ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2021, Volume 30, Number 1 [DOI: 10.13164/re.2021-1]

Show all Hide all

I. E. Lager [references] [full-text] [DOI: 10.13164/re.2021.0001] [Download Citations]
Causal Excitation in Antenna Simulations

The critical relevance of ensuring the excitation’s causality in electromagnetic (EM) simulations is validated via theoretical arguments and simulation results. Two families of model pulses with an implicitly causal behavior, namely the windowed-power (WP) and the power-exponential (PE) ones, are elaborately discussed. After introducing their unipolar prototypes, the relevant families are supplemented with monocycle and ringing variants, and are used for building signatures with almost rectangular spectral contents. Their utility is evidenced by contrasting their performance with that of other types of excitations that are habitually employed an antenna simulations. The WP pulse is also shown to be an almost exact replica of signatures generated by physical circuitry and to be singularly expedient for improving the effectiveness of EM computational packages.

  1. MULLER-KIRSTEN, H. J. W. Electrodynamics. 2nd ed., New Jersey (USA): World Scientific Publishing Co. Pte. Ltd., 2011. ISBN: 9789814340731
  2. GARG, A. Classical Electromagnetism in a Nutshell, New Jersey (USA): Princeton University Press, 2012. ISBN: 9780691130187
  3. DE HOOP, A. T. A time-domain uniqueness theorem for electromagnetic wavefield modeling in dispersive, anisotropic media. The Radio Science Bulletin, 2003, vol. 2003, no. 305, p. 17–21. DOI: 10.23919/URSIRSB.2003.7909315
  4. DE HOOP, A. T. Handbook of Radiation and Scattering of Waves, London (UK): Academic Press, 1995. ISBN: 0122086554
  5. LAGER, I. E., DE HOOP, A. T., Causal pulses with rectangular spectral content: A tool for TD analysis of UWB antenna performance. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, no. 1, p. 1488–1491. DOI: 10.1109/LAWP.2013.2289851
  6. PROAKIS, J. K., SALEHI, M. Digital Communications. 5th ed., Boston (USA): McGraw-Hill, 2008. ISBN: 9780072957167
  7. ADAMIUK, G., ZWICK, T., WIESBECK, W. UWB antennas for communication systems. Proceedings of the IEEE, 2012, vol. 100, no. 7, p. 2308–2321. DOI: 10.1109/JPROC.2012.2188369
  8. FEDERAL COMMUNICATIONS COMMISSION. First Report and Order April 2002. [Online] Cited 2021-01-05. Available at: https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders /2002/fcc02048.pdf
  9. ZHANG, X., LARSON, L. E. ASBECK, P. M., Design of Linear RF Outphasing Power Amplifiers. Norwood (USA): Artech House, 2003. ISBN: 9781580533744
  10. CIATTAGLIA, M., MARROCCO, G. Investigation on antenna coupling in pulsed arrays. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 3, p. 835–843. DOI: 10.1109/TAP.2006.869930
  11. DUMOULIN, A., AMMANN, M. J. Differentially-fed UWB slot antenna for direct board integration. In Proceedings of the 6th European Conference on Antennas and Propagation (EuCAP). Prague (Czech Republic), 2012, p. 765–768. DOI: 10.1109/EuCAP.2012.6205931
  12. DUMOULIN, A., JOHN, M., AMMANN, M. J., et al. Optimized monopole and dipole antennas for UWB asset tag location systems. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2896–2904. DOI: 10.1109/TAP.2012.2194686
  13. TRIVERIO, P., GRIVET-TALOCIA, S., NAKHLA, M. S., et al. Stability, causality, and passivity in electrical interconnect models. IEEE Transactions on Advanced Packaging, 2007, vol. 30, no. 4, p. 795– 808. DOI: 10.1109/TADVP.2007.901567
  14. WIDDER, D. V. The Laplace Transform. New Jersey (USA): Princeton University Press, 1941. ISBN: 9780691653693
  15. STUMPF, M. Time-Domain Electromagnetic Reciprocity in Antenna Modeling. Hoboken (USA): Wiley, 2018. ISBN: 9781119466376
  16. LAGER, I. E., DE HOOP, A. T., KIKKAWA, T., Model pulses for performance prediction of digital microelectronic systems. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2012, vol. 2, no. 11, p. 1859–1870. DOI: 10.1109/TCPMT.2012.2216266
  17. FRANCESCHETTI, G., TATOIAN, J., GIBBS, G. Timed arrays in a nutshell. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 12, p. 4073–4082. DOI: 10.1109/TAP.2005.859765
  18. WIESBECK, W., ADAMIUK, G., STURM, C., Basic properties and design principles of UWB antennas. Proceedings of the IEEE, 2009, vol. 97, no. 2, p. 372–385. DOI: 10.1109/JPROC.2008.2008838
  19. DE HOOP, A. T., LAGER, I. E. Loop-to-loop pulsed electromagnetic field wireless signal transfer. In Proceedings of the 6th European Conference on Antennas and Propagation (EuCAP). Prague (Czech Republic), 2012, p. 786–790. DOI: 10.1109/EuCAP.2012.6205857
  20. ABRAMOWITZ, M., STEGUN, I. A. Handbook of Mathematical Functions, Mineola (USA): Dover Publications, 1968. ISBN: 9780486612720
  21. LAGER, I. E., VAN BERKEL S. L., Finite temporal support pulses for EM excitation. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1659–1662. DOI: 10.1109/LAWP.2017.2662205
  22. WEISSTEIN, E. W. CRC Concise Encyclopedia of Mathematics, Boca Raton (USA): CRC Press LLC, 1999. ISBN: 9780849319457
  23. LAGER, I. E., ZITO, D. Pulsed EM field radio: The low-power, ultra-fast bridge to ubiquitous fiber networks. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP). Krakow (Poland), 2019, p. 1–5. ISBN: 978-1-5386-8127-5
  24. PEPE, D., ALUIGI, L., ZITO, D. Sub-100 ps monocycle Pulses for 5G UWB communications. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP). Davos (Switzerland), 2016, p. 1–4. DOI: 10.1109/EuCAP.2016.7481123
  25. LAGER, I. E., VOOGT, V., KOOIJ, B. J., Pulsed EM field, closerange signal transfer in layered configurations – a time-domain analysis. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2642–2651. DOI: 10.1109/TAP.2014.2307588
  26. STUMPF, M. Receiving-antenna Kirchhoff-equivalent circuits and their scattering reciprocity properties. IET Microwaves, Antennas & Propagation, 2016, vol. 10, no. 9, p. 983–990. DOI: 10.1049/iet-map.2016.0100
  27. STUMPF, M. Coupling of impulsive EM plane-wave fields to narrow conductive strips: An analysis based on the concept of external impedance. IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, no. 2, p. 548–551. DOI: 10.1109/TEMC.2017.2721445
  28. STUMPF, M. Time-domain analysis of rectangular power-ground structures with relaxation. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 5, p. 1095–1102. DOI: 10.1109/TEMC.2014.2305014
  29. DE HOOP, A. T., LAGER, I. E. Pulse shape distortion in closedwaveguide axial modal signal transfer - An analytic time-domain study. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP). The Hague (Netherlands), 2014, p. 1531–1535. DOI: 10.1109/EuCAP.2014.6902074
  30. STUMPF, M. Radar imaging of impenetrable and penetrable targets from finite-duration pulsed signatures. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 3035–3041. DOI: 10.1109/TAP.2014.2309964
  31. STUMPF, M. The pulsed EM plane-wave response of a thin planar antenna. Journal of Electromagneticwaves and Applications, 2016, vol. 30, no. 9, p. 1133–1146. DOI: 10.1080/09205071.2016.1179132
  32. STUMPF, M. The time-domain contour integral method - an approach to the analysis of double-plane circuits. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 2, p. 367–376. DOI: 10.1109/TEMC.2013.2280297
  33. STUMPF, M., ANTONINI, G., LAGER, I. E., Pulsed EM field transfer between a horizontal electric dipole and a transmission line - A closed-form model based on the Cagniard–de Hoop technique. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 4, p. 2911–2918. DOI: 10.1109/TAP.2019.2935115
  34. STUMPF, M., ANTONINI, G., LAGER, I. E., et al. Time-domain electromagnetic-field transmission between small-loop antennas on a half-space with conductive and dielectric properties. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 2, p. 938–946. DOI: 10.1109/TAP.2019.2943323
  35. KNAB, J. Interpolation of band-limited functions using the approximate prolate series. IEEE Transactions on Information Theory, 1979, vol. 25, no. 6, p. 717–720. DOI: 10.1109/TIT.1979.1056115
  36. NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION. Manual of regulations and procedures for federal radio frequency management. 2013 Edition, May 2013. [Online] Cited 2021-01-05. Available at: http://www.ntia.doc.gov/files/ntia/publications/redbook/2013/ May_2013_Edition_of_the_NTIA_Manual.pdf.
  37. LAGER, I. E., STASZEWSKI, R. B., SMOLDERS, A. B., et al. Ultra-high data-rate wireless transfer in a saturated spectrum – new paradigms. In Proceedings of the 44th European Microwave Conference (EuMC). Rome (Italy), 2014, p. 917–920. DOI: 10.1109/EuMC.2014.6986585
  38. MUR, G. Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations. IEEE Transactions on Electromagnetic Compatibility, 1981, vol. 23, no. 4, p. 377–382. DOI: 10.1109/TEMC.1981.303970
  39. MUR, G. Total-field absorbing boundary conditions for the timedomain electromagnetic field equations. IEEE Transactions on Electromagnetic Compatibility, 1998, vol. 40, no. 2, p. 100–102. DOI: 10.1109/15.673614
  40. BERENGER, J. P. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, vol. 114, p. 185–200. DOI: 10.1006/jcph.1996.0181
  41. BERENGER, J. P. Evanescent waves in PML’s: Origin of the numerical reflection in wave-structure interaction problems. Transactions on Antennas and Propagation, 1999, vol. 47, no. 10, p. 1497–1503. DOI: 10.1109/8.805891
  42. BERENGER, J. P. Numerical reflection from FDTD-PMLs: A comparison of the split PML with the unsplit and CFS PMLs. IEEE Transactions on Antennas and Propagation, 2002, vol. 50, no. 3, p. 258–265. DOI: 10.1109/8.999615
  43. DE HOOP, A. T., REMIS, R. F., VAN DEN BERG, P. M. The 3D wave equation and its Cartesian coordinate stretched perfectly matched embedding - a time-domain Green’s function performance analysis. Journal of Computational Physics, 2006, vol. 221, p. 88–105. DOI: 10.1016/j.jcp.2006.06.018
  44. ZITO, F., PEPE, D., ZITO, D. UWB CMOS monocycle pulse generator. Transactions on Circuits and Systems I: Regular Papers, 2010, vol. 57, no. 10, p. 2654–2664. DOI: 10.1109/TCSI.2010.2047751
  45. KIMOTO, K., KIKKAWA, T. Transmission characteristics of Gaussian monocycle pulses for inter-chip wireless interconnections using integrated antennas. Japanese Journal of Applied Physics, 2005, vol. 44, no. 4B, p. 2761–2765. DOI. 10.1143/JJAP.44.2761
  46. HAFIZ, M., KUBOTA, S., SASAKI, et al. A 2 Gb/s 1.8 pJ/bit differential BPSK UWB-IR transmitter using 65 nm CMOS technology. IEICE Transactions on Electronics, 2011, vol. E94-C, no. 2, p. 977–984. DOI. 10.1587/transele.E94.C.977
  47. BRACEWELL, R. N. The Fourier Transform and Its Applications, Boston (USA): McGraw-Hill, 2000. ISBN: 9780073039381

Keywords: Antennas, causality, time-domain analysis, numerical analysis, pulse generation

M. A. Ilgaz, A. Lavric, B. Batagelj [references] [full-text] [DOI: 10.13164/re.2021.0010] [Download Citations]
Phase-Noise Degradation of an Optically Distributed Local Oscillator in a Radio Access Network

The experimental evaluation of the phase-noise degradation of an optically distributed opto-electronic oscillator (OEO) signal is presented. The assembled setup is simulating a possible topology for a 5G radio access network (RAN), in which the local oscillator (LO) signal is distributed from the central-office to the base-stations via an existing optical distribution network (ODN). TheOEOin our experiment has a phase noise of -105 dBc/Hz and -124 dBc/Hz at 1 kHz and 10 kHz offsets from the 10.5 GHz carrier, respectively. The degradation of the phase noise of the signal distributed to the base-station within a distance of 20 km is within 4 dB and 6 dB for 1 kHz and 10 kHz offsets from the carrier, respectively. These are promising results for further research and the development of the 5G RAN with a centralized OEO signal distribution.

  1. YAO, X. S., MALEKI, L. High frequency optical subcarrier generator. Electronics Letters, 1994, vol. 30, no. 18, p. 1525–1526. DOI: 10.1049/el:19941033
  2. YAO, X. S., MALEKI, L. Optoelectronic oscillator for photonic systems. Journal of Quantum Electronics, 1996, vol. 32, no. 7, p. 1141-1149. DOI: 10.1109/3.517013
  3. YAO, S., MALEKI, L. New results with the opto-electronic oscillators (OEO). In Proceedings of 1996 IEEE International Frequency Control Symposium. Honolulu (USA), 1996, p. 1219–1222. DOI: 10.1109/FREQ.1996.560316
  4. MAJDAR, A., BERCELI, T. Microwave generation by optical techniques -a review. In 2006 European Microwave Conference. Manchester (UK), 2006, p. 1099–1102. DOI: 10.1109/EUMC.2006.281126
  5. ELIYAHU, D., SEIDEL, D., MALEKI, L. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. In IEEE International Frequency Control Symposium. Honolulu (USA), 2008, p. 811–814. DOI: 10.1109/FREQ.2008.4623111
  6. CHO, J., KIM, H., SUNG, H. Reduction of spurious tones and phase noise in dual-loop OEO by loop-gain control. IEEE Photonics Technology Letters, 2015, vol. 27, no. 13, p. 1391–1393. DOI: 10.1109/LPT.2015.2421892
  7. LELIEVRE, O., CROZATIER, V., BAILI, G., et al. Ultra low noise 10 GHz dual loop optoelectronic oscillator: experimental results and simple model. In IEEE International Frequency Control Symposium (IFCS). New Orleans (USA), 2016, p. 1–5. DOI: 10.1109/FCS.2016.7546719
  8. KIM, J., JO, J., CHOI, W., et al. Dual-loop dual-modulation optoelectronic oscillators with highly suppressed spurious tones. IEEE Photonics Technology Letters, 2012, vol. 24, no. 8, p. 706–708. DOI: 10.1109/LPT.2012.2187278
  9. CORREA-MENA, A. G., ZALDIVAR-HUERTA, I. E., LEE, M. W., et al. Performance evaluation of an optoelectronic oscillator based on a band-pass microwave photonic filter architecture. Radioengineering, 2017, vol. 26, no. 3, p. 642–646. DOI: 10.13164/re.2017.0642
  10. NGUIMDO, R. M., LECOCQ, V., CHEMBO, Y. K., et al. Effect of time delay on the stability of optoelectronic oscillators based on whispering-gallery mode resonators. IEEE Journal of Quantum Electronics, 2016, vol. 52, no. 12, p. 1–7. DOI: 10.1109/JQE.2016.2616129
  11. MALEKI, L. The opto-electronic oscillator (OEO): review and recent progress. In European Frequency and Time Forum (EFTF). Gothenburg (Sweden), 2012, p. 497–500. DOI: 10.1109/EFTF.2012.6502432
  12. OZDUR, I., MANDRIDIS, D., HOGHOOGHI, N., et al. Tunable opto-electronic oscillator with an intracavity Fabry-Perot etalon. In 23rd Annual Meeting of the IEEE Photonics Society. Denver (USA), 2010, p. 588-589. DOI: 10.1109/PHOTONICS.2010.5699024
  13. BOGATAJ, L., VIDMAR, M., BATAGELJ, B. A feedback control loop for frequency stabilization in an opto-electronic oscillator. Journal of Lightwave Technology, 2014, vol. 32, no. 20, p. 3690–3694. DOI: 10.1109/JLT.2014.2321023
  14. FU, R., JIN, X., ZHU, Y., et al. Frequency stability optimization of an OEO using phase-locked-loop and self-injectionlocking. Optics Communications, 2017, vol. 386, p. 27–30. DOI: 10.1016/j.optcom.2016.11.008
  15. TANG, J., HAO, T., LI, W., et al. Integrated optoelectronic oscillator. Optics Express, 2018, vol. 26, no. 9, p. 12257–12265. DOI: 10.1364/OE.26.012257
  16. SEOANE J., MONROY I. T., PRINCE K. et al. Local-oscillator-free wireless-optical-wireless data link at 1.25 Gbit/s over a 40 GHz carrier employing carrier preservation and envelope detection. In OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/- National Fiber Optic Engineers Conference. San Diego (USA), 2008, p. 1-3. DOI: 10.1109/OFC.2008.4528444
  17. ROBERTSON, P., KAISER, S. Analysis of the effects of phasenoise in orthogonal frequency division multiplex (OFDM) systems. In Proceedings IEEE International Conference on Communications ICC ’95. Seattle (USA), 1995, vol.3, p. 1652-1657. DOI: 10.1109/ICC.1995.524481
  18. ZAIDI, A., ATHLEY, F., MEDBO, J. et al. 5G physical layer: principles, models and technology components. Chapter 4 - Mathematical Modeling of Hardware Impairments, 2018, p. 87–118. DOI: 10.1016/B978-0-12-814578-4.00009-6
  19. PATZOLD, M. It’s time to go big with 5G [Mobile Radio]. IEEE Vehicular Technology Magazine, 2018, vol. 13, no. 4, p. 4–10. DOI: 10.1109/MVT.2018.2869728
  20. SHEN P., GOMES, N. J., DAVIES, P. A., et al. High-purity millimetre-wave photonic local oscillator generation and delivery. In MWP 2003 Proceedings. International Topical Meeting on Microwave Photonics. Budapest (Hungary), 2003, p. 189–192. DOI: 10.1109/MWP.2003.1422862
  21. MAROZSAK T., BERCELI, T., JARO, G., et al. A new optical distribution approach for millimetre wave radio. In International Topical Meeting on Microwave Photonics. Technical Digest (including High Speed Photonics Components Workshop). Princeton (USA), 1998, p. 63–66. DOI: 10.1109/MWP.1998.745501
  22. REBHI, S., BARRAK, R., MENIF, M. Flexible and scalable radio over fiber architecture. Radioengineering, 2019, vol. 28, no. 2, p. 357–368. DOI: 10.13164/re.2019.0357
  23. PI, Z., KHAN, F. An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 2011, vol. 49, no. 6, p. 101–107. DOI: 10.1109/MCOM.2011.5783993
  24. SMITH, G. H., NOVAK, D., AHMED, Z. Overcoming chromaticdispersion effects in fiber-wireless systems incorporating external modulators. IEEE Transactions on Microwave Theory and Techniques, 1997, vol. 45, no. 8, p. 1410–1415. DOI: 10.1109/22.618444
  25. FALCONI, F., PORZI, C., MELO, S., et al. Wideband singlesideband suppressed-carrier modulation with silicon photonics optical filters. In International Topical Meeting on Microwave Photonics (MWP). Ottawa (Canada), 2019, p. 1–4. DOI: 10.1109/MWP.2019.8892250
  26. LOAYSSA, A., BENITO, D., GARDE, M. J. Single-sideband suppressed-carrier modulation using a single-electrode electrooptic modulator. IEEE Photonics Technology Letters, 2001, vol. 13, no. 8, p. 869–871. DOI: 10.1109/68.935831
  27. ILGAZ, M. A., BALIZ, K. V., BATAGELJ, B. A flexible approach to combating chromatic dispersion in a centralized 5G network. Opto-Electronics Review, 2020, vol. 28, no. 1, p. 35–42. DOI: 10.24425/opelre.2020.132498
  28. QADDUS, A., RAZA, A. A., MUSTAFA, A. Deploying uninterrupted wireless communication networks by using Software Define Cognitive Radios (SDCR) and time division duplex (TDD) transmission techniques in 5G networks. In International Conference on Information and Communication Technologies (ICICT). Karachi (Pakistan), 2015, p. 1–5. DOI: 10.1109/ICICT.2015.7469586
  29. HULBERT, A. P. Time division duplex for satellite communications. In IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications. Berlin (Germany), 2005, vol.4, p. 2242–2246. DOI: 10.1109/PIMRC.2005.1651844

Keywords: Opto-electronic oscillator, phase-noise degradation, microwave, radio access network, optical distribution network

T. Pasupathi, J. Arputha Vijaya Selvi [references] [full-text] [DOI: 10.13164/re.2021.0016] [Download Citations]
Design, Testing and Performance Evaluation of Beam Positioning System for Free Space Optical Communication System

Beam wandering and the wavefront distortion are the significant sources for the power loss in Wireless Optical Communication (WOC). In this paper Full Factorial Design (FFD) and Back Propagation Neural Network (BPNN) controller based autonomous beam monitoring, positioning and recovery system for fine steering of the laser beam at the focal point of the FSOC receiver is proposed. The proposed controllers process the intensity information of the received optical beam as inputs and produce the control signals as outputs. These control signals bring the beam at the focal point of the receiver and avoid the power loss of the optical link. The work describes, performance analysis of Field Programmable Gate Array (FPGA) based novel digital architecture of FFD and BPNN controller. Real time experimental verification of the stability and suitability of the developed adaptive controllers are tested for percentage of prediction error, Bit Error Rate (BER) and beam wander reduction ability and the same is demonstrated with suitable results. The experimental result shows that the BPNN controller gives high accurate approximation towards the control for the control signals Cx and Cy with the minimum and maximum values of 99.29% and 99.86% respectively. With the chosen parameters, the neuro-controller exhibits fast response for the error changes. The proposed BPNN controller provides prediction error very close to -0.5 to +1.0%, the values lie in the range of -0.06781% and 0.9862% which shows that the BPNN controller is efficient for the real time tracking and control for FSOC, LIDAR imaging, micro/nano positioning, atomic force microscopes, scanning tunnelling microscopes, etc.

  1. BOFFI, P., PICCININ, D., MOTTARELLA, D., et al. All-optical free-space processing for optical communication signals. Optics Communications, 2007, vol. 181, no. 1–3, p. 79–88. DOI: 10.1016/S0030-4018(00)00745-8
  2. HENNIGER, H., WILFERT, O. An introduction to free-space optical communications. Radioengineering, 2010, vol. 19, no. 2, p. 203–212. ISSN 1210–2512
  3. AROCKIA BAZIL RAJ, A., LANCELOT, J. P. Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu. Journal of Optical Technology, 2015, vol. 83, no. 1, p. 55–68. DOI: 10.1364/JOT.83.000055
  4. MAJUMDAR, A. K. Advanced Free Space Optics (FSO): A Systems Approach. New York: Springer, 2015. DOI: 10.1007/978-1-4939-0918-6
  5. TAKAHASHI, K. Next Generation Optical Wireless Communication Systems Using Fiber Direct Coupled Optical Antennas. Chapter in: Das, N. (Ed.) Optical Communication. [Online] Available at: www.intechopen.com. DOI: 10.5772/48395
  6. FU, F., ZHANG, B. The influence of high-frequency phase distortion on the phase correction effect in atmosphere. Optik, 2014, vol. 125, no. 1, p. 360–365. DOI: 10.1016/j.ijleo.2013.06.046
  7. MUTAFUNGWA, E., HALME, S. J., KAZAURA, K., et al. Millimeter-wave over fiber systems using hybrid OCDM/WDM transmission. International Journal of Infrared and Millimeter Waves, 2003, vol. 24, p. 1113–1126. DOI: 10.1023/A:1024640200525
  8. SHARIFI, M., WU, G., LUO, B., et al. Beam wander of electromagnetic partially coherent flat-topped beam propagating in turbulent atmosphere. Optik, 2014, vol. 125, no. 1, p. 561–564. DOI: 10.1016/j.ijleo.2013.07.025
  9. MITCHELL, P. V. Fast Steering Mirror Technology: Active Beam Stabilization. Application note. Newport Corporation, USA. 7 pages. [Online] Available at: https://www.newport.com/medias/sys_master/images/images/h4b/ h31/8797093363742/Fast-Steering-Mirror-Technology-App-Note2.pdf. ISBN: 01012 (01-01)
  10. CIZMAR, J., NEMECEK, J. Design and modeling of the properties of the servomechanism for a mobile free space optical link. Radioengineering, 2014, vol. 23, no. 1, p. 468–473. ISSN 1210–2512
  11. UR REHMAN, S., ULLAH, S., CHONG, P. H. J., et al. Visible light communication: A system perspective-overview and challenges. Sensors, 2019, vol. 19, no. 5, p. 1–22. DOI: 10.3390/s19051153
  12. LIU, W., SHI, W., CAO, J., et al. Bit error rate analysis with realtime pointing errors correction in free space optical communication systems. Optik, 2014, vol. 125, no. 1, p. 324–328. DOI: 10.1016/j.ijleo.2013.06.043
  13. LU, Y., FAN, D., ZHANG, Z. Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror. Optik, 2013, vol. 124, no. 16, p. 2443–2449. DOI: 10.1016/j.ijleo.2012.08.023
  14. XIE, W., FU, J., YAO, H., et al. Neural network based adaptive control of piezoelectric actuator with unknown hysteresis. Adaptive Control and Signal Processing, 2009, vol. 23, no. 1, p. 30–54. DOI: 10.1002/acs.1042
  15. PEREZ-ARANCIBIA, N. O., GIBSON, J. S., TSAO, T. Observerbased intensity-feedback control for laser beam pointing and tracking. IEEE Transactions on Control System Technology, 2012, vol. 20, no. 1, p. 31–47. DOI: 10.1109/TCST.2011.2109720
  16. ZHANG, Q., ZHAO, J., SHEN, X., et al. Modeling, and testing of a novel XY piezo-actuated compliant micro-positioning stage. Micromachines, 2019, vol. 10, no. 9, p. 1–19. DOI: 10.3390/mi10090581
  17. CAO, Z., ZHANG, X., OSNABRUGGE, G., et al. Reconfigurable beam system for non-line-of-sight free-space optical communication. Light: Science & Applications, 2019, vol. 8, p. 1–9. DOI:10.1038/s41377-019-0177-3
  18. SPRANGLE, P., TING, A., PENANO, J., et al. Incoherent combining and atmospheric propagation of high-power fiber lasers for directed-energy applications. IEEE Journal of Quantum Electronics, 2009, vol. 45, no. 2, p. 138–148. DOI: 10.1109/JQE.2008.2002501
  19. YUKSEL, M., AKELLA, J., KALYANARAMAN, S., et al. Freespace-optical mobile ad hoc networks: Auto-configurable building blocks. Wireless Networks, 2009, vol. 15, p. 295–312. DOI: 10.1007/s11276-007-0040-y
  20. FIELHAUER, K. B., BOONE, B. G., BRUZZI, J. R., et al. Comparison of macro-tip/tilt and meso-scale position beam steering transducers for a free space optical communications using a quadrant photodiode sensor. In SPIE's 48th Annual Meeting: Optical Science and Technology. Diego (CA, USA), 2003. DOI: 10.1117/12.506179
  21. SHOME, S. K., MUKHERJEE, A., KARMAKAR, P., et al. Adaptive feed-forward controller of piezoelectric actuator for micro/nano-positioning, Sadhana, 2018, vol. 43, no. 158, p. 1–9. DOI: 10.1007/s12046-018-0925-8
  22. LE, Q. N., JEON, J. W. Neural-network-based low-speed-damping controller for stepper motor with an FPGA. IEEE Transactions on Industrial Electronics, 2010, vol. 57, no. 9, p. 3167–3180. DOI: 10.1109/TIE.2009.2037650

Keywords: Optical communication, attenuation, opto-electronic, adaptive optics, neural network, beam steering.

H. Ayadi , J. Machac, S. Beldi , L. Latrach [references] [full-text] [DOI: 10.13164/re.2021.0025] [Download Citations]
Planar Hexagonal Antenna with Dual Reconfigurable Notched Bands for Wireless Communication Devices

In this paper, a planar hexagonal antenna with dual tunable notched band using varactor diodes is presented. The designed antenna operates in the frequency range of 2 GHz to 8 GHz and is loaded by a complementary split ring resonator (CSRR) to achieve the notch-band characteristics. The CSRR produced two stop-bands at the frequencies 3 GHz and 6.8 GHz. In order to obtain the reconfigurability, one varactor diode was used on each ring of the CSRR. The variation of the DC bias of the diodes produced double notched bands yielding a tunable coverage in the 0.6 GHz and 1.6 GHz ranges. The continuous agility and the wide tuning range of the notched bands are the major advantages of this structure. The antenna prototype was manufactured and a good agreement has been achieved between the measured and simulated results. The proposed antenna can be a good candidate for wireless applications that cover the UMTS, the Wi-Fi and the WiMAX bands.

  1. LI, T., ZHAI, H., WANG, X., et al. Frequency-reconfigurable bow-tie antenna for Bluetooth, WiMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 171–174. DOI: 10.1109/LAWP.2014.2359199
  2. KUMAR, G., KUMAR, R. A survey on planar ultra-wideband antennas with band notch characteristics: Principle, design, and applications. International Journal of Electronics and Communications (AEU), 2019, vol. 109, p. 76–98. DOI: 10.1016/j.aeue.2019.07.004
  3. BEN TRAD, I., FLOCH, J. M., RMILI, H., et al. Planar elliptic broadband antenna with wide range reconfigurable narrow notched bands for multi-standard wireless communication devices. Progress In Electromagnetics Research, 2014, vol. 145, p. 69–80. DOI: 10.2528/PIER13122701
  4. RAHMAN, M. U. CPW fed miniaturized UWB tri-notch antenna with bandwidth enhancement. Advances in Electrical Engineering, 2016, p. 1–8. DOI: 10.1155/2016/7279056
  5. HU, S., WU, Y., ZHANG, Y., et al. Design of a CPW-fed ultra wide band antenna. Open Journal of Antennas and Propagation, 2013, vol. 1, no. 2, p. 18–22. DOI: 10.4236/ojapr.2013.12005
  6. MANDAL, M. K., SANYAL, S. A novel defected ground structure for planar circuits. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 2, p. 93–95. DOI: 10.1109/LMWC.2005.863192
  7. YANG, F., RAHMAT-SAMII, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2936–2946. DOI: 10.1109/TAP.2003.817983
  8. FALCONE, F., LOPETEGI, T., LASO, M. A. G., et al. Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters, 2004, vol. 93, no. 19, p. 1–4. DOI: 10.1103/PhysRevLett.93.197401
  9. BARBUTO, M., BILOTTI, F., TOSCANO, A. Design of a multifunctional SRR‐loaded printed monopole antenna. International Journal of RF and Microwave Computer‐Aided Engineering, 2012, vol. 22, no. 4, p. 552–557. DOI: 10.1002/mmce.20645
  10. BARBUTO, M., TROTTA, F., BILOTTI, F., et al. Horn antennas with integrated notch filters. IEEE Transactions on Antennas and Propagation, 2014, vol. 63, no. 2, p. 781–785. DOI: 10.1109/TAP.2014.2378269
  11. FALCONE, F., LOPETEGI, T., BAENA, J. D., et al. Effective negative-ε stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 6, p. 280–282. DOI: 10.1109/LMWC.2004.828029
  12. YAN, B., JIANG, D., XU, R., et al. A UWB band-pass antenna with triple-notched band using common direction rectangular complementary split-ring resonators. International Journal of Antennas and Propagation, 2013, vol. 2013, p. 1–6. DOI: 10.1155/2013/934802
  13. MANSHOURI, N., YAZGAN, A., MALEKI, M. A microstrip-fed ultra-wideband antenna with dual band-notch characteristics. In The 39th International Conference on Telecommunications and Signal Processing (TSP). Vienna (Austria), 2016, p. 231–234. DOI: 10.1109/TSP.2016.7760867
  14. SARKAR, D., SRIVASTAVA. K. V., SAURAV. K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/LAWP.2014.2306812
  15. DHANESH, V. K., ANURENJAN, P. R. Trapezoidal antenna with triple band-notched for UWB applications. In IEEE Annual India Conference (INDICON). Bangalore (India), 2016, p. 1–5. DOI: 10.1109/INDICON.2016.7838941
  16. KAHNG, S., SHIN, E. C., JANG, G. H., et al. A UWB antenna combined with the CRLH metamaterial UWB bandpass filter having the bandstop at the 5 GHz-band WLAN. In IEEE Antennas and Propagation Society International Symposium. North Charleston (SC, USA), 2009, p. 1–4. DOI: 10.1109/APS.2009.5172114
  17. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. A multireconfigurable CLL-loaded planar monopole antenna. Radioengineering, 2020, vol. 29, no. 2, p. 313–320. DOI: 10.13164/re.2020.0313
  18. QUDDUS, A., SALEEM, R., SHAFIQUE, M. F., et al. Compact electronically reconfigurable WiMAX band-notched ultrawideband MIMO antenna. Radioengineering, 2018, vol. 27, no. 4, p. 998–1005. DOI: 10.13164/re.2018.0998
  19. ALHEGAZI, A., ZAKARIA, Z., SHAIRI, N. A., et al. A novel reconfigurable UWB filtering-antenna with dual sharp band notches using double split ring resonators. Progress In Electromagnetics Research, 2017, vol. 79, p. 185–198. DOI: 10.2528/PIERC17092302
  20. CHAABANE, G., MADRANGEAS, V., CHATRAS, M., et al. High linearity 3-bit frequency tunable planar inverted F-antenna for RF applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 983–986. DOI: 10.1109/LAWP.2016.2615874
  21. ANGUERA, J., ANDUJAR, A., LEIVA, J. L., et al. Multiband antenna operation with a non-resonant element using a reconfigurable matching network. In The 12th European Conference on Antennas and Propagation (EUCAP). London (UK), 2018, p. 1–4. DOI: 10.1049/cp.2018.1199
  22. AGHDAM, S. A. A novel UWB monopole antenna with tunable notched behavior using varactor diode. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1243–1246. DOI: 10.1109/LAWP.2014.2332449
  23. BALANIS, C. A. Antenna Theory: Analysis and Design. 2nd ed. USA: John Wiley & Sons, 1997. ISBN: 0471592684, 9780471592686
  24. DINESH, V., MURUGESAN, G. A. CPW-fed hexagonal antenna with fractal elements for UWB applications. Applied Mathematics & Information Sciences, An International Journal, 2019, vol. 13, no. 1, p. 73–79. DOI: 10.18576/amis/130110
  25. KIM, D. O., JO, N. I., JANGAND, H. A., et al. Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators. Progress In Electromagnetics Research, 2011, vol. 112, p. 93–107. DOI: 10.2528/PIER10111607
  26. KALYAN, R., REDDY, K. T. V., PADMA PRIYA, K. Compact CSRR etched UWB microstrip antenna with quadruple band refusal characteristics for short distance wireless communication applications. Progress In Electromagnetics Research, 2019, vol. 82, p. 139–146. DOI: 10.2528/PIERL19010601
  27. SKYWORKS. SMV1405 t o SMV1430 Series: Plastic Packaged Abrupt Junction Tuning Varactors. 10 pages. [Online] Cited 2016- 01-25. Available at : https://www.mouser.fr/datasheet/2/472/SMV1405_1430_Series_2 00068V-1079581.pdf
  28. TANG, M. C., WANG, H., DENG, T., et al. Compact planar ultrawideband antennas with continuously tunable independent band-notched filter. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 8, p. 3292–3301. DOI: 10.1109/TAP.2016.2570254
  29. ORAIZI, H., SHAHMIRZADI, N. V. Frequency-and time-domain analysis of a novel UWB reconfigurable microstrip slot antenna with switchable notched bands. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 8, p. 1127–1132. DOI: 10.1049/iet-map.2016.0009
  30. KINGSLY, S., THANGARASU, D., KANAGASABAI, M., et al. Tunable band-notched high selective UWB filtering monopole antenna. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 8, p. 5658–5661. DOI: 10.1109/TAP.2019.2920997

Keywords: Reconfigurable antenna, complementary split ring resonator (CSRR), notched-band

L. Zhang, J. Jiang, Y. Liu, W. Li [references] [full-text] [DOI: 10.13164/re.2021.0034] [Download Citations]
Single-fed Patch Antenna with Reconfigurable Orbit Angular Momentum Order

Order reconfiguration of orbital angular momentum (OAM) is the foundation for wireless communications based on OAM state multiplexing. As the symmetry of a circular patch is disturbed by an arc segment, two degenerate modes can be synthesized under the single-fed condition to generate OAM waves. Due to arc segment independent of the radiation patch, its effective length is controlled by a switching diode to select different order degenerate modes for synthesis. Based on this idea, a reconfiguration of first-order and second-order OAM modes is achieved. In comparison, the performance of low-order OAM mode is better than that of high-order mode.

  1. SHIRAZI, M., HUANG, J., LI, T., et al. A switchable-frequency slot-ring antenna element for designing a reconfigurable array. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 2, p. 229–233. DOI: 10.1109/LAWP.2017.2781463
  2. LIN, W., WONG, H., ZIOLKOWSKI, R. W. Wideband patternreconfigurable antenna with switchable broadside and conical beams. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2863–2641. DOI: 10.1109/LAWP.2017.2738101
  3. ZHU, H. L., CHEUNG, S. W., LIU, X. H., et al. Design of polarization reconfigurable antenna using metasurface. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 2891–2898. DOI: 10.1109/TAP.2014.2310209
  4. TAMBURINI, F., MARI, E., SPONSELLI, A., et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 2012, vol. 14, p. 1–17. DOI: 10.1088/1367-2630/14/3/033001
  5. TAMBURINI, F., MARI, E., PARISI, G., et al. Tripling the capacity of a point-to-point radio link by using electromagnetic vortices. Radio Science, 2015, vol. 50, no. 6, p. 501–508. DOI: 10.1002/2015RS005662
  6. MORABITO, A. F., DI DONATO, L., ISERNIA, T. Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory. IEEE Antennas and Propagation Magazine, 2018, vol. 60, no. 2, p. 59–67. DOI: 10.1109/MAP.2018.2796445
  7. BARBUTO, M., MIRI, M., ALU, A., et al. A topological design tool for the synthesis of antenna radiation patterns. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 3, p. 1851–1859. DOI: 10.1109/TAP.2019.2944533
  8. WANG, J., LIU, K., CHENG, Y., et al. Vortex SAR imaging method based on OAM beams design. IEEE Sensors Journal, 2019, vol. 19, no. 24, p. 11873–11879. DOI: 10.1109/JSEN.2019.2937976
  9. LIU, K., LI, X., GAO, Y., et al. Microwave imaging of spinning object using orbital angular momentum. Journal of Applied Physics, 2017, vol. 122, p. 1–6. DOI: 10.1063/1.4991655
  10. SHI, H., WANG, L., PENG, G., et al. Generation of multiple modes microwave vortex beams using active metasurface. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 1, p. 59–63. DOI: 10.1109/LAWP.2018.2880732
  11. KANG, L., LI, H., ZHOU, J., et al. A mode-reconfigurable orbital angular momentum antenna with simplified feeding scheme. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 7, p. 4866–4871. DOI: 10.1109/TAP.2019.2916595
  12. HAN, J., LI, L., YI, H., et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface. Optical Materials Express, 2018, vol. 8, no. 11, p. 3470–3478. DOI: 10.1364/OME.8.003470
  13. ZHANG, Z., XIAO, S., LI, Y., et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 521–524. DOI: 10.1109/LAWP.2016.2586975
  14. DENG, C., ZHANG, K., FENG, Z. Generating and measuring tunable orbital angular momentum radio beams with digital control method. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 2, p. 899–902. DOI: 10.1109/TAP.2016.2632532
  15. MOHAMMADI, S. M., DALDORFF, L. K. S., BERGMAN, J. E. S., et al. Orbital angular momentum in radio - a system study. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 565–572. DOI: 10.1109/TAP.2009.2037701
  16. LI, W., ZHANG, L., ZHU, J., et al. Constructing dual-frequency OAM circular patch antenna using characteristic mode theory. Journal of Applied Physics, 2019, vol. 126, p. 064501-1–6. DOI: 10.1063/1.5100631
  17. YU, S., LI, L., SHI, G. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface. Applied Physics Express, 2016, vol. 9, no. 8, p. 082202-1–4. DOI: 10.7567/APEX.9.082202
  18. KOU, N., YU, S., LI, L. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain. Applied Physics Express, 2017, vol. 10, no. 1, p. 016701-1–4. DOI: 10.7567/APEX.10.016701
  19. CABEDO-FABRES, M., ANTONINO-DAVIU, E., VALERONOGUEIRA, A., et al. The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 5, p. 52–68. DOI: 10.1109/map.2007.4395295
  20. BARBUTO, M., TROTTA, F., BILOTTI, F., et al. Circular polarized patch antenna generating orbital angular momentum. Progress In Electromagnetics Research, 2014, vol. 148, p. 23–30. DOI: 10.2528/pier14050204
  21. YAO, E., FRANKE-ARNOLD, S., COURTIAL, J., et al. Fourier relationship between angular position and optical orbital angular momentum. Optics Express, 2006, vol. 14, no. 20, p. 9071–9076. DOI: 10.1364/OE.14.009071

Keywords: Orbital angular momentum (OAM), reconfigurable antenna, patch antenna, degenerate mode

D. G. Patanvariya, A. Chatterjee [references] [full-text] [DOI: 10.13164/re.2021.0040] [Download Citations]
A Compact Bow-tie Shaped Wide-band Microstrip Patch Antenna for Future 5G Communication Networks

In this paper, a novel compact bow-tie shaped microstrip patch antenna for wide-band application is presented. The proposed geometry consists of a modified bow-tie structure at the top of the Rogers RT-5880 substrate with a 50 Ω feed-line and 8 × 8 mm2 full ground plane. The diagonal slots inside the geometry have been implemented for exact resonating. The circuit analysis and various parametric analyses of the proposed geometry have been studied. The prototype of the antenna resonates at 27.77 GHz. The antenna has a fractional bandwidth of 6.77% (26.81–28.69 GHz) in simulation and 6.30% (26.89–28.64 GHz) in measurement respectively. The measured linear gain and radiation efficiency of the antenna are 7.00 dBi and 74% respectively. Also, it has a low sidelobe-level and cross-polarization level over the entire-space. The proposed wide-band antenna gives good time-domain characteristics as well as provides an acceptable FBR and impedance matching over the resonating band. All the properties suggest that the proposed antenna suits well for 5G communication along with various wireless systems.

  1. RAPPAPORT, T. S., SUN, S., MAYZUS R., et al. Millimeter wave mobile communications for 5G cellular: It will work. IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  2. QUALCOMM TECHNOLOGIES INC. Spectrum for 4G and 5G. [Online] Cited 2020-06-06. Available at: https://www.qualcomm.com/media/documents/files/spectrumfor-4g-and-5g.pdf
  3. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed., New York (USA): John Wiley & Sons, 2005. ISBN: 978-0471667827
  4. GUHA, D., ANTAR, Y. M. Microstrip and Printed Antennas: New Trends, Techniques and Applications. Hoboken (USA): John Wiley & Sons, 2010. ISBN: 978-0470973370
  5. MANDELBROT, B. B. The Fractal Geometry of Nature. New York (USA): WH Freeman, 1983. ISBN: 978-0716711865
  6. ANGUERA, J., PUENTE, C., BORIA, C., et al. Small and highdirectivity bow-tie patch antenna based on the Sierpinski fractal. Microwave and Optical Technology Letters, 2001, vol. 31, no. 3, p. 239–241. DOI: 10.1002/mop.1407
  7. SEYFRIED, D., JANSEN, R., SCHOEBEL, J. Shielded loaded bowtie antenna incorporating the presence of paving structure for improved GPR pipe detection. Journal of Applied Geophysics, 2014, vol. 111, p. 289–298. DOI: 10.1016/j.jappgeo.2014.10.019
  8. KHALILY, M., TAFAZOLLI, R., RAHMAN, T. A., et al. Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1305–1308. DOI: 10.1109/LAWP.2015.2505781
  9. PARK, J. S., KO, J. B., KWON, et al. A tilted combined beam antenna for 5G communications using a 28-GHz band. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1685–1688. DOI: 10.1109/LAWP.2016.2523514
  10. YANG, B., YU, Z., DONG, Y., et al. Compact tapered slot antenna array for 5G millimeter-wave massive MIMO systems. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12, p. 6721–6727. DOI: 10.1109/TAP.2017.2700891
  11. SHOAIB, N., SHOAIB, S., KHATTAK, I., et al. MIMO antennas for smart 5G devices. IEEE Access, 2018, vol. 6, p. 77014–77021. DOI: 10.1109/ACCESS.2018.2876763
  12. AW, M. S., ASHWATH, K., ALI, T. A compact two element MIMO antenna with improved isolation for wireless applications. Journal of Instrumentation, 2019, vol. 14, p. 1–16. DOI: 10.1088/1748-0221/14/06/P06014
  13. CHATTERJEE, A., MONDAL, T., PATANVARIYA, D. G., et al. Fractal-based design and fabrication of low-sidelobe antenna array. AEU-International Journal of Electronics and Communications, 2018, vol. 83, p. 549–557. DOI: 10.1016/j.aeue.2017.11.010
  14. JILANI, S. F., ALOMAINY, A. Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 5, p. 672–677. DOI: 10.1049/iet-map.2017.0467
  15. KHATTAK, M. I., SOHAIL, A., KHAN, U., et al. Elliptical slot circular patch antenna array with dual band behaviour for future 5G mobile communication networks. Progress In Electromagnetics Research, 2019, vol. 89, p. 133–147. DOI: 10.2528/PIERC18101401
  16. HUSSAIN, N., JEONG, M. J., PARK, J., et al. A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications. IEEE Access, 2019, vol. 7, p. 42897–42907. DOI: 10.1109/ACCESS.2019.2908441
  17. CHASHMI, M. J., REZAEI, P., KIANI, N. Y-shaped graphenebased antenna with switchable circular polarization. Optik, 2020, vol. 200, p. 163321. DOI: 10.1016/j.ijleo.2019.163321
  18. LUDWIG, R. RF Circuit Design: Theory & Applications. 2nd ed., Noida (India): Pearson Education India, 2009. ISBN: 978- 8131762189
  19. PATANVARIYA, D. G., CHATTERJEE, A., KOLA, K. S. Highgain and circularly polarized fractal antenna array for dedicated short range communication systems. Progress In Electromagnetics Research, 2020, vol. 101, p. 133–146. DOI: 10.2528/PIERC20020706
  20. CST–MICROWAVE STUDIO. CST Computer Simulation Technology AG. [Online] Cited 2020-8-08. Available at: https://www.3ds.com/products-services/simulia/products/cststudio-suite/
  21. ROGERS CORPORATION. Roges Corporation. [Online] Cited 2012-08-08. Available at: www.rogerscorp.com
  22. TOH, B. Y., CAHILL, R., FUSCO, V. F. Understanding and measuring circular polarization. IEEE Transactions on Education, 2003, vol. 46, no. 3, p. 313–318. DOI: 10.1109/TE.2003.813519
  23. MOHARRAM, M. A., KISHK, A. A. MIMO antennas efficiency measurement using wheeler caps. IEEE Transactions on Antennas and Propagation, 2015, vol. 64, no. 3, p. 115–1120. DOI: 10.1109/TAP.2015.2513420
  24. WIESBECK, W., ADAMIUK, G., STURM, C. Basic properties and design principles of UWB antennas. Proceedings of the IEEE, 2009, vol. 97, no. 2, p. 372–385. DOI: 10.1109/JPROC.2008.2008838
  25. SORGEL, W., WIESBECK, W. Influence of the antennas on the ultra-wideband transmission. EURASIP Journal on Advances in Signal Processing, 2005, vol. 2005, no. 3, p. 843268. DOI: 10.1155/ASP.2005.296

Keywords: Bow-tie shape, microstrip patch antenna, 5G communication, millimeter wave

A. Bhattacharyya, K. Patra, B. Gupta [references] [full-text] [DOI: 10.13164/re.2021.0048] [Download Citations]
Design of HIS-backed Miniaturized Cross Slotted Antenna for Circular Polarization Using Modal Analysis: A Novel Approach

This work presents a novel design technique of a circularly polarized miniaturized cross slotted antenna backed by a High Impedance Surface using substructure based Characteristic Mode analysis. The electromagnetic behavior of the antenna and the HIS is studied while the two structures are in close vicinity, with no air gap isolation between them. Such problem of proximity induced near field interaction of the finite HIS with the antenna has rarely been systematically attempted in literature. The chosen operating frequency of the cross slotted antenna is synchronized with the frequency of high impedance operation of the HIS by analysing the structure. This work explains how the characteristics of HIS can be determined when placed at the near electromagnetic field of an antenna. Circularly polarized radiation is obtained at 2.45 GHz with a 3-dB axial ratio bandwidth close to 1.46% with a 10-dB impedance bandwidth of 4.4%. The overall size of the designed antenna is 0.23 Llambda_0 x 0.23 lamba_0 x 0.039 lambda_0 including the substrate dimensions at 2.45 GHz (lambda_0 is the free space wavelength). The area reduction of the complete antenna and only the slotted patch is achieved as 78% and 88% respectively, as compared to the fundamental mode half wavelength antenna at this frequency.

  1. CAI, Y., LI, K., YIN, Y., et al. Dual-band circularly polarized antenna combining slot and microstrip modes for GPS with HIS ground plane. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1129–1132. DOI: 10.1109/LAWP.2015.2395538
  2. FENG, D., ZHAI, H., XI, L., et al. A broadband low-profile circular-polarized antenna on an AMC reflector. 2017, IEEE Antennas and Wireless Propagation Letters, vol. 16, p. 2840–2843. DOI: 10.1109/LAWP.2017.2749246
  3. ZHU, J., LI, S., LIAO, S., et al. Wideband low-profile highly isolated MIMO antenna with artificial magnetic conductor. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 3, p. 458–462. DOI: 10.1109/LAWP.2018.2795018
  4. JOUBERT, J., VARDAXOGLOU, J. C., WHITTOW, W. G., et al. CPW-fed cavity-backed slot radiator loaded with an AMC reflector. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 735–742. DOI: 10.1109/TAP.2011.2173152
  5. DONG, Y., TOYAO, H., ITOH, T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 11, p. 4329–4333. DOI: 10.1109/TAP.2011.2164223
  6. AGARWAL, K., NASIMUDDIN, ALPHONES, A. RIS-based compact circularly polarized microstrip antennas. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 547–554. DOI: 10.1109/TAP.2012.2225816
  7. GUPTA, G., HARISH, A. R. Performance of a dipole placed above a novel double layered via-less high impedance surface. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 11, p. 1609–1615. DOI: 10.1049/iet-map.2016.0882
  8. LIN, F. H., LI, T., CHEN, Z. N. Recent progress in metasurface antennas using characteristic mode analysis. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP). Krakow (Poland), 2019, p. 1–5. ISBN: 978-88-907018-8-7
  9. SALIH, A. A., CHEN, Z. N., MOUTHAAN, K. Characteristic mode analysis and metasurface- based suppression of higher order modes of a 2 × 2 closely spaced phased array. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 3, p. 1141–1150. DOI: 10.1109/TAP.2016.2647683
  10. CHUKWUKA, O., SEETHARAMDOO, D., RABAH, M. H. Coupling analysis of metamaterial inspired structures using the theory of characteristic modes. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP). Krakow (Poland), 2019, p. 1–5. ISBN: 978-88-907018-8-7
  11. RABAH, M. H., SEETHARAMDOO, D., BERBINEAU, M. Analysis of miniature metamaterial and magnetodielectric arbitraryshaped patch antennas using characteristic modes: Evaluation of the q factor. IEEE Transactions on Antennas and Propagation, vol. 64, no. 7 p. 2719–2731. DOI: 10.1109/TAP.2016.2571723
  12. FLUHLER, H. U. Ultra-wideband (UWB) artificial magnetic conductor (AMC) metamaterials for electrically thin antennas and arrays. US Patent 8451189B1, 2013.
  13. BHATTACHARYYA, A., GUPTA, B. On the size reduction of slotted finite ground plane of a circularly polarized microstrip patch antenna using substructure characteristic modes. In Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP). Krakow (Poland), 2019, p. 1–5. ISBN: 978-88-907018-8-7
  14. KISHK, A., SHAFAI, L. Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 5, p.666–673. DOI: 10.1109/TAP.1986.1143875
  15. RAO, S., WILTON, D., GLISSON, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antennas and Propagation, 1982, vol. 30, no. 3, p. 409–418. DOI: 10.1109/TAP.1982.1142818
  16. SIEVENPIPER, D., ZHANG, L., BROAS, R. F. J., et al. Highimpedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2059–2074. DOI: 10.1109/22.798001
  17. HAZDRA, P., CAPEK, M., MASEK, M., et al. An introduction to the source concept for antennas. Radioengineering, 2016, vol. 25, no. 1, p. 12–17. DOI: 10.13164/re.2016.0012
  18. SCHAB, K., JELINEK, L., CAPEK, M., et al. Energy stored by radiating systems. IEEE Access, 2018, vol. 6, p. 10553–10568. DOI: 10.1109/ACCESS.2018.2807922
  19. BHATTACHARYYA, A., GUPTA, B. Investigations on effects of finite ground plane on slot antennas using characteristic modes. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego (USA), 2017, p. 169–170. DOI: 10.1109/APUSNCURSINRSM.2017.8072127
  20. VANDELLE, E., VUONG, T., ARDILA, G., et al. Miniaturized antenna on a paper substrate. In Proceedings of the 49th European Microwave Conference (EuMC). Paris (France), 2019, p. 73–76. DOI: 10.23919/EuMC.2019.8910815
  21. IWAMARU, T., KATSUMATA, H., UEKUSA, S., et al. Development of microwave absorbing materials prepared from a polymer binder including japanese lacquer and epoxy resin. Physics Procedia, 2012, vol. 23, p. 69–72. DOI: 10.1016/j.phpro.2012.01.018

Keywords: High impedance surface (HIS), characteristic modes (CM), circular polarization (CP), miniaturization, cross slotted antenna

D. Z. Nazif, I. S. Mohamed, A. A. Gaafar, M. Abdalla [references] [full-text] [DOI: 10.13164/re.2021.0056] [Download Citations]
UWB Notch Antennas in MIMO System with High Isolation Performance

This article presents a detailed analysis and design of an ultra-wideband (3.1 GHz – 10.6 GHz) notch antennas in a two-element MIMO system with high isolation performance. The wideband spectrum is notched at the WiMAX band at 5.8 GHz centre frequency using a highly selective electromagnetic bandgap structure coupled to the antenna feeding lines. An array of electromagnetic bandgap structure is used to achieve wideband isolation between the two elements. The two antenna elements achieve wideband reflection coefficient for good matching below -10 dB, except the notch where it becomes higher than – 2 dB. On the other hand, the antenna elements have a minimum of 20 dB isolation. Thanks to the achieved results, the antenna MIMO elements have small envelop correlation (less than 0.05) and also small channel capacity loss (less than 0.2 bit/s/Hz). The obtained results are verified using experimental measurements and all circuit/ EM needed simulations.

  1. TELATAR, I., TSE, D. N. C. Capacity and mutual information of wideband multipath fading channels. IEEE Transactions on Information Theory, 2000, vol. 46, no. 4, p. 1384–1400. DOI: 10.1109/18.850678
  2. PAULRAJ, A. J., GORE, D., NABAR, R. U., et al. An overview of MIMO communications-A key to gigabit wireless. Proceedings of the IEEE, 2004, vol. 92, no. 2, p. 198–218. DOI: 10.1109/JPROC.2003.821915
  3. LI, Q., ABDULLAH, M., CHEN, X. Defected ground structure loaded with meandered lines for decoupling of dual-band antenna. Journal of Electromagnetic Waves and Applications, 2019, vol. 33, no. 13, p. 1764–1775. DOI: 10.1080/09205071.2019.1643261
  4. WU, C. H., ZHOU, G. T., WU, Y. L., et al. Stub-loaded reactive decoupling network for two-element array using even-odd analysis. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 452–455. DOI: 10.1109/LAWP.2013.2255255
  5. SELVARAJU, R., JAMALUDDIN, M. H., KAMARUDIN, M. R., et al. Mutual coupling reduction and pattern error correction in a 5G beamforming linear array using CSRR. IEEE Access, 2018, vol. 6, p. 65922–65934. DOI: 10.1109/ACCESS.2018.2873062
  6. IQBAL, A., SARAEREH, O. A., AHMAD, A. W., et al. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access, 2018, vol. 6, p. 2755–2759. DOI: 10.1109/ACCESS.2017.2785232
  7. MOHAMED, I., ABDALLA, M., MITKEES, A. A. Perfect isolation performance among two-element MIMO antennas. AEU - International Journal of Electronics and Communications, 2019, vol. 107, p. 21–31. DOI: 10.1016/j.aeue.2019.05.014
  8. IBRAHIM, A., ABDALLA, M. A., HU, Z. Design of a compact MIMO antenna with asymmetric coplanar strip-fed for UWB applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 1, p. 31–36. DOI: 10.1002/mop.30208
  9. ASSIMONIS, S. D., YIOULTSIS, T. V., ANTONOPOULOS, C. S. Design and optimization of uniplanar EBG structures for low profile antenna applications and mutual coupling reduction. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 10, p. 4944–4949. DOI: 10.1109/TAP.2012.2210178
  10. SWATI, Y. Design and Analysis of Band Notched Antennas for UWB and MIMO Wireless Applications. Uttarakhand Technical University, 2018.
  11. FEDERAL COMMUNICATIONS COMMISSION. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems. First Rep. Order, FCC 02-48, 2002.
  12. GHOSH, A., MANDAL, T., DAS, S. Design and analysis of triple notch ultrawideband antenna using single slotted electromagnetic bandgap inspired structure. Journal of Electromagnetic Waves and Applications, 2019, vol. 33, no. 11, p. 1391–1405. DOI: 10.1080/09205071.2019.1609377
  13. ABDALLA, M. A., AL-MOHAMADI, A. A., MOHAMED, I. S. A miniaturized dual band EBG unit cell for UWB antennas with high selective notching. International Journal of Microwave and Wireless Technologies, 2019, vol. 11, no. 10, p. 1035–1043. DOI: 10.1017/S1759078719000710
  14. LI, T., ZHAI, H. Q., LI, G. H., et al. Design of compact UWB band-notched antenna by means of electromagnetic- bandgap structures. Electronics Letters, 2012, vol. 48, no. 11, p. 608–609. DOI: 10.1049/el.2012.0972
  15. KAISER, T., ZHENG, F., DIMITROV, E. An overview of ultrawideband systems with MIMO. Proceedings of IEEE, 2009, vol. 97, no. 2, p. 285–312. DOI: 10.1109/JPROC.2008.2008784
  16. ABDELRAHEEM, A. M., ABDALLA, M. A. Bi-directional UWB MIMO antenna for superior spatial diversity, and/or multiplexing MIMO performance. Wireless Personal Communications, 2018, vol. 101, no. 3, p. 1379–1394. DOI: 10.1007/s11277-018-5767-5
  17. DENG, J. Y., GUO, L. X., LIU, X. L. An ultrawideband MIMO antenna with a high isolation. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 182–185. DOI: 10.1109/LAWP.2015.2437713
  18. KUMAR, R., SURUSHE, G. Design of microstrip-fed printed UWB diversity antenna with tee crossed shaped structure. Engineering Science and Technology, an International Journal, 2016, vol. 19, no. 2, p. 946–955. DOI: 10.1016/j.jestch.2015.10.006
  19. NASER, S., DIB, N. Design and analysis of super-formula-based UWB monopole antenna and its MIMO configuration. Wireless Personal Communications, 2017, vol. 94, no. 4, p. 3389–3401. DOI: 10.1007/s11277-016-3782-y
  20. ZHANG, J. Y., ZHANG, F., TIAN, W. P., et al. ACS-fed UWBMIMO antenna with shared radiator. Electronics Letters, 2015, vol. 51, no. 17, p. 1301–1302. DOI: 10.1049/el.2015.1327
  21. REN, J., HU, W., YIN, Y., et al. Compact printed MIMO antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1517–1520. DOI: 10.1109/LAWP.2014.2343454
  22. YETISIR, E., CHEN, C. C., VOLAKIS, J. L. Low-profile UWB 2- port antenna with high isolation. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 55–58. DOI: 10.1109/LAWP.2013.2296045
  23. BILAL, M., SALEEM R., ABBASI, H. H., et al. An FSS-based nonplanar quad-element UWB-MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 987–990. DOI: 10.1109/LAWP.2016.2615884
  24. LIU, L., CHEUNG, S. W., YUK, T. I. Compact MIMO antenna for portable UWB applications with band-botched characteristic. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 1917–1924. DOI: 10.1109/TAP.2015.2406892
  25. TANG, T. C., LIN, K. H. An ultrawideband MIMO antenna with dual band-notched function. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1076–1079. DOI: 10.1109/LAWP.2014.2329496
  26. TANG, Z., ZHAN, J., WU, X., et al. Design of a compact UWBMIMO antenna with high isolation and dual band-notched characteristics. Journal of Electromagnetic Waves and Applications, 2020, vol. 34, no. 4, p. 500–513. DOI: 10.1080/09205071.2020.1724200
  27. LIU, Y. Y., TU, Z. H. Compact differential band-notched steppedslot UWB-MIMO antenna with common-mode suppression. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 593–596. DOI: 10.1109/LAWP.2016.2592179
  28. TOKTAS, A. G-shaped band-notched ultra-wideband MIMO antenna system for mobile terminals. IET Microwaves, Antennas & Propagation, 2016, vol. 11, no. 5, p. 718–725. DOI: 10.1049/iet-map.2016.0820
  29. LI, J. F., CHU, Q. X., LI, Z. H., et al. Compact dual band-notched UWB MIMO antenna with high isolation. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4759–4766. DOI: 10.1109/TAP.2013.2267653
  30. KANG, L., LI, H., WANG, X., et al. Compact offset microstripfed MIMO antenna for band-notched UWB applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1754–1757. DOI: 10.1109/LAWP.2015.2422571
  31. LI, Z., YIN, C., ZHU, X. Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics. IEEE Access, 2019, vol. 7, p. 38696–38701. DOI: 10.1109/ACCESS.2019.2906338
  32. KUMAR, A. G., YADAV, S., RAMBABU, K. Design of ultracompact UWB antenna with band-notched characteristics for MIMO applications. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 12, p. 1895–1900. DOI: 10.1049/ietmap.2018.0012
  33. AZARM, B., NOURINIA, J., GHOBADI, C., et al. A compact WiMAX band-notched UWB MIMO antenna with high isolation. Radioengineering, 2018, vol. 27, no. 4, p. 983–989. DOI: 10.13164/re.2018.0983
  34. QUDDUS, A., SALEEM, R., SHAFIQUE, M. F. Compact electronically reconfigurable WiMAX band-notched ultrawideband MIMO antenna. Radioengineering, 2018, vol. 27, no. 4, p. 998–1003. DOI: 10.13164/re.2018.0998
  35. SAXENA, G., JAIN, P., AWASTHI, Y. K. High diversity gain super-wideband single band-notch MIMO antenna for multiple wireless applications. IET Microwaves, Antennas & Propagation, 2020, vol. 14, no. 1, p. 109–119. DOI: 10.1049/iet-map.2019.0450
  36. THAKUR, E., JAGLAN, N., GUPTA, S. D. Design of compact triple band-notched UWB MIMO antenna with TVC-EBG structure. Journal of Electromagnetic Waves and Applications, 2020, vol. 34, p. 1–15. DOI: 10.1080/09205071.2020.1775136
  37. NAZIF, D., RABIE, R., ABDALLA, M. A., Mutual coupling reduction in two elements UWB notch antenna system. In 2017 IEEE AP-S International Antenna and Propagation Symposium Digest. San Diego (CA, USA), 2017, p. 1887–1888. DOI: 10.1109/APUSNCURSINRSM.2017.8072986
  38. TIAN, R., LAU, B. K., YING, Z. Multiplexing efficiency of MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 183–186. DOI: 10.1109/LAWP.2011.2125773
  39. CHUAH, C. N., TSE, D. N., KAHN, J. M., et al. Capacity scaling in MIMO wireless systems under correlated fading. IEEE Transactions on Information Theory, 2002, vol. 48, no. 3, p. 637–650. DOI: 10.1109/18.985982
  40. BLANCH, S., ROMEU, J., CORBELLA, I. Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 2003, vol. 39, no. 9, p. 705–707. DOI: 10.1049/el:20030495
  41. SHIN, H., LEE, J. H. Capacity of multiple-antenna fading channels: Spatial fading correlation, double scattering, and keyhole. IEEE Transactions on Information Theory, 2003, vol. 49, no. 10, p. 2636–2647. DOI: 10.1109/TIT.2003.817439
  42. VAUGHAN, R. G., ANDERSEN, J. B. Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 1987, vol. 36, no. 4, p. 149–172. DOI: 10.1109/TVT.1987.24115
  43. CHOUKIKER, Y. K., SHARMA, S. K., BEHERA, S. K. Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas & Propagation, 2014, vol. 62, no. 3, p. 1483–1488. DOI: 10.1109/TAP.2013.2295213

Keywords: Multi-Input-Multi-Output (MIMO), notched-UWB antenna, electromagnetic bandgap (EBG) array, envelope correlation, diversity

P. S. Reddy, R. Mondal, P. P. Sarkar [references] [full-text] [DOI: 10.13164/re.2021.0065] [Download Citations]
Cylindrical Dielectric Resonator Antenna Offering Low Cross-Polarization for Point-to-Point Communication Systems

In this paper, a cylindrical dielectric resonator antenna (CDRA) offering low cross-polarization (XP) for point-to-point communication systems is presented. Three linear arrays of air vias (LAAV) are incorporated along the H-plane of a conventionalCDRAin order toweaken the undesired XP generating fields due to the orthogonally resonating HEM21X mode. A set of parametric studies are conducted on the design parameters of the 3-LAAV in CDRA to understand the sensitivity of boresight XPD on the 3-LAAV design parameters. Field distributions in CDRA before and after the incorporation of LAAV are extensively studied to draw a conclusive inference. The 3-LAAV loaded CDRA offers 39 dB higher boresight XP suppression in comparison to the conventional CDRA. The proposed technique is experimentally validated. The measured result shows an XP isolation of 56 dB at the boresight, 55 dB and 38 dB over ±15 % of half-power beamwidth (HPBW) in the E-plane and H-plane of radiation, respectively. This result is well above the minimum cross-polarization discrimination (XPD) requirements for the satellite earth station antennas.

  1. LUDWIG, A. The definition of cross polarization. IEEE Transactions on Antennas and Propagation, 1973, vol. 21, no. 1, p. 116–119. DOI: 10.1109/TAP.1973.1140406
  2. VOLAKIS, J. L. Radiometer Antennas in Antenna Engineering Handbook. 4th ed., New York (USA): McGraw-Hill Education, 2007. ISBN 978-0-07-147574-7
  3. PUJARA, D., SHARMA, S. B., CHAKRABARTY, S. B. Historical and planned uses of antenna technology for space-borne microwave radiometers. IEEE Antennas and Propagation Magazine, 2011, vol. 53, no. 3, p. 95–114. DOI: 10.1109/MAP.2011.6028425
  4. BECKMAN, C., WAHLBERG, U. Antenna systems for polarization diversity. Microwave Journal, 1997, vol. 40, p. 330–334. ISSN 0192-6225
  5. GHOBRIAL, S. I. Cross-polarization in satellite and earth-station antennas. Proceedings of the IEEE, March 1977, vol. 65, no. 3, p. 378–387. DOI: 10.1109/PROC.1977.10490
  6. KISHK, A. A. Dielectric resonator antenna, a candidate for radar applications. In Proceedings of the 2003 IEEE Radar Conference (Cat. No. 03CH37474), Huntsville (USA), 2003, p. 258–264. DOI: 10.1109/NRC.2003.1203411
  7. Earth Station Performance Requirements, SES, Rooseveltplantsoen 4, The Hague 2517 KR, Netherlands, 2006 [Online] Cited 2019-07-05. Available at: https://www.ses.com/sites/default/files/2017- 03/es_performance_requirements_0.pdf
  8. Fixed Radio Systems; Characteristics and requirements for point-to-point equipment and antennas. Part 4: Antennas, European Telecommunications Standards Institute (ETSI), 650 Route des Lucioles, F-06921 Sophia Antipolis Cedex, France, 2017 [Online] Cited 2019-07-06. Available at: https://www.etsi.org/deliver/etsi_en/302200_302299/30221704/02.0 1.01_60/en_30221704v020101p.pdf
  9. SKOLNIK, M. I. Radar Handbook. New York (USA): McGraw-Hill Professional, 2008. ISBN 978-0071485470
  10. KAJFEZ, D., GLISSION, A. W., JAMES, J. Computed modal field distributions for isolated dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 1984, vol.32, no. 12, p. 1609–1616. DOI: 10.1109/TMTT.1984.1132900
  11. AL-ZOUBI, A. S., KISHK, A. A., GLISSON, A. W. A linear rectangular dielectric resonator antenna array fed by dielectric image guide with low cross polarization. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 3, p. 697–704. DOI: 10.1109/TAP.2009.2039294
  12. SINGH, A., SHARMA, S. K. Investigations on wideband cylindrical dielectric resonator antenna with directive radiation patterns and low cross polarization. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 5, p. 1779–1783. DOI: 10.1109/TAP.2010.2044330
  13. GUHA, D., GAJERA, H., KUMAR, C. Cross-polarized radiation in a cylindrical dielectric resonator antenna: identification of source, experimental proof, and its suppression. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 4, p. 1863–1867. DOI: 10.1109/TAP.2015.2398127
  14. GAJERA, H., GUHA, D., KUMAR, C. New technique of dielectric perturbation in dielectric resonator antenna to control the higher mode leading to reduced cross-polar radiations. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 445–448. DOI: 10.1109/LAWP.2016.2582516
  15. ZUBIR, I. A., Othman, M., Ubaid, U., et al. A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for ku and k band applications. IEEE Access, 2020, vol. 8, p. 151219–151228. DOI: 10.1109/ACCESS.2020.3016432
  16. PATEL, P., MUKHERJEE, J., MUKHERJEE, B. Compact wideband perforated rectangular dielectric resonator antenna. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2015, p. 41–42. DOI: 10.1109/APS.2015.7304406
  17. PATEL, P., ERRAMSHETTY, M. New wideband t-shaped perforated dielectric resonator antenna. 2017 Mediterranean Microwave Symposium (MMS), Marseille, 2017, p. 1–3. DOI: 10.1109/MMS.2017.8497150
  18. MULDAVIN, J. B., REBEIZ, G. M. Millimeter-wave tapered-slot antennas on synthesized low permittivity substrates. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 8, p. 1276–1280. DOI: 10.1109/8.791943
  19. FAIZ, A.M., GOGOSH, N., KHAN, S.A., et al. Effects of an ordinary adhesive material on radiation characteristics of a dielectric resonator antenna. Microwave and Optical Technology Letters, 2014, vol. 56, no. 6, p. 1502–1506. DOI: 10.1002/mop.28349
  20. JUNKER, G.P., KISHK, A.A., GLISSON, A.W., et al. Effect of fabrication imperfections for ground-plane-backed dielectric resonator antennas. IEEE Antennas and Propagation Magazine, 1995, vol. 37, p. 40–47. DOI: 10.1109/74.370580
  21. RASHIDIAN, A., SHAFAI, L., KLYMYSHYN, D. M. Compact wideband multimode dielectric resonator antennas fed with parallel standing strips. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 11, p. 5021–5031. DOI: 10.1109/TAP.2012.2210018

Keywords: Cross-polarization, dielectric resonator antenna, point-to-point communication, parabolic reflector antenna

S. Ballav, G. A. Sarkar, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2021.0073] [Download Citations]
Filtering DRA Array and Its Applications in MIMO for Sub-6 GHz Band

A dielectric resonator-based filtering array antenna along with multi input - multi output (MIMO) characteristics is represented in this paper. Two rectangular dielectric resonators, together with a filtering power splitter (PS) is used to get a high gain filtering response. The PS, which consists of a simple T-junction 3-dB power splitters and two pairs of band-rejection resonators, provides four transmission zeros outside the passband. Detail study with an equivalent circuit is presented to understand the working principle of the filtering PS. By utilizing this PS, a two element DRA array is designed at sub-6 GHz frequency band (3.20 GHz-3.54 GHz) with an average broadside gain of 7.8 dBi in the passband and four radiation dips outside the passband. The proposed filtering DRA array effectively suppresses the out-of-band signal, delivers sharp selectivity at band edges. Finally, coalescing the two-filtering array, a MIMO antenna system is presented here. The filtering array MIMO antenna gives reasonable port isolation of greater than 20 dB throughout the operating band. All the major diversity parameters to establish MIMO characteristics e.g. envelop correlation coefficient (ECC), diversity gain (DG), channel loss capacity (CCL), and total reflection coefficient (TARC) persists within their tolerable ranges.

  1. ZUO, J., CHEN, X., HAN, G., et al. An integrated approach to RF antenna-filter co-design. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 141–144. DOI: 10.1109/LAWP.2009.2012732
  2. LIM, ENG HOCK, LEUNG, KWOK WA. Compact Multifunctional Antennas for Wireless Systems. John Wiley & Sons, 2012. DOI: 10.1002/9781118243244
  3. ALHEGAZI, A., ZAKARIA, Z., SHAIRI, N. A., et al. Compact UWB filtering-antenna with controllable WLAN band rejection using defected microstrip structure. Radioengineering, 2018, vol. 27, no. 1, p.110–117. DOI: 10.13164/re.2018.0110
  4. WU, W.-J., YIN, Y.-Z., ZUO, S.-L., et al. A new compact filterantenna for modern wireless communication systems. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1131–1134. DOI: 10.1109/LAWP.2011.2171469
  5. TANG, M.-C., SHI, T., ZIOLKOWSKI, R. W. Planar ultrawideband antennas with improved realized gain performance. IEEE Transactions on Antennas and Propagation, 2015, vol. 64, no. 1, p. 61–69. DOI: 10.1109/TAP.2015.2503732
  6. TANG, M.-C., CHEN, Y., ZIOLKOWSKI, R. W. Experimentally validated, planar, wideband, electrically small, monopole filtennas based on capacitively loaded loop resonators. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 8, p. 3353–3360. DOI: 10.1109/TAP.2016.2576499
  7. LIN, C., CHUNG, S. A filtering microstrip antenna array. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 11, p. 2856–2863. DOI: 10.1109/TMTT.2011.2160986
  8. CHEN, F., HU, H., LI, R. et al. Design of filtering microstrip antenna array with reduced sidelobe level. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 2, p. 903–908. DOI: 10.1109/TAP.2016.2639469
  9. MAO, C., GAO, S., WANG, Y., et al. An integrated filtering antenna array with high selectivity and harmonics suppression. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 6, p. 1798–1805. DOI: 10.1109/TMTT.2016.2561925
  10. PETOSA, A. Dielectric Resonator Antenna Handbook. Norwood (MA): Artech House, 2007. ISBN: 1596932066
  11. BALLAV, S., PARUI, S. K. Aperture coupled dielectric resonator antenna embedded in a secondary substrate for mechanical firmness. Radioengineering, 2018, vol. 27, no. 3, p. 679–685. DOI: 10.13164/RE.2018.0679
  12. HU, P. F., PAN, Y. M., ZHANG, X. Y., et al. A compact filtering dielectric resonator antenna with wide bandwidth and high gain. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 8, p. 3645–3651. DOI: 10.1109/TAP.2016.2565733
  13. HU, P. F., PAN, Y. M., ZHANG, X. Y., et al. Broadband filtering dielectric resonator antenna with wide stopband. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 4, p. 2079–2084. DOI: 10.1109/TAP.2017.2670438
  14. HU, P. F., PAN, Y. M., KWOK, WA LEUNG, et al. Wide-/dualband omnidirectional filtering dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 5, p. 2622–2627. DOI: 10.1109/TAP.2018.2809706
  15. PAN, Y. M., HU, P. F., KWOK, WA LEUNG, et al. Compact single-/dual-polarized filtering dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 9, p. 4474–4484. DOI: 10.1109/TAP.2018.2845457
  16. LIU, Y.-T., KWOK WA LEUNG, REN, J., et al. Linearly and circularly polarized filtering dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 3629–3640. DOI: 10.1109/TAP.2019.2902670
  17. HU, P. F., PAN, Y. M., ZHANG, X. Y., et al. A compact quasiisotropic dielectric resonator antenna with filtering response. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 2, p. 1294–1299. DOI: 10.1109/TAP.2018.2883611
  18. SAHOO, A. K., GUPTA, R. D., PARIHAR, M. S. Circularly polarised filtering dielectric resonator antenna for X-band applications. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 9, p. 1514–1518. DOI: 10.1049/iet-map.2017.1159
  19. WANG, X.-Y., TANG, S.-C., SHI, X.-F., et al. A low-profile filtering antenna using slotted dense dielectric patch. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 3, p. 502–506. DOI: 10.1109/LAWP.2019.2895320
  20. BALLAV, S., PARUI, S. K. Performance enhancement of dielectric resonator antenna by using cross-resonator based filtering feed-network. AEU-International Journal of Electronics and Communications, 2020, vol. 114, p. 1–8. DOI: 10.1016/j.aeue.2019.152989
  21. SAAD, A. A. R., MOHAMED, H. A. Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks. AEUInternational Journal of Electronics and Communications, 2019, vol. 99, p. 59–69. DOI:10.1016/j.aeue.2018.11.029
  22. SHARAWI, M. S., PODILCHAK, S. K., HUSSAIN, M. T., et al. Dielectric resonator based MIMO antenna system enabling millimetre-wave mobile devices. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 2, p. 287–293. DOI: 10.1049/ietmap.2016.0457
  23. SHARAWI, M. S., PODILCHAK, S. K., KHAN, M. U., et al. Dual-frequency DRA-based MIMO antenna system for wireless access points. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 8, p. 1174–1182. DOI: 10.1049/iet-map.2016.0671
  24. ZHANG, Y., DENG, J., LI, M., et al. A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 4, p. 747–751. DOI: 10.1109/LAWP.2019.2901961
  25. BOUTEJDAR, A., IBRAHIM, A. A., ALI, W. A. E. Design of compact size and tunable band pass filter for WLAN applications. Electronics Letters, 2016, vol. 52, no. 24, p. 1996–1997. DOI: 10.1049/el.2016.3073
  26. XUE, Q., JIN, J. Y. Bandpass filters designed by transmission zero resonator pairs with proximity coupling. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 11, p. 4103–4110. DOI: 10.1109/TMTT.2017.2697878
  27. SARKAR, G. A., BALLAV, S., CHATTERJEE, A., et al. Fourelement MIMO DRA with high isolation for WLAN applications. Progress in Electromagnetics Research Letters, 2019, vol. 84, p. 99–106. DOI: 10.2528/PIERL19031304
  28. FRITZ-ANDRADE, E., JARDON-AGUILAR, H., TIRADOMENDEZ, J. A. Mutual coupling reduction of two 2x1 triangularpatch antenna array using a single neutralization line for MIMO applications. Radioengineering, 2018, vol. 27, no. 4, p. 976–982. DOI: 10.13164/re.2018.0976
  29. SHARAWI, M. S., KHAN, M. U., NUMAN, A. B., et al. A CSRR loaded MIMO antenna system for ISM band operation. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 4265–4274. DOI: 10.1109/TAP.2013.2263214
  30. LI, J., CHU, Q., LI, Z., et al. Compact dual band-notched UWB MIMO antenna with high isolation. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4759–4766. DOI: 10.1109/TAP.2013.2267653
  31. CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134
  32. CHOUKIKER, Y. K., SHARMA, S. K., BEHERA, S. K. Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for mobile handheld devices. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 3, p. 1483–1488. DOI: 10.1109/TAP.2013.2295213
  33. DAS, G., SHARMA, A., GANGWAR, R. K. Dielectric resonatorbased two-element MIMO antenna system with dual band characteristics. IET Microwaves, Antennas & Propagation, 2017, vol. 12, no. 5, p. 734–741. DOI: 10.1049/iet-map.2017.0744
  34. NASIR, J., JAMALUDDIN, M. H., KHALILY, M., et al. A reduced size dual port MIMO DRA with high isolation for 4G applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2015, vol. 25, no. 6, p. 495–501. DOI: 10.1002/mmce.20884
  35. KUMARI, T., DAS, G., SHARMA, A., et al. Design approach for dual element hybrid MIMO antenna arrangement for wideband applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 1, p. 1–10. DOI: 10.1002/mmce.21486

Keywords: Array, filtering power splitter, high gain, radiation dip, filtering MIMO

P. Saha, D. Mitra, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2021.0081] [Download Citations]
Control of Gain and SAR for Wearable Antenna Using AMC Structure

Herein, a compact, low profile flexible wearable antenna with an AMC (Artificial Magnetic Conductor) embedded structure is presented. The proposed AMC-integrated antenna is fabricated using layers of leather and operates at the Industrial Scientific Medical (ISM) 5.8 GHz band. The overall dimension of the low-profile AMC antenna is 40.5×40.5×6 mm3. AMC structure is incorporated to reduce the backward scattering wave toward the human body which in turn increases the gain to 7.47 dB and reduces the specific absorption rate (SAR) about 90%. The fabricated antenna prototype with the integrated AMC is investigated by placing it on different parts of the human body. The performance studies of the AMC backed antenna also reveals that it can tolerate the loading due to the bent surface as well as the crumpled surface. The obtained results show that the proposed antenna is safe and suitable for biomedical applications.

  1. POON, C. C. Y., ZHANG, Y. T., BAO, S. D. A novel biometrics method to secure wireless body area sensor networks for telemedicine and M-health. IEEE Communications Magazine, 2006, vol. 44, no. 4, p. 73–81. DOI: 10.1109/MCOM.2006.1632652
  2. CHEN, S. Y., KU, T. Y. A low-profile wearable antenna using a miniature high impedance surface for smart watch applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1144–1147. DOI: 10.1109/LAWP.2015.2496366
  3. MANOUFALI, M., BIALKOWSKI, K., MOHAMMED, B. J., et al. Near-field inductive-coupling link to power a three-dimensional millimeter-size antenna for brain implantable medical devices. IEEE Transactions on Biomedical Engineering, 2018, vol. 65, no. 1, p. 4–14. DOI: 10.1109/TBME.2017.2778729
  4. ASHYAP, A. Y. I., ABIDIN, Z. Z., DAHLAN, S. H., et al. Compact and low-profile textile EBG-based antenna for wearable medical applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2550–2553. DOI: 10.1109/LAWP.2017.2732355
  5. SAHA, P., MITRA, D., PARUI, S. K. A frequency and polarization agile disc monopole wearable antenna for medical applications. Radioengineering, 2020, vol. 29, no. 1, p. 74–80. DOI: 10.13164/re.2020.0074
  6. VELAN, S., SUNDARSINGH, E. F., KANAGASABAI, M., et al. Dual-band EBG integrated monopole antenna deploying fractal geometry for wearable applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 249–252. DOI: 10.1109/LAWP.2014.2360710
  7. ALEMARYEEN, A., NOGHANIAN, S. Crumpling effects and specific absorption rates of flexible AMC integrated antennas. IET Microwaves, Antennas & Propagation, 2018, vol. 12, p. 627–635. DOI: 10.1049/iet-map.2017.0652
  8. ALEMARYEEN, A., NOGHANIAN, S. On-body low-profile textile antenna with artificial magnetic conductor. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 3649–3656. DOI: 10.1109/TAP.2019.2902632
  9. ASHYAP, A. Y. I., ABIDIN, Z. Z., DAHLAN, S. H., et al. Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications. IEEE Access, 2018, vol. 6, p. 77529–77541. DOI: 10.1109/ACCESS.2018.2883379
  10. GAO, G., HU, B., WANG, S., et al. Wearable planar inverted-F antenna with stable characteristic and low specific absorption rate. Microwave and Optical Technology Letters, 2018, vol. 60, p.876–882. DOI: 10.1002/mop.31069
  11. JIANG, Z. H., CUI, Z., YUE, T., et al. Compact, highly efficient, and fully flexible circularly polarized antenna enabled by silver nanowires for wireless body-area networks. IEEE Transactions on Biomedical Circuits and Systems, 2017, vol. 11, no. 4, p. 920–932. DOI: 10.1109/TBCAS.2017.2671841
  12. MANDAL, B., PARUI, S. K. Wearable tri-band SIW based antenna on leather substrate. Electronics Letters, 2015, vol. 51, no. 20, p. 1563–1564. DOI: 10.1049/el.2015.2559
  13. TAK, J., HONG, Y., CHOI, J. Textile antenna with EBG structure for body surface wave enchantment. Electronics Letters, 2015, vol. 51, no. 15, p. 1131–1132. DOI: 10.1049/el.2015.1022
  14. SIMORANGKIR, R. B. V. B., KIOURTI, A, ESSELLE, K. P. UWB wearable antenna with a full ground plane based on PDMSembedded conductive fabric. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 3, p. 493–496. DOI: 10.1109/LAWP.2018.2797251
  15. MERSANI, A., LOTFI, O., RIBERO, J. M. Design of a textile antenna with artificial magnetic conductor for wearable applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 6, p. 1343–1349. DOI: 10.1002/mop.31158
  16. AGUSTINE, R., ALVES, T., POUSSOT, B., et al. Polymeric ferrite sheet for SAR reduction wearable antennas. Electronics Letters, 2010, vol. 46, no. 3, p. 197–199. DOI: 10.1049/el.2010.3246
  17. PARACHA, K. N., RAHIM, S. K. A., SOH, P. J., et al. A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application. IEEE Access, 2019, vol. 7, p. 33277–33283. DOI: 10.1109/ACCESS.2019.2894330
  18. EL ATRASH, M., ABDALL, M. A., ELHENNAWY, H. M. A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 10, p. 6378–6388. DOI: 10.1109/TAP.2019.2923058
  19. RAAD, H. R., ABBOSH, A. I., AL-RIZZO, H. M, et al. Flexible and compact AMC based antenna for telemedicine applications. IEEE Transactions Antennas and Propagation, 2013, vol. 61, no. 2, p. 524–531. DOI: 10.1109/TAP.2012.2223449
  20. CHOW, E., YANG, C. L., IRAZOQUI, P. P. Wireless powering and propagation of radio frequencies through tissue. In Agbinya, J. I. (Ed.) Wireless Power Transfer. 1st ed. River Publishers: 2012. Chapter 9, p. 301–336.
  21. EL ARIF, R., TANG, M. C., SU, W. C., et al. Designing a metasurface-based tag antenna for wearable vital sign sensors. In IEEE/MTT-S International Microwave Symposium. Boston (MA, USA), 2019, p. 373–376. DOI: 10.1109/mwsym.2019.8700933

Keywords: Artificial Magnetic Conductor (AMC), flexible antenna, leather antenna, wearable antenna, biomedical application

S. Saha, N. Begam, S. Biswas, P. P. Sarkar [references] [full-text] [DOI: 10.13164/re.2021.0089] [Download Citations]
A Cascaded Tunable Wide Stop Band Frequency Selective Surface with High Roll-off Band Edge

A three-layer wide-band reflective Frequency Selective Surface (FSS) reflector with a high roll off band edge is proposed in this paper. Each layer of the structure is patch type FSS. The proposed FSS has merits of wideband response over S band and lower C band with bandwidth of 3.6 GHz for transmission < -10 dB with 94% bandwidth and significant stability for different incident angles up to 40 degree. The polarization insensitivity of the FSS also added an extra dimension of the structure. The simulation process as well as the experimental measurement process and ECM (equivalent circuit model) analysis of the FSS have been done. The good agreement in simulated, measured and ECM results verifies the wide stop band for the proposed FSS. The tunable and switchable transmission behavior of the FSS for variation in width of the internal air gap and lateral sliding of the middle layer of the structure respectively are also presented here.

  1. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. John Wiley & Sons, 2005. DOI:10.1002/0471723770
  2. WU, T. K. (ed.) Frequency Selective Surface and Grid Array. Wiley-Interscience, 1995. ISBN-13: 978-0471311898
  3. ROMEU, J., RAHAMAT-SAMII, Y. Fractal FSS: A novel dualband frequency selective surface. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 7, p. 1097–1105. DOI: 10.1109/8.876329
  4. PIRHADI, A., BAHRAMI, H., NASRI, J. Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2101–2106. DOI: 10.1109/TAP.2012.2186230
  5. LEE, Y. J., YEO, J., MITTRA, R., et al. Design of a frequency selective surface (FSS) type superstrate for dual-band directivity enhancement of microstrip patch antennas. In IEEE Antennas and Propagation Society International Symposium. Washington (USA), 2005, vol. 3, p. 2–5. DOI: 10.1109/APS.2005.1552158
  6. CHATTERJEE, A., PARUI, S. K. Gain enhancement of a wide slot antenna using a second-order bandpass frequency selective surface. Radioengineering, 2015, vol. 24, no. 2, p. 455–461. DOI: 10.13164/re.2015.0455
  7. CHATTERJEE, A., PARUI, S. K. Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2233–2239. DOI: 10.1109/TAP.2017.2677914
  8. THUMMALURU, S. R., KUMAR, R., CHAUDHURY, R. K. Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1595–1600. DOI: 10.1109/TAP.2018.2794417
  9. SWETHA, A., NAIDU, K. R. Gain enhancement of an UWB antenna based on a FSS reflector for broadband applications. Progress In Electromagnetics Research C, 2020, vol. 99, p. 193–208. DOI: 10.2528/PIERC19120905
  10. SAHA, C., SIDDIQUI, J. Y., ANTAR, Y. M. M. Multifunctional Ultrawideband Antennas: Trends, Techniques and Applications. 1st ed. Boca Raton: CRC Press, 2019. DOI: 10.1201/9781351026543
  11. KAZEMZADEH, A., KARLSSON, A. Multilayered wideband absorbers for oblique angle of incidence. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 11, p. 3637–3646. DOI: 10.1109/TAP.2010.2071366
  12. RANGA, Y., MATEKOVITS, L., ESSELLE, K. P., et al. Design and analysis of frequency-selective surfaces for ultra wideband applications. In 2011 IEEE EUROCON-International Conference on Computer as a Tool. Lisbon (Portugal), 2011, p. 1–4. DOI: 10.1109/EUROCON.2011.5929186
  13. SEGUNDO, F. C. G. D. S., CAMPOS, A. L. P. D. S., GOMES NETO, A. A design proposal for ultrawide band frequency selective surface. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, vol. 12, no. 2, p. 398–409. DOI: 10.1590/S2179-10742013000200012
  14. RANGA, Y. MATEKOVITS, L., WEILY, A. R., et al. A low‐profile dual‐layer ultra‐wideband frequency selective surface reflector. Microwave and Optical Technology Letters, 2013, vol. 55, no. 6, p. 1223–1227. DOI: 10.1002/mop.27583
  15. MAJIDZADEH, M., GHOBADI, C., NOURINIA, J. Ultra wide band electromagnetic shielding through a simple single layer frequency selective surface. Wireless Personal Communications, 2017, vol. 95, no. 3, p. 2769–2783. DOI: 10.1007/s11277-017- 3960-6
  16. LI, B., SHEN, Z. Three-dimensional bandpass frequency-selective structures with multiple transmission zeros. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 10, p. 3578–3589. DOI: 10.1109/TMTT.2013.2279776
  17. ZHONG, T., ZHANG, H., MIN, X. L., et al. Wideband frequency selective surface with a sharp band edge based on mushroom-like cavity. Progress In Electromagnetics Research Letters, 2016, vol. 62, p. 105–110. DOI: 10.2528/PIERL16070304
  18. MA, Y., WU, W., YUAN, Y., et al. A high-selective frequency selective surface with hybrid unit cells. IEEE Access, 2018, vol. 6, p. 75259–75267. DOI: 10.1109/access.2018.2878941
  19. LUO, X. F., TEO, P. T., QING, A., et al. Design of double‐square‐loop frequency‐selective surfaces using differential evolution strategy coupled with equivalent‐circuit model. Microwave and Optical Technology Letters, 2005, vol. 44, no. 2, p. 159–162. DOI: 10.1002/mop.20575
  20. RODRIGUEZ BARRERA, M. A., CARPES, W. P. Bandwidth for the equivalent circuit model in square-loop frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 11, p. 5932–5939. DOI: 10.1109/TAP.2017.2754418
  21. SAHA, S., BEGAM, N., CHATTERJEE, A., et al. Reconfigurable frequency selective surface with tunable characteristics depending on intensity of atmospheric light. IET Microwaves, Antennas & Propagation, 2019, vol. 13, no. 13, p. 2336–2341. DOI: 10.1049/iet-map.2019.0339
  22. ANWAR, R. S., WEI, Y., MAO, L., et al. Miniaturised frequency selective surface based on fractal arrays with square slots for enhanced bandwidth. IET Microwaves, Antennas & Propagation, 2019, vol. 13, no, 11, p. 1811–1819. DOI: 10.1049/ietmap.2018.5224
  23. SEGUNDO, F. C. G. D. S., CAMPOS, A. L. P. D. S., GOMES NETO, A., et al. Double layer frequency selective surface for ultra wide band applications with angular stability and polarization independence. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2019, vol. 18, no. 3, p. 328–342. DOI: 10.1590/2179-10742019v18i31696
  24. KESAVAN, A., KARIMAN, R., DENIDNI, T. A. A novel wideband frequency selective surface for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1711–1714. DOI: 10.1109/LAWP.2016.2528221
  25. SARIKA, TRIPATHY, M. R., RONNOW, D. A wideband frequency selective surface reflector for 4G/X-band/Ku-band. Progress In Electromagnetics Research C, 2018, vol. 81, p. 151–159. DOI: 10.2528/PIERC18010908

Keywords: Frequency Selective Surface, reflector, wide stop band, roll off, cascade structure, incidence angle stability, polarization insensitivity, equivalent circuit model, tunable and switchable transmission coefficient

G. Srinivas, D. Vakula [references] [full-text] [DOI: 10.13164/re.2021.0096] [Download Citations]
High Gain and Wide Band Antenna Based on FSS and RIS Configuration

In this paper, a novel technique using frequency selective surface (FSS) superstrate is proposed to increase the antenna gain. In addition to that, a combination of reactive impedance surfaces (RIS) is included to enhance the bandwidth. So, a conventional pentagon shape patch antenna is designed at 5.3 GHz. The frequency selective surface is designed as a 6×6 array of unit cell structures to operate around 5.3 GHz. Each unit cell consists of three metal conductive layers with substrates in between them. Reactive Impedance Surface is considered as an array size of 6×6 square patches embedded between two substrates. FSS is designed on Rogers 4003C and FR4 is used for RIS. The pentagon shape patch antenna is designed on RIS. A cavity created by the contribution of these layers acts like a fabry perot resonator which improves the gain and bandwidth simultaneