.
  3. ITU-R BT.500-13 Methodology for the subjective assessment of the quality of television pictures. International Telecommunication Union/ITU Radiocommunication Sector, 2012.
  4. MITTAL, A., MOORTHY, A. K., BOVIK, A. C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, vol. 21, no. 12, p. 4695–4708. DOI: 10.1109/TIP.2012.2214050
  5. SHEIKH, H. R., SABIR, M. F., BOVIK, A. C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 2006, vol. 15, no. 11, p. 3440–3451. DOI: 10.1109/TIP.2006.881959
  6. GHADIYARAM, D., BOVIK, A. C. Perceptual quality prediction on authentically distorted images using a bag of features approach. Journal of Vision, 2017, vol. 17, no. 1:32, p. 1–25. DOI: 10.1167/17.1.32
  7. GHADIYARAM, D., BOVIK, A. C. Massive online crowdsourced study of subjective and objective picture quality. IEEE Transactions on Image Processing, 2016, vol. 25, no. 1, p. 372–387. DOI: 10.1109/TIP.2015.2500021
  8. GABARDA, S., CRISTOBAL, G. Blind image quality assessment through anisotropy. Journal of the Optical Society of America, 2007, vol. 24, no. 12, p. B42–B51. DOI: 10.1364/JOSAA.24.000B42
  9. LIU, L., HUA,Y., ZHAO, Q., HUANG, H., BOVIK, A. C. Blind image quality assessment by relative gradient statistics and adaboosting neural network. Signal Processing: Image Communication, 2016, vol. 40, no. 1, p. 1–15. DOI: 10.1016/j.image.2015.10.005
  10. LIU, L., LIU, B., HUANG, H., BOVIK, A. C. No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication, 2014, vol. 29, no. 8, p. 856 to 863. DOI: 0.1016/j.image.2014.06.006
  11. PONOMARENKO, N., LUKIN, V., ZELENSKY, A., et al. TID2008 - A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, vol. 10, p. 30–45. Available at: http: //www.ponomarenko.info/tid2008.htm/
  12. WU, S., XIE, S., LIN, W. Blind measurement of image blur for vision-based applications. Chapter in: Lin, W., Tao, D., Kacprzyk, J., et al. (eds.) Multimedia Analysis, Processing and Communications. Studies in Computational Intelligence. Heidelberg, Berlin: Springer, 2011, vol. 346, p. 185–215. DOI: 10.1007/978-3-642- 19551-8_6
  13. VU, C. T., PHAN, T. D., CHANDLER, D. M. S3: A spectral and spatial measure of local perceived sharpness in natural images. IEEE Transaction on Image Processing, 2012, vol. 21, no. 3, p. 934–945. DOI: 10.1109/TIP.2011.2169974
  14. UNSER, M., VAN DE VILLE, D. Wavelet steerability and the higher-order Riesz transform, IEEE Transactions on Image Processing, 2010, vol. 19, no. 3, p. 636–652. DOI: 10.1109/TIP.2009.2038832
  15. BJELOPERA, A., DUMIC, E., GRGIC, S. Classification of image degradation using Riesz transform. In Proceedings of the 23rd International Conference on Systems, Signals and Image Processing IWSSIP 2016. Bratislava (Slovakia), 2016. DOI: 10.1109/IWSSIP.2016.7502741
  16. LIBSVM Software [Online] Cited 2017-08-20. Available at: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
  17. Riesz transform: [Online] Cited 2017-08-20. Available at: http://bigwww.epfl.ch/demo/steerable-wavelets/
  18. BRISQUE Software: [Online] Cited 2017-08-20. Available at: http://live.ece.utexas.edu/research/quality/
  19. McNemar test: [Online] Cited 2017-09-01. Available at: http://www.mathworks.com/matlabcentral/fileexchange/6297- mcnemarextest/content/McNemarextest.m
  20. LIVE IQA database: [Online] Cited 2017-08-20. Available at: http://live.ece.utexas.edu/research/quality/subjective.htm
  21. VCL@FER database: [Online] Cited 2017-08-20. Available at: http://www.vcl.fer.hr/quality/vclfer.html
  22. SHEIKH, H. R. Image quality assessment using natural scene statistics. Ph.D. Dissertation. University of Texas at Austin, 2004. 231 p.

Keywords: Image degradation, Riesz transform, BRISQUE, Gaussian noise, blur, level

Y. Yang, Y. Zhang, L. Yu [references] [full-text] [DOI: 10.13164/re.2017.0938] [Download Citations]
Outage Probability and BER of the Ground to Train Communication Link of a Curved Track in Raining Turbulence with Pointing Errors

We model the outage probability and bit-error rate (BER) for an intensity-modulation/direct detection optical wireless communication (OWC) systems for the ground-to-train of the curved track in rainy weather. By adopting the inverse Gaussian models of the raining turbulence, we derive the outage probability and average BER expression for the channel with pointing errors. The numerical analysis reveals that the rainfall can disrupt the stability and accuracy of the system, especially the rainstorm weather. The improving of the shockproof performance of the tracks and using long wavelength of the signal source will improve the communication performance of OWC links. The atmospheric turbulence has greater impact on the OWC link than the cover track length. The pointing errors caused by beam wander or train vibration are the dominant factors decreasing the performance of OWC link for the train along the curved track. We can choose the size of communication transmitting and receiving apertures to optimize the performance of the OWC link.

  1. LIU, Q., QIAO, C., MITCHELL, G., et al. Optical wireless communication networks for first- and last-mile broadband access. [Invited] Journal of Optical Networking, 2005, vol. 4, no. 1, p. 807–828. DOI: 10.1364/JON.4.000807
  2. GARCIA-ZAMBRANA, A., CASTILLO-VAZQUEZ, B., CASTILLO-VAZQUEZ, C. Asymptotic error-rate analysis of FSO links using transmit laser selection over gamma-gamma atmospheric turbulence channels with pointing errors. Optics Express, 2012, vol. 20, no. 3, p. 2096–2109. DOI: 10.1364/OE.20.002096
  3. EL-WAKEEL, A. S., MOHAMMED, N. A., ALY, M. H. Free space optical communications system performance under atmospheric scattering and turbulence for 850 and 1550 nm operation. Applied Optics, 2016, vol. 55, no. 26, p. 7276–7286. DOI: 10.1364/AO.55.007276
  4. PAUDEL, R., GHASSEMLOOY, Z., LE-MINH, H., et al. Modelling of free space optical link for ground-to-train communications using a Gaussian source. IET Optoelectronics, 2013, vol. 7, no. 1, p. 1–8. DOI: 10.1049/iet-opt.2012.0047
  5. ANDREWS, L. C., PHILLIPS, R. L. Laser Beam Propagation through Random Media. 2nd ed., New York: SPIE, 2005. ISBN: 9780819459480
  6. GAO, J., ZHANG, Y., CHENG, M., et al. Average capacity of ground-to-train optical wireless communication links in the nonKolmogorov and gamma-gamma distribution turbulence with pointing errors. Optics Communications, 2016, vol. 358, p. 147–153. DOI: 10.1016/j.optcom.2015.09.035
  7. PAUDEL, R., POLIAK, J., GHASSEMLOOY, Z., et al. Curved track analysis of FSO link for ground-to-train communications. Radioengineering, 2014, vol. 23, no. 1, p. 452–459. ISSN: 1210–2512
  8. YANG, Y., YU, L., ZHANG, Y. Average capacity of the ground to train communication link of a curved track in the turbulence of gamma-gamma distribution. Optics Communications, 2017, vol. 389, p. 68–73. DOI: 10.1016/j.optcom.2016.12.025
  9. CHATZIDIAMANTIS, N. D., SANDALIDIS, H. G., KARAGIANNIDIS, G. K., et al. Inverse Gaussian modeling of turbulence-induced fading in free-space optical systems. Journal of Lightwave Technology, 2011, vol. 29, no. 10, p. 1590–1596. DOI: 10.1109/JLT.2011.2132792
  10. KOUROGIORGAS, C. I., PANAGOPOULOS, A. D., KANELLOPOULOS, J. D. A new method for the prediction of outage probability of LOS terrestrial links operating above 10 GHz. IEEE Antennas & Wireless Propagation Letters, 2013, vol. 12, p. 516–519. DOI: 10.1109/LAWP.2013.2254460
  11. ABU-ALMAALIE, Z., GHASSEMLOOY, Z., BHATNAGAR, M. R., et al. Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors. Applied Optics, 2016, vol. 55, no. 33, p. 9396–9406. DOI: 10.1364/AO.55.009396
  12. LUINI, L., CAPSONI, C. Multiexcell: A new rain field model for propagation applications. IEEE Transactions on Antennas & Propagation, 2011, vol. 59, no. 59, p. 4286–4300. DOI: 10.1109/TAP.2011.2164175
  13. BASAHEL, A., RAFIQUL, I. M., HABAEBI, M. H., et al. A proposed rain attenuation prediction method for free space optical link based on rain rate statistics. ARPN Journal of Engineering and Applied Sciences, 2015, vol. 10, no. 23, p. 17351–17355. ISSN: 1819– 6608
  14. FARID, A. A., HRANILOVIC, S. Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 2007, vol. 25, no. 7, p. 1702–1710. DOI: 10.1109/JLT.2007.899174
  15. BELAND, R. R. Some aspects of propagation through weak isotropic non-Kolmogorov turbulence. In Proceedings of the SPIE 2375, Beam Control, Diagnostics, Standards and Propagation. 1995, vol. 2375, p. 6–16. DOI: 10.1117/12.206979
  16. WOLFRAM RESEARCH. Wolfram Functions Site. [Online] Cited: 2017-01-26. Available at: http://functions.wolfram.com

Keywords: Ground-to-train, curved track, inverse Gaussian model, optical wireless communications, raining turbulence

S. Vitek, J. Libich, P. Luo, S. Zvanovec, Z. Ghassemlooy, N. B. Hassan [references] [full-text] [DOI: 10.13164/re.2017.0946] [Download Citations]
Influence of Camera Setting on Vehicle-to-Vehicle VLC Employing Undersampled Phase Shift On-Off Keying

This paper focuses on the performance analysis of a camera based vehicle-to-vehicle visible light communication system employing undersampled phase shift on-off keying modulation under interference scenario. Two Nissan Qashqai front lights with daylight running light emitting diodes based lamps are used for communications. The bit error rate (BER) performance of the proposed system is experimentally measured for a transmission span up to 24m focusing mostly on the side interference due to reflections. Based on experimental data we demonstrate reduction of the system performance due to the side reflection and illumination of the detector by other light sources which has to taken into account during further data processing. We provide with further statistics for particular shuter speed and transmitter power setting and discus BER improvement especially to meet FEC via the method of adaptive region of interest.

  1. NASIM, R., KASSLER, A. Distributed architectures for intelligent transport systems: A survey. In Proceedings of the Second Symposium on Network Cloud Computing and Applications (NCCA). 2012, p. 130–136. DOI: 10.1109/NCCA.2012.15
  2. CAVENEY, D. Cooperative vehicular safety applications. IEEE Control Systems, 2010, vol. 30, no. 4, p. 38–53. DOI: 10.1109/MCS.2010.937003
  3. WANG, Q., FAN, P., LETAIEF, K. B. On the joint V2I and V2V scheduling for cooperative VANETs with network coding. IEEE Transactions on Vehicular Technology, 2012, vol. 61, no. 1, p. 62–73. DOI: 10.1109/TVT.2011.2167249
  4. MORGAN, Y. L. Notes on DSRC & WAVE standards suite: Its architecture, design, and characteristics. IEEE Communications Surveys & Tutorials, 2010, vol. 12, no. 4, p. 504–518. DOI: 10.1109/SURV.2010.033010.00024
  5. LIBICH, J., ZVANOVEC, S., MUDROCH, M. Mitigation of timespatial influence in free-space optical networks utilizing route diversity. In Proceedings of the SPIE LASE International Society for Optics and Photonics. 2012, vol. 8246, p. 1–6. DOI: 10.1117/12.907928
  6. GHASSEMLOOY, Z., ALVES, L. N., ZVANOVEC, S., et al. Visible Light Communications Theory and Applications. CRC Press, 2017. ISBN: 9781498767538
  7. JUNGNICKEL, V., et al. A European view on the next generation optical wireless communication standard. In Proceedings of the IEEE Conference on Standards for Communications and Networking (CSCN). 2015, p. 106–111. DOI: 10.1109/CSCN.2015.7390429
  8. LUO, P., et al. Experimental demonstration of an indoor visible light communication positioning system using dual-tone multifrequency technique. In Proceedings of the 3rd International Workshop in Optical Wireless Communications (IWOW). 2014, p. 55–59. DOI: 10.1109/IWOW.2014.6950776
  9. LEE, S. J., et al. Evaluation of visible light communication channel delay profiles for automotive applications. EURASIP Journal on Wireless Communications and Networking, 2012, vol. 2012, no. 1. DOI: 10.1186/1687-1499-2012-370
  10. YU, S. H., et al. Smart automotive lighting for vehicle safety. IEEE Communications Magazine, 2013, vol. 51, no. 12, p. 50–59. DOI: 10.1109/MCOM.2013.6685757
  11. YOU, S. H., et al. Demo: Visible light communications for scooter safety. In Proceedings of the 11th Annual International Conference on Mobile Systems, Applications, and Services (ACM). 2013, p. 509–510. DOI: 10.1145/2462456.2465707
  12. LIU, C. B., SADEGHI, B., KNIGHTLY, E. W. Enabling vehicular visible light communication (V2LC) networks. In Proceedings of the Eighth ACM International Workshop on Vehicular Inter-Networking. 2011, p. 41–50. DOI: 10.1145/2030698.2030705
  13. CAILEAN, A., et al. Visible light communications: Application to cooperation between vehicles and road infrastructures. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV). 2012, p. 1055–1059. DOI: 10.1109/IVS.2012.6232225
  14. YAMAZATO, T., et al. Image-sensor-based visible light communication for automotive applications. IEEE Communications Magazine, 2014, vol. 52, no. 7, p. 88–97. DOI: 10.1109/MCOM.2014.6852088
  15. YAMAZATO, T., et al. Vehicle Motion and Pixel Illumination Modeling for Image Sensor Based Visible Light Communication. IEEE Journal on Selected Areas in Communications, 2015, vol. 33, no. 9, p. 1793–1805. DOI: 10.1109/JSAC.2015.2432511
  16. BELLE, A., et al. Development of IEEE 802.15.7 based ITS services using low cost embedded systems. In Proceedings of the 13th International Conference on ITS Telecommunications (ITST). 2013, p. 419–425. DOI: 10.1109/ITST.2013.6685583
  17. SAHA, N., et al. Survey on optical camera communications: Challenges and opportunities. IET Optoelectronics, 2015, vol. 9, no. 5, p. 172–183. DOI: 10.1049/iet-opt.2014.0151
  18. LUO, P., et al. Experimental demonstration of a 1024-QAM optical camera communication system. IEEE Photonics Technology Letters, 2016, vol. 28, no. 2, p. 139–142. DOI: 10.1109/LPT.2015.2487544
  19. TAKAI, I., et al. LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics Journal, 2013, vol. 5, no. 5, p. 6801418–6801418. DOI: 10.1109/JPHOT.2013.2277881
  20. NAGURA, T., et al. Tracking an LED array transmitter for visible light communications in the driving situation. In Proceedings of the 7th International Symposium on Wireless Communication Systems (ISWCS). 2010, p. 765–769. DOI: 10.1109/ISWCS.2010.5624361
  21. NAGURA, T., et al. Improved decoding methods of visible light communication system for ITS using LED array and high-speed camera. In Proceedings of the 71st IEEE Vehicular Technology Conference (VTC 2010-Spring). 2010, p. 1–5. DOI: 10.1109/VETECS.2010.5493958
  22. KINOSHITA, M., et al. Motion modeling of mobile transmitter for image sensor based I2V-VLC, V2I-VLC, and V2V-VLC. In Proceedings of the IEEE Globecom Workshops (GC Wkshps). 2014, p. 450–455. DOI: 10.1109/GLOCOMW.2014.7063473
  23. KOMINE, T., NAKAGAWA, M. Fundamental analysis for visiblelight communication system using LED lights. IEEE transactions on Consumer Electronics, 2004, vol. 50, no. 1, p. 100–107. DOI: 10.1109/TCE.2004.1277847
  24. CAHYADI, W. A., et al. Efficient road surface detection using visible light communication. In Proceedings of the Seventh International Conference on Ubiquitous and Future Networks. 2015, p. 61–63. DOI: 10.1109/ICUFN.2015.7182498
  25. LUO, P., et al. Performance analysis of a car-to-car visible light communication system. Applied Optics, 2015, vol. 54, no. 7, p. 1696–1706. DOI: 10.1364/AO.54.001696
  26. ROBERTS, R. D. Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom). In Proceedings of the 22nd Wireless and Optical Communication Conference (WOCC). 2013, p. 645–648. DOI: 10.1109/WOCC.2013.6676454
  27. LUO, P., et al. Undersampled phase shift ON-OFF keying for camera communication. In Proceedings of the Sixth International Conference on Wireless Communications and Signal Processing (WCSP). 2014, p. 1–6. DOI: 10.1109/WCSP.2014.6992043
  28. UYSAL, M., et al. Optical Wireless Communications: An Emerging Technology. Springer, 2016. ISBN: 9783319302010
  29. WILKINS, A., VEITCH, J., LEHMAN, B. LED lighting flicker and potential health concerns: IEEE standard PAR1789 update. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE). 2010, p. 171–178. DOI: 10.1109/ECCE.2010.5618050
  30. WU, L. C., TSAI, H. M. Modeling vehicle-to-vehicle visible light communication link duration with empirical data. In Proceedings of the IEEE Globecom Workshops (GC Wkshps). 2013, p. 1103–1109. DOI: 10.1109/GLOCOMW.2013.6825140
  31. PROAKIS, J. G. Digital Communications. 4th ed. McGraw-Hill, 2000. ISBN: 978-0072321111

Keywords: Visible Light Communication, Vehicle-to-Vehicle communication, undersampled phase shift on-off keying, low bitrate, camera

Z. Bosternak, R. Roka [references] [full-text] [DOI: 10.13164/re.2017.0954] [Download Citations]
Approach of the T-CONT Allocation to Increase the Bandwidth in Passive Optical Networks

This paper works with the simulation of T-CONT allocation and delay analysis in passive optical networks PON. Building our networks with the PON technology we can achieve increased data rates, however we need to ensure that the idle gaps between the particular transmissions are minimal. The primary method for the upstream time slot allocation in passive optical networks is via Multi Point Control Protocol. The baseline standard of this protocol clearly defines the use of the REPORT and GATE control messages. The two optical network elements used here, the optical network unit ONT and the optical line termination OLT, located at the central office CO, can be scheduled to allocate the time slots. Using the control messages, a more accurate scheduling algorithm can be developed, hence we can directly improve the utilization of the bandwidth as well. In this work, we introduce the basic topology of the passive optical networks, how PON works and what basic principles of bandwidth allocation have been applied. Subsequently, we suggest a selection of methods for time slot allocation and we make an analysis on the achieved results. Our main focus is on the system load, transfer delay and the analysis of the effectivity.

  1. MCGARRY, M. P., MAIER, M., REISSLEIN, M. Ethernet PONs: A survey of Dynamic Bandwidth Allocation (DBA) algorithms. IEEE Communications Magazine, 2004, vol. 42, no. 8, p. 9–14.
  2. HOOD, D., TROJER, E. Gigabit-capable Passive Optical Networks. Wiley, 2012. ISBN: 978-0-470-93687-0
  3. KRAMER, G., MUKHERJEE, B., PESAVENTO, D. G. IPACT: A dynamic protocol for an Ethernet PON (EPON). IEEE Communications Magazine, 2002, vol. 40, no. 2, p. 74–80.
  4. CommScope Solutions Marketing (White Paper). GPON & EPON Comparison, 8 pages, 2013, Available at: http://www.commscope.com/Docs/GPON_EPON_Comparison_W P-107286.pdf
  5. LUO, Y., ANSARI, N. Bandwidth allocation for multiservice access on EPONs. IEEE Communications Magazine, 2005, vol. 43, no. 2, p. S16–S21. DOI: 10.1109/MCOM.2005.1391498
  6. BYUN, H. J., NHO, J. M., LIM, J. T. Dynamic bandwidth allocation algorithm in Ethernet passive optical networks. Electronics Letters, 2003, vol. 39, no. 13, p. 1001–1002. DOI: 10.1049/el:20030635
  7. MA, M., ZHU, Y., CHENG, T. H. A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks. In The 22nd Annual Joint Conference of the IEEE Computer and Communications Societies INFOCOM. San Francisco (CA, USA), 2003, vol. 1, p. 22–31. DOI: 10.1109/INFCOM.2003.1208655
  8. ITU-T G.983.1: Broadband Optical Access Systems Based on Passive Optical Networks (PON). Available at: http://www.itu.int/rec/T-REC-G.983.1/en
  9. OZIMKIEWICZ, J., RUEPP, S., DITTMANN, L., et al. Dynamic bandwidth allocation in GPON networks. In Recent Advances in Circuits, Systems, Signal and Telecommunications (Proceedings of the 4th WSEAS International Conference). Cambridge (USA), 2010, p. 182–187. ISBN: 978-960-474-152-6, ISSN: 1790-5117
  10. CHOI, S. I., HUH, J. D. Dynamic bandwidth allocation algorithm for multimedia services over Ethernet PONs. ETRI Journal, 2002, vol. 24, no. 6, p. 465–468. DOI: 10.4218/etrij.02.0202.0002
  11. CALE, I., SALIHOVIC, A., IVEKOVIC, M. Gigabit Passive Optical Network – GPON. In 29th IEEE International Conference on Information Technology Interfaces (ITI 2007). Cavtat (Croatia), 2007, p. 679–684. DOI: 10.1109/ITI.2007.4283853
  12. YAKHLEF, S. K., ABUSAEEDA, O., SHERINA, I. A comparison of dynamic bandwidth allocation and costs for EPON and GPON technologies. International Journal of Engineering and Innovative Technology, 2015, vol. 4, no. 7, p. 31–35. ISSN: 2277-3754
  13. RADZI, N. A. M, DIN, N. M., SADON, S. K., et al. Dynamic bandwidth allocation EPON survey. In IEEE Student Conference on Research and Development (SCOReD). Putrajaya (Malaysia), 2013, p. 149–153. DOI: 10.1109/SCOReD.2013.7002561
  14. QUI, I. A dynamic bandwidth allocation algorithm in EPON networks. Journal of Theoretical and Applied Information Technology, 2012, vol. 44, no. 2, p. 278–282. ISSN: 1992-8645
  15. ROKA, R. Hybrid PON Networks - Features, Architectures and Configuration. Saarbrucken (Germany): LAP Lambert Academic Publishing, 2015. ISBN: 978-3-659-43686-4
  16. LAM, C. Passive Optical Networks - Principles and Practice. San Diego (USA): Academic Press Elsevier, 2007. ISBN 978-0-12- 373853-0
  17. ROKA, R., CERTIK, F. Simulation Tools in Broadband Passive Optical Networks. Chapter in Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test. Pathan, A., Monowar, M., S. Khan, S. (eds.). CRC Press, 2014, p. 337–364. DOI: 10.1201/b17650-16
  18. KLUCIK, S., CHROMY, E., BARONAK, I. Model to increase the number of output sates of a random variable using a histogram based PDF. Wireless Personal Communications, 2015, vol. 85, no. 1, p. 137–149. DOI: 10.1007/s11277-015-2731-5

Keywords: Passive optical networks, transmission delay, bandwidth allocation

H. N. Parajuli, E. Udvary [references] [full-text] [DOI: 10.13164/re.2017.0961] [Download Citations]
Novel Vestigial Sideband Modulation Scheme to Enhance the SNR in Radio Over Fiber Systems

The optical single sideband (OSSB) scheme is a common choice in radio over fiber system for compensating chromatic dispersion (CD) but it suffers from low signal to noise ratio (SNR).We present the novel technique for SNR improvement using unequal sideband intensity based modulation scheme, we name it optical vestigial sideband modulation scheme (OVSB). To analyze such scheme we use the series Mach-Zehnder modulator (MZM) and phase modulator (PM) configuration. In this configuration by operating MZM at quadrature point and properly tuning the PM index the individual intensity of the first order sidebands and higher order harmonics can be controlled independent to each other.The optimum operating point of PM for maximizing the SNR can be identified by reducing the harmonic distortion and increasing the first order sidebands power. We experimentally validated the proposed OVSB scheme generation method and provide its theoretical proof. We evaluate the symbol error rate (SER) performance using 4QAM signal for OSSB and OVSB and show the improved performance of OVSB scheme compared to OSSB scheme. We also discuss the harmonic distortion behavior of the series MZM and PM configuration.

  1. RAPPAPORT, T. S., SUN, S., MAYZUS, R. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  2. CHANG, G. K., CHENG, L., XU, M., et al. Integrated fiberwireless access architecture for mobile backhaul and fronthaul in 5g wireless data networks. In IEEE Avionics, Fiber-Optics and Photonics Conference (AVFOP). Atlanta (GA, USA), 2014, p. 49 to 50. DOI: 10.1109/AVFOP.2014.6999461
  3. LIM, C., NIRMALATHAS, A., et al. Fiber-wireless networks and subsystems technologies. Journal of Lightwave Technology, 2010, vol. 28, no. 4, p. 390–405. DOI: 10.1109/JLT.2009.2031423
  4. UDVARY, E., BERCELI, T. Combined optical amplification and dispersion compensation in radio over fibre link. IET Optoelectronics, 2010, vol. 4, no. 6, p. 260–266. DOI: 10.1049/ietopt.2009.0061
  5. LIU, C., CHIEN, H. C., FAN, S. H., et al. Enhanced vector signal transmission over double sideband carrier suppressed optical millimetre waves through a small LO feed through. IEEE Photonic Technology Letters, 2012, vol. 24, no. 3, p. 173–175. DOI: 10.1109/LPT.2011.2175719
  6. GAO, Y., WEN, A., PENG, Z. G., et al. Analog photonic link with tunable optical carrier to sideband ratio and balanced detection. IEEE Photonics Journal, 2017, vol. 9, no. 2, p. 1–10, 2017. DOI: 10.1109/JPHOT.2017.2667891
  7. HRAIMEL, B., ZHANG, X., PEI, Y., et al., Optical single sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems. Journal of Lightwave Technology, 2011, vol. 29, no. 5, p. 775–781. DOI: 10.1109/JLT.2011.2108261
  8. THOMAS, V. A., EL-HAJJAR, M., HANZO, L. Performance improvement and cost reduction techniques for radio over fiber communications. IEEE Communications Surveys & Tutorials, 2015, vol. 17, no. 2, p. 627–670. DOI: 10.1109/COMST.2015.2394911
  9. GAO, Y. S., WEN, A., CHEN, Y., et al. An analog photonic link with compensation of dispersion induced power fading. IEEE Photonic Technology Letters, 2015, vol. 27, no. 12, p. 1301–1304. DOI: 10.1109/LPT.2015.2421271
  10. FANDINO, J. S., MUNOZ, P., DOMENECH, D., CAPMANY, J. A monolithic integrated photonic microwave filter. Nature Photonics, 2017, vol. 11, p. 124–129. DOI: 10.1038/nphoton.2016.233
  11. XIONG, J., WANG, R., PU, T., et al. A novel approach to realizing SSB modulation with optimum carrier to sideband ratio. IEEE Photonics Technology Letters, 2013, vol. 25, no. 12, p. 1114 to 1117. DOI: 10.1109/LPT.2013.2260141
  12. PARAJULI, H. N., UDVARY, E. A vestigial sideband modulation scheme in radio over fiber system using electro-optic modulators. In The 18th International Conference on Transparent Optical Networks (ICTON). Trento (Italy), 2016, p. 1-4. DOI: 10.1109/ICTON.2016.7550477
  13. THOMAS, V. A., EL-HAJJAR, M., HANZO, L. Millimeter-wave radio over fiber optical upconversion techniques relying on link nonlinearity. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 1, p. 29–53. DOI: 10.1109/COMST.2015.2409154
  14. SAGHAEI, H., HEIDARI, V., EBNALI-HEIDARI, M., et al. A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik - International Journal for Light and Electron Optics, 2016, vol. 127, no. 24, p. 11938–11947. DOI: 10.1016/j.ijleo.2016.09.111
  15. EBNALI HEIDARI M., DEHGHAN F., SAGHAEI, H., et al. Dispersion engineering of photonic fibers by means of fluidic infiltration. Journal of Modern Optics, 2012, vol. 59, no. 16, p. 1384–1390. DOI: 10.1080/09500340.2012.715690
  16. NOVAK, D., WATERHOUSE, R. B., NIRMALATHAS, A., et al. Radio-over-fiber technologies for emerging wireless systems. IEEE Journal of Quantum Electronics, 2016, vol. 52, no. 1, 11 p. DOI: 10.1109/JQE.2015.2504107
  17. SAFARI, L., BAGHERSALIMI, G., KARAMI, A., et al. On the equalization of an OFDM-based radio-over-fiber system using neural networks. RadioEngineering, 2017, vol. 26, no. 1, p. 162 to 169. DOI: 10.13164/re.2017.0162
  18. LYSIUK, A., GODZISZEWSKI, K., YASHCHYSHYN, Y., et al. Design and investigation of photonic remote antenna units for bidirectional transmission in the last mile wireless over fiber system. RadioEngineering, 2013, vol. 22, no. 4, p. 1239–1248. ISSN: 1210-2512

Keywords: Optical-wireless, optical single sideband, optical vestigial sideband, radio over fiber, signal to noise ratio

M. Cerveny, P. Hazdra [references] [full-text] [DOI: 10.13164/re.2017.0968] [Download Citations]
Evaluation of the Input Impedance and Impedance Quality Factor of a Dipole in Spatial and Spectral Domains

In classic antenna analysis, there exist several methods of calculating input impedance when the source distribution of an antenna is known. The well-known induced EMF method, based on spatially distributed currents, is typically applied for this purpose and, thereby, serves as a reference for this research. Conversely, the spectral domain method takes the opposite approach for the input impedance and is evaluated using a far-field pattern. This paper compares the induced EMF method and the spectral domain method. Furthermore, the quality factor of the dipole antenna, based on the impedance variation with frequency, is calculated for both methods. This study shows that the induced EMF method and the spectral domain method are in close agreement.

  1. YAGHJIAN, A. D., BEST, S. R. Impedance, bandwidth and Q of antennas. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 4, p. 1298–1324. DOI: 10.1109/TAP.2005.844443
  2. CAPEK, M., JELINEK, L., HAZDRA, P. On the functional relation between quality factor and fractional bandwidth. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 6, p. 2787–2790. DOI: 10.1109/TAP.2015.2414472
  3. CAPEK, M., JELINEK, L., VANDENBOSCH, G. A. E., HAZDRA, P. Time domain scheme for stored energy evaluation. In IEEE International Symp. on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 1706–1707. DOI: 10.1109/APS.2015.7305242
  4. CAPEK, M., JELINEK, L., HAZDRA, P., EICHLER, J. The measurable Q factor and observable energies of radiating structures. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 311–318. DOI: 10.1109/TAP.2013.2287519
  5. JORDAN, C. Electromagnetic Waves and Radiating Systems. 2nd edition, Prentice Hall, 1968. ISBN: 10: 0132499959
  6. RHODES, D. R. On a fundamental principle in the theory of planar antennas. Proceedings of the IEEE, 1964, vol. 52, no. 9, p. 1013–1021. DOI: 10.1109/PROC.1964.3231
  7. RHODES, D. R. On the stored energy of planar apertures. IEEE Transactions on Antennas and Propagation, 1966, vol. 14, no. 6, p. 676–683. DOI: 10.1109/TAP.1966.1138801
  8. TIWARI, A. K., PODDAR, D. R., DAS, B. N. On the equivalent radius of a radiating slot in impedance calculations. Progress In Electromagnetic Research, 2007, vol. 74, p. 47–56. DOI: 10.2528/PIER07041904
  9. HAZDRA, P., CAPEK, M., MASEK, M., LONSKY, T. An introduction to the source concept for antennas. Radioengineering, 2016, vol. 25, no. 1, p. 12–17. DOI: 10.13164/re.2016.0012
  10. MathWorks. [Online] Cited 2017-01-20. Available at: www.mathworks.com
  11. HAZDRA, P., CAPEK, M., EICHLER, J., MAZANEK, M. The radiation Q-factor of a horizontal λ/2 dipole above ground plane. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1073–1075. DOI: 10.1109/LAWP.2014.2329421

Keywords: Dipole, input impedance, quality factor, spatial domain, spectral domain, EMF method

V. Schejbal, V. Zavodny [references] [full-text] [DOI: 10.13164/re.2017.0972] [Download Citations]
Tropospheric Propagation above Uneven Ground

This work analyzes the electromagnetic wave propagation above uneven ground, including the troposphere, using physical optics calculation. The new results of numerical simulations using physical optics are presented for the antenna far-field measurement ranges, studies of air refraction index, and examinations of radar coverage diagrams. These calculations are validated by the experimental results (which are changing during seasons, terrain and troposphere conditions including vegetation, moisture, snow, air temperature and pressure, and cultivation) and numerical simulations, such as parabolic equation methods.

  1. Propagation by Diffraction. Recommendation ITU-R P.526-12, 02/2012.
  2. LUEBBERS, R. J. Propagation prediction for hilly terrain using GTD wedge diffraction. IEEE Transactions on Antennas and Propagation, 1984. vol. 32, no. 9, p. 951–955. DOI: 10.1109/TAP.1984.1143449
  3. HVIID, J. T., ANDERSON, J. B., TOFTGÅRD, J., BØJER, J. Terrestrial-based propagation model for rural area - an integral equation approach. IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 1, p. 41–46. DOI: 10.1109/8.366349
  4. AKORLI, F. K., COSTA, E. An efficient solution of an integral equation applicable to simulation of propagation along irregular terrain. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 7, p. 1033–1036. DOI: 10.1109/8.933482
  5. Electrical Characteristics of the Surface of the Earth. Recommendation ITU-R P.527-3, 2000.
  6. KERR, D. E. Propagation of Short Radio Waves. New York: McGraw-Hill, 1951.
  7. BECKMANN, P., SPIZZICHINO, A. The Scattering of Electromagnetic Waves from Rough Surfaces. Oxford: Pergamon Press, 1963.
  8. MEEKS, M. L. Radar Propagation at Low Altitudes. Dedham: Artech, 1982, Appendix C.
  9. COCHERIL, Y., VAUZELLE, R. A new ray-tracing based wave propagation model including rough surfaces scattering. Progress In Electromagnetics Research, 2007, vol. 75, p. 357–381. DOI: 10.2528/PIER07061202
  10. KUTTLER, J. R., DOCKERY, G. D. Theoretical description of the parabolic approximation/Fourier split-step method of representing electromagnetic propagation in the troposphere. Radio Science, 1991, vol. 26, no. 2, p. 381–393. DOI: 10.1029/91RS00109
  11. PAPKELIS, E. G., PSARROS, I., OURANOS, I. CH., et al. A radio-coverage prediction model in wireless communication systems based on physical optics and the physical theory of diffraction. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 2, p. 156–165. DOI: 10.1109/MAP.2007.376622
  12. SCHEJBAL, V. Computing the electrical field strength of an antenna above an uneven earth. Slaboproudy obzor, 1973, vol. 34, no. 12, p. 541–547. ISSN: 0037- 668X (in Czech)
  13. KUPCAK, D. ATC Radar Antennas. Environment Influence on ATC Radar Operation. 1986, vol. III. MNO, Prague (Czech Rep.), (in Czech)
  14. SCHEJBAL, V. Propagation over irregular terrain. Radioengineering, 1997, vol. 6, no. 1, p. 19–22. ISSN: 1210-2512
  15. SCHEJBAL, V. Comparison of propagation over irregular terrain, Radioengineering, 1997, vol. 6, no. 3, p. 6–9. ISSN: 1210-2512
  16. UFIMTSEV, P. YA. New insight into the classical MacDonald physical optics approximation. IEEE Antennas and Propagation Magazine, 2008, vol. 50, no. 3, p. 11–20. DOI: 10.1109/MAP.2008.4563560
  17. UFIMTSEV, P. YA. Improved physical theory of diffraction: removal of the grazing singularity. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 10, p. 2698–2702. DOI: 10.1109/TAP.2006.882179
  18. SCHEJBAL, V. Improved analysis of propagation over irregular terrain. Radioengineering, 2009, vol. 18, no. 1, p. 18–22. ISSN: 1210-2512
  19. SCHEJBAL, V., FISER, O. Enhanced analysis of propagation over irregular terrain. In Proceedings of EuCAP. Barcelona (Spain), 2010, p. 1697–1701. ISBN: 978-1-4244-6431-9.2010
  20. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken: John Wiley & Sons, 2005. ISBN: 0-471-66782-X
  21. KUPCAK, D. Evaluation of antenna radiation patterns by the generalized trapezoidal method. TESLA Electronics, 1974, vol. 7, no. 2, p. 43–50.
  22. SCHEJBAL, V., BEZOUSEK, P. Computation accuracy of propagation over irregular terrain. In COMITE. Pardubice (Czech Rep.), 2001, p. 95–98. ISBN: 80-902417-9-4
  23. SCHEJBAL, V. Simplified computation of the electrical field strength of an antenna above an uneven earth. Slaboproudy obzor, 1980, vol. 41, no. 11, p. 545–547. ISSN: 0037- 668X (in Czech)
  24. SCHEJBAL, V., DOLECEK, R., ZAVODNY, V., KOPECKY, P., FISER, O. Far-field antenna range. In 14th Conference on Microwave Techniques COMITE. Pardubice (Czech Rep.), 2015, p. 90–93. DOI: 10.1109/COMITE.2015.7120342
  25. CERNY, O., DOLECEK, R., KOPECKY, P., SCHEJBAL, V., ZAVODNY, V. Optimization of far-field antenna range. Radioengineering, 2015, vol. 24, no. 4, p. 892–897. DOI: 10.13164/re.2015.0892.
  26. HOLLIS, J. S., LYON, T. J., CLAYTON, L. Microwave Antenna Measurements. 3rd ed. Scientific-Atlanta, Inc., 1985.
  27. BALANIS, C. A. Modern Antenna Handbook. Hoboken: John Wiley & Sons, 2008. ISBN: 978-0-470-03634-1
  28. SCHEJBAL, V., CAPALINI, R., GOTZ, J., et al. Czech radar technology. IEEE Transactions on Aerospace and Electronics Systems, 1994, vol. 30, no. 1, p. 2–17. DOI: 10.1109/7.250400
  29. VALTR, P., PECHAC, P., KVICERA, V., GRABNER, M. Estimation of the refractivity structure of the lower troposphere from measurements on a terrestrial multiple-receiver radio link. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1707–1715. DOI: 10.1109/TAP.2011.2122234
  30. GRABNER, M., KVICERA, V., PECHAC, P., et al. Atmospheric refractivity profiles and microwave propagation on a terrestrial path – experiment and simulation. In Conference on Microwave Techniques (COMITE). Pardubice (Czech Rep.), 2013, p. 11–15. DOI: 10.1109/COMITE.2013.6545035
  31. SCHEJBAL, V., GRABNER, M. Investigation of propagation over terrain. In Proceedings of the 24th International Conference Radioelektronika. Bratislava (Slovakia), 2014, 4 p. DOI: 10.1109/Radioelek.2014.6828454
  32. SCHEJBAL, V., DOLECEK, R., FISER, O., BRAZDA, V., NEMEC, Z. Propagation over terrain considering refractivity profiles. In Proceedings of the 26th International Conference Radioelektronika. Kosice (Slovakia), 2016, p. 481–485. DOI: 10.1109/RADIOELEK.2016.7477342
  33. SCHEJBAL, V. Refraction effects for propagation over terrain. In 16th International Conference on Mathematical Methods in Electromagnetic Theory (MMET*2016). Lviv (Ukraine), 2016, p. 81– 4. DOI: 10.1109/MMET.2016.7544096
  34. SKOLNIK, M. I. Radar Handbook. 3rd ed. New York: McGrawHill, 2008. ISBN: 978-0-07-148547-0
  35. SKOLNIK, M. I. Introduction to Radar Systems. 2nd ed. New York: McGraw-Hill Book, 1980. ISBN: 0-07-066572- 9
  36. HITNEY, H. V. Hybrid ray optics and parabolic equation methods for radar propagation modeling. In International Conference Radar. Brighton (UK), 1992, p. 58–61. ISBN: 0-85296-553-2
  37. NAZARI, M. E., GHORBANI, A. Predicting a three-dimensional radar coverage area: introducing a new method based on propagation of radio waves. IEEE Antennas and Propagation Magazine, 2016, vol. 58, no. 1, p. 28–34. DOI: 10.1109/MAP.2015.2501238
  38. The Radio Refractive Index: its Formula and Refractivity Data. Recommendation ITU-R P.453-11 (07/2015).
  39. Effects of Tropospheric Refraction on Radiowave Propagation. Recommendation ITU-R P.834-5, 2005.
  40. PARINI, C., GREGSON, S., McCORMICK, J., van RENSBURG, D. J. Theory and Practice of Modern Antenna Range Measurements. London (UK): Institution of Engineering and Technology, 2015. ISBN: 978-1-84919-563-8
  41. GRABNER, M., KVICERA, V. Clear-air propagation modeling using parabolic equation method. Radioengineering, 2003, vol. 12, no. 4, p. 50–54. ISSN: 1210-2512
  42. VALTR, P., PECHAC, P. Tropospheric refraction modeling using ray-tracing and parabolic equation. Radioengineering, 2005, vol. 14, no. 4, p. 98– 04. ISSN: 1210-2512
  43. KUPCAK, D. Electromagnetic field calculation over longitudinal terrain profile by partial wave method. In Miteko. Pardubice (Czech Rep.), 1980, vol. 3, p. 111–115. (in Czech)
  44. KUPCAK, D. Surveillance radar location from terrain point of view. In Miteko. Pardubice (Czech Rep.), 1980, vol. 3, p. 151–155. (in Czech)

Keywords: Electromagnetic propagation, radio-wave refraction, electromagnetic scattering, physical optics, measurements

W. W. Wu, K. B. Cui, H. S. Lu, T. Z. Meng, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.0979] [Download Citations]
A Measured Rasorber with Two Absorptive Bands

In this paper, a novel rasorber with both Frequency Selective Surface and absorptive periodical structure is developed. This rasorber works as a radome and an absorber. Firstly, the design procedure of the unit cell of this rasorber is explained. Then, the characteristics of the manufactured rasorber are measured. The characteristics include the transmission/reflection coefficients of the rasorber, the radiation properties of the horn antenna covered by the novel rasorber and the scattering features of this rasorber. In the passband, the gain of the antenna with our rasorber radome is only 1~2 dB lower than the one of the horn antenna without any radome. Furthermore, the radome has little effect on the radiation patterns of the horn antenna. In the absorptive bands of the rasorber, the electric level of the scattered electromagnetic wave from the rasorber can be 16.5 dB lower than the one from a metallic plane with the same size as the rasorber. The feature proves that this rasorber can be a good candidate in the stealth radar radome area.

  1. CALOZ, C., ITOB, T. Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications. New Jersey (USA): J. Wiley & Sons, 2005. ISBN: 978-0-471-66985-2
  2. HAN, M., HE, M., SUN, H. J., et al. A Frequency Selective Surface radome using a coupled resonator filter. In 2013 IEEE Conference on Microwave Technology & Computational Electromagnetics (ICMTCE). Qingdao (China), 2013 DOI: 10.1109/ICMTCE.2013.6812479
  3. ABBASPOUR-TAMIJIANI, A., SARABANDI, K., REBEIZ, G. M. Antenna-filter-antenna arrays as a class of bandpass frequencyselective surfaces. IEEE Transactions on Microwaves Theory and Technique, 2004, vol. 52, no. 8, p. 1781–1789. DOI: 10.1109/TMTT.2004.831572
  4. CHEN X., FU, Y, Q., YUAN, N. C. Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz’s equation. Optics Express, 2009, vol. 17, no. 5, p. 3581–3586. DOI: 10.1364/OE.17.003581
  5. BARBUTO, M., TROTTA, F., TOSCANO, A. Varying the operation bandwidth of metamaterial-inspired filtering modules for horn antennas. Progress In Electromagnetics Research C, 2015, vol. 58, p. 61–68. DOI: 10.2528/PIERC15051402
  6. LUO, G. Q., HONG, W., TANG, H. J., et al. Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 1, p. 92–98. DOI: 10.1109/TAP.2006.888459
  7. MA, X. C., HUANG, W., PAN, W., et al. A dual circularly polarized horn antenna in Ku-band based on chiral metamaterial. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 2307–2311. DOI: 10.1109/TAP.2014.2301841
  8. MUNK, B. A. Metamaterials: Critique and Alternatives. New Jersey (USA): J. Wiley & Sons, 2009. ISBN:978-0-470-37704-8
  9. KNOTT, E. F. Radar Cross Section. USA: SciTech Publishing, 2004. ISBN: 1-891121-25-1
  10. COSTA, F., MONORCHIO, A. A frequency selective radome with wideband absorbing properties. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2740–2747. DOI: 10.1109/TAP.2012.2194640
  11. COSTA, F., MONORCHIO, A., MANARA, G. Analysis and design of ultrathin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 5, p. 1551–1558. DOI:10.1109/TAP.2010.2044329
  12. COSTA, F., MONORCHIO, A., MANARA, G. An equivalent circuit model of frequency selective surfaces embedded within dielectric layers. In Proceeding of IEEE Antennas and Propagation Society International Symposium. Charleston (SC, USA), 2009. DOI: 10.1109/APS.2009.5171774
  13. ZHOU, H., QU, S., PENG, W., et al. A novel frequency selective surface loaded with resistance films absorbers. Acta Physica Sinica, 2012, vol. 61, no. 10, p. 104201. (in Chinese)
  14. MARTYNYUK, A. E., LOPEZ, M. J. I., MARTYNYUK, N. A. Active frequency-selective surfaces based on loaded ring slot resonators. Electronics Letters, 2005, vol. 41, no. 1, p. 2–4. DOI: 10.1049/el:20057774
  15. ZHANG, C. G., ZHANG, Q. Super broad band based on Adaptive Frequency Selective Surface for SAR. In 2nd Asian-Pacific Conference on Synthetic Aperture Radar, 2009. DOI: 10.1109/APSAR.2009.5374093
  16. ZHOU, H., YANG, L. W., QU, S. B., et al. Experimental demonstration of an absorptive/transmissive FSS with magnetic material. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, no. 3, p. 114–117. DOI: 10.1109/lawp.2013.2296992
  17. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. Hoboken (NJ, USA): John Wiley & Sons, 2000. ISBN: 9780471370475
  18. SALISBURY, W. W. Absorbent Body for Electromagnetic Waves. Patent US 2599944 A. 1952.
  19. HONG, J. S., LANCASTER, M. J. Microstrip Filters for RF Microwave Application. New Jersey (USA): J. Wiley & Sons, 2001. ISBN: 0-471-22161-9

Keywords: Rasorber, radome, absorber, FSS, antenna, RCS reduction

S. R. Lee, E. H. Lim, F. L. Lo, K. H. Tan [references] [full-text] [DOI: 10.13164/re.2017.0984] [Download Citations]
Broadrange Reflectarray Element with Combined Slot and Dielectric Resonator Resonances

This paper presents a dielectric resonator antenna (DRA) reflectarray unit element with multiple loading circular slots underneath in concentric form. The radii of the three slots are varied simultaneously to function as phase-shifting elements. For the case of three under-loading slots, it is very interesting to find out that the slot and DRA resonances can be pulled together to provide a very broad phase range of 916°. Study shows that the gradient and phase range of the S curve can be easily tuned by manipulating the dimensions of the under-loading slots. Waveguide method has been used to establish the simulation and measurement models. The reflection properties of the DRA unit elements loaded with different ring-shaped slots are compared, along with a complete parametric analysis. The proposed reflectarray unit element is very compact as its phase shifter can be entirely hidden beneath the DRA.

  1. BERRY, D., MALECH, R., KENNEDY, W. The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 1963, vol. 11, no. 6, p. 645–651. DOI: 10.1109/TAP.1963.1138112
  2. HUANG, J., ENCINAR, J. A. Reflectarray Antenna. 1st. ed., Hoboken: John Wiley & Sons, 2007. ISBN: 9780470084915
  3. POZAR, D. M., TARGONSKI, S. D., SYRIGOS, H. D. Design of millimeter wave microstrip reflectarrays. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 2, p. 287–296. DOI: 10.1109/8.560348
  4. LONG, S. A., MCALLISTER, M., LIANG, S. The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation, 1983, vol. 31, no. 3, p. 406–412. DOI: 10.1109/TAP.1983.1143080
  5. PETOSA, A., ITTIPIBOON, A. Dielectric resonator antennas: A historical review and the current state of the art. IEEE Antennas and Propagation Magazine, 2010, vol. 52, no. 5, p. 91–116. DOI: 10.1109/MAP.2010.5687510
  6. ABD-ELHADY, A. M., ZAINUD-DEEN, S. H., MITKEES A. A., et al. Wideband rectangular dielectric resonator elements reflectarray. In Proceedings of the Middle East Conference on Antennas and Propagation (MECAP). Cairo (Egypt), 2012, p. 1–5. DOI: 10.1109/MECAP.2012.6618208
  7. ZAINUD-DEEN, S. H., GABER, S. M., ABD-ELHADY, A. M., et al. Wideband perforated rectangular dielectric resonator antenna reflectarray. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane (Washington), 2011, p. 113–116. DOI: 10.1109/APS.2011.5996653
  8. LI, Y., BIALKOWSKI, M. E., SAYIDMARIE, K. H., et al. Singlelayer microstrip reflectarray with double elliptical ring elements for bandwidth enhancement. Microwave and Optical Technology Letters, 2011, vol. 53, no. 5, p. 1083–1087. DOI: 10.1002/mop.25912
  9. MISRAN, N., CAHILL, R., FUSCO, V. F. Reflection phase response of microstrip stacked ring elements. Electronic Letters, 2002, vol. 38, no. 8, p. 356–357. DOI: 10.1049/el:20020257
  10. CARRASCO, E., BARBA, M., ENCINAR, J. A. Aperture-coupled reflectarray element with wide range of phase delay. Electronic Letters, 2006, vol. 42, no. 12, p. 667–668. DOI: 10.1049/el:20060472
  11. LI, Y., BIALKOWSKI, M. E., SAYIDMARIE, K. H., et al. Singlelayer reflectarray employing circular ring with open-circuited stub as phasing element. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APSURSI). Spokane (Washington), 2011, p. 2168–2171. DOI: 10.1109/APS.2011.5996942
  12. LI, Y., BIALKOWSKI, M. E., ABBOSH, A. M. Single-layer reflectarray with circular rings and open-circuited stubs for wideband operation. IEEE Transactions on Antennas and Propagation, 2011, vol. 60, no. 9, p. 4183–4189. DOI: 10.1109/TAP.2012.2207060
  13. S. R. LEE, E. H. LIM, F.-L. LO. DRA reflectarray unit elements with thin under-loading parallel slots. Progress In Electromagnetics Research C, 2014, vol. 48, p. 103–110. DOI: 10.2528/PIERC14020504

Keywords: Dielectric resonator antenna (DRA), reflectarray element, broad phase range

Y. Y. Gong, L. Wang, K. Wei, Z. L. Zhang [references] [full-text] [DOI: 10.13164/re.2017.0992] [Download Citations]
Novel Fractal DGSs for Band-gap Filter with Improved Q-factor

This paper presents a novel fractal defected ground structure (FDGS) for designing high Q-factor band-gap filter. Key parameters of the proposed FDGS are studied. The decreased slot distance causes rapid increase in the filter Q-factor. The designed second iterative FDGS provides the band-gap property at 1.662 GHz with 3-dB bandwidth of 10.8 MHz and Q-factor 69.25. The rejection level of the second iterative FDGS is greater than 40 dB. The third iterative FDGS has smaller dimension than that of the second iterative FDGS. Moreover, the third iterative FDGS has two resonant frequencies with suppression levels of 33 dB and 26 dB. The Q-factors of the resonant frequencies are 24.22 and 27.36 respectively.

  1. DAL AHN, JUN-SEOK PARK, CHUL-SOO KIM, et al. A design of the low-Pass filter using the novel microstrip defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 1, p. 86–93. DOI: 10.1109/22.899965
  2. YU LIN ZHANG, WEI HONG, KE WU, et al. Novel substrate integrated waveguide cavity filter with defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1280–1287. DOI: 10.1109/TMTT.2005.845750
  3. JONG-SIK LIM, CHUL-SOO KIM, DAL AHN, et al. Design of low-pass filters using defected ground structure. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 8, p. 2539–2545. DOI: 10.1109/TMTT.2005.852765
  4. SAFWAT, A. M. E., PODEVIN, F., FERRARI, P., et al. Tunable bandstop defected ground structure resonator using reconfigurable dumbbell-shaped coplanar waveguide. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 9, p. 3559 to 3564. DOI: 10.1109/TMTT.2006.880654
  5. FU-CHANG CHEN, HAO-TAO HU, JIE-MING QIU, et al. Highselectivity low-pass filters with ultrawide stopband based on defected ground structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 9, p. 1313–1319. DOI: 10.1109/TCPMT.2015.2461663
  6. DUK-JAE WOO, TAEK-KYUNG LEE, JAE-WOOK LEE, et al. Novel U-slot and V-slot DGSs for bandstop filter with improved Q factor IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 6, p. 2840–2847. DOI: 10.1109/TMTT.2006.875450
  7. KUMAR, P., MAHMOOD, R., et al. Control of band stop responses of very compact size microstrip filter of improved Q factor and sharp transition by using hexagonal transmetal DGS. In International Conference on Emerging Trends in Electronic and Photonic Devices and Systems (ELECTRO). Varanasi (India), 2009, p. 383–386.
  8. BOUTEJDAR, A., AMARI, S., ELSHERBINI, A., et al. A novel lowpass filter with ultra-wide stopband and improved Q-factor performance using H-defected ground structure (DGS). In IEEE Antennas and Propagation Society International Symposium. Honolulu (HI, USA), 2007, p. 1545–1548. DOI: 10.1109/APS.2007.4395802
  9. WANG, C.-J., LIN, C.-S. Compact DGS resonator with improvement of Q-factor. Electronics Letters, 2008, vol. 44, no. 15, p. 908–909. DOI: 10.1049/el:20081417
  10. MAOHUI YANG, JUN XU, YULIANG DONG, et al. A novel open-loop DGS for compact bandstop filter with improved Q factor. In 8th International Symposium on Antennas, Propagation and EM Theory. Kunming (China), 2008, p. 649–652. DOI: 10.1109/ISAPE.2008.4735297
  11. MAOHUI YANG, JUN-XU, YULIANG DONG, et al. Bandstop filter with improved Q factor using novel open-loop patch loaded slotline. In 8th International Symposium on Antennas, Propagation and EM Theory. Kunming (China), 2008, p. 1446–1449. DOI: 10.1109/ISAPE.2008.4735502
  12. KAKHKI, M. A., NESHATI, M. H. Experimental investigation of a dual band-reject filter using C-shaped DGS with improved Qfactor. In 5th International Symposium on Telecommunications (IST). Tehran (Iran), 2010, p. 332–335. DOI: 10.1109/ISTEL.2010.5734047
  13. IL KWON KIM, KINGSLEY, N., MORTON, M., et al. Fractalshaped microstrip coupled-line bandpass filters for suppression of second harmonic. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 9, p. 2943–2948. DOI: 10.1109/TMTT.2005.854263
  14. KUMAR, A., SAWANT, A., KARTIKEYAN, M. V. Investigation of fractal DGS microwave filters. In National Conference on Communications (NCC). New Delhi (India), 2013, 4 p. DOI: 10.1109/NCC.2013.6487905
  15. CHEN JIA XI, GUAN YA LIN. Application of Koch island fractal on dumbbell-shaped defected ground structure low-pass filters. In IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA). Ottawa (Canada), 2014, p. 1101–1104. DOI: 10.1109/WARTIA.2014.6976469
  16. ZHANG WEI, YANG WEI-MING, FANG YIN-YIN, et al. Design of the Hilbert fractal defected ground structure low-pass filter. In IEEE International Conference on Communication Problem-Solving (ICCP). Bejing (China), 2014, p. 99–102. DOI: 10.1109/ICCPS.2014.7062227
  17. HAIWEN LIU, ZHICHONG ZHANG, XUEHUI GUAN, et al. A bandpass filter based on fractal shaped defected ground structure resonators for wireless communication. In International Conference on Microwave and Millimeter Wave Technology. 2010, p. 201–203. DOI: 10.1109/ICMMT.2010.5525249
  18. KUFA, M., RAIDA, Z. Lowpass filter with reduced fractal defected ground structure. Electronics Letters, 2013, vol. 49, no. 3, p. 199–201. DOI: 10.1049/el.2012.3473
  19. QUAN XUE, KAM MAN SHUM, CHI HOU CHAN. Novel 1-D microstrip PBG cell. IEEE Microwave and Guided Wave Letters, 2000, vol. 10, no. 10, p. 403–405. DOI: 10.1109/75.877226

Keywords: High Q-factor, band-gap filter, defected ground structure, fractal structure

A. Abdipour , A. Abdipour , E. Zare [references] [full-text] [DOI: 10.13164/re.2017.0999] [Download Citations]
A Design of Branch-Line Coupler with Harmonic Suppression and Size Reduction Using Closed-Loop and Open-Loop Resonators

In this paper, a branch-line coupler using closed-loop and open-loop resonators with the operating frequency of 2.69 GHz is proposed. The designed microstrip circuit not only is able to suppress the second and the third unwanted harmonics but also reduces the occupied area to 59% of the traditional branch-line coupler. To explain how the employed resonators can suppress spurious frequencies, transmission zeros of both resonators based on their equivalent LC has been calculated, separately. To prove the abilities of the proposed branch-line coupler, the designed circuit has been fabricated and tested resulting in a good agreement between the measurement and simulation results. According to the S11 when it is less than -15 dB the bandwidth of the designed branch-line coupler is about 500 MHz, from 2.42 to 2.92 GHz .The comparison between the results of simulation and measurement are in good agreement.

  1. POZAR, D. M. Microwave Engineering. 3rd ed. New York: Wiley, 1998.
  2. WANG, J., WANG, B. Z., GUO, Y. X., et al. A compact slowwave microstrip branch-line coupler with high performance. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 7, p. 501–503. DOI: 10.1109/LMWC.2007.899307
  3. LIAO, S. S., SUN, P. T., CHIN, N. C., et al. A novel compact-size branch-line coupler. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 9, p. 588–590. DOI: 10.1109/LMWC.2005.855378
  4. TANG, C. W., CHEN, M., TSAI, C. H., Miniaturization of microstrip branch-line coupler with dual transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 3, p. 185–187. DOI: 10.1109/LMWC.2008.916798
  5. SUN, K. O., HO, S. J., YEN, C. C., VAN DER WEIDE, D., et al. A compact branch-line coupler using discontinuous microstrip lines. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 8, p. 519–520. DOI: 10.1109/LMWC.2005.852789
  6. TSAI, K. Y., YANG, H. S., CHEN, J. H., et al. A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 10, p. 537–539. DOI: 10.1109/LMWC.2011.2164901
  7. ZANG, F. Miniaturized and harmonics rejected slow-wave branchline coupler based on microstrip electromagnetic bandgap element. Microwave and Optical Technology Letters, 2009, vol. 51, no. 4, p. 1080–1084. DOI: 10.1002/mop.24241
  8. DARI, S., SANYAL, S. Size reduction and harmonic suppression of microstrip branch-line coupler using defected ground structure. Microwave and Optical Technology Letters, 2006, vol. 48, no. 10, p. 1966–1969. DOI: 10.1002/mop.21830
  9. CAILLET, M., CLENET, M., SHARAIHA, A., ANTAR, Y. M. M. A compact wide-band rat-race hybrid using microstrip lines. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 4, p. 191–193. DOI: 10.1109/LMWC.2009.2015483
  10. JUNG, S. C., NEGRA, R., GHANNOUCHI, F. M. A design methodology for miniaturized 3 dB branch-line hybrid couplers using distributed capacitors printed in the inner area. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 12, p. 2950–2953. DOI: 10.1109/TMTT.2008.2007323
  11. ECCLESTON, K. W., ONG, S. H. M. Compact planar microstripline branch-line and rat-race couplers. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 10, p. 2119–2125. DOI: 10.1109/TMTT.2003.817442

Keywords: Harmonic suppression, microstrip circuit, miniaturized branch-line coupler

T. Han, X. Y. Cao, J. Gao, Y. J. Zheng [references] [full-text] [DOI: 10.13164/re.2017.1006] [Download Citations]
Design of a Novel Wideband Low-Scattering Shared Aperture Metasurface

A novel shared aperture metasurface (SA-MS) for ultra-wideband radar cross section (RCS) reduction is designed and fabricated in this paper. The SA-MS is composed of a kind of perfect metamaterial absorber (PMA) and two kinds of artificial magnetic conductors (AMCs), where they share the same physical aperture in horizontal dimensionality with an aperiodic arrangement. Based on this design, the RCS reduction bandwidth of the SA -MS can be remarkably broadened due to the cascade connection of different working modes, which include absorption for the incident wave of PMA and phase cancellation between three kinds of MS lattices. Simulation and measurement results indicate that a 3-dB RCS reduction is achieved from 4.98 GHz to 14.14 GHz (95.8% relative bandwidth) for both x- and y- polarized incident waves and the 6-dB RCS reduction bands for the x- and y-polarizations are 5.04 GHz-13.02 GHz, 5.06 GHz-8.66 GHz and 9.22 GHz-12.12 GHz, respectively.

  1. CHEN, W., BALANIS, C., BIRTCHER, C. Checkerboard EBG surfaces for wideband radar cross section reduction. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 6, p. 2636–2645. DOI: 10.1109/TAP.2015.2414440
  2. COSTRA, F., MONORCHIO, A., TALARICO, S., et al. An active high-impedance surface for low-profile tunable and steerable antennas. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 676–680. DOI: 10.1109/LAWP.2008. 2006070
  3. LIU, Y., HAO, Y., WANG, H., et al. Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1290–1293. DOI: 10.1109/LAWP.2015.2402292
  4. EDALATI, A., SARABANDI, K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 747–754. DOI: 10.1109/TAP.2013.2291236
  5. ZHANG, Z., CAO, X., GAO, J., et al. Broadband metamaterial reflectors for polarization manipulation based on cross/ring resonators. Radioengineering, 2016, vol. 25, no. 3, p. 436–441. DOI: 10.13164/re.2016.0436
  6. JIA, Y., LIU, Y., GUO, J., et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 179–188. DOI: 10.1109/TAP.2015.2502981
  7. SIEVENPIPER, D., ZHANG, R. F., BROAS, R. F. J., et al. Highimpedance electromagnetic surfaces with forbidden bands at radio and microwave frequencies. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2059–2084. DOI: 10.1109/22.798001
  8. PAQUAY, M., IRIARTE, J. C., EDERRA, I., et al. Thin AMC structure for radar cross-section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306
  9. HONG, T., DONG, H., WANG, J., et al. A novel combinatorial triangle-type AMC structure for RCS reduction. Microwave and Optical Technology Letters, 2015, vol. 57, no. 12, p. 2728–2732. DOI: 10.1002/mop.29427
  10. MIGHANI, M., DADASHZADEH, G. Broadband RCS reduction using a novel double layer chessboard AMC surface. Electronics Letters, 2016, vol. 52, no. 14, p. 1253–1255. DOI: 10.1049/el.2016.1214
  11. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. Perfect metamaterial absorber. Physical Review Letter, 2008, vol. 100, no. 20, p. 207402. DOI: 10.1103/PhysRevLett.100.207402
  12. YANG, H., CAO, X., GAO, J., et al. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, vol. 62, no. 6, p. 064103. (in Chinese) DOI: 10.7498/aps.62.064103
  13. USTUN, K., TURHAN-SAYAN, G. Wideband long wave infrared metamaterial absorbers based on silicon nitride. Journal of Applied Physics, 2016, vol. 120, p. 203101(1–11). DOI: 10.1063/1.4968014
  14. KUZNETSOV, S. A., PAULISH, A. G., NAVARRO-CIA, M., et al. Selective pyroelectric detection of millimeter waves using ultrathin metasurface absorbers. Scientific Reports, 2016, vol. 6, 11 p. DOI: 10.1038/srep21079
  15. MA, H., SHEN, X., CHENG, Q., et al. Broadband and highefficiency conversion from guided waves to spoof surface plasmon polaritons. Laser and Photonics Review, 2014, vol. 8, no. 1, p. 146–151. DOI: 10.1002/lpor.201300118
  16. LI, S., CAO, X., GAO, J., et al. Polarization-insensitive ultra-thin quasi-metasurface based on the spoof surface plasmon polaritons. Applied Physics A, 2016, vol. 12, p. 857(1–9). DOI: 10.1007/s00339-016-0391-2
  17. ZHAO, Y., CAO, X., GAO, J., et al. Broadband low-RCS metasurface and its application on antenna. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 7, p. 2954–2962. DOI: 10.1109/TAP.2016.2562665
  18. IRIARTE-GALARREGUI, J., TELLECHEA-PEREDA, A., MARTINEZ DE FALCON, J. L., et al. Broadband radar crosssection reduction using AMC technology. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6136–6143. DOI: 10.1109/TAP.2013.2282915
  19. WAN, X., QI, M., CHEN, T., et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface. Scientific Reports, 2016, vol. 6, 8 p. DOI: 10.1038/srep20663
  20. ZOU, T. B., HU, F. R., XIAO, J., et al. Design of a polarizationinsensitive and broadband terahertz absorber using metamaterials. Acta Physica Sinica, 2014, vol. 63, no. 17, p. 178103. (in Chinese) DOI: 10.7498/aps.63.178103
  21. ZHU, J., MA, Z., SUN, W., et al. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, vol. 105, no. 021102. DOI: 10.1063/1.4890521
  22. CHENG, Y., NIE, Y., GONG, R. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Optics & Laser Technology, 2013, vol. 48, no. 10, p. 415–421. DOI: 10.1016/j.optlastec.2012.11.016
  23. JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D. Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering, 2013, vol. 22, no. 3, p. 700–707.
  24. JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D. A highdirectivity microstrip patch antenna design by using genetic algorithm optimization. Progress In Electromagnetics Research C, 2013, vol. 37, no. 4, p. 131–144. DOI: 10.2528/PIERC13010805

Keywords: Shared aperture metasurface, wideband, low-scattering

W. Chen, J. Gao, X. Y. Cao, H. H. Yang, Z. Zhang, S. J. Li, J. F. Han, C. Zhang [references] [full-text] [DOI: 10.13164/re.2017.1013] [Download Citations]
A Broadband Transmission Metasurface with Polarization-Transforming Functionality

A transmission metasurface with polarization-transforming functionalities is presented. The unit cell is characterized by broadband, low profile and low loss. Due to the asymmetric structure, the proposed metasurface shows different responses to different linear-polarized incidences. For a particular linear-polarized incidence, the polarization direction of transmitted waves will be rotated by 90° in 3.72-8.28 GHz with high polarization conversion ratio (PCR). However, for the orthogonal-polarized ones, the incidence will be reflected totally and the polarization remains. The operating mechanism of proposed metasurface is analyzed both by theoretical investigations and numerical simulations. Measured results of the fabricated samples are in good agreement with the simulated ones.

  1. SAFARIPOUR, A., BOWERS, S. M., DASGUPTA, K., et al. Dynamic polarization control of two-dimensional integrated phased arrays. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no 4, p. 1066–1077. DOI: 10.1109/TMTT.2016.2530704.
  2. WEI, Z., CAO, Y., FAN, Y., et al. Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Applied Physics Letters, 2011, vol. 99, no. 22, p. 221903–221907. DOI: 10.1063/1.3664774
  3. LI, S. J., GAO, J., CAO, X. Y., et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Optics Express, 2015, vol. 23, no. 3, p. 3523–3533. DOI: 10.1364/OE.23.003523
  4. LI, S. J., GAO, J., CAO, X. Y., et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. Journal of Applied Physics, 2014, vol. 116, p. 043710, DOI: 10.1063/1.4891716
  5. NIROO-JAZI, M., CHAHARMIR, M. R., SHAKER, J., et al. Broadband transmitarray antenna design using polarizationinsensitive frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 99–108. DOI: 10.1109/TAP.2015.2500230
  6. ERFANI, E., NIROO-JAZI, M., TATU, S. A high gain broadband gradient index metasurface lens antenna. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 1968–1973. DOI: 10.1109/TAP.2016.2526052
  7. ZHAO, Y., CAO, X. Y., GAO, J., et al. Broadband diffusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm. Scientific Reports, 2016, vol. 6, p. 23896. DOI: 10.1038/srep23896
  8. ZHENG, Y. J., GAO, J., CAO, X. Y., et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1582–1585. DOI: 10.1109/LAWP.2015.2413456.
  9. LI, H. P., WANG, G. M., XU, H. X., et al. X-band phase-gradient metasurface for high-gain lens antenna application. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 5144–5149. DOI: 10.1109/TAP.2015.2475628
  10. CAI, T., WANG, G. M., ZHANG, X. F., et al. Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 12, p. 55629–5636. DOI: 0.1109/TAP.2015.2496115
  11. ZHAO, J. M., SI-MA, B. Y., JIA, N., et al. Achieving flexible lowscattering metasurface based on randomly distribution of metaelements. Optics Express, 2016, vol. 24, no. 24, p. 27849–27857. DOI: 10.1364/OE.24.027849
  12. LI, S. J., CAO, X. Y., XU, L. M., et al. Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm. Scientific Reports, 2016, vol. 6, p. 37409. DOI: 10.1038/srep37409
  13. JIA, Y. T., LIU, Y., JAY-GUO, Y., et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 179–188. DOI: 10.1109/TAP.2015.2502981
  14. ZHANG, L. B., ZHOU, P. H., LU, H. P., et al. Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1157–1160. DOI: 10.1109/LAWP.2015.2393376
  15. REN, L. S., JIAO, Y. C., LI, F., et al. A dual-layer T-shaped element for broadband circularly polarized reflectarray with linearly polarized feed. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 407–410. DOI: 10.1109/LAWP.2011.2148090
  16. MONTORI, S., CACCIAMANI, F., TOMASSONI, C., et al. Novel 1-bit elementary cell for reconfigurable reflectarray antennas. In 41st European Microwave Conference. Manchester (UK), 2011, p. 1288–1291. DOI: 10.23919/EuMC.2011.6101948
  17. CHEN, W., GAO, J., ZHANG, G., et al. A wideband coding reflective metasurface with multiple functionalities. Acta Physica Sinica, 2017, vol. 66, no. 6, p. 064203. DOI: 10.7498/aps.66.064203 (in Chinese)
  18. BARBUTO, M., TROTTA, F., BILOTTI, F., TOSCANO, A. A combined bandpass filter and polarization transformer for horn antennas. IEEE Antennas and Wireless Propagation Letters. 2013, vol. 12, p. 1065–1068. DOI: 10.1109/LAWP.2013.2280151
  19. ZARIFI, D., ORAIZI, H., SOLEIMANI, M. Improved performance of circularly polarized antenna using semi-planer chiral metamaterial covers. Progress in Electromagnetics Research, 2012, vol. 123, p. 337–354. DOI: 10.2528/PIER11110506
  20. PAN, W. B., HUANG, C., MA, X. L., et al. A dual linearlypolarized transmitarray element with 1-bit phase resolution in Xband. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 167–170. DOI: 10.1109/LAWP.2014.2358267
  21. GRADY, N. K., HEYES, J. E., CHOWDHURY, D. R., et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science, 2013, vol. 340, p.1304–1307. DOI: 10.1126/science.1235399
  22. PFEIFFER, C., GRBIC, A. Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis. Physical Review Applied, 2014, vol. 2, article no. 044011. DOI: 10.1103/PhysRevApplied.2.044011

Keywords: Metasurface, broadband, polarization-dependent, high polarization conversion ratio

M. Veysi, A. Ahmadi, G. Karimi, A. Lalbakhsh [references] [full-text] [DOI: 10.13164/re.2017.1019] [Download Citations]
RFID Tag Design Using Spiral Resonators and Defected Ground Structure

This paper presents a simple generalized approach to design a compact chipless radio frequency identification tag. The proposed chipless tag encodes data into the spectral signature using a set of spiral resonators on both sides of substrate. Transmission amplitude component of the tag is used for data encoding. For miniaturization purpose, defected ground structure is used to reduce the circuit size by half compared to the conventional cascading technique. The proposed chipless tag operates between 4-6 GHz and produces 256 different binary strings through eight encoded bits. Measurement and simulation results verify the authenticity of this design.

  1. PRERADOVIC, S., KARMAKAR, N. C. Design of chipless RFID tag for operation on flexible laminates. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 207–210. DOI: 10.1109/LAWP.2010.2045872
  2. PRERADOVIC, S., ROY, S., KARMAKAR, N. Fully printable multi-bit chipless RFID transponder on flexible laminate. In Proceedings of the Asia Pacific Microwave Conference (APMC). Singapore, 2009, p. 2371–2374. DOI: 10.1109/APMC.2009.5385460
  3. PRERADOVIC, S., KARMAKAR, N. Multiresonator based chipless RFID tag and dedicated RFID reader. IEEE MTT-S Int. Microwave Symposium Digest (MTT). Anaheim (CA, USA), 2010, p. 1520–1523. DOI: 10.1109/MWSYM.2010.5515168
  4. KARIMI, G., LALBAKHSH, A., SIAHKAMARI, H. Design of sharp roll-off lowpass filter with ultra-wide stopband. IEEE Microwave and Wireless Component Letters, 2013, vol. 23, no. 6, p. 303–305. DOI: 10.1109/LMWC.2013.2261057
  5. PRERADOVIC, S., KARMAKAR, N. C. Design of fully printable planar chipless RFID transponder with 35-bit data capacity. In Proceedings of the 39th European Microwave Conference (EuMC). Rome (Italy), 2009, p. 13–16. DOI: 10.23919/EUMC.2009.5296182
  6. PRERADOVIC, S., KARMAKAR, N. 4th generation multiresonator-based chipless RFID tag utilizing spiral EBGs. In Proceedings of the European Microwave Conference (EuMC). 2010, p. 1746–1749. DOI: 10.23919/EUMC.2010.5616613
  7. PRERADOVIC, S., BALBIN, I., KARMAKAR, N. C., SWIEGERS, G. Chipless frequency signature based RFID transponders. In Proceedings of the European Conference on Wireless Technology. Amsterdam (The Netherlands), 2008, p. 302–305. DOI: 10.1109/EUMC.2008.4751808
  8. BHUIYAN, S., KARMAKAR, N. Chipless RFID tag based on split-wheel resonators. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 3054–3057. ISBN: 978-88-907018-3-2
  9. PRERADOVIC, S., KARMAKAR, N., BALBIN, I., SWIEGERS, G. A novel chipless RFID system based on planar multiresonators for barcode replacement. In Proceedings of the International Conference on RFID. Las Vegas (NV, USA), 2008, p. 289–296, DOI. 10.1109/RFID.2008.4519383
  10. MAJIDIFAR, S., AHMADI, A., SADEGHI, O., AHMADI, M. A novel phase coding method in chipless RFID systems. International Journal of Electronics and Communications, 2015, vol. 69, no. 7, p. 974–980. DOI: 10.1016/j.aeue.2015.02.013
  11. GENOVESI, S., COSTA, F., MONORCHIO, A., MANARA, G. Chipless RFID tag exploiting multifrequency delta-phase quantization encoding. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 738–741. DOI: 10.1109/LAWP.2015.2471101
  12. KHAN, M. M., TAHIR, F. A., FAROOQUI, M. F., SHAMIM, A., et al. 3.56-bits/cm 2 compact inkjet printed and application specific chipless RFID tag. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1109–1112. DOI: 10.1109/LAWP.2015.2494864
  13. POLIVKA, M., HAVLICEK, J., SVANDA, M., MACHAC, J. Improvement in robustness and recognizability of RCS response of U-shaped strip-based chipless RFID tags. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, no. 1, p. 2000–2003. DOI: 10.1109/LAWP.2016.2549638
  14. LOTFI-NEYESTANAK, A. A., LALBAKHSH, A. Improved microstrip hairpin-line bandpass filter for spurious response suppression. Electronics Letters, 2012, vol. 48, no. 14, p. 858–859. DOI: 10.1049/el.2012.0967
  15. PRERADOVIC, S., KARMAKAR, N. Chipless RFID: Bar code of the future. IEEE Microwave Magazine. 2010; vol. 11, no. 7, p. 87 to 97. DOI: 10.1109/MMM.2010.938571
  16. LALBAKHSH, A., LOTFI NEYESTANAK, A. A., NASERMOGHADDASI, M. Microstrip hairpin bandpass filter using modified Minkowski fractal shape for suppression of second harmonic. IEICE Transactions on Electronics, 2012, vol. E95-C, no. 3, p. 378–381. DOI: 10.1587/transele.E95.C.378
  17. WANG, C.-J. LIN, C.-S. Compact DGS resonator with improvement of Q-factor. Electronics Letters, 2008, vol. 44, no. 15, p. 908–909. DOI: 10.1049/el:20081417
  18. AHMADI, A., MAKKI, S. V., LALBAKHSH, A., MAJIDIFAR, S. A novel dual-mode wideband band pass filter. Applied Computational Electromagnetics Society Journal (ACES Journal), 2014, vol. 29, no. 9, p. 735–742. DOI: 10.7763/IJIEE.2013.V3.266
  19. KHALIEL, M., EL-HADIDY, M., KAISER, T. Printable depolarizing chipless RFID tag based on DGS resonators for suppressing the clutter effects. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015, 5 p.

Keywords: Defected Ground Structure (DGS), microstrip line, multi-resonator, radio-frequency identification (RFID), spiral resonator

S. Kumar, R. K. Vishwakarma, R. Kumar, J. Anguera, A. Andujar [references] [full-text] [DOI: 10.13164/re.2017.1025] [Download Citations]
Slotted Circularly Polarized Microstrip Antenna for RFID Application

A single layer coaxial fed rectangular microstrip slotted antenna for circular polarization (CP) is proposed for radio frequency identification (RFID) application. Two triangular shaped slots and one rectangular slot along the diagonal axis of a square patch have been embedded. Due to slotted structure along the diagonal axis and less surface area, good quality of circular polarization has been obtained with the reduction in the size of microstrip antenna by 4.04 %. Circular polarization radiation performance has been studied by size and angle variation of diagonally slotted structures. The experimental result found for 10-dB return loss is 44 MHz with 10MHz of 3dB Axial Ratio (AR) bandwidth respectively at the resonant frequency 910 MHz. The overall proposed antenna size including the ground plane is 80 mm x 80 mm x 4.572 mm.

  1. WANT, R. An introduction to RFID technology. IEEE Pervasive Computing, 2006, vol. 5, no. 1, p. 25–33. DOI: 10.1109/MPRV.2006.2
  2. CHUNG, H. L., QING, X., CHEN, Z. N. A broadband circularly polarized stacked probe fed patch antenna for UHF RFID application. International Journal of Antenna and Propagation, 2007, p. 1–9. DOI: 10.1155/2007/76793
  3. KWA, H. W., QING, X., CHEN, Z. N. Broadband single fed single patch polarized antenna for UHF RFID applications. In IEEE Antenna and Propagation Society International Symposium. San Diego (CA, USA), 2008, p. 1–4. DOI: 10.1109/APS.2008.4619871
  4. XIAO, Y., YU, S., WU, K., et al. Radio frequency identification: technologies, applications and research issues. Wireless Communication and Mobile Computing, 2007, vol. 7, no. 4, p. 457–472. DOI: 10.1002/wcm.365
  5. JUNG, Y. K., LEE, B. Dual band circularly polarized microstrip RFID reader antenna using metamaterial branch line coupler. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 786–791. DOI: 10.1109/TAP.2011.2167943
  6. CHEN, Z. N., QING, X., CHUNG, H. L. A universal UHF RFID reader antenna. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, p. 1275–1282. DOI: 10.1109/TMTT.2009.2017290
  7. NASIMUDDIN, CHEN, Z. N., QING, X. Asymmetrical circular shaped slotted microstrip antenna for circular polarization and RFID applications. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 12, p. 3821–3828. DOI: 10.1109/TAP.2010.2078476
  8. TONG, K. F., WONG, T. P. Circularly polarized U slot antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 8, p. 2382–2385. DOI: 10.1109/TAP.2007.901930
  9. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. New Delhi (India): Wiley India Pvt. Ltd., 2011. ISBN: 978-81- 265-2422-8
  10. TSAI, C. L. A coplanar strip dipole antenna for broadband circular polarization operation. Progress in Electromagnetic Research, 2011, vol. 121, p. 141–157. DOI: 10.2528/PIER11082407
  11. NASIMUDDIN, CHEN, Z. N., QING, X. A compact circularly polarized cross shaped slotted microstrip antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 3, p. 1584–1588. DOI: 10.1109/TAP.2011.2180334
  12. POZAR, D. M., DUFFY, S. M. A dual band circularly polarized aperture coupled stacked microstrip antenna for global positioning satellite. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 11, p. 1618–1625. DOI: 10.1109/8.650073
  13. NASIMUDDIN, QING, X., CHEN, Z. N. Compact circularly polarized microstrip antenna for RFID handheld reader applications. In Asia Pacific Microwave Conference. Singapore, Dec. 2009, p. 1950–1953. DOI: 10.1109/APMC.2009.5385294
  14. NASIMUDDIN, CHEN, Z. N., QING, X. A compact circularly polarized slotted slit microstrip patch antenna. In Proceeding of the Asia-Pacific Microwave Conference. Dec. 2011, p. 582–585. INSPEC Accession number: 15655685
  15. GAUTAM, A. K., KUNWAR, A., KANAUJIA, B. K. Circularly polarized arrowhead shape slotted microstrip antenna. IEEE Antennas and Wireless Ppropagation Letters, 2014, vol. 13, p. 471–474. DOI: 10.1109/LAWP.2014.2309719
  16. ANGUERA, J., BOADA, L., PUENTE, C., et al. Stacked Hshaped microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 4, p. 983–993. DOI: 10.1109/TAP.2004.825812

Keywords: Circularly polarized, microstrip antenna, radio frequency identification

K. S. Cheng, E. H. Lim, Y. N. Phua [references] [full-text] [DOI: 10.13164/re.2017.1033] [Download Citations]
Circularly Polarized Suspended Patch Antenna Fed by Modified L-Probe for UHF RFID Reader

Two reader antennas, which are designed using the L-probe-fed suspended patch, are designed for the UHF band. To generate circular polarization, the L-shaped probe is modified by including an extra bend to provide one more degree of tuning freedom to the reflection coefficient without affecting the axial-ratio performance much. The proposed single-element reader antenna is able to achieve a CP bandwidth of 5.5 % (890 MHz - 940 MHz) and a maximum antenna gain of 9.7 dBi. When designed into a 2x2 array, the proposed reader antenna is able to produce CP bandwidth of 5.3 % (910 MHz - 960 MHz) with an antenna gain of 14.7 dBi. The read ranges of the proposed antenna and its array are 6.3 m and 10.9 m, respectively.

  1. KARMAKAR, N. Handbook of Smart Antennas for RFID Systems. Hoboken (NJ, USA): Wiley, 2010. ISBN: 978-0-470- 38764-1
  2. LU, Y., CUI, H., SUN, X., XU, M., YIN, Y. A simple UHF RFID circularly-polarized reader antenna design. In 2011 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS). 2011. DOI: 10.1109/EDAPS.2011.6213755
  3. WANG, Z., FANG, S., FU, S., MUJIE, F. Single-fed single-patch broadband circularly polarized antenna for UHF RFID reader applications. In 2010 2nd International Conference on Industrial and Information Systems. Dalian (China), 2010. DOI: 10.1109/INDUSIS.2010.5565908
  4. WANG, Z., FANG, S., FU, S., FU, S., JIA, S. Single-fed broadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 4, p. 1066–1073. DOI: 10.1109/TMTT.2011.2114010
  5. SIM, C., HSU, Y., YANG, G. Slits loaded circularly polarized universal UHF RFID reader antenna. Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 827–830. DOI: 10.1109/LAWP.2014.2382557
  6. ANJU MARIA, VISHNUPRIYA, V., AJU JOHN, K. K., et al. Dual band circularly polarized truncated patch antenna for RFID reader and WiMAX applications. In The 2nd International Conference on Electronics and Communication Systems (ICECS). Coimbatore (India), 2015. DOI: 10.1109/ECS.2015.7124996
  7. WANG, B., HE, Z., LIU, H., OKUNO, Y., HE, S. A wideband circularly polarized antenna with Wilkinson feed network for worldwide UHF band RFID reader. In Progress In Electromagnetics Research Proceedings. Prague (Czech Republic), 2015. 4 p.
  8. NORZELI, S., ISMAIL, I., BUSU, M. Designing an UHF RFID reader antenna. In IEEE Symposium on Humanities, Science and Engineering Research. Kuala Lumpur (Malaysia), 2012. DOI: 10.1109/SHUSER.2012.6268894
  9. CHEN, Z. N., QING, X., CHUANG, H. L. A universal UHF RFID reader antenna. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, p. 1275–1282. DOI: 10.1109/TMTT.2009.2017290
  10. BOO, Y., NASIMUDDIN, CHEN, Z., ALPHONES, A. Broadband circularly polarized microstrip antenna for RFID reader applications. In Asia Pacific Microwave Conference. Singapore, 2009, p. 625–628. DOI: 10.1109/APMC.2009.5384142
  11. KRUEKAEW, A., PHONGCHAROENPANICH, C. Linear/circular polarization switchable antenna for UHF RFID reader. In International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS). Chiang Mai (Thailand), 2011, 4 p. DOI: 10.1109/ISPACS.2011.6146207
  12. VIJITSULAKKANA, P., THAIWIROT, W., AKKARAEKTHALIN, P., CHAIMOOL, S., UHF RFID reader using slanted slot patch metasurface on microstrip patch antenna. In IEEE Conference on Antenna Measurements & Applications (CAMA). Chiang Mai (Thailand), 2015, 3 p. DOI: 10.1109/CAMA.2015.7428134
  13. LUK, K. M., MAK, C. L., CHOW, Y. L., LEE, K. F. Broadband microstrip patch antenna. Electronics Letters, 1998, vol. 34, no. 15, p. 1442 to 1443. DOI: 10.1049/el:19981009
  14. LUK, K. M., LEE, K. F., LAI, H. W. Development of wideband Lprobe coupled patch antenna. The Applied Computational Electromagnetics Society (ACES) Journal, 2007, vol. 22, no. 1, p. 88–96. ISSN: 1054-4887
  15. XU, J. F., CHEN, Z. N., QING, X. M. A broadband circularly polarized antenna. In 2012 IEEE Asia-Pacific Conference on Antennas and Propagation. Singapore, 2012, 2 p. DOI: 10.1109/APCAP.2012.6333131
  16. CHEN, C., CHEN, B., SIM, C. Broadband circularly polarized stacked patch antenna for universal UHF RFID applications. IEICE Transactions on Communications, 2016, vol. E99, no. 1, p. 2–8. DOI: 10.1587/transcom.2015ISI0001
  17. SIM, C. Y. D., HSU, Y. W. Circularly polarized equilateral triangle patch antenna for UHF RFID reader applications. In Loughborough Antennas & Propagation Conference (LAPC). Loughborough (UK), 2013, p. 397–399. DOI: 10.1109/LAPC.2013.6711928
  18. YEH, C. H., CHEN, B. S., CHEN, C. C., SIM, C. Y. D. L-shaped probe feed patch antenna with circular polarization radiation for UHF RFID applications. In IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). Taipei (Taiwan), 2015, p. 214–215. DOI: 10.1109/IMWSBIO.2015.7303853
  19. WONG, H., LAU, K. L., LUK, K. M. Design of dual-polarized Lprobe patch antenna arrays with high isolation. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 1, p. 45–52. DOI: 10.1109/TAP.2003.822402
  20. GAO, L., WANG, K. X., LAI, H. W., SO, K. K., WONG, H., XUE, Q., ZHANG, X. Y. Microstrip patch antenna with differential L-probe fed for wideband application. In Cross Strait Quad-Regional Radio Science and Wireless Technology Conference. New Taipei City (Taiwan), 2012, p. 172–174. DOI: 10.1109/CSQRWC.2012.6295000
  21. CAO, R., YU, S. Circularly polarized monopole slot antenna for UHF RFID reader. Microwave and Optical Technology Letters, 2016, vol. 58, no. 5, p. 1102–1105. DOI: 10.1002/mop.29758
  22. HUANG, G. L., SIM, C. Y. D., LIN, C. W., GAO, M. J. Lowprofile UHF RFID reader antenna with CP radiation and coupled feeding technique. International Journal of RF and Microwave Computer-Aided Engineering, 2016, vol. 26, no. 9, p. 819–828. DOI: 10.1002/mmce.21034

Keywords: UHF reader antenna, L-probe-fed patch, circularly polarized reader antenna

L. L. Cong, X. Y. Cao, T. Song [references] [full-text] [DOI: 10.13164/re.2017.1041] [Download Citations]
Ultra-Wideband RCS Reduction and Gain Enhancement of Aperture-Coupled Antenna Based on Hybrid-FSS

A novel design of aperture-coupled microstrip antenna with ultra-wideband low radar cross section (RCS) is proposed. Hybrid frequency selective surface (FSS) structures consisting of two kinds of polarization-dependent folded split ring resonators (PDFSRRs) and square patches are utilized to replace the conventional metallic ground. By orthogonally arranging the PDFSRRs in a chessboard-like configuration, the band-stop characteristic contributes to the gain enhancement, while the zero degree points of reflection phase and wave-transmission characteristic are utilized to achieve RCS reduction both in-band and out-of-band. Furthermore, with square patches periodically etched on the bottom of FSS structure, a new zero degree reflection phase is introduced to enhance the effect of RCS reduction. Full wave simulations and measurements demonstrate that the proposed antenna achieves RCS reduction from 1 GHz to 18 GHz and gain enhancement compared with traditional microstrip antenna.

  1. JIANG, W., LIU, Y., GONG, S. X., HONG, T. Application of bionics in antenna radar cross section reduction. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1275–1278. DOI: 10.1109/LAWP.2009.2037168
  2. THAKARE, Y. B., RAJKUMAR. Design of fractal patch antenna for size and radar cross-section reduction. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 2, p. 175–181. DOI: 10.1049/iet-map.2008.0325
  3. ZHAI, H., ZHAN, C., LI, Z., LIANG, C. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 241–244. DOI: 10.1109/LAWP.2014.2361011
  4. FANTE, R. L., MCCORMACK, M. T. Reflection properties of the Salisbury screen. IEEE Transactions on Antennas and Propagation, 1988, vol. 36, no. 10, p. 1443–1454. DOI: 10.1109/8.8632
  5. XU, H.-X., WANG, G.-M., QI, M.-Q., et al. Triple-band polarization-insensitive wide-angle ultraminiature metamaterial transmission line absorber. Phyical Review B, 2012, vol. 86, no. 20, p. 205104-(1–10). DOI: 10.1103/PhysRevB.86.205104
  6. WANG, B. Y., LIU, S. B., BIAN, B. R., et al. A novel ultrathin and broadband microwave metamaterial absorber. Journal of Applied Physics, 2014, vol. 116, no. 9, p. 094504-(1–7). DOI: 10.1063/1.4894824
  7. COSTA, F., MONORCHIO, A. Multiband electromagnetic wave absorber based on reactive impedance ground planes. IET Microwave, Antennas and Propagation, 2010, vol. 4, no. 11, p. 1720–1727. DOI: 10.1049/iet-map.2009.0359
  8. LIU, T., CAO, X. G., GAO, J., et al. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 3, p. 1479–1484. DOI: 10.1109/TAP.2012.2231922
  9. TURPLIN, J. P., SIEBER, P. E., WERNER, D. H. Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p.1456–1459. DOI: 10.1109/LAWP.2013.2288682
  10. JIA, Y. T., LIU, Y., WANG, H., GONG, S. X. Low RCS microstrip antenna using polarization-dependent frequency selective surface. Electronic Letters, 2014, vol. 50, no. 14, p. 978–979. DOI: 10.1049/el.2014.1003
  11. EDALATI, A., SARABANDI, K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 747–754. ISSN: 0018-926X. DOI: 10.1109/TAP.2013.2291236
  12. PAQUAY, M., IRIARTE, J. C., EDERRA, I., GONZALO, R., DE MAAGT, P. Thin AMC structure for radar cross-section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306
  13. IRIARTE GALARREGUI, J. C., TELLECHEA PEREDA, A., MARTINEZ DE FALCON, J. L. et al. Broadband radar crosssection reduction using AMC technology. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6136–6143. DOI: 10.1109/TAP.2013.2282915
  14. LI, M., XIAO, S., BAI, Y. Y., WANG, B. Z. An ultrathin and broadband radar absorber using resistive FSS. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 748–751. DOI: 10.1109/LAWP.2012.2206361
  15. XIE, D. P., LIU, X. G.,GUO, H. P., et al. Wideband absorber with multi-resonant gridded-square FSS for antenna RCS reduction. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 629–632. DOI: 10.1109/LAWP.2016.2594213
  16. AL-SHEIKH, A., SHEN, Z. X. Design of wideband bandstop frequency-selective structures using stacked parallel strip line arrays. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 8, p. 3401–3409. DOI: 10.1109/TAP.2016.2570247
  17. JIA, Y. T., LIU, Y., WANG, H., et al. Low RCS high-gain and wideband mushroom antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 277–280. DOI: 10.1109/LAWP.2014.2363071
  18. PAN, W. B., HUANG, C., CHEN, P., et al. A low-RCS and highgain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 945–949. DOI: 10.1109/TAP.2013.2291008
  19. HU, S. M., CHEN, H. H., LAW, C. L., et al. Backscattering cross section of ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 2007, vol. 6, p. 70–73. DOI: 10.1109/LAWP.2007.893069
  20. YANG, S. T., LING, H. RCS of a microstrip leaky-wave antenna. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 35–38. DOI: 10.1109/LAWP.2012.2236677
  21. GENOVESI, S., COSTA, F., MONORCHIO, A. Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2327–2335. DOI: 10.1109/TAP.2012.2189701

Keywords: Ultra-wideband, frequency selective surface, polarization dependent, radar cross section, split ring resonator

C. Han, L. Wang, Z. Zhang, J. Xie, Z. Xing [references] [full-text] [DOI: 10.13164/re.2017.1048] [Download Citations]
Linear Array Pattern Synthesis Using An Improved Multiobjective Genetic Algorithm

In this paper, we propose an improved nondominated sorting genetic algorithm-II with scope constrained (INSGA-II/SC) with three modifications, which are dynamic nondomination strategy, scope-constrained strategy, and front uniformly distributed strategy. Here, the metric for multiobjective optimization mainly focuses on the computation complexity, convergence, and diversity of the final solutions. For a large search space in the initial process and a fast convergence in the last process, dynamic nondomination factor is considered in the rank operator. We can find a manageable number of Pareto solutions that are in the constrained scope instead of the entire Pareto front (PF) to reduce the computation complexity by scope-constrained strategy. In order to obtain a high performance for good representatives of the entire PF, the solutions closer to the uniformly distributed points on the current front will be chosen. In this paper, the proposed methods and two efficient multiobjective optimization methods are used for the optimization of mathematical problems and array pattern synthesis with lower side lobe level (SLL) and null. Numerical examples show that INSGA-II/SC has a high performance of diversity and convergence for the final solutions when compared with the other techniques published in the literature.

  1. KHODIER, M. M., CHRISTIDOULOU, C. G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 8, p. 2674–2679. DOI: 10.1109/TAP.2005.851762
  2. GUNEY, K., DURMUS, A. Pattern nulling of linear antenna arrays using backtracking search optimization algorithm. International Journal of Antennas and Propagation, 2015, p. 1–10. DOI: 10.1155/2015/713080
  3. BHATTACHARYA, R., BHATTACHARYYA, T. K., GARG, R. Position mutated hierarchical particle swarm optimization and its application in synthesis of unequally spaced antenna arrays. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3174–3181. DOI: 10.1109/TAP.2012.2196917
  4. PANDURO, M. A., COVARRUBIAS, D. H., BRIZUELA, C. A., et al. A multi-objective approach in the linear antenna array design.AEU-International Journal of Electronics and Communications, 2005, vol. 59, no. 4, p. 205–212. DOI 10.1016/j.aeue.2004.11.017
  5. CIVICIOGLU, P. Circular antenna array design by using evolutionary search algorithms. Progress in Electromagnetics Research B, 2013, no. 54, p. 265–284. ISSN: 19376472
  6. PANDURO, M. A., BRIZUELA, C. A., COVARRUBIAS, D. H. Design of electronically steerable linear arrays with evolutionary algorithms. Applied Soft Computing, 2008, vol. 8, no. 1, p. 46–54. DOI: 10.1016/j.asoc.2006.10.011
  7. PANDURO, M. A., BRIZUELA, C. A. Evolutionary multi-objective design of non-uniform circular phased arrays. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2008, vol. 27, no. 2, p. 551–566. DOI: 10.1108/03321640810847823
  8. KADLEC, P., RAIDA, Z. Self-organizing migrating algorithm for optimization with general number of objectives. In Proceedings of the 22nd International Conference, Radioelektronika 2012, Brno, 2012, p. 111–115. ISBN: 9788021444683
  9. JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D., et al. A multipurpose genetically engineered microstrip patch antennas: bandwidth, gain, and polarization. Microwave and Optical Technology Letters, 2017, vol. 59, no. 4, p. 941–949. DOI 10.1002/mop.30439
  10. DEB, K., PRATAP, A., AGARWAL, S., et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, p. 182–197. DOI: 10.1109/4235.996017
  11. OUYANG, J., YANG, F., YANG, S. W., et al. The improved NSGA-II approach. Journal of Electromagnetic Waves and Applications, 2008, vol. 22, no. 11, p. 163–172. DOI: 10.1163/156939308784160703
  12. JIANG, L., CUI, J., SHI, L., et al. Pareto optimal design of multilayer microwave absorbers for wide-angle incidence using genetic algorithms. IET Microwaves Antennas and Propagation, 2009, vol. 3, no. 4, p. 572–579. DOI: 10.1049/iet-map.2008.0059
  13. JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D. Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering, 2013, vol. 22, no. 3, p. 700–707. ISSN: 1210-2512
  14. OUYANG, J., YUAN, Q. R., YANG, F., et al. Synthesis of conformal phased array with improved NSGA-II algorithm. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 12, p. 4006–4009. DOI: 10.1109/TAP.2009.2026714
  15. BIANCHI, D., GENOVESI, S., MONORCHIO, A. A multi-objective genetic algorithm applied to array synthesis at multiple frequencies. In Proceeding of IEEE Antennas and Propagation International Symposium /USNC/URSI National Radio Science Meeting, N Charleston, SC, 2009, p. 1172–1175. ISBN: 978-1-4244-3646-0
  16. LIU, L., LU, J., YANG, S. Many-objective optimization of antenna arrays using an improved multiple-single-objective pareto sampling algorithm. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 399–402. DOI: 10.1109/LAWP.2012.2193653
  17. BIANCHI, D., FONTANA, N., GENOVESI, S., et al. Multi-objective optimization of wideband spiral arrays. In Proceeding of the 2010 IEEE Antennas and Propagation Society International Symposium, Canada, 2010, p. 1–4. ISBN: 978-1-4244-4968-2
  18. ADRA, S. F., FLEMING, P. J. Diversity management in evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation, 2011, vol. 15, no. 2, p. 183–195. DOI: 10.1109/TEVC.2010.2058117
  19. ZHANG, L., JIAO, Y. C., CHEN, B., et al. Multiobjective optimization design of concentric ring arrays with 3D beam scanning using differential evolution algorithm. International Journal of Numerical Modelling-Electronic Networks Devices and Fields, 2013, vol. 26, no. 6, p. 602–619. DOI: 10.1002/jnm.1864
  20. GUNES, F., TOKAN, F. Pareto optimal synthesis of the linear array geometry for minimum sidelobe level and null control during beam scanning. International Journal of RF and Microwaves Computer-Aided Engineering, 2010, vol. 20, no. 5, p. 557–566. DOI: 10.1002/mmce.20461
  21. GOUDOS, S. K., GOTSIS, K. A., SIAKAVARA, K., et al. A multi-objective approach to subarrayed linear antenna arrays design based on memetic differential evolution. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 6, p. 3042–3052. DOI: 10.1109/TAP.2013.2254437
  22. CHENG, Y. F., SHAO, W., ZHNAG, S. J., et al. An improved multi-objective genetic algorithm for large planar array thinning. IEEE Transactions on Magnetics, 2016, vol. 52, no. 3. DOI: 10.1109/TMAG.2015.2481883
  23. OUYANG, J., LUO, X., YANG, J., et al. Analysis and synthesis of conformal conical surface linear phased array with volume surface integral equation plus AEP (Active Element Pattern) and INSGA-II. IET Microwaves Antennas and Propagation, 2012, vol. 6, no. 11, p. 1277–1285. DOI: 10.1049/iet-map.2012.0054
  24. ZHANG, Q. F., LI, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, vol. 11, no. 6, p. 712–731. DOI: 10.1109/TEVC.2007.892759
  25. HAN, C., WANG, L. Array pattern synthesis using particle swarm optimization with dynamic inertia weight. International Journal of Antennas and Propagation, 2016, 7 p. DOI: 10.1155/2016/1829458
  26. YUAN, Y., XU, H., WANG, B., et al. Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Transactions on Evolutionary Computation, 2016, vol. 20, no. 2, p. 180–198. DOI: 10.1109/TEVC.2015.2443001
  27. DEB, K., JAIN, H. An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, vol. 18, no. 4, p. 577–601. DOI: 10.1109/TEVC.2013.2281535
  28. DEB, K. Multi-objective Optimization using Evolutionary Algorithms. Chichester: John Wiley and Sons, 2001. ISBN: 978-0-471-87339-6
  29. COELLO, C. A. C., LAMONT, G. B., VELDHUIZEN, D. A. V. Evolutionary Algorithms for Solving Multi-objective Problems. New York: Springer, 2007. ISBN: 978-0-387-36797-2
  30. CAI, Q., GONG, M. G., RUAN, S. S., et al. Network structural balance based on evolutionary multiobjective optimization: a two-step approach. IEEE Transactions on Evolutionary Computation, 2015, vol. 19, no. 6, p. 903–916. DOI: 10.1109/TEVC.2015.2424081

Keywords: Multiobjective optimization, convergence, diversity, array pattern synthesis, genetic algorithm

P. Lopato, M. Herbko [references] [full-text] [DOI: 10.13164/re.2017.1060] [Download Citations]
Microwave Structural Health Monitoring Sensor for Deformation Measurement of Bended Steel Structures: Influence of Curvature Effect

In this paper the utilization of microstrip antenna sensor for deformation monitoring in bended steel structures is presented. This kind of sensing element can be used in structural health monitoring systems. Deformation measurement by patch sensor is based on the reflection coefficient S11 investigation. So far, relationship between resonant frequency and change of patch dimensions was considered in literature only for planar microstrip sensors. In case of samples subjected to bending process the sensor geometry became non-planar. This fact affects measured resonant frequency, thus it should be studied. In order to analyse influence of patch sensor curvature on resonant frequency during bending process Finite Element Method (FEM) simulations were carried out. Results of analysis were experimentally verified.

  1. NI, Y.Q., WONG, K. Y. Integrating bridge structural health monitoring and condition-based maintenance management. In Proceedings of the 4th International Workshop on Civil Structural Health Monitoring. Berlin (Germany), Nov 2012. ISBN: 9783940283450
  2. RAINIERI, C., FABBROCINO, G., COSENZA, E. Structural health monitoring systems as a tool for seismic protection. In Proceedings of the 14th World Conference on Earthquake Engineering. Beijing (China), Nov 2008.
  3. WILDE, K. Structural health monitoring systems for buildings. Systemy monitoringu obiektow budowlanych (Systemy monitoringu obiektow), XXVI Konferencja Naukowo-Techniczna, awarie budowlane. Międzyzdroje (Poland), 2013, p. 123–140. ISBN: 978-83-7663-151-6 (in Polish)
  4. BOCKENHEIMER, C., SPECKMANN, H., SHM AIRBUS/IW TEAM. Validation, verification and implementation of SHM at Airbus. In 9th International Workshop on Structural Health Monitoring. Stanford (USA), Sep 2013.
  5. CELEBI, M. Seismic instrumentation of buildings (with emphasis on federal buildings). Technical Report No.0-7460-68170, United States Geological Survey, Menlo Park (USA), 2002.
  6. LYNCH, J. P., LOH, K. J. A summary review of wireless sensors and sensor networks for structural health monitoring. The Shock and Vibration Digest, 2006, vol. 38, no. 2, p. 91–128. DOI: 10.1177/0583102406061499
  7. LYNCH, J. P., PARTRIDGE, A., LAW, K. H., et al. Design of piezoresistive MEMS-based accelerometer for integration with wireless sensing unit for structural monitoring. Journal of Aerospace Engineering, 2003, vol. 16, no. 3, p. 1–7. DOI: 10.1061/(ASCE)0893-1321(2003)16:3(108)
  8. UGALDE, U., ANDUAGA, J., MARTINEZ, F., et al. Novel SHM method to locate damages in substructures based on VARX models. Journal of Physics: Conference Series, 2015, vol. 628. DOI: 10.1088/1742-6596/628/1/012013
  9. HOU, J. JANKOWSKI, L., OU, J. Structural damage identification by adding virtual masses. Structural and Multidisciplinary Optimization, 2013, vol. 48, no. 1, p. 59–72. DOI: 10.1007/s00158-012-0879-0
  10. DALIRI, A., GALEHDAR, A., ROWE, W. S., et al. Utilising microstrip patch antenna strain sensors for structural health monitoring. Journal of Intelligent Material Systems and Structures, 2011, vol. 23, no. 2, p. 169–182. DOI: 10.1177/1045389X11432655
  11. TATA, U. S. Study of Patch Antennas for Strain Measurement. University of Texas, Arlington (USA), August 2008.
  12. WANG, W., GE, H., LIU, T., et al. Study of patch antennas for strain measurement. Electromagnetic Nondestructive Evaluation (XVIII), 2015, vol. 40, p. 313–321. DOI: 10.3233/978-1-61499- 509-8-313
  13. SHARAMA, N., THAKARE, V. V. Analysis of microstrip rectangular patch antenna as a strain sensor. International Journal of Research in Electronic and Communication Technology, 2015, vol. 2, no. 2, p. 17–19. ISSN : 2348-9065
  14. HUANG, H. Flexible wireless antenna sensor: A review. IEEE Sensors Journal, 2013, vol. 13 no. 10, p. 3865–3872. DOI: 10.1109/JSEN.2013.2242464
  15. DALIRI, A., GALEHDAR, A., JOHN, S., et al. Slotted circular microstrip patch antenna application in strain based structural health monitoring. In Proceedings of the 14th Australian International Aerospace Congress. Melbourne (Australia), 2011. 12 p. ISBN: 9780987086310
  16. DALIRI, A., WANG, C. H., JOHN, S., et.al. Multidirectional circular microstrip patch antenna strain sensor. In Proceedings of ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Scottsdale (USA), Sep 2011, p. 481–487. DOI: 10.1115/SMASIS2011-5065
  17. DALIRI, A., JOHN, S., GALEHDAR, A., et al. Strain measurement in composite materials using microstrip patch antennas. In Proceedings of ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Philadelphia (USA), Sep. 2010, p. 591–598. DOI: 10.1115/SMASIS2010-3703
  18. DALIRI, A., GALEHDAR, A., JOHN, S., et al. Circular microstrip patch antenna strain sensor for wireless structural health monitoring. In The World Congress on Engineering. London (UK), June 2010, p. 1173–1178. ISBN: 9789881821072
  19. BENCHIROUF, A., ZICHNER, R., MULLER, C., et al. Electromagnetic simulation of flexible strain sensor based microstrip patch antenna. International Journal of Microwave and Optical Technology, 2015, vol. 10, no. 6-I, p. 397–401. ISSN: 1553-0396
  20. LOPATO, P., PSUJ, G., HERBKO, M., et al. Evaluation of stress in steel structures using electromagnetic methods based on utilization of microstrip antenna sensor and monitoring of AC magnetization process. Informatics, Control, Measurement in Economy and Environment Protection IAPGOS, 2016, vol. 6, no. 4, p. 32–36. DOI: 10.5604/01.3001.0009.5186
  21. PSUJ, G., SZYMANIK, B., LOPATO, P., et al. Multimodal monitoring of damage in steel construction elements during fatigue life. Welding Technology Review, 2016, vol. 88, no. 10, p. 108–113. ISSN: 2449-7959 (in Polish)
  22. SZYMANIK, B., PSUJ, G., LOPATO, P., et al. Multimodal fatigue progress monitoring of construction steel elements. Archives QIRT 2016. ISSN: 2371-4085. DOI: 10.21611/qirt.2016.039
  23. DALIRI, A. JOHN, S., WANG, C. H., et al. Wireless strain sensors using electromagnetic resonators. In Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Stone Mountain (USA), Sep 2012, p. 665–669. DOI: 10.1115/SMASIS2012-7954
  24. DALIRI, A., GALEHDAR, A., JOHN, S., et al. Wireless strain measurement using circular microstrip patch antennas. Sensors and Actuators A: Physical, 2012, vol. 184, no. 9, p. 86–92. DOI: 10.1016/j.sna.2012.07.003
  25. LANTZ, G. Crack Detection using a Passive Wireless Strain Sensor. Georgia Institute of Technology, 2011.
  26. YI, X., WU, T., WANG, Y., LEON, R. T., et al. Passive wireless smart-skin sensor using RFID-based folded patch antenna. International Journal of Smart and Nano Materials, 2011, vol. 2, no. 1, p. 22–38. DOI: 10.1080/19475411.2010.545450
  27. TATA, U., HUANG, H., CARTER, R. L., et al. Exploiting a patch antenna for strain measurements. Measurement Science and Technology, 2008, vol. 20, no. 1, p. 1–7. DOI: 10.1088/0957- 0233/20/1/015201
  28. WONG, K. Design of Nonplanar Microstrip Antennas and Transmission Lines. Wiley, 1999. ISBN: 978-0-471-18244-3
  29. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken: John Wiley & Sons, 2005. ISBN: 978-1-119-09493-7
  30. PITRA, K., RAIDA, Z., LACIK, J. Low-profile circularly polarized antenna exploiting Fabry-Perot resonator principle. Radioengineering, 2015, vol. 24 no. 4, p. 898–905. DOI: 10.13164/re.2015.0898
  31. BARTYZAL, J., BOSTIK, T., KOVACS, P., et al. Antenna arrays for tactical communication systems: A comparative study. Radioengineering, 2011, vol. 20, no. 4, p. 817–827.
  32. KOUMASIS, A. CHRONOPOULOS, S. K., ANGELIS, C. T., et al. Smart antennas with E-shaped patch for 3G applications. WSEAS Transactions on Communications, 2006, vol. 5, no. 9, p. 1636–1641.
  33. Structural Mechanics Module User’s Guide, COMSOL Multiphysics 5.2
  34. RF Module User’s Guide, COMSOL Multiphysics 5.2
  35. RAPTIS, V., TATSIS, G., CHRONOPOULOS, S. K., et al. Development and experimental measurements of a tunable antenna. Communications and Network, 2013, vol. 5, no. 3, p. 220–224. DOI: 10.4236/cn.2013.53026
  36. RAPTIS, V., TATSIS, G., VOTIS, C., et al. Active tuning antennas for wireless communication. In AIP Conference Proceedings, 2010, vol. 1203, no. 1, p. 1058–1062. DOI: 10.1063/1.3322310
  37. ELFERGANI, I., HUSSAINI, A. S., RODRIGUEZ, J., et al. Wideband tunable PIFA antenna with loaded slot structure for mobile handset and LTE applications. Radioengineering, 2014, vol. 23, no. 1, p. 345–355. ISSN: 1210-2512

Keywords: Microstrip antenna sensor, nondestructive testing, deformation measurement, structural health monitoring, microwave technique

R. K. Barik, S. S. Karthikeyan [references] [full-text] [DOI: 10.13164/re.2017.1067] [Download Citations]
Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  1. ANG, K. S., LEE, C. H., LEONG, Y. C. A broad-band quarter-wavelength impedance transformer with three reflection zeros within passband. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 12, p. 2640–2644. DOI: 10.1109/TMTT.2004.837310
  2. KIM, P., CHAUDHARY, G., JEONG, Y. Wideband impedance transformer with out-of-band suppression characteristics. Microwave and Optical Technology Letters, 2014, vol. 56, no. 11, p. 2612–2616. DOI: 10.1002/mop.28664
  3. WU Q. S., ZHU, L. Wideband impedance transformers with good frequency selectivity based on multi-section quarter-wave lines and short circuited stubs. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 5, p. 337–339. DOI: 10.1109/LMWC.2016.2548986
  4. DARRAJI, R., HONARI, M. M., MIRZAVAND, R., et al. Wideband two-section impedance transformer with flat real-to-real impedance matching. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 5, p. 313–315. DOI: 10.1109/LMWC.2016.2548997
  5. ANG, K. S., LEE, C. H., LEONG, Y. C. Analysis and design of coupled line impedance transformers. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest. 2004, p. 1951–1954. DOI: 10.1109/MWSYM.2004.1338992
  6. NGUYEN, H. T., ANG, K. S., NG, G. I. Design of coupled three-line impedance transformers. IEEE Microwave and Wireless Components Letters, 2004, vol. 24, no. 2, p. 84–86. DOI: 10.1109/LMWC.2013.2290215
  7. CHEN, M. G., HOU, T. B., TANG, C. W. Design of planar complex impedance transformers with the modified coupled line. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 2, no. 10, p. 1704–1710. DOI: 10.1109/TCPMT.2012.2207457
  8. EHSAN, N., HSIEH, W. T., MOSELEY, S. H., et al. Broadband planar 5:1 impedance transformer. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 10, p. 636–638. DOI: 10.1109/LMWC.2015.2463106
  9. KIM, P., CHAUDHARY, G., JEONG, Y. Enhancement impedance transforming ratios of coupled line impedance transformer with wide out of band suppression characteristics. Microwave and Optical Technology Letters, 2015, vol. 57, no. 7, p. 1600–1603. DOI: 10.1002/mop.29144
  10. KIM, P., CHAUDHARY, G., JEONG, Y. Ultra-high transforming ratio coupled line impedance transformer with bandpass response. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 7, p. 445–447. DOI: 10.1109/LMWC.2015.2429075
  11. WU, Q. S., ZHU, L. Short-ended coupled-line impedance transformers with ultra-high transforming ratio and bandpass selectivity suitable for large load impedances. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 6, no. 5, p. 767–774. DOI: 10.1109/TCPMT.2016.2551731
  12. CHUANG, M. L. Dual-band impedance transformer using twosection shunt stubs. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 5, p. 1257–1263. DOI: 10.1109/TMTT.2010.2045560
  13. NIKRAVAN, M. A., ATLASBAF, Z. T-section dual-band impedance transformer for frequency-dependent complex impedance loads. Electronics Letters, 2011, vol. 47, no. 9, p. 551–553. DOI: 10.1049/el.2010.7452
  14. MANOOCHEHRI, O., ASOODEH, A., FOROORAGHI, K. Pi-model dual-band impedance transformer for unequal complex impedance loads. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 4, p. 238–240. DOI: 10.1109/LMWC.2015.2400933
  15. BARIK, R. K., BISHOYI, P. K., KARTHIKEYAN, S. S. Design of a novel dual-band impedance transformer. In Proceedings of the International Conference on Electronics, Computing and Communication Technologies (CONECCT). 2015, p. 1–4. DOI: 10.1109/CONECCT.2015.7383868
  16. CHUANG, M. L., WU, M. T. General dual-band impedance transformer with a selectable transmission zero. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 6, no. 7, p. 1113–1119. DOI: 10.1109/TCPMT.2016.2572220
  17. BARIK, R. K., SIDDIQUI, R., KUMAR, K. V. P., et al. Design of a novel dual-band low noise amplifier incorporating dual-band impedance transformer. In Proceedings of the International Conference on Signal Processing and Communications (SPCOM). 2016, p. 1–5. DOI: 10.1109/SPCOM.2016.7746652
  18. MAKTOOMI, M. A., HASHMI, M. S., GHANNOUCHI, F. M. Improving load range of dual-band impedance matching networks using load-healing concept. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, vol. 64, no. 2, p. 126–130. DOI: 10.1109/TCSII.2016.2551547
  19. RAWAT, K., GHANNOUCHI, F. M. Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design. IET Microwaves, Antennas Propagation, 2011, vol. 5, no. 14, p. 1720–1729. DOI: 10.1049/iet-map.2011.0099
  20. CHOW, Y. L., WAN, K. L. A transformer of one-third wavelength in two sections - for a frequency and its first harmonic. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 1, p. 22–23. DOI: 10.1109/7260.975723
  21. MONZON, C. Analytical derivation of a two-section impedance transformer for a frequency and its first harmonic. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 10, p. 381–382. DOI: 10.1109/LMWC.2002.804558
  22. MONZON, C. A small dual-frequency transformer in two sections. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1157–1161. DOI: 10.1109/TMTT.2003.809675
  23. ORFANIDIS, S.J. A two-section dual-band Chebyshev impedance transformer. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 9, p. 382–384. DOI: 10.1109/LMWC.2003.817135
  24. POZAR, D. M. Microwave Engineering. 2nd ed., New York (USA): Wiley, 1998. ISBN: 9780890067666

Keywords: Impedance transformer, dual-frequency, ultra-high transforming ratio, coupled-line, transmission line

N. Noori [references] [full-text] [DOI: 10.13164/re.2017.1075] [Download Citations]
Green Femtocell Networks through Joint Power Control and 3-Dimensional Pattern-Dependent Beamforming

Femtocell technologies are used to extend radio coverage into buildings and provide wireless broadband access in residential, office or indoor hotspot environments. However, due to the radio spectrum scarcity, the femtocells reuse the same licensed spectrum bands of the macrocells. Thus interference management is one of the main challenges under such co-channel deployment of the femtocells. In this paper, we propose a new joint power control and 3-dimensional (3D) pattern-dependent beamforming algorithm to minimize total power consumption of the femtocells deployed in a macrocellular environment. This algorithm can help us achieve the goal of green communication and significantly reduce power consumption of the overall radio access networks. The algorithm is based on an iterative scheme for a downlink case where all femtocell access points (FAPs) and macro base stations (BSs) are equipped with multiple antennas. By considering radiation pattern of all antennas, the scheme tries to find the optimal 3D beamforming weights and transmission power of all FAPs and BSs while satisfying minimum signal-to-interference-plus-noise ratio (SINR) requirements of both macrocell and femtocell networks. Simulations are conducted in various scenarios to evaluate performance of the proposed algorithm.

  1. CHANDRASEKHAR, V., ANDREWS, J. G., GATHERER, A. Femtocell networks: a survey. IEEE Communications Magazine, 2008, vol. 46, no. 9, p. 59–67. DOI: 10.1109/MCOM.2008.4623708
  2. CLAUSSEN, H., HO, L. T. W., SAMUEL, L. G. An overview of the femtocell concept. Bell Labs Technical Journal, 2008, vol. 13, no. 1, p. 221–245. DOI: 10.1002/bltj.20292
  3. ZHANG J., DE LA ROCHE, G. Femtocells: Technologies and Deployment. John Wiley & Sons, 2010. ISBN: 978-0-470-74298-3
  4. ZAHIR, T., ARSHAD, K., NAKATA, A., MOESSNER, K. Interference management in femtocells. IEEE Communications Surveys and Tutorials, 2013, vol. 15, no. 1, p. 293–311. DOI: 10.1109/SURV.2012.020212.00101
  5. KAUFMAN, B. LILLEBERG, J. AAZHANG, B. Femtocell architectures with spectrum sharing for cellular radio networks. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2013, vol. 5, no. 1, p. 66–75. DOI: 10.1007/s12572-013-0083-5
  6. DA COSTA, G. W. O. Dynamic Spectrum Sharing among Femtocells-Coping with Spectrum Scarcity in 4G and Beyond. Ph.D Thesis. Aalborg University, Denmark, 2012. Available at: http://vbn.aau.dk/files/71879264/phdthesis_gustavowagner_final.pdf
  7. JIMING, C., PENG, W., JIE, Z. Adaptive soft frequency reuse scheme for in-building dense femtocell networks. In Proceedings of the IEEE International Conference on Communications in China (ICCC). Aug. 2012, p. 589–593. DOI: 10.1109/CC.2013.6457529
  8. ELEBI, Y., LI, H., DANESHMAND, M., WANG, C., ZHAO, W. Energy-efficient femtocell networks: Challenges and opportunities. IEEE Wireless Communications, 2013, vol. 20, no. 6, p. 99–105. DOI: 10.1109/MWC.2013.6704480
  9. MURAKAMI, T., KUDO, R., ISHIHARA, K., HONMA, N., MIZOGUCHI, M. Cooperative interference management by beam tilt and power controls in an indoor multi-cell environment. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), Apr. 2013, p. 643 to 647. ISBN: 978-88-907018-3-2
  10. ZAHIR, T., ARSHAD, K., KO, Y., MOESSNER, K. A downlink power control scheme for interference avoidance in femtocells. In Proceedings of the 7th International Wireless Communications and Mobile Computing Conference (IWCMC). Istanbul (Turkey), July 2011, p. 1222–1226. DOI: 10.1109/IWCMC.2011.5982714
  11. OH, D.-C. LEE, H.-C. LEE, Y.-H. Power control and beamforming for femtocells in the presence of channel uncertainty. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 6, p. 2545–2554. DOI: 10.1109/TVT.2011.2158615
  12. MO, R., QUEK, T. Q. S., HEATH JR., R. W. Robust beamforming and power control for two-tier femtocell networks. In Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC Spring). May 2011, p. 1–5. DOI: 10.1109/VETECS.2011.5956628
  13. OH, D.-C., LEE, H.-C., LEE, Y.-H. Joint power control and spatial beamforming of cognitive radio based femtocell network with limited feedback. In Proceedings of the Korea Information and Communications Society. 2010, vol. 2, p. 69–70. Available at: www.dbpia.co.kr/Article/NODE02084470
  14. CHAN, A. M., LEE, I. A new reduced-complexity sphere decoder for multiple antenna systems. In Proceedings of the IEEE International Conference on Communications (ICC). Apr. 2002, p. 460–464. DOI: 10.1109/ICC.2002.996896
  15. SUNG, H., PARK, S. H., LEE, K. J., LEE, I. Linear precoder designs for K-user interference channels. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 1, p. 291–301. DOI: 10.1109/TWC.2010.01.090221
  16. LEE, H., LEE, B., LEE, I. Iterative detection and decoding with an improved VBLAST for MIMO-OFDM systems. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 3, p. 504–513. DOI: 10.1109/JSAC.2005.862400
  17. ZHENG, W., SU, T., LI, W., LU, Z., WEN, X. Distributed energyefficient power optimization in two-tier femtocell networks. In Proceedings of the IEEE International Conference on Communications (ICC). Apr. 2011, p. 5767–5771. DOI: 10.1109/ICC.2012.6364882
  18. AN, C., XIE, R., JI, H. Pricing and power control for energyefficient radio resource management in cognitive femtocell networks. International Journal of Communication Systems, 2015, vol. 28, no. 4, p. 743–761. DOI: 10.1002/dac.2700
  19. MAO, T., FENG, G., LIANG, L., QIN, S., WU, B. Distributed energy-efficient power control for macro-femto networks. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 2, p. 718–731. DOI: 10.1109/TVT.2015.2402618
  20. LI, Y., JI, X., LIANG, D., LI, Y. Dynamic beamforming for threedimensional MIMO technique in LTE-advanced networks. International Journal of Antennas and Propagation, 2013, 8 p. DOI: 10.1155/2013/764507
  21. RAZAVIZADEH, S. M., AHN, M., LEE, I. Three dimensional beamforming: New enabling technology for fifth generation wireless networks. IEEE Signal Processing Magazine, 2014, vol. 31, no. 6, p. 94–101. DOI: 10.1109/MSP.2014.2335236
  22. ZHANG, Z., TEH, K. C., LI, K. H. Study of three-dimensional beamforming strategies in cellular networks with clustered user distribution. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 12, p. 10208–10213. DOI: 10.1109/TVT.2016.2543259
  23. KYOSTI, P., MEINILA, J., HENTILA, L., et al. WINNER II Channel Models, ver 1.1, 2007.
  24. RASHID-FARROKHI, F., LIU, K. J. R., TASSIULAS, L. Transmit beamforming and power control for cellular wireless systems. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 8, p. 1437–1450. DOI: 10.1109/49.730452
  25. SCHUBERT, M., BOCHE, H. A unifying theory for uplink and downlink multi-user beamforming. In Proceedings of the International Zurich Seminar on Broadband Communication. Feb. 2002, p. 27.1–27.6. DOI: 10.1109/IZSBC.2002.991770
  26. SCHUBERT, M., BOCHE, H. Solution of the multiuser downlink beamforming problem with individual SINR constraints. IEEE Transactions on Vehicular Technology, 2004, vol. 53, no. 1, p. 18 to 28. DOI: 10.1109/TVT.2003.819629

Keywords: Femtocells, power control, 3D beamforming, green communication

S. Ciccia, G. Giordanengo, G. Vecchi [references] [full-text] [DOI: 10.13164/re.2017.1083] [Download Citations]
Open-source implementation of an ad-hoc IEEE802.11a/g/p software-defined radio on low-power and low-cost general purpose processors

This work proposes a low-cost and low-power software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. A state-of-the-art version of the IEEE 802.11 a/g/p software for GNU Radio (a free and open-source software development framework) is available online, but we show here that its computational complexity prevents operations in low-power general purpose processors, even at throughputs below the standard. We therefore propose an evolution of this software that achieves a faster and lighter IEEE 802.11 a/g/p transmitter and receiver, suitable for low-power general purpose processors, for which GNU Radio provides very limited support; we discuss and describe the software radio processing structuring that is necessary to achieve the goal, providing a review of signal processing techniques. In particular, we emphasize the advanced reduced-instruction set (RISC) machine (ARM) study case, for which we also optimize some of the processing libraries. The presented software will remain open-source.

  1. RAYCHAUDHURI, D., MANDAYAM, N. B. Frontiers of wireless and mobile communications. In Proceedings of the IEEE, 2014, vol. 100, no. 4, p. 824–840. DOI: 10.1109/JPROC.2011.2182095
  2. LLAMES, G. J. M., BANACIA, A. S. Spectrum sensing system in software-defined radio for determining spectrum availability. In International Conference on Electronics, Information, and Communications - ICEIC. Danang (Vietnam), 2016, p. 1–5. DOI: 10.1109/ELINFOCOM.2016.7562961
  3. HALL, P. S., GARDNER, P., FARAONE A. Antenna requirements for software defined and cognitive radios. In Proceedings of the IEEE. 2012, vol. 100, no. 7, p. 2262–2270. DOI: 10.1109/JPROC.2012.2182969
  4. CICCIA, S., VECCHI, G., GIORDANENGO, G., et al. Software-defined reconfigurable antenna for energy efficient wireless links. In IEEE International Symposium on Antennas and Propagation. Puerto Rico (USA), 2016, p. 1241–1242. DOI: 10.1109/APS.2016.7696328
  5. STEWART, R. W., CROCKETT, L., ATKINSON, D., et al. A lowcost desktop software defined radio design environment using matlab, simulink, and the rtlsdr. IEEE Communications Magazine, 2015, vol. 53, no. 9, p. 64–71. DOI: 10.1109/MCOM.2015.7263347
  6. BERGSTROM, C., CHUPRUN, S., GIFFORD, S., et al. Software defined radio (SDR) special military applications. In Proceedings of MILCOM. Anaheim, CA (USA), 2002, p. 383–388. DOI: 10.1109/MILCOM.2002.1180472.2016.7696328
  7. LO PRESTI, L., FALLETTI, E., NICOLA, M., et al. Software De- fined Radio technology for GNSS Receivers. In IEEE International Workshop on Metrology for Aerospace. Benevento (Italy), 2015, p. 314–319. DOI: 10.1109/MetroAeroSpace.2014.6865941
  8. KUO, Y., PANNUTO, P., SCHMID, T., et al. Reconfiguring the software radio to improve power, price, and portability. In Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems - SenSys. Toronto, Ontario (Canada), 2012, p. 267–280. ISBN: 978-1- 4503-1169-4. DOI: 10.1145/2426656.2426683
  9. MURPHY, P., SABHARWAL, A., AAZHANG, B. Design of WARP: A wireless open-access research platform. In 14th European Signal Processing Conference - EUSIPCO. Florence (Italy), 2006, p. 1–5. ISSN: 2219-5491. DOI: 10.5281/ZENODO.52692
  10. GAZZANO, J. D. Integrating FPGAs: A dynamically reconfigurable FPGA-based grid for high performance computing. In International Conference on Advances in Electrical, Electronic and Systems Engineering - ICAEES. Putrajaya (Malaysia), 2016, p. 1–4. DOI: 10.1109/ICAEES.2016.7887998
  11. BANSAL, M., SCHULMAN, A., KATTI, S. Atomix: A framework for deploying signal processing applications on wireless Infrastructure. In Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation - NSDI. Oakland, California (USA), 2015, p. 173–188. ISBN: 978-1-931971-218
  12. REALTEK, TAIWAN. RTL 2832U. [Online] Cited 2017-06-30. Available at: http://www.realtek.com.tw/
  13. LANG, J., OSMOCOM. RTL-SDR. [Online] Cited 2017-06-30. Available at: http://sdr.osmocom.org/
  14. OSSMANN, M. Great Scott Gadgets - HackRF One. [Online] Cited 2017-06-30. Available at: https://greatscottgadgets.com/
  15. BLOESSL, B., SEGATA, M., SOMMER, C., et al. Towards an open source ieee 802.11p stack: A full sdr-based transceiver in GNU Radio. In Proceedings of 5th IEEE Vehicular Networking Conference - VNC. Boston (USA), 2013, p. 143–149. ISSN: 2157-9865. DOI: 10.1109/VNC.2013.6737601
  16. ARCOS, G., FERRERI, R., RICHART, M., et al. Accelerating an IEEE 802.11 a/g/p Transceiver in GNU Radio. In Proceedings of the 9th Latin America Networking Conference - LANC. Valparaiso (Chile), 2016, p. 13–19. ISBN: 978-1-4503-4591-0. DOI: 10.1145/2998373.2998443
  17. BANSAL, M., MEHLMAN, J., KATTI, S., et al. OpenRadio: A Programmable Wireless Dataplane. In Proceedings of the First Workshop on Hot topics in Software Defined Networks - HotSDN. Helsinki (Finland), 2012, p. 109–114. ISBN: 978-1-4503-1477-0. DOI: 10.1145/2342441.2342464
  18. BLOSSOM, E. GNU Radio: Tools for exploring the radio frequency spectrum. Linux Journal, 2004, vol. 2004, no. 122, p. 1–4. ISSN: 1075-3583
  19. BERGER, C. R., ARBATOV, V., VORONENKO, Y., et al. Real time software implementation of an IEEE 802.11a baseband receiver on intel multicore. In IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP. Prague (Czech Republic), 2011, p. 1693–1696. DOI: 10.1109/ICASSP.2011.5946826
  20. MELNIK, D., BELEVANTSEV, A., PLOTNIKOV, D., et al. A case study: Optimizing GCC on ARM for performance of libevas rasterization library. In International Workshop on GCC Research Opportunities - GROW. Pisa (Italy), 2010, p. 4–8.
  21. MAHALINGAM, P. R., ASOKAN, S. A framework for optimizing GCC for ARM architecture. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics - ICACCI. Chennai (India), 2012, p. 337–342. DOI: 10.1145/2345396.2345452
  22. SEGARS, S., UK. ARM Holdings. [Online] Cited 2017-06-30. Available at: https://www.arm.com/company
  23. TAN, K., LIU, H., ZHANG, J., et al. Sora: High-performance software radio using general-purpose multicore processors. Communications of the ACM, 2011, vol. 54, no. 1, p. 99–107. DOI: 10.1145/1866739.1866760
  24. CICCIA, S., ITALY. Low power 802.11a/g/p software. [Online] Cited 2017-06-30 Available at: http://tinyurl.com/h3bglfk
  25. AVNET, USA. PicoZed SDR 1X1. [Online] Cited 2017-06-30. Available at: http://zedboard.org/
  26. LIME MICROSYSTEMS, UK. LimeSDR. [Online] Cited 2017-06- 30. Available at: http://www.limemicro.com/
  27. RTL SDR. Roundup of Software Defined Radios. [Online] Cited 2017-06-30. Available at: http://www.rtl-sdr.com/roundup-softwaredefined-radios/
  28. ETTUS RESEARCH, USA. USRP B205 mini. [Online] Cited 2017- 06-30. Available at: https://kb.ettus.com/
  29. HARDKERNEL, SOUTH KOREA. ODROID-XU4. [Online] Cited 2017-06-30. Available at: http://www.hardkernel.com/
  30. ARM.NEON instruction set. [Online] Cited 2017-06-30. Available at: https://www.arm.com/products/processors/technologies/neon.php
  31. ROUNDEAU, T. W., O’SHEA, T., GOERGEN, N. Inspecting GNU radio applications with controlport and performance counters. In Proceedings of the Second Workshop on Software Radio Implementation Forum - SRIF. Hong Kong (China), 2013, p. 65– 70. DOI: 10.1145/2491246.2491259
  32. FFTW3. Multiplatform DFT. [Online] Cited 2017-06-30. Available at: http://www.fftw.org/
  33. M ULLER, B., HOLTERS, M., Z OLZER, U. Low complexity SoftInput Soft-Output Hamming decoder. In 50th FITCE Congress - ICT: Bridging an Ever Shifting Digital Divide. Palermo, Italy, 2011, p. 1–5. DOI: 10.1109/FITCE.2011.6133448
  34. TOSATO, F., BISAGLIA, P. Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2. In IEEE International Conference on Communications - ICC. New York (USA), 2002, p. 664–668. DOI: 10.1109/ICC.2002.996940
  35. YEH, H., et al. Performance and DSP implementation of soft bitlevel demapper for M-QAM-OFDM systems. In Proceedings of the Annual IEEE System Conference. Vancouver (Canada), 2015, p. 810– 815. DOI: 10.1109/SYSCON.2015.7116850
  36. WEST, N., GEIGER, D., SCHEETS, G., et al. Accelerating Software Radio on ARM: Adding NEON Support to VOLK. In Proceedings of the IEEE Radio and Wireless Symposium - RWS. San Diego, California (USA), 2015, p. 174–176. DOI: 10.1109/RWS.2015.7129727
  37. ITpp. library of mathematical, signal processing and communication classes and functions. [Online] Cited 2017-06-30. Available at: http://montecristo.co.it.pt/itpp/
  38. KARN, P. Viterbi Decoder. [Online] Cited 2017-06-30. Available at: http://www.ka9q.net/
  39. GAST, P. 802.11 Wireless Networks: The Definitive Guide. 2nd ed. Sebastopol, CA (USA): O’Reilly Media, Inc., 2005. ISBN: 9780596100520

Keywords: Software-defined radio (SDR), General Purpose Processor (GPP), Low-power wireless communications, Advanced RISC machine (ARM), Open-source software

S. Kumar, S. K. Soni, P. Jain [references] [full-text] [DOI: 10.13164/re.2017.1096] [Download Citations]
Micro-Diversity Analysis of Error Probability and Channel Capacity over Hoyt-Gamma Fading

In wireless communication system, various parameters such as average symbol/bit error probability (ASEP/ABEP), outage probability and average channel capacity, etc. are studied for its performance analysis. In this paper, the performance of L-Hoyt/Gamma (HG) composite fading channel with Maximum Ratio Combining (MRC) employing micro-diversity is analyzed. Closed-form expressions for distribution function, moments, outage probability and channel capacity are derived in terms of hypergeometric functions. Further, the expressions of ASEP/ABEP for all formats of coherent and non-coherent modulation techniques involving Q-functions and Marcum Q-function are derived over the composite fading channel. Monte-Carlo simulations are performed to validate our analytical results. The analytical results produced here can be useful in several wireless applications where multipath and shadowing are characterized by Hoyt/Gamma distribution.

  1. SIMON, M. K., ALOUINI, M. S. Digital Communication over Fading Channels. 2nd ed. New York: John Wiley & Sons, 2004. ISBN: 0-471-64953-8
  2. SHANKAR, P. Fading and Shadowing in Wireless Systems. New York: Springer, 2012. ISBN: 978-1-4614-0366-1
  3. YOUSSEF, N., ELBAHRI, W., PATZOLD, M., ELASMI, S. On the crossing statistics of phase processes and random FM noise in Nakagami-q mobile fading channels. IEEE Transactions on Wireless Communications, 2005, vol. 4, no. 1, p. 24–29. DOI: 10.1109/TWC.2004.840251
  4. NAKAGAMI, M. The m-distribution–A general formula of intensity distribution of rapid fading. In Hoffman, W. G., Ed. Statistical Methods in Radio Wave Propagation. Pergamon Press, 1960, p. 3–36. DOI: 10.1016/B978-0-08-009306-2.50005-4
  5. PARIS, J. Nakagami-q (Hoyt) distributions function with applications. Electronics Letters, 2009, vol. 45, no. 4, p. 749–751. DOI: 10.1049/el:20093427
  6. PARIS, J., JIMENEZ, D. Outage probability analysis for Nakagami-q (Hoyt) fading channels under Rayleigh interference. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 4, p. 1272–1276. DOI: 10.1109/TWC.2010.04.090295
  7. RADAYDEH, R. Performance of cellular mobile systems employing SNR-based GSC in the presence of Rayleigh and Nakagami-q co-channel interferers. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 6, p. 3081–3088. DOI: 10.1109/TVT.2008.2011276
  8. SHANKAR, P. M. A Nakagami-N-gamma model for shadowed fading channels. Wireless Personal Communications, 2012, vol. 64, no. 5, p. 665–680. DOI: 10.1007/s11277-010-0211-5
  9. SHANKAR, P. M. An overview of shadowed fading wireless channels in terms of a cascaded approach. Physical Communication, June 2015, vol. 15, no. C, p. 59–65. DOI: 10.1016/j.phycom.2015.02.001
  10. SINGH, R., SONI, S. K., RAW, R. S., KUMAR, S. A new approximate closed-form distribution and performance analysis of a composite Weibull/log-normal fading channel. Wireless Personal Communications, 2017, vol. 92, no. 3, p. 883–900. DOI: 10.1007/s11277-016-3583-3
  11. ABDI, A., KAVEH, M. K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels. Electronics Letters, 1998, vol. 34, no. 9, p. 851–852. DOI: 10.1049/el:19980625
  12. BITHAS, P., SAGIAS, N., MATHIOPOULOS, P., KARAGIANNIDIS, G., RONTOGIANNIS, A. On the performance analysis of digital communications over generalizedK fading channels. IEEE Communications Letters, 2006, vol. 4, no. 10, p. 353–355. DOI: 10.1109/LCOMM.2006.1633320
  13. BITHAS, P. Weibull-Gamma composite distribution: alternative multipath/shadowing fading model. Electronics Letters, 2009, vol. 45, no. 14, p. 749–751. DOI: 10.1049/el.2009.0534
  14. ZHANG, J., MATTHAIOU, M., TAN, Z., WANG, H., KAVEH, M. Performance analysis of digital communication systems over composite η−μ/gamma fading channels. IEEE Transactions on Vehicular Technology, 2012, vol. 61, no. 7, p. 3114–3124. DOI: 10.1109/TVT.2012.2199344
  15. STEFANOVIC, C., JAKSIC, B., SPALEVIC, P., PANIC, S., TRAJCEVSKI, Z. Performance analysis of selection combining over correlated Nakagami-m fading channels with constant correlation model for desired signal and cochannel interference. Radioengineering, 2013, vol. 22, no. 4, p. 1176–1181.
  16. JAKSIC, B., STEFANOVIC, D., STEFANOVIC, M., SPALEVIC, P., MILENKOVIC, V. Level crossing rate of macrodiversity system in the presence of multipath fading and shadowing. Radioengineering, 2015, vol. 24, no. 1, p. 185–191. DOI: 10.13164/re.2015.0185
  17. SUBADAR, R., SAHU, P. R. Performance of L-MRC receiver over independent Hoyt fading channels. In Proceedings of the National Conference on Communications. Chennai (India), 2010, p. 1–5. DOI: 10.1109/NCC.2010.5430232
  18. GRADSHTEYN, S., RYZHIK, I. Table of Integrals, Series, and Products. 6th ed. New York: Academic Press 2000. ISBN: 0-122-94757-6
  19. WOLFRAM. Wolfram function site. [Online] Cited 2017-01. Available at: http://functions.wolfram.com/PDF/MeijerG.pdf
  20. ADAMCHIK, V., MARICHEV, O. The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system. In Proceedings of International Conference on Symbolic and Algebraic Computation. New York (USA), 1990, p. 212–224. DOI: 10.1145/96877.96930
  21. KHANDELWAL, V., KARMESHU. A new approximation for average symbol error probability over log-normal channels. IEEE Wireless Communications Letters, 2014, vol. 3, no. 1, p. 58–61. DOI: 10.1109/WCL.2013.111113.130525
  22. PROAKIS, J. G., SALEHI, M. Digital Communications. 5th ed. New York: McGraw-Hill, 2008. ISBN: 978–0–07–295716–7
  23. OLABIYI, O., ANNAMALAI, A. Invertible exponential-type approximations for the Gaussian probability integral Q(x) with applications. IEEE Wireless Communications Letters, 2012, vol. 1, no. 5, p. 544–547. DOI: 10.1109/WCL.2012.080112.120232
  24. PADMAPRIYA, S., TAMILARASI, M. Co-channel interference avoidance algorithm for closed access femtocell networks. IETE Technical Review, 2015, vol. 33, no. 3, p. 280–296. DOI: 10.1080/02564602.2015.1088413
  25. LAOURINE, A., STEPHENNE, A., AFFES, S. Estimating the ergodic capacity of log-normal channels. IEEE Communications Letters, 2007, vol. 11, no. 7, p. 568–570. DOI: 10.1109/LCOMM.2007.070302
  26. HELIOT, F., GHAVAMI, M., NAKHAI, M. R. An accurate closed-form approximation of the average probability of error over log-normal fading channel. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 5, p. 1495–1500. DOI: 10.1109/TWC.2008.061019
  27. SIMON, M. K., ALOUINI, M. S. A unified approach to the probability of error for non-coherent and differentially coherent modulations over generalized fading channels. IEEE Transactions on Communications, 1996, vol. 46, no. 12, p. 1625–1638. DOI: 10.1109/26.737401

Keywords: Wireless communication system, shadowing, composite fading, diversity combining, MRC, channel capacity

R. Bozovic, M. Simic, P. Pejovic, M. L. Dukic [references] [full-text] [DOI: 10.13164/re.2017.1104] [Download Citations]
The Analysis of Closed-form Solution for Energy Detector Dynamic Threshold Adaptation in Cognitive Radio

Spectrum sensing is the most important process in cognitive radio in order to ensure interference avoidance to primary users. For optimal performance of cognitive radio, it is substantial to monitor and promptly react to dynamic changes in its operating environment. In this paper, energy detector based spectrum sensing is considered. Under the assumption that detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal, as well as primary user signal power. A closed-form solution for optimal decision threshold in dynamic electromagnetic environment is proposed and analyzed.

  1. HAYKIN, S. Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  2. MITOLA, J., MAQUIRE, Jr. G. Q. Cognitive Radio: making software radios more personal. IEEE Personal Communications, 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  3. AKYILDIZ, I. F., LEE, W. Y., VURAN, M., et al. Next generation/ dynamic spectrum access/ cognitive radio wireless networks: A survey. Computer Networks Journal, 2006, vol. 50, no. 13, p. 2127–2159. DOI: 10.1016/j.comnet.2006.05.001
  4. CABRIC, D., MISHRA, S. M., BRODERSEN, R. W. Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers. Pacific Groove (USA), 2004, vol. 1, p. 772–776. DOI: 10.1109/ACSSC.2004.1399240
  5. YUCEK, T., ARSLAN, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 2009, vol. 11, no. 1, p. 116–130. DOI: 10.1109/SURV.2009.090109
  6. MA, J., LI, G. Y., JUANG, B. H. Signal processing in cognitive radio. Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 805–823. DOI: 10.1109/JPROC.2009.2015707
  7. SUTTON, P. D., NOLAN, K. E., DOYLE, L. E. Cyclostationary signatures in practical cognitive radio applications. IEEE Journal on Selected Areas in Communications, 2008, vol. 26, no. 1, p. 13 to 24. DOI: 10.1109/JSAC.2008.080103
  8. CABRIC, D., TKACENKO, A., BRODERSEN, R. W. Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of the 1st International Workshop on Technology and Policy for Accessing Spectrum (TAPAS). Boston (MA, USA), 2006. DOI: 10.1145/1234388.1234400
  9. VARTIAINEN, J., LEHTOMAKI, J. J., SAARNISAARIS, H. Double-threshold based narrowband signal extraction. In Proceedings of Vehicular Technology Conference. 2005, vol. 2, p. 1288–1292. DOI: 10.1109/VETECS.2005.1543516
  10. HAN, W., LI, J., Li, Z., et al. Double thresholds for judgment in cognitive spectrum sensing. In Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2008). Cannes (France), 2008, 5 p. DOI: 10.1109/PIMRC.2008.4699894
  11. MISHRA, S. M., SAHAI, A., BRODERSEN, R. W. Cooperative sensing among Cognitive Radios. In Proceedings of International Conference on Communications ICC. Istanbul (Turkey), 2006, vol. 4, p. 1658–1663. DOI: 10.1109/ICC.2006.254957
  12. WANG, N., GAO, Y., ZHANG, X. Adaptive Spectrum Sensing Algorithm Under Different Primary users Utilizations. IEEE Communications Letters, 2013, vol. 17, no. 9, p. 1838-41. DOI: 10.1109/LCOMM.2013.081313.131468
  13. ABBASSI-MOGHADAM, D., MOHEBBI, A., MOHADES, Z. Performance analysis of time reversal UWB communication with non-coherent energy detector. Wireless Personal Communications, 2014, vol. 77, no. 3, p. 2291–2303. DOI: 10.1007/s11277-014- 1638-x
  14. SEMLALI, H., BOUMAZZ, N., SOULMANI, A., et al. Energy detection approach for spectrum sensing in cognitive radio systems with the use of random sampling. Wireless Personal Communications, 2014, vol. 79, no. 2, p. 1053–1061. DOI: 10.1007/s11277-014-1917-6
  15. NAMDAR, M., ILHAN, H., DURAK-ATA, L. Optimal detection thresholds in spectrum sensing with receiver diversity. Wireless Personal Communications, 2016, vol. 87, no. 1, p. 63–81. DOI: 10.1007/s11277-015-3026-6
  16. CHATTERJEE, S., MAITY, S. On optimal threshold selection in cooperative spectrum sensing for cognitive radio networks: an energy detection approach using fuzzy entropy maximization. Wireless Personal Communications, 2015, vol. 84, no. 3, p. 1605 to 1625. DOI: 10.1007/s11277-015-2550-8
  17. KOZAL, A. S. B., MERABTI, M., BOUHAFS, F. An improved energy detection scheme for cognitive radio networks in low SNR region. In Proceedings of IEEE Symposium on Computers and Communications ISCC. Cappadocia (Turkey), 2012, p. 684–689. DOI: 10.1109/ISCC.2012.6249377
  18. JOSHI, D. R., POPESCU, D. C., DOBRE, O. A. Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 2011, vol. 15, no. 1, p. 19–21. DOI: 10.1109/LCOMM.2010.11.100654
  19. CABRIC, D. Cognitive Radio: System Design Perspective (Ph. D. dissertation). University of California, Berkley, USA, 168 pages. [Online], Cited 2007-12-17. Available at: http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS- 2007-156.pdf
  20. ZHANG, S., BAO, Z. An adaptive spectrum sensing algorithm under noise uncertainty. In Proceedings of International Conference on Communications ICC. Kyoto (Japan), 2011, 5 p. DOI: 10.1109/icc.2011.5962493
  21. PALIWAL, K. K. Estimation of noise variance from the noisy AR signal and its application in speech enhancement. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '87). Dallas (USA), 1987, p. 297–300. DOI: 10.1109/ICASSP.1987.1169682
  22. CADZOW, J. A. Spectral estimation: An overdetermined rational model equation approach. In Proceedings of the IEEE, 1982, vol. 70, no. 9, p. 907–939. DOI: 10.1109/PROC.1982.12424
  23. HARADA, H., PRASAD, R. Simulation and Software Radio for Mobile Communications. Norwood (MA, USA): Artech House, 2002, ISBN: 1580530443

Keywords: Cognitive radio, energy detector, noise variance estimation, spectrum sensing, threshold adaptation

S. Chalermwisutkul, V. Jantarachote, B. Shivanna, R. Phudpong, P. Akkaraekthalin [references] [full-text] [DOI: 10.13164/re.2017.1110] [Download Citations]
Tuning Range and Power Handling Analysis of DTC-based Matching Networks for Reconfigurable High Power RF Circuits

This paper presents the analysis of tuning range and power handling of digitally tunable capacitors (DTCs) in reconfigurable high power RF circuits. The proposed scheme can be applied to reconfigurable RF system design e.g. smart antenna, Software Defined Radio (SDR) and Cognitive Radio (CR) systems. The power handling of the DTC can be enhanced by connecting the DTC in series with a fixed capacitor. The combination of a DTC and a fixed capacitors leads to modified tuning range of the total capacitance. Both the power handling and the tuning range are described in this paper by empirical equations in such a way, that a proper combination of DTCs and fixed capacitors can be determined for the design of any reconfigurable RF system. As an example of applications, a frequency band reconfigurable power amplifier was designed and fabricated. The reconfigurable input– and output matching networks utilize DTCs and fixed capacitors as tuning elements.

  1. MORANDINI, Y., GLORIA, D., QUEMERAIS, T., et al. Digitally tuning capacitor : from RF to millimeter wave applications in advanced CMOS technologies. In Workshop Novel Materials, Devices and Technologies for High Performance On‐chip RF Applications. Bordeaux (France), 2012.
  2. JANTARACHOTE, V., SIRIVECH, N., CHALERMWISUTKUL, S. Frequency band and operating class reconfigurable GaN HEMT power amplifier for sustainable wireless communications and energy applications. In Proceedings of The 20th Asia-Pacific Conference on Communication (APCC2014). Pattaya (Thailand), 2014, p. 156–160. DOI: 10.1109/APCC.2014.7091623
  3. ANDREWS, C., MOLNAR, A. C. A passive mixer-first receiver with digitally controlled and widely tunable RF interface. In IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 12, p. 2696 to 2708. DOI: 10.1109/JSSC.2010.2077151
  4. WU, W., LONG, J. R., STASZEWSKI, R. B., et al. Highresolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators. In Digest of Papers - 2012 IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Montreal (Canada), 2012, p. 91–94. DOI: 10.1109/RFIC.2012.6242239
  5. ISLAM, M. F., ALI, M., MAJLIS, B. Y. Tunable bandpass filter using RF MEMS variable capacitors. In Proceedings of 2008 AsiaPacific Microwave Conference (APMC). Hong-Kong (China), 2008, 4 p. DOI: 10.1109/APMC.2008.4958449
  6. CHANDRAHALIM, H., BHAVE, S. A. Digitally-tunable MEMS filter using mechanically-coupled resonator array. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS). Wuhan (China), 2008, p. 1020–1023. DOI: 10.1109/MEMSYS.2008.4443832
  7. CHO, Y. H., REBEIZ, G. M. Two-and four-pole tunable 0.7-1.1- GHz bandpass-to-bandstop filters with bandwidth control. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 3, p. 457–463. DOI: 10.1109/TMTT.2014.2304360
  8. DJOUMESSI, E. E., WU, K. Reconfigurable RF front-end for frequency-agile direct conversion receivers and cognitive radio system applications. In Digest of Papers - 2010 IEEE Radio and Wireless Symposium (RWS). New Orleans (LA, USA), 2010, p. 272–275. DOI: 10.1109/RWS.2010.5434205
  9. GRANT, P. D., DENHOFF, M. W., MANSOUR, R. R. A comparison between RF MEMS switches and semiconductor switches. In 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS). Banff (Canada), 2004, vol. 27, no. 1, p. 33–39. DOI: 10.1109/ICMENS.2004.1509004
  10. JASCHKE, A., TESSEMA, M., SCHUHLER, M., et al. Digitally tunable bandpass filter for cognitive radio applications. In 2012 IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). Barcelona (Spain), 2012, p. 338–342. DOI: 10.1109/CAMAD.2012.6335363
  11. CHUMA, E. L. Digitally tunable band-pass filter. QEX(The Forum for Communications Experimenters), Jan./Feb. 2016, p. 3–8.
  12. WHATLEY, R., RANTA, T., KELLY, D. CMOS based tunable matching networks for cellular handset applications. In IEEE MTTS International Microwave Symposium Digest. Baltimore (MD, USA), 2011. DOI: 10.1109/MWSYM.2011.5972913
  13. Product Specification PE64906, 2013. [Online]. Cited 2017-3-25. Available at: www.psemi.com/pdf/datasheets/pe64906ds.pdf
  14. TIGGELMAN, M. P. J. Thin film barium strontium titanate capacitors for tunable RF front-end applications. Ph.D. Thesis. University of Twente, The Netherlands, 2009.
  15. ABRECHT, M., FINK, T., BIGLER, W. Variable power capacitor for RF power applications. Patent no. WO 2016/034241, 2016.
  16. YAMAZAKI, H., IKEHASHI, T., SAITO, T., et al. A high powerhandling RF MEMS tunable capacitor using quadruple series capacitor structure. In 2010 IEEE MTT-S International Microwave Symposium. Anaheim (CA, USA), 2010, p. 1138–1141. DOI: 10.1109/MWSYM.2010.5518185
  17. MURATA. GQM1555C2D2R4BB01 Capacitor Datasheet. 2016. [Online]. Cited 2017-3-25 Available at: http://psearch.en.murata.com/capacitor/product/GQM1555C2D2R 4BB01%23.html.
  18. MURATA. The Effect of Non ideal Capacitors. [Online]. Cited 2017-3-25 Available at: http://www.murata.com/~/media/webrenewal/products/emc/emifil/ knowhow/12to14.ashx.
  19. MAKTOOMI, M. A., HASHMI M. S., GHANNOUCHI, F. M. A T-section dual-band matching network for frequency-dependent complex loads incorporating coupled line with DC-block property suitable for dual-band transistor amplifiers. Progress in Electromagnetics Research C, 2014, vol. 54, p. 75–84, 2014. DOI: 10.2528/PIERC14090403

Keywords: DTC, power handling, reconfigurable RF circuits, matching network, Software Defined Radio

S. B. S. Hanbali, R. Kastantin [references] [full-text] [DOI: 10.13164/re.2017.1118] [Download Citations]
Automatic Modulation Classification of LFM and Polyphase-coded Radar Signals

There are several techniques for detecting and classifying low probability of intercept radar signals such as Wigner distribution, Choi-Williams distribution and time-frequency rate distribution, but these distributions require high SNR. To overcome this problem, we propose a new technique for detecting and classifying linear frequency modulation signal and polyphase coded signals using optimum fractional Fourier transform at low SNR. The theoretical analysis and simulation experiments demonstrate the validity and efficiency of the proposed method.

  1. PACE, P. E. Detecting and Classifying Low Probability of Intercept Radar. Artech House, 2009. ISBN: 978-1596932340
  2. SKOLIK, M. Radar Handbook. 3rd ed. McGraw-Hill, 2008. ISBN: 978-0071485470
  3. LUNDEN, J., TERHO, L., KOIVUNEN, V. Classifying pulse compression radar waveforms using time-frequency distributions. In Proc. 39th Annual Conf. Information Sciences and Systems (CISS 2005). Baltimore (USA), 2005.
  4. LUNDEN, J., TERHO, L., KOIVUNEN, V. Waveform recognition in pulse compression radar systems. In 2005 IEEE Workshop on Machine Learning for Signal Processing. Mystic (CT, USA), 2005, p. 271–276. DOI: 10.1109/MLSP.2005.1532912
  5. LUNDEN, J., KOIVUNEN, V. Automatic radar waveform recognition. IEEE Journal of Selected Topics in Signal Processing, 2007, vol. 1, no. 1, p. 124–136. DOI: 10.1109/JSTSP.2007.897055
  6. JIANG, L., LI, L., ZHAO, G. Q. Polyphase coded low probability of intercept signals detection and estimation using time-frequency rate distribution. IET Signal Processing, 2016, vol. 10, no. 1, p. 46–54. DOI: 10.1049/iet-spr.2014.0020
  7. ELGAMEL, S. A., CLEMENTE, C., SORAGHAN, J. J. Radar matched filtering using the fractional Fourier transform. In Sensor Signal Processing for Defence (SSPD 2010). London (UK), 2010, 5 p. DOI: 10.1049/ic.2010.0242
  8. OZAKTAS, H. M., ARIKAN, O., KUTAY, M. A., BOZDAGT, G. Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 9, p. 2141 to 2150. DOI: 10.1109/78.536672
  9. CANDAN, C., KUTAY, M. A., OZAKTAS, H. M. The discrete fractional Fourier transform. IEEE Transactions on Signal Processing, 2000, vol. 48, no. 5, p. 1329–1337. DOI: 10.1109/78.839980
  10. SUN, H. B., LIU, G. S., GU, H., et al. Application of the fractional Fourier transform to moving target detection in airborne SAR. IEEE Transactions on Aerospace and Electronic Systems, 2002, vol. 38, no. 4, p. 1416–1424. DOI: 10.1109/TAES.2002.1145767
  11. ALMEIDA, L. B. The fractional Fourier transform and time– frequency representations. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 11, p. 3084–3091. DOI: 10.1109/78.330368
  12. CAPUS, C., BROWN, K. Short-time fractional Fourier methods for the time-frequency representation of chirp signals. Journal of Acoustical Society of America, 2003, vol. 113, no. 6, p. 3253 to 3263. DOI: 10.1121/1.1570434
  13. BAHER SAFA HANBALI, S., KASTANTIN, R. Fractional Fourier transform-based chirp radars for countering self-protection frequency-shifting jammers. International Journal of Microwave and Wireless Technologies. [Online] Cited April 3, 2017, 7 p. DOI: 10.1017/S1759078717000289
  14. DJUROVIĆ, I., STANKOVIĆ, L. Relationship between the ambiguity function coordinate transformations and the fractional Fourier transform. Annals of Telecommunications, 1998, vol. 53, no. 7, p. 316–319.
  15. JANKIRAMAN, M. Design of Multi-Frequency CW Radars. SciTech Publishing Inc., 2007. ISBN: 978-1891121562
  16. JENNISON, B. K. Detection of polyphase pulse compression waveforms using the radon-ambiguity transform. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 1, p. 335–343. DOI: 10.1109/TAES.2003.1188915
  17. COWELL, D. M., FREEAR, S. Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, vol. 57, no. 10, p. 2324–2333. DOI: 10.1109/TUFFC.2010.1693
  18. XIN, L., JIANG, Y. Y. Golden-section peak search in fractional Fourier domain. In IEEE International Conference on Electric Information and Control Engineering (ICEICE). Wuhan (China), 2011, p. 4230–4233. DOI: 10.1109/ICEICE.2011.5778100
  19. LIU, J. C., LIU, Z., WANG, X. S., et al. SNR analysis of LFM signal with Gaussian white noise in fractional Fourier transform domain. Journal of Electronics and Information Technology, 2007, vol. 29, no. 10, p. 2337–2340. (in Chinese) DOI: 10.3724/SP.J.1146.2006.00314
  20. RICHARDS, M. Fundamentals of Radar Signal Processing. 2nd ed., McGraw-Hill, 2014. ISBN: 978-0-07-179833-4

Keywords: LFM, polyphase coded signals, detection, automatic classification

K. B. Cui, X. Chen, J. J. Huang, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.1126] [Download Citations]
DOA Estimation of Multiple LFM Sources Using a STFT-based and FBSS-based MUSIC Algorithm

Direction of arrival (DOA) estimation is an important problem in array signal processing. An effective multiple signal classification (MUSIC) method based on the short-time Fourier transform (STFT) and forward/ backward spatial smoothing (FBSS) techniques for the DOA estimation problem of multiple time-frequency (t-f) joint LFM sources is addressed. Previous work in the area e. g. STFT-MUSIC algorithm cannot resolve the t-f completely or largely joint sources because they can only select the single-source t-f points. The proposed method con¬structs the spatial t-f distributions (STFDs) by selecting the multiple-source t-f points and uses the FBSS techniques to solve the problem of rank loss. In this way, the STFT-FBSS-MUSIC algorithm can resolve the t-f largely joint or completely joint LFM sources. In addition, the proposed algorithm also owns pretty low computational complexity when resolving multiple LFM sources because it can reduce the times of the feature decomposition and spectrum search. The performance of the proposed method is compared with that of the existing t-f based MUSIC algorithms through computer simulations and the results show its good performance.

  1. WU, Y. T., AMIR, L., JENSEN, J. R., et al. Joint pitch and DOA estimation using the ESPRIT method. IEEE Transactions on Audio, Speech and Language Processing, 2015, vol. 23, no. 1, p. 32–45. DOI: 10.1109/TASLP.2014.2367817
  2. CHEN, H., WAN, Q., FAN, R., et al. Direction-of-arrival estimation based on sparse recovery with second-order statistics. Radioengineering, 2015, vol. 24, no. 1, p. 208–213. DOI: 10.13164/re.2015.0208
  3. PAN, Y. J., TAI, N., YUAN, N. C. Wideband DOA estimation via sparse Bayesian learning over a Khatri-Rao dictionary. Radioengineering, 2015, vol. 24, no. 2, p. 552–557. DOI: 10.13164/re.2015.0552
  4. WANG, L., ZHAO, L. F., BI, G. A., et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 2, p. 275–289. DOI: 10.1109/TSP.2015.2481790
  5. CUI, K. B., WU, W. W., HUANG, J. J., et al. 2D DOA estimation of UCA correlative interferometer based on one dimensional sorting lookup table-two dimensional linear interpolation algorithm. Radioengineering, 2017, vol. 26, no. 2, p. 562–572. DOI: 10.13164/re.2017.0562
  6. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP.1986.1143830
  7. ROY, R., KAILATH, T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, vol. 34, no. 5, p. 1340–1342. DOI: 10.1109/TASSP.1986.1164935
  8. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  9. GERSHMAN, A. B., AMIN, M. G. Wideband direction-of-arrival estimation of multiple chirp signals using spatial time-frequency distributions. IEEE Signal Processing Letters, 2000, vol. 7, no. 6, p. 152–155. DOI: 10.1109/97.844636
  10. QU, H. T., WANG, R. H., QU, W., et al. Research on DOA estimation of multi-component LFM signals based on FRFT. Wireless Sensor Network, 2009, vol. 3, p. 171–181. DOI: 10.4236/wsn.2009.13023
  11. HEIDENREICH, P., CIRILLO, L. A., ZOUBIR, A. M. Morphological image processing for FM source detection and localization. Signal Processing, 2009, vol. 89, p. 1070–1080. DOI: 10.1016/j.sigpro.2008.12.011
  12. YUAN, X. Direction-finding wideband linear FM sources with triangular arrays. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 3, p. 2416–2425. DOI: 10.1109/TAES.2012.6237600
  13. CUI, Y., WANG, J. F. Wideband LFM interference suppression based on fractional Fourier transform and projection techniques. Circuits, Systems, and Signal Processing, 2014, vol. 33, no. 2, p. 613 – 627. DOI: 10.1007/s00034-013-9642-z
  14. ZHANG, H. J., BI, G. A., YANG, W., et al. IF estimation of FM signals based on time-frequency image. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 1, p. 326 to 343. DOI: 10.1109/TAES.2014.130554
  15. YU, J. X., ZHANG, L., LIU, K. H. Coherently distributed wideband LFM source localization. IEEE Signal Processing Letters, 2015, vol. 22, no. 4, p. 504–508. DOI: 10.1109/LSP.2014.2363843
  16. YU, J. X., ZHANG, L., LIU, K. H., et al. Separation and localization of multiple distributed wideband chirps using the fractional Fourier transform. EURASIP Journal on Wireless Communications and Networking, 2015, vol. 266, p. 1–8. DOI: 10.1186/s13638-015-0497-9
  17. CUI, K. B., WU, W. W., HUANG, J. J., et al. 2-D DOA estimation of LFM signals based on dechirping algorithm and uniform circle array. Radioengineering, 2017, vol. 26, no. 1, p. 299–308. DOI: 10.13164/re.2017.0299
  18. BELOUCHRANI, A., AMIN, M. G. Time frequency MUSIC. IEEE Signal Processing Letters, 1999, vol. 6, no. 5, p. 109–110. DOI: 10.1109/97.755429
  19. AMIN, M. G., ZHANG, Y. M. Direction finding based on spatial time-frequency distribution matrices. Digital Signal Processing, 2000, vol. 10, p. 325–339. DOI: 10.1006/dspr.2000.0374
  20. ZHANG, Y. M., MU, W. F., AMIN, M. G. Subspace analysis of spatial time-frequency distribution matrices. IEEE Transactions on Signal Processing, 2001, vol. 49, no. 4, p. 747–759. DOI: 10.1109/78.912919
  21. ZHANG, Y. M., AMIN, M. G., HIMED, B. Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations. EURASIP Journal on Advances in Signal Processing, 2012, vol. 102, p. 1–10. DOI: 10.1186/1687-6180- 2012-102
  22. KHODJA, M., BELOUCHRANI, A., ABED-MERAIM, K. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors. EURASIP Journal on Advances in Signal Processing, 2012, vol. 94, p. 1–11. DOI: 10.1186/1687-6180-2012-94
  23. GHOFRANI, S. Matching pursuit for direction of arrival estimation in the presence of Gaussian noise and impulsive noise. IET Signal Processing, 2014, vol. 8, no. 5, p. 540–551. DOI: 10.1049/IET-SPR.2013.0286
  24. LIN, J. C., MA, X. C., YAN, S. F., et al. Time-frequency multiinvariance ESPRIT algorithm for DOA estimation. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 770–773. DOI: 10.1109/LAWP.2015.2473664
  25. LINH-TRUNG, N., BELOUCHRANI, A., ABED-MERAIM, K., et al. Separating more sources than sensors using time-frequency distributions. EURASIP Journal on Applied Signal Processing, 2005, vol. 17, p. 2828–2847. DOI: 10.1155/ASP.2005.2828
  26. ZHANG, Y. M., AMIN, M. G. Blind separation of nonstationary sources based on spatial time-frequency distributions. EURASIP Journal on Applied Signal Processing, 2006, p. 1–13. DOI: 10.1155/ASP/2006/64785
  27. BELOUCHRANI, A., AMIN, M. G. Blind source separation based on time-frequency signal representations. IEEE Transactions on Signal Processing, 1998, vol. 46, no. 11, p. 2888–2897. DOI: 10.1109/78.726803
  28. YILMAZ, O., RICKARD, S. Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 7, p. 1830–1847. DOI: 10.1109/TSP.2004. 828896
  29. BARKAT, B., ABED-MERAIM, K. Algorithms for blind components separation and extraction from the time-frequency distribution of their mixture. EURASIP Journal on Applied Signal Processing, 2004, vol. 13, p. 2025–2033. DOI: 10.1155/S1110865704404193
  30. AÏSSA-EL-BEY, A., LINH-TRUNG, N.,, ABED-MERAIM, K., et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 3, p. 897–907. DOI: 10.1109/tsp.2006.888877
  31. FADAILI, E. M., MOREAU, N. T., MOREAU, E. Nonorthogonal joint diagonalization/zero diagonalization for source separation based on time-frequency distributions. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 5, p. 1673–1687. DOI: 10.1109/TSP. 2006.889469
  32. YANG, W., SHI, Y. W. FRFT based method to estimate DOA for wideband signal. Advanced Materials Research, 2015, vol. 712– 715, p. 2716–2720. DOI: 10.4028/www.scientific.net/AMR.712- 715.2716
  33. CUI, K. B., WU, W. W., HUANG, J. J., et al. DOA estimation of LFM signals based on STFT and multiple invariance ESPRIT. International Journal of Electronics and Communications, 2017, vol. 77, p. 10–17. DOI: 10.1016/J.AEUE.2017.04.021
  34. ZHANG, Y. M., AMIN, M. G., HIMED, B. Direction-of-arrival estimation of nonstationary signals exploiting signal characteristics. In 11th International Conference on Information Science, Signal Processing and Their Applications. Montreal (Canada), 2012, p. 1223–1227. DOI: 10.1109/ISSPA.2012.6310479
  35. ZHANG, H. J., BI, G. A., CAI, Y. L., et al. DOA estimation of closely-spaced and spectrally-overlapped sources using a STFTbased MUSIC algorithm. Digital Signal Processing, 2016, vol. 52, p. 25–34. DOI: 10.1016/j.dsp.2016.01.015
  36. SHAN, T. J., WAX, M., KAILATH, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, vol. 33, no. 4, p. 806–811. DOI: 10.1109/TASSP.1985.1164649
  37. PILLAI, S. U., KWON, B. H. Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 1, p. 8–15. DOI: 10.1109/29.17496
  38. LIU, F. L., WANG, J. K., SUN, C. Y., et al. Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2052–2062. DOI: 10.1109/TAP.2012.2186216
  39. MA, X. R., DONG, X. H., XIE, Y. F. An improved spatial differencing method for DOA estimation with the coexistence of uncorrelated and coherent signals. IEEE Sensors Journal, 2016, vol. 16, no. 10, p. 3719–3723. DOI: 10.1109/JSEN.2016.2532929
  40. JOURJINE, A., RICKARD, S., YILMAZ, O. Blind separation of disjoint orthogonal signals: demixing N sources from 2 mixtures. In IEEE International Conference on Acoustics, Speech, and Signal Processing. Istanbul (Turkey), 2002, vol. 5, p. 2985–2988. DOI: 10.1109/ICASSP.2000.861162
  41. BELOUCHRANI, A., ABED-MERAIM, K., AMIN, M. G., et al. Joint anti-diagonalization for blind source separation. In IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City (USA), 2001, vol. 5, p. 2789–2792. DOI: 10.1109/ICASSP. 2001.940225
  42. CHEN, Y. M., LEE, J. H., YEH, C. C., et al. Bearing estimation without calibration for randomly perturbed arrays. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 1, p. 194–197. DOI: 10.1109/78.80780
  43. LINEBARGER, D. A. Redundancy averaging with large arrays. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 4, p. 1707–1710. DOI: 10.1109/78.212750
  44. STOICA, P., NEHORAI, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. DOI: 10.1109/29.17564
  45. CHAMBERS, C., TOZER, T. C., SHARMAN, K. C., et al. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 12, p. 3085–3098. DOI: 10.1109/78.553482

Keywords: DOA estimation, STFT, FBSS, LFM signals, t-f joint, MUSIC, multiple-sources t-f points

A. Eslahi, A. Mahmoudi, H. Kaabi [references] [full-text] [DOI: 10.13164/re.2017.1138] [Download Citations]
Carrier Frequency Offset Estimation in OFDM systems as a Quadratic Eigenvalue Problem

Carrier frequency offset (CFO) in orthogonal frequency division multiplexing (OFDM) systems is a major problem in achieving orthogonality between subcarriers. In this paper, we propose an estimator for CFO in OFDM systems using the subspace method. We used the linear prediction property of a complex sinusoidal signal. The estimator was obtained by solving a quadratic eigenvalue problem. Its performance was examined and compared with a Maximum-Likelihood (ML), Cyclic-Prefix based and Pilot-based estimators by the measures of mean square error (MSE), and Cramer-Rao Lower Bound (CRLB). Numerical results are presented to show the visible advantages obtained by using this estimator.

  1. CHRONOPOULOS, S. K., TATSIS, G., et al. Enhanced PAPR in OFDM without deteriorating BER performance. International Journal of Communications, Network and System Sciences, 2011, vol. 4, no. 3, p. 164–169. DOI: 10.4236/ijcns.2011.43020
  2. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Preliminary BER study of a TC-OFDM System operating under noisy conditions. Journal of Engineering Science and Technology Review, 2016, vol. 9, no. 4, p. 13–16. ISSN: 1791-2377
  3. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Performance of Turbo Coded OFDM under the presence of various noise types. Wireless Personal Communications, 2016, vol. 87, no. 4, p. 1319–1336. DOI: 10.1007/s11277-015-3055-1
  4. NEE, R. V., PRASAD, R. OFDM for Wireless Multimedia Communications. Artech House, 2000. ISBN: 0890065306
  5. MOOSE, P. H. A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 1994, vol. 42, no. 10, p. 2908–2914. DOI: 10.1109/26.328961
  6. JAYAPRAKASH, A., REDDY, G. R. Covariance fitting based blind carrier frequency offset estimation method for OFDM systems. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 12, p. 10101–10105. DOI: 10.1109/TVT.2016.2542181
  7. LMAI, S., BOURRE, A., LAOT, C., et al. An efficient blind estimation of carrier frequency offset in OFDM systems. IEEE Transactions on Vehicular Technology, 2014, vol. 63, no. 4, p. 1945–1950. DOI: 10.1109/TVT.2013.2285479
  8. LEE, K., MOON, S. H., LEE, I. A low-complexity semi-blind joint CFO and data estimation algorithm for OFDM systems. In Proceedings of the 75th IEEE Vehicular Technology Conference (VTC Spring). 2012, p. 1–5. DOI: 10.1109/VETECS.2012.6239983
  9. MARSALEK, R. On the reduced complexity interleaving method for OFDM PAPR reduction. Radioengineering, 2006, vol. 15, no. 3, p. 49–53. ISSN: 1210-2512
  10. TURI NAGY, M., ROZINAJ, G. An analysis/synthesis system of audio signal with utilization of an SN model. Radioengineering, 2004, vol. 13, no. 4, p. 51–57. ISSN: 1210-2512
  11. TURELI, U., LIU, H., ZOLTOWSKI, M. D. A high effi- ciency carrier estimator for OFDM communications. In Proceedings of the 31st Conference on Signals, Systems and Computers ASILOMAR . Pacific Grove, CA (USA), 1997, p. 505–509. DOI: 10.1109/ACSSC.1997.680429
  12. TURELI, U., LIU, H., ZOLTOWSKI, M. D. OFDM blind carrier offset estimation: ESPRIT. IEEE Transactions on Communications, 2000, vol. 48, no. 9, p. 1459–1461. DOI: 10.1109/26.870011
  13. VAN DE BEEK, J. J., SANDELL, M., BORJESSON, P. O. ML estimation of time and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 7, p. 1800–1805. DOI: 10.1109/78.599949
  14. GHOGHO, M., SWAMI, A., GIANNAKIS, G. B. Optimized null-subcarrier selection for CFO estimation in OFDM over frequency-selective fading channels. In Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM ’01. 2001, p. 202–206. DOI: 10.1109/GLOCOM.2001.965107
  15. VELJKO, S. Iterative frequency domain maximum likelihood OFDM carrier frequency offset estimation. Wireless Personal Communications, 2016, vol. 91, no. 2, p. 975–987. DOI: 10.1007/s11277-016-3508-1
  16. BARAN, O., KASAL, M. Modeling of the phase noise in space communication systems. Radioengineering, 2010, vol. 19, no. 1, p. 141–148. ISSN: 1210-2512
  17. KAY, S. Modern Spectral Estimation: Theory and Application. Prentice Hall, 1988. ISBN: 978-0135985823
  18. DAVILA, C. E. A subspace approach to estimation of autoregressive parameters from noisy measurements. IEEE Transactions on Signal Processing, 1998, vol. 46, no. 2, p. 531–534. DOI: 10.1109/78.655442
  19. CHO, Y. S., KIM, J., YANG, W. Y., et al. MIMO-OFDM Wireless Communications with MATLAB. John Wiley & Sons, 2010. ISBN: 9780470825617
  20. CLASSEN, F., MEYR, H. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fading channels. In Proceedings of the 44th IEEE Vehicular Technology Conference. 1994, vol. 3, p. 1655–1659. DOI: 10.1109/VETEC.1994.345377
  21. MAHMOUDI, A. Model-based correlated channels estimation. Wireless Personal Communications, 2016, p. 1–11. DOI: 10.1007/s11277-016-3553-9
  22. SO, H. C., CHAN, F. K. W. A generalized weighted linear predictor frequency estimation approach for a complex sinusoid. IEEE Transactions on Signal Processing, 2006, vol. 45 ,no. 9, p. 1304–1315. DOI: 10.1109/TSP.2005.863119
  23. RAIDA, Z., KOLKA, Z., MARSALEK, R., et al. Communication subsystems for emerging wireless technologies. Radioengineering, 2012, vol. 21, no. 4, p. 1036–1049. ISSN: 1210-2512
  24. POLAK, L., KALLER, O., KLOZAR, L., et al. Mobile communication networks and digital television broadcasting systems in the same frequency bands: Advanced co-existence scenarios. Radioengineering, 2014, vol. 23, no. 1, p. 375–386. ISSN: 1210-2512

Keywords: OFDM, Carrier Frequency Offset estimation, Quadratic Eigenvalue problem, subspace method, Yule-Walker

M. Janjic, N. Vukmirovic, M. Eric [references] [full-text] [DOI: 10.13164/re.2017.1143] [Download Citations]
TDOA, Frequency and Phase Offsets Estimation Taking Into Account Carrier Phase of Arrival

This paper deals with estimation of time difference of arrival (TDOA) and phase and frequency offsets between the channels in a receiving system with two distributed time synchronized, but phase and frequency unlocked channels. The system receives a radio signal with a known waveform. We analyze the impacts of using the carrier phase of arrival (CPOA) on parameter estimation accuracy. Depending on which of the parameters are unknown, three cases are considered. For the case when phase, frequency, and time shifts are all unknown, we derive the Fisher Information Matrix (FIM) in closed form, and Cramer-Rao bound (CRB) closed form expressions for the unknown phase and frequency offsets case, and the unknown TDOA case. Two maximum likelihood type (ML) statistically efficient estimation algorithms are proposed. The CRBs and simulation results show that in the unknown TDOA case the accuracy of TDOA estimation can be significantly increased by using CPOA.

  1. ROGALIN, R., BURSALIOGLU, O., PAPADOPOULOS, H., et al. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Transactions on Wireless Communications, Apr. 2014, vol. 13, no. 4, p. 1815–1831. DOI: 10.1109/TWC.2014.030314.130474
  2. RAHMAN, M. M., BAIDOO-WILLIAMS, H. E., MUDUMBAI, R., et al. Fully wireless implementation of distributed beamforming on a software-defined radio platform. In Proceedings of the 11th International Conference Information Processing in Sensor Networks (IPSN). Beijing (China), Apr. 2012, p. 305–316. DOI: 10.1109/IPSN.2012.6920945
  3. BALAN, H. V., ROGALIN, R., MICHALOLIAKOS, A. et al. AirSync: Enabling distributed multiuser MIMO with wull spatial multiplexing. IEEE/ACM Transactions on Networking, Jan. 2013, vol. 21, no. 6, p. 1681–1695. DOI: 10.1109/TNET.2012.2230449
  4. RAHUL, H. S., KUMAR, S., KATABI, D. JMB: scaling wireless capacity with user demands. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and protocols for computer communication. Helsinki (Finland), Aug. 2012, p. 235–246. DOI: 10.1145/2342356.2342401
  5. MUDUMBAI, R., BROWN III, D. R., MADHOW, U. et al. Distributed transmit beamforming: Challenges and recent progress. IEEE Communications Magazine, Feb. 2009, vol. 47, no. 2, p. 102–110. DOI: 10.1109/MCOM.2009.4785387
  6. YEREDOR, A. On passive TDOA and FDOA localization using two sensors with no time or frequency synchronization. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver (Canada), May 2013, p. 4066–4070. DOI: 10.1109/ICASSP.2013.6638423
  7. WAX, M. The joint estimation of differential delay, Doppler, and phase. IEEE Transactions on Information Theory, Sep. 1982, vol. 28, no. 5, p. 817–820. DOI: 10.1109/TIT.1982.1056563
  8. YEREDOR, A., ANGEL, E. Joint TDOA and FDOA estimation: A conditional bound and its use for optimally weighted localization. IEEE Transactions on Signal Processing, Apr. 2011, vol. 59, no. 4, p. 1612–1623. DOI: 10.1109/TSP.2010.2103069
  9. FRIEDLANDER, B. On the Cramer-Rao bound for time delay and Doppler estimation. IEEE Transactions on Information Theory, May 1984, vol. 30, no. 3, p. 575–580. DOI: 10.1109/TIT.1984.1056901
  10. STEIN, S. Differential delay/Doppler ML estimation with unknown signals. IEEE Transactions on Signal Processing, Aug. 1993, vol. 41, no. 8, p. 2717–2719. DOI: 10.1109/78.229901
  11. KNAPP, C. H., CARTER, G. C. The generalized correlation method for estimation of time delay. IEEE Transactions on Acoustics, Speech, and Signal Processing, Aug. 1976, vol. 24, no. 4, p. 320–327. DOI: 10.1109/TASSP.1976.1162830
  12. WEISS, A., WEINSTEIN, E. Fundamental limitations in passive time delay estimation – Part I: Narrow-band systems. IEEE Transactions on Acoustics, Speech, and Signal Processing, Apr. 1983, vol. 31, no. 2, p. 472–486. DOI: 10.1109/TASSP.1983.1164061
  13. SCHERHAUFL, M., PICHLER,M., SCHIMBACK, E., et al. Indoor localization of passive UHF RFID tags based on phaseof-arrival evaluation. IEEE Transactions on Microwave Theory and Techniques, Dec. 2013, vol. 61, no. 12, p. 4724–4729. DOI: 10.1109/TMTT.2013.2287183
  14. KASTELLA, K., MUDUMBAI, R., STEVENS, T. Frequency estimation in the presence of cycle slips: Filter banks and error bounds for phase unwrapping. 2012 IEEE Statistical Signal Processing Workshop (SSP). Ann Arbor (USA), Aug. 2012, p. 277–280. DOI: 10.1109/SSP.2012.6319681
  15. KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River (USA): Prentice Hall, 1993. ISBN: 978-0133457117
  16. VAN TREES, H. L. Detection, Estimation, and Modulation Theory, Optimum Array Processing (Part IV). New York (USA): Wiley, 2002. ISBN: 9780471093909
  17. SUEHIRO N., HATORY, M. Modulatable orthogonal sequences and their application to SSMA systems. IEEE Transactions on Information Theory, Jan. 1988, vol. 34, no. 1, p. 93–100. DOI: 10.1109/18.2605

Keywords: Time Difference of Arrival (TDOA), Carrier Phase of Arrival (CPOA), frequency offset, phase offset, dual unlocked sensors, Distributed Beamforming (DB)

J. Pribil, A. Pribilova, J. Matousek [references] [full-text] [DOI: 10.13164/re.2017.1151] [Download Citations]
Automatic Text-Independent Artifact Detection, Localization, and Classification in the Synthetic Speech

The paper describes experiments with statistical approaches to automatic detection, localization, and classification of the basic types of artifacts in the synthetic speech produced by the Czech text-to-speech system using the unit selection method. The first experiment is aimed at artifact detection by the analysis of variances (ANOVA) and hypothesis testing. The second experiment is focused on localization of the detected artifacts by the Gaussian mixture models (GMM). Finally, the developed open-set artifact classifier is described. The influence of the feature vector length and structure on the resulting artifact detection accuracy is analyzed together with other factors affecting the stability of the artifact detection process. Further investigations have shown a relatively great influence of the number of mixtures and the type of a covariance matrix on the artifact classification error rate as well as on the computational complexity. The obtained experimental results confirm the functionality of the artifact detector based on the ANOVA and hypothesis tests, and the GMM-based artifact localizer and classifier. The described statistical approaches represent the alternatives to the standard listening tests and the manual labeling of the artifacts.

  1. HUNT, A. J., BLACK. A. W. Unit selection in a concatenative speech synthesis system using a large speech database. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Atlanta (Georgia, USA), 1996. p. 373–376. DOI: 10.1109/ICASSP.1996.541110
  2. TIHELKA, D., GRUBER, M., JUZOVA, M. Experiments with one-class classifier as a predictor of spectral discontinuities in unit concatenation. In Ronzhin, A. et al. (eds.) Speech and Computer (SPECOM). LNAI 9811. Springer, 2016, p. 296–303. DOI: 10.1007/978-3-319-43958-7_35
  3. NARENDRA, N. P., RAO, K. S. Optimal weight tuning method for unit selection cost functions in syllable based text-to-speech synthesis. Applied Soft Computing, 2013, vol. 13, no. 2, p. 773 to 781. DOI: 10.1016/j.asoc.2012.09.023
  4. VEPA, J., KING, S., TAYLOR, P. New objective distance measures for spectral discontinuities in concatenative speech synthesis. In Proceedings of the IEEE Workshop on Speech Synthesis. Santa Monica (CA, USA), 2002, p. 223–226. DOI: 10.1109/WSS.2002.1224414
  5. MATOUSEK, J., TIHELKA, D. On the influence of the number of anomalous and normal examples in anomaly-based annotation errors detection. In Sojka, P. et al. (eds.) Text, Speech, and Dialogue (TSD). LNAI 9924. Springer, 2016, p. 326–334. DOI: 10.1007/978-3-319-45510-5_37
  6. LEGAT, M., MATOUSEK, J. Identifying concatenation discontinuities by hierarchical divisive clustering of pitch contours. In Habernal, I., Matousek, V. (eds.) Text, Speech, and Dialogue (TSD). LNAI 6836. Berlin: Springer, 2011, p. 171–178. DOI: 10.1007/978-3-642-23538-2_22
  7. TIHELKA, D., MATOUSEK, J., KALA, J. Quality deterioration factors in unit selection speech synthesis. In Matousek, V., Mautner, P. (eds.) Text, Speech and Dialogue (TSD), LNAI 4629. Berlin: Springer, 2007, p. 508–515. DOI: 10.1007/978-3-540- 74628-7_66
  8. DEY, S., MOTLICEK, P., MADIKERI, S., et al. Templatematching for text-dependent speaker verification. Speech Communication, 2017, vol. 88, p. 96–105. DOI: 10.1016/j.specom.2017.01.009
  9. PRIBIL, J., PRIBILOVA, A., MATOUSEK, J. Detection of artefacts in Czech synthetic speech based on ANOVA statistics. In Proceedings of the 38th International Conference on Telecommunications and Signal Processing (TSP). Prague (Czech Republic), 2015, p. 1–5. DOI: 10.1109/TSP.2015.7296377
  10. PRIBIL, J., PRIBILOVA, A., MATOUSEK, J. Experiment with GMM-based artefact localization in Czech synthetic speech. In Kral, P., Matousek, V. (eds.) Text, Speech and Dialogue (TSD). LNAI 9302, Cham Heidelberg: Springer, 2015, p. 23–31. DOI: 10.1007/978-3-319-24033-6_3
  11. BOERSMA, P., WEENINK, D. Praat: Doing Phonetics by Computer (Version 5.4.22). [Computer Program] Retrieved 2015- 10-08. Available at: http://www.fon.hum.uva.nl/praat.
  12. PARALIC, M., JARINA, R. Iterative unsupervised GMM training for speaker indexing. Radioengineering, 2007, vol. 16, no. 3, p. 138–144. ISSN: 1210-2512
  13. LI, M., LIU, L, CAI, W., et al. Generalized i-vector representation with phonetic tokenizations and tandem features for both text independent and text dependent speaker verification. Journal of Signal Processing Systems for Signal, Image, and Video Technology, 2016, vol. 82, p. 207–215. DOI: 10.1007/s11265-015-1019-z
  14. STANEK, M., SIGMUND, M. Finding the most uniform changes in vowel polygon caused by psychological stress. Radioengineering, 2015, vol. 24, no. 2, p. 604–609. DOI: 10.13164/re.2015.0604
  15. RODELLAR-BIARGE, V., PALACIOS-ALONSO, D., NIETOLLUIS, V., et al. Towards the search of detection in speechrelevant features for stress. Expert Systems, 2015, vol. 32, no. 6, p. 710–718. DOI: 10.1111/exsy.12109
  16. MEKYSKA, J., JANOUSOVA, E., GOMEZ-VILDA, P., et al. Robust and complex approach of pathological speech signal analysis. Neurocomputing, 2015, vol. 167, p. 94–111. DOI: 10.1016/j.neucom.2015.02.085
  17. MATOUSEK, J., TIHELKA, D., ROMPORTL, J. Current state of Czech text-to-speech system ARTIC. In Sojka, P. et al. (eds.) Text, Speech, and Dialogue (TSD). LNAI 4188. Springer, 2006, p. 439 to 446. DOI: 10.1007/11846406_55
  18. TIHELKA, D., KALA, J., MATOUSEK, J. Enhancements of Viterbi search for fast unit selection synthesis. In Proceedings of INTERSPEECH. Makuhari (Japan), 2010, p. 174–177.
  19. KALA, J., MATOUSEK, J. Very fast unit selection using Viterbi search with zero-concatenation-cost chains. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Florence (Italy), 2014, p. 2569–2573. DOI: 10.1109/ICASSP.2014.6854064
  20. PRIBIL, J., PRIBILOVA, A. Evaluation of influence of spectral and prosodic features on GMM classification of Czech and Slovak emotional speech. EURASIP Journal on Audio, Speech, and Music Processing, 2013, vol. 2013, no. 8, p. 1–22. DOI: 10.1186/1687- 4722-2013-8
  21. NABNEY, I. T. Netlab Pattern Analysis Toolbox, Release 3.3. [Online] Accessed 2015-10-02. Available at: http://www.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/ downloads

Keywords: Quality of synthetic speech, analysis of variances (ANOVA), Gaussian mixture models (GMM) classification, text-to-speech (TTS) system

S. Surendran, T. K. Kumar [references] [full-text] [DOI: 10.13164/re.2017.1161] [Download Citations]
Signal Subspace Speech Enhancement with Oblique Projection and Normalization

In this paper, a subspace speech enhancement method handling colored noise using oblique projection is proposed. Perceptual features and variance normalization are used to reduce residual noise and improve speech intelligibility of the output. Initially, additive noise is removed from the noisy speech by removing the orthogonal noise subspace from the noisy speech subspace to obtain the speech subspace. Then, the oblique projection of the noise subspace on the speech subspace along the additive noise subspace is used to determine the colored noise that remains. The enhanced clean speech signal is estimated using Spectral Domain Constrained Estimator, incorporating the masking property of the auditory system and the variance of the colored noise. To avoid the occurrence of any abrupt spikes in the output, variance normalization is performed by adaptively changing the control parameter of the gain matrix. The spectrogram, objective measures and subjective intelligibility test show superior performance of the proposed method over other existing speech enhancement methods.

  1. VEISI, H., SAMETI, H. Speech enhancement using hidden Markov models in Mel-frequency domain. Speech Communication, 2013, vol. 55, no. 2, p. 205–220. DOI: 10.1016/j.specom.2012.08.005
  2. CHEHREHSA, S., MOIR, T. J. Speech enhancement using maximum a-posteriori and Gaussian mixture models for speech and noise periodogram estimation. Computer Speech & Language, 2016, vol. 36, p. 58–71. DOI: 10.1016/j.csl.2015.09.001
  3. BOLL, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1979, vol. 27, no. 2, p. 113–120. DOI: 10.1109/TASSP.1979.1163209
  4. SCALART, P., FILHO, J. V. Speech enhancement based on a priori signal to noise estimation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Atlanta, GA (USA), 1996, p. 629–632. DOI: 10.1109/ICASSP.1996.543199
  5. MELLAHI, T., HAMDI, R. LPC-based formant enhancement method in Kalman filtering for speech enhancement. AEU - International Journal of Electronics and Communications, 2015, vol. 69, no. 2, p. 545–554. DOI: 10.1016/j.aeue.2014.11.007
  6. EPHRAIM, Y., MALAH, D. Speech enhancement using a minimummean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, vol. 32, no. 6, p. 1109–1121. DOI: 10.1109/TASSP.1984.1164453
  7. VERTELETSKAYA, E., SAKHNOV, K., SIMAK, B. Delay estimator and improved proportionate multi-delay adaptive filtering algorithm. Radioengineering, 2012, vol. 21, no. 1, p. 182–189. ISSN: 1805-9600
  8. HILKHUYSEN, G., GAUBITCH, N., BROOKES, M., et al. Effects of noise suppression on intelligibility: Dependency on signal-tonoise ratios. The Journal of the Acoustical Society of America, 2012, vol. 131, no. 1, p. 531–539. DOI: 10.1121/1.3665996
  9. HU, Y., LOIZOU, P. C. A generalized subspace approach for enhancing speech corrupted by colored noise. IEEE Transactions on Speech and Audio Processing, 2003, vol. 11, no. 4, p. 334–341. DOI: 10.1109/TSA.2003.814458
  10. BEROUTI, M., SCHWARTZ, R., MAKHOUL, J. Enhancement of speech corrupted by acoustic noise. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. 1979, p. 208–211. DOI: 10.1109/ICASSP.1979.1170788
  11. EPHRAIM, Y., MALAH, D. Speech enhancement using a minimummean square error short-time spectral amplitude estimator. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, vol. 32, no. 6, p. 1109–1121. DOI: 10.1109/TASSP.1984.1164453
  12. REZAYEE, A., GAZOR, S. An adaptive KLT approach for speech enhancement. IEEE Transactions on Speech and Audio Processing, 2001, vol. 9, no. 2, p. 87–95. DOI: 10.1109/89.902276
  13. LEV-ARI, H., EPHRAIM, Y. Extension of the signal subspace speech enhancement approach to colored noise. IEEE Signal Processing Letters, 2003, vol. 10, no. 4, p. 104–106. DOI: 10.1109/LSP.2003.808544
  14. EPHRAIM, Y., VAN TREES, H. L. A signal subspace approach for speech enhancement. IEEE Transactions on Speech and Audio Processing, 1995, vol. 3, no. 4, p. 251–266. DOI: 10.1109/89.397090
  15. HU, Y., LOIZOU, P. C. A subspace approach for enhancing speech corrupted by colored noise. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando, FL (USA), 2002, p. 573–576. DOI: 10.1109/ICASSP.2002.5743782
  16. JABLOUN, F., CHAMPAGNE, B. Incorporating the human hearing properties in the signal subspace approach for speech enhancement. IEEE Transactions on Speech and Audio Processing, 2003, vol. 11, no. 6, p. 700–708. DOI: 10.1109/TSA.2003.818031
  17. HU, Y., ZHANG, X., ZHU, F., et al. Image recognition using iterative oblique projection. Electronics Letters, 2005, vol. 41, no. 20, p. 1109–1110. DOI: 10.1049/el:20051935
  18. LU, C. T. Reduction of musical residual noise for speech enhancement using masking properties and optimal smoothing. Pattern Recognition Letters, 2007, vol. 28, no. 11, p. 1300–1306. DOI: 10.1016/j.patrec.2007.03.001
  19. MAGANTI, H. K., MATASSONI, M. A perceptual masking approach for noise robust speech recognition. EURASIP Journal on Audio, Speech, and Music Processing, 2012, p. 1–9. DOI: 10.1186/1687-4722-2012-29
  20. TUFTS, D. W., KUMARESAN, R., KIRSTEINS, I. Data adaptive signal estimation by singular value decomposition of a data matrix. Proceedings of the IEEE, 1982, vol. 70, no. 6, p. 684–685. DOI: 10.1109/PROC.1982.12367
  21. DENDRINOS, M., BAKAMIDIS, S., CARAYANNIS, G. Speech enhancement from noise: A regenerative approach. Speech Communication, 1991, vol. 10, no. 1, p. 45–57. DOI: 10.1016/0167-6393(91)90027-Q
  22. BEHRENS, R. T., SCHARF, L. L. Signal processing applications of oblique projection operators. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 6, p. 1413–1424. DOI: 10.1109/78.286957
  23. SINAGA, F., GUNAWAN, T. S., AMBIKAIRAJAH, E. Wavelet packet based audio coding using temporal masking. In Proceedings of the Joint Fourth International Conference on Information, Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia. 2003, vol. 3, p. 1380–1383. DOI: 10.1109/ICICS.2003.1292691
  24. HU, Y., LOIZOU, P. C. Subjective comparison and evaluation of speech enhancement algorithms. Speech Communication, 2007, vol. 49, no. 7–8, p. 588–601. DOI: 10.1016/j.specom.2006.12.006
  25. SAADOUNE, A., AMROUCHE, A., SELOUANI, S. A. Perceptual subspace speech enhancement using variance of the reconstruction error. Digital Signal Processing, 2014, vol. 24, p. 187–196. DOI: 10.1016/j.dsp.2013.09.005
  26. KABAL, P. TSP Speech Database. 26 pages. [Online] Cited 2002-09-04. Available at: http://wwwmmsp.ece.mcgill.ca/Documents/Downloads/TSPspeech/TSPspeech. pdf
  27. IEEE, IEEE Recommended Practice for Speech Quality Measurements. IEEE No 297-1969. June 1969, p. 1–24. DOI: 10.1109/IEEESTD.1969.7405210
  28. HIRSCH, H. G. FaNT - Filtering and Noise Adding Tool. 4 pages. [Online] Cited 2005-03-15. Available at: http://dnt.- kr.hsnr.de/download.html
  29. HU, Y., LOIZOU, P. C. Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing, 2008, vol. 16, no. 1, p. 229–238. DOI: 10.1109/TASL.2007.911054
  30. TAAL, C. H., HENDRIKS, R. C., HEUSDENS, R., et al. A shorttime objective intelligibility measure for time-frequency weighted noisy speech. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Dallas, TX (USA), 2010, p. 4214–4217. DOI: 10.1109/ICASSP.2010.5495701
  31. COOKE, M., MAYO, C., BOTINHAO, C. V., et al. Evaluating the intelligibility benefit of speech modifications in known noise conditions. Speech Communication, 2013, vol. 55, no. 4, p. 572–585. DOI: 10.1016/j.specom.2013.01.001

Keywords: Speech enhancement, signal subspace approach, masking property, oblique projection, variance normalization

A. G. Pakfiliz [references] [full-text] [DOI: 10.13164/re.2017.1169] [Download Citations]
Automatic Detection of Aerial Vehicle in Cloudy Environment by Using Wavelet Enhancement Technique

Automatic target detection of surface to air surveillance and tracking systems in video applications is an important issue, because it is the first step for track initiation and continuity. Target detection can be readily overcome for clear sky conditions, but it may be a complicated problem for cloudy sky conditions. In order to fulfill automatic target detection by using conventional image processing techniques may be a hard problem in cloudy sky conditions and improper light affects. The difficulty comes from the clutter rates stem from clouds, and the target may get lost in the clutters that occupies in the whole frame area. In order to increase the detection possibility background clutters should be eliminated by using image processing techniques frame by frame. In this work a novel approach is proposed to detect air vehicles in every kind of cloudy sky conditions. For this purpose a wavelet based image enhancement algorithm is implemented to the video frames, then conventional techniques are used. These conventional techniques are the reciprocal pixel intensity measurement data usage, Sobel operator and thresholding processes for edge detection. The proposed algorithm gives outstanding results for flying object detection in different sky conditions.

  1. CAO, X., YANG, L., GUO, X. Total variation regularized RPCA for irregularly moving object detection under dynamic background. IEEE Transactions on Cybernetics, 2016, vol. 46, no. 2, p. 1014–1027. DOI: 10.1109/TCYB.2015.2419737
  2. JOSHI, K. A., THAKORE, D. G. A survey on moving object detection and tracking in video surveillance system. International Journal of Soft Computing and Engineering, 2012, vol. 2, no. 3, p. 44–48. ISSN: 2231-2307
  3. SENGAR, S.S., MUKHOPADHYAY, S. Moving object area detection using normalized self adaptive optical flow. Optik-International Journal for Light and Electron Optics, 2016, vol. 127, no. 16, p. 6258– 6267. DOI: 10.1016/j.ijleo.2016.03.061
  4. SOBRAL, A., VACAVANT, A. Comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding, 2012, vol. 122, p. 4–21. DOI: 10.1016/j.cviu.2013.12.005
  5. XU, Y., DONG, J., ZHANG, B., et al. Background modeling methods in video analysis: A review and comparative evaluation. CAAI Transactions on Intelligence Technology, 2016, vol. 1, p. 43–60. DOI: 10.1016/j.trit.2016.03.005
  6. HAN, G., WANG, J., CAI, X. Background subtraction based on threedimensional discrete wavelet transform. Sensors, 2016, vol. 16, no. 4, p. 1–20. DOI: 10.3390/s16040456
  7. TAO, M., BAI, J., KOHLI, P., et al. SimpleFlow: A non-iterative, sublinear optical flow algorithm. Computer Graphics Forum, 2012, vol. 31, p. 345–353. DOI: 10.1111/j.1467-8659.2012.03013.x
  8. BAKER, S., SCHARSTEIN, D., LEWIS, J. P., et al. A database and evaluation methodology for optical flow. International Journal of Computer Vision, 2011, vol. 92, p. 1–31. DOI: 10.1007/s11263-010-0390-2
  9. ZHAN, C., DUAN, X., XU, S., et al. An improved moving object detection algorithm based on frame difference and edge detection. In Proceedings of the Fourth International Conference on Image and Graphics (ICIG). 2007, p. 519–523. DOI: 10.1109/ICIG.2007.153
  10. SINGLA, N. Motion detection based on frame difference method. International Journal of Information & Computation Technology, 2014, vol. 4, no. 15, p. 1559–1565. ISSN: 0974-2239
  11. LIU, H., DAI, J., WANG, R., et al. Combining background subtraction and three-frame difference to detect moving object from underwater video. In Proceedings of the OCEANS 2016. Shanghai (China), 2016, p.1–5. DOI: 10.1109/OCEANSAP.2016.7485613
  12. PAGES, D., CALBO, J., GONZALEZ, J. A. Using routine meteorological data to derive sky conditions. Annales Geophysicae, 2003, vol. 21, no. 3, p. 649–654. DOI: 10.5194/angeo-21-649-2003
  13. ERKANLI, S., RAHMAN, Z. Enhancement technique for uniformly and non-uniformly illuminated dark images. In Proceedings of the 10th International Conference Intelligent Systems Design and Applications (ISDA). 2010, p. 850–854. DOI: 10.1109/ISDA.2010.5687157
  14. ANBARJAFARI, G., IZADPANAHI, S., DEMIREL, H. Video resolution enhancement by using discrete and stationary wavelet transforms with illumination compensation. Signal, Image Video Process, 2015, vol. 9, no. 1, p. 87–92. DOI: 10.1007/s11760-012-0422-1
  15. SEKAR, K., SUBBAIAH, P., PRASAD, M. G. Image enhancement in cell phone cameras using wavelet transform. In Proceedings of the IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). 2016, p. 4451–4457. DOI: 10.1109/ICEEOT.2016.7755561
  16. PAKFILIZ, A. G. Video tracking for visual degraded aerial vehicle with H-PMHT. Radioengineering, 2015,vol. 24, no. 4, p. 1091–1098. DOI: 10.13164/re.2015.1091
  17. GONZALEZ, R. C., WOODS, R. E. Digital Image Processing. 2nd ed., New Jersey (USA): Prentice Hall, 2002. ISBN: 9780201180756
  18. JAIN, R., KASTURI, R., SCHUNCK, B. G. Machine Vision. 1st ed., New York (USA): McGraw-Hill, 1995. ISBN: 0-07-032018-7
  19. ERKANLI, S., LI, J., OGUSLU, E. Fusion of visual and thermal images using genetic algorithms. Bio-Inspired Computational Algorithms and Their Applications, 2012, p. 187–212. DOI: 10.5772/2358
  20. HURLBERT, A. C. The Computation of Color. Ph.D. thesis. MIT, Cambridge, MA (USA), 1989. 210 pages. [Online] Cited 2017-01-23. Available at: http://hdl.handle.net/1721.1/7021
  21. RAHMAN, Z., JOBSON, D., WOODELL, G. A. Retinex processing for automatic image enhancement. Journal of Electronic Imaging, 2004, vol. 13, no. 1, p. 100–110. DOI: 10.1117/1.1636183
  22. ARIGELA, S., ASARI, V. K. A locally tuned nonlinear technique for color image enhancement. WSEAS Transactions on Signal Processing, 2008, vol. 4, no. 8, p. 514–519. DOI: 10.1117/12.2004505
  23. JIN-YU Z., YAN, C., XIAN-XIANG, H. Edge detection of images based on improved sobel operator and genetic algorithms. In Proceedings of the IEEE International Conference on Image Analysis and Signal Processing. 2009, p. 31–35. DOI: 10.1109/IASP.2009.5054605
  24. MOHAMMAD, E. J., JAWADKADHIM, M. Study sobel edge detection effects on the image edges using MATLAB. International Journal of Innovative Research in Science, Engineering and Technology, 2014, vol. 3, no. 3, p. 10408–10415. ISSN: 2319-8753

Keywords: Air object detection, wavelet enhancement, edge detection, reciprocal pixel intensity

K. N. Sukhia , M. M. Riaz, A. Ghafoor, N. Iltaf [references] [full-text] [DOI: 10.13164/re.2017.1177] [Download Citations]
Overlapping White Blood Cells Detection Based on Watershed Transform and Circle Fitting

White blood cell (WBC) count and segmentation is considered to be important step to diagnose diseases like leukemia, malaria etc. Automatic analysis of blood smear images will help hematologists to detect WBCs efficiently and effectively as compared to manual analysis which is quite time consuming. Therefore, an automatic white blood cells detection technique for complex blood smear images is proposed. The proposed scheme uses segmentation and edge map extraction for the separation of overlapped WBCs and further parametric circle approximation is used which is capable of detecting both separated and overlapped white blood cells. Simulation results compared with the existing techniques verify the accuracy and robustness of the proposed scheme.

  1. AGAIAN, S., MADHUKAR, M., CHRONOPOULOS, A. T. Automated screening system for acute myelogenous leukemia detection in blood microscopic images. IEEE Systems Journal, 2014, vol. 8, no. 3, p. 995–1004. DOI: 10.1109/JSYST.2014.2308452
  2. RAMOSER, H., LAURAIN, V., BISCHOF, H., et al. Leukocyte segmentation and classification in blood-smear images. In Proceedings of the International Conference on Engineering in Medicine and Biology Society. 2006, p. 3371–3374. DOI: 10.1109/IEMBS.2005.1617200
  3. WU, J., ZENG, P., ZHOU, Y., et al. A novel color image segmentation method and its application to white blood cell image analysis. In Proceedings of the International Conference on Signal Processing. 2006, p. 1–4. DOI: 10.1109/ICOSP.2006.345700
  4. SALIHAH, A., MASHOR, M. Y., HARUN, N. H., et al. Improving colour image segmentation on acute myelogenous leukaemia images using contrast enhancement techniques. In Proceedings of the IEEE Conference on Biomedical Engineering and Sciences. 2010, p. 246–251. DOI: 10.1109/IECBES.2010.5742237
  5. NASIR, A. S., MASHOR, M. Y., ROSLINE, H. Unsupervised colour segmentation of white blood cell for acute leukemia images. In Proceedings of the International Conference on Imaging Systems and Techniques. 2011, p. 1–4. DOI: 10.1109/IST.2011.5962188
  6. CUEVAS, E., OLIVA, D., DIAZ, M., et al. White blood cell segmentation by circle detection using electromagnetism-like optimization. Computational and Mathematical Methods in Medicine, 2013, p. 1–15. DOI: 10.1155/2013/395071
  7. SARASWAT, M., ARYA, K. V., SHARMA, H. Leukocyte segmentation in tissue images using differential evolution algorithm. Swarm and Evolutionary Computation, 2013, vol. 11, p. 46–54. DOI: 10.1016/j.swevo.2013.02.003
  8. CUEVAS, E., DIAZ, M., MANZANARES, M., et al. An improved computer vision method for white blood cells detection. Computational and Mathematical Methods in Medicine, 2013, p. 1–14. DOI: 10.1155/2013/137392
  9. LABATI, R. D., PIURI, V., SCOTTI, F. ALL-IDB: The acute lymphoblastic leukemia image database for image processing. In Proceedings of the IEEE International Conference on Image Processing. 2011, p. 2045–2048. DOI: 10.1109/ICIP.2011.6115881
  10. ASH IMAGE BANK, AMERICAN SOCIETY OF HEMATOLOGY, USA. [Online] Cited 2017-02-07. Available at: http://imagebank.hematology.org/Default.aspx
  11. LI, Q., WANG, Y., LIU, H., et al. Leukocyte cells identi- fication and quantitative morphometry based on molecular hyperspectral imaging technology. Computerized Medical Imaging and Graphics, 2014, vol. 38, no. 3, p. 171–178. DOI: 10.1016/j.compmedimag.2013.12.008
  12. ALOMARI, Y. M., ABDULLAH, S. N. H. S., AZMA, R. Z., et al. Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm. Computational and Mathematical Methods in Medicine, 2014, p. 1–17. DOI: 10.1155/2014/979302
  13. GHOSH, P., BHATTACHARJEE, D., NASIPURI, M. Blood smear analyzer for white blood cell counting: A hybridmicroscopic image analyzing technique. Applied Soft Computing, 2015, vol. 46, p. 629–638. DOI: 10.1016/j.asoc.2015.12.038
  14. KANAFIAH, S. N. A. M., JUSMAN, Y., ISA, N. A. M., et al. Radial-based cell formation algorithm for separation of overlapping cells in medical microscopic images. In International Conference on Computer Science and Computational Intelligence. 2015, vol. 59, p. 123–132. DOI: 10.1016/j.procs.2015.07.522
  15. NAZLIBILEK, S., KARACOR, D., ERCAN, T., et al. Automatic segmentation, counting, size determination and classification of white blood cells. Measurement, 2014, vol. 55, p. 58–65. DOI: 10.1016/j.measurement.2014.04.008
  16. SAVKARE, S. S., NAROTE, S. Blood cell segmentation from microscopic blood images. In IEEE International Conference on Information Processing. 2015, p. 502-505. DOI: 10.1109/INFOP.2015.7489435
  17. PAVITHRA, S., BAGYAMANI, J. White blood cell analysis using watershed and circular hough transform technique. International Journal of Computational Intelligence and Informatics, 2015, vol. 5, no. 2, p. 114–123. ISSN: 2349-6363.
  18. TEK, F. B., DEMPSTER, A. G., KALE, I. Blood cell segmentation using minimum area watershed and circle radon transformations. Mathematical Morphology, 2005, p. 441–454. DOI: 10.1007/1-4020-3443-1_40
  19. WANG, Q., CHANG, L., ZHOU, M., et al. A spectral and morphologic method for white blood cell classification. Optics and Laser Technology, 2016, vol. 84, p. 144–148. DOI: 10.1016/j.optlastec.2016.05.013

Keywords: Microscopic imaging, cell detection, circle fitting, segmentation

V. Ya. Noskov, K. A. Ignatkov, A. P. Chupahin, A. S. Vasilyev, G. P. Ermak, S. M. Smolskiy [references] [full-text] [DOI: 10.13164/re.2017.1182] [Download Citations]
Signals of Autodyne Sensors with Sinusoidal Frequency Modulation

Research results of signal formation features of the autodyne sensor (AS) with sinusoidal frequency modulation (FM) are presented. Expressions for low frequency information signals are given and their numerical analysis is performed for cases when signal period is substantially longer than reflected radiation delay time as well as for the case when this inequality is not fulfilled. It is proved that at a small distance to the reflected object when feedback parameter value is commensurable with 1, the distortions of FM AS signals are typically caused by reflected radiation phase incursion irregularities. When distance grows the distortion level becomes significantly smaller due to delay phenomenon of reflected radiation. Experimental research results are obtained on the example of the autodyne oscillator based on the 8-mm wavelength range Gunn diode with varicap-based FM.

  1. KOMAROV, I. V., SMOLSKIY, S. M. Fundamentals of ShortRange FM Radar. Norwood: Artech House, 2003. ISBN 1-580- 53110-5. DOI: 10.1109/MAES.2004.1346903
  2. YANOVSKY, F. J. Millimeter-Wave Radar: Principles and Applications. Chapter 10 from book: XIAO, S.-Q., ZHOU, M.-T., ZHANG, Y. (eds.) Millimeter Wave Technology in Wireless PAN, LAN, and MAN. New York: CRC, 2008, 448 p (p. 305–375). ISBN-13: 978-0-8493-8227-7
  3. CHARVAT, G. L. Small and Short-Range Radar Systems. CRC Press, 2014. 430 p. ISBN-10: 143986599X
  4. SAPONARA, S., GRECO, M., RAGONESE, E., et al. Highly Integrated Low-power Radars. Boston, London: Artech House Publishers, 2014, 215 p. ISBN: 978-1-60807-665-9
  5. ARMSTRONG, B. M., BROWN, R., RIX, F., et al. Use of microstrip impedance-measurement technique in the design of a BARITT diplex Doppler sensor. IEEE Transactions on Microwave Theory and Techniques, 1980, vol. MTT-28, no. 12, p. 1437–1442. DOI: 10.1109/TMTT.1980.1130263
  6. ERMAK, G. P., POPOV, I. V., VASILEV, A. S., et al. Radar sensors for hump yard and rail crossing applications. Telecommunication and Radio Engineering, 2012, vol. 71, no. 6, p. 567–580. DOI: 10.1615/TelecomRadEng.v71.i6.80
  7. BORIC-LUBECKE, O., DROITCOUR, A. D., LUBECKE, V. M., PARK, B.-K., SINGH, A. (eds.) Doppler Radar Physiological Sensing. New York: John Wiley & Sons, 2016. 304 p.
  8. AYHAN, S., THOMAS, S., KONG, N., et al. Millimeter-wave radar distance measurements in micro machining. In IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). San Diego (CA, USA), 2015, p. 65–68. DOI: 10.1109/WISNET.2015.7127413
  9. ANGHEL, A., VASILE, G., CACOVEANU, R., et al. Short-range wideband FMCW radar for millimetric displacement measurements. IEEE Transactions on Geoscience and Remote Sensing, 2014, vol. 52, no. 9, p. 5633–5642. DOI: 10.1109/TGRS.2013.2291573
  10. STURDIVANT, R., HARRIS, M. Transmit Receive Modules for Radar and Communication Systems. Artech House, 2015, 282 p. ISBN-10: 1608079791
  11. PIPER, S. O. Homodyne FMCW radar range resolution effects with sinusoidal nonlinearities in the frequency sweep. In Proceedings International Radar Conference. Alexandria (VA, USA), 1995, p. 563–567. DOI: 10.1109/RADAR.1995.522609
  12. ALIDOOST, S. A., SADEGHZADE, R., FATEMI, R. Autodyne system with a single antenna. In Proceedings of the 11-th International Radar Symposium (IRS 2010). Vilnius (Lithuania), 2010, p. 406–409.
  13. KIM, S., KIM, B.-H., YOOK, J.-G., YUN, G.-H. Proximity vital sign sensor using self-oscillating mixer. In URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). Seoul (South Korea), 2016, p. 1446–1448. DOI: 10.1109/URSIAP-RASC.2016.7601402
  14. USANOV, D. A., POSTELGA, A. E. Reconstruction of complicated movement of part of the human body using radio wave autodyne signal. Biomedical Engineering, 2011, vol. 45, no. 1, p. 6–8. DOI: 10.1007/s10527-011-9198-9
  15. NAGASAKU, T., KONDOH, H., SHUNODA, H. Radar Sensor. Patent US 6717544 B2. Pub. Date: April, 6, 2004. Filed: Aug. 26, 2002.
  16. VOTOROPIN, S. D. Autodyne sensors of the EHF range on Gunn diodes. In 38th European Microwave Conference. Amsterdam (The Netherlands), 2008, p. 1330–1333. DOI: 10.1109/EUMC.2008.4751709
  17. UTAGAWA, H., MATSUI, T. Microwave/Millimeter Wave Sensor. Patent Appl. Publ. US 2010/0117891 A1. Pub. Date: May 13, 2010. Filed: Mar. 31, 2008.
  18. EFANOV, A. A., DISKUS, C. G., STELZER, A., et al. Development of a low-cost 35 GHz radar sensor. Annals of Telecommunications, 1997, vol. 52, no. 3, p. 219–223. DOI: 10.1007/BF02996047
  19. GIULIANI, G., NORGIA, M., DONATI, S., BOSCH, T. Laser diode self-mixing technique for sensing applications (Review article). Journal of Optics A: Pure and Applied Optics, 2002, vol. 4, no. 6, p. 283–294. DOI: 10.1088/1464-4258/4/6/371
  20. USANOV, D. A., SKRIPAL, AL. V., SKRIPAL, AN. V., et al. A microwave autodyne meter of vibration parameters. Instruments and Experimental Techniques, 2004, vol. 47, no. 5, p. 689–693. DOI: 10.1023/B:INET.0000043882.16801.3a
  21. JEFFORD, P. А., HOWES, M. S. Modulation schemes in low-cost microwave field sensor. IEEE Transactions of Microwave Theory and Technique, 1985, vol. MTT-31, no. 8, p. 613–624. DOI: 10.1109/TMTT.1983.1131559
  22. VOTOROPIN, S. D., NOSKOV, V. YA. Analysis of operating regimes of EHF hybrid-integrated autodynes based on the Gunn micro power mesa planar diodes. Russian Physics Journal, 2002, vol. 45, no. 2, p. 195–206. DOI : 10.1023/A:1019664300993
  23. VARAVIN, A. V., VASILIEV, A. S., ERMAK, G. P., POPOV, I. V. Autodyne Gunn-diode transceiver with internal signal detection for short-range linear FM radar sensor. Telecommunication and Radio Engineering, 2010, vol. 69, no. 5, p. 451–458. DOI: 10.1615/TelecomRadEng.v69.i5.80
  24. VOTOROPIN, S. D., NOSKOV, V. YA., SMOLSKIY, S. M. An analysis of the autodyne effect of oscillators with linear frequency modulation. Russian Physics Journal, 2008, vol. 51, no. 6, p. 610–618. DOI: 10.1007/s11182-008-9083-5
  25. GIULIANI, G., NORGIA, M., DONATI, S., BOSCH, T. Laser diode self-mixing technique for sensing applications (Review article). Journal of Optics A: Pure and Applied Optics, 2002, vol. 4, no. 6, p. 283–294.
  26. USANOV, D. A., SKRIPAL, A. V., ASTAKHOV, E. I., DOBDIN S. YU. Autodyne interferometry for range-finding under laser radiation wavelength modulation. Technical Physics Letters, 2016, vol. 42, no. 9, p. 919–922. DOI: 10.1134/S1063785016090121
  27. SOBOLEV, V. S., KASHCHEEVA, G. A. Self-mixing frequencymodulated laser interferometry. Optoelectronics, Instrumentation and Data Processing, 2008, vol. 44, no. 6, p. 519–529. DOI: 10.3103/S8756699008060058
  28. KUROKAWA, K. Injection locking of microwave solid-state oscillators. Proceedings of the IEEE, 1973, vol. 61, no. 10, p. 1386–1410. DOI: 10.1109/PROC.1973.9293
  29. NOSKOV, V. YA., IGNATKOV, K. A. Autodyne signals in case of random delay time of the reflected radiation. Telecommunication and Radio Engineering, 2013, vol. 72, no. 16, p. 1521–1536. DOI: 10.1615/TelecomRadEng.v72.i16.70
  30. NOSKOV, V. YA., IGNATKOV, K. A. About applicability of quasi-static method of autodyne systems analysis. Radioelectronics and Communications Systems, 2014, vol. 57, no. 3, p. 139–148. DOI: 10.3103/S0735272714030054
  31. IGNATKOV, K. A., VASILIEV, A. V. Signals of the autodyne FM radar for mm-wavelength range. In Proceedings of the 26-th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2016). Sevastopol, 2016, vol. 10, p. 2139–2145.
  32. NOSKOV, V. YA., IGNATKOV, K. A., CHUPAHIN, A. P., et al. Peculiarities of signal formation of the autodyne short-range radar with linear frequency modulation. Visnik NTUU KPI, Serіia – Radіotehnіka. Radioaparatobuduvannija, 2016, no. 67, p. 50–57.
  33. NOSKOV, V. YA., IGNATKOV, K. A. Dynamics of autodyne response formation in microwave generators. Radioelectronics and Communications Systems, 2013, vol. 56, no. 5, p. 227–242. DOI: 10.3103/S0735272713050026
  34. HUSSAIN, Z. M., SADIK, A. Z., O'SHEA, P. Digital Signal Processing: An Introduction with MATLAB and Applications. Springer, 2011, 350 p. ISBN: 3642155901
  35. DANIELS, D. J. EM Detection of Concealed Targets. Wiley-IEEE Press, 2010, 284 p. ISBN 978-0-470-12169-6

Keywords: Autodyne, autodyne signals, autodyne sensor, frequency modulation, Gunn-diode oscillator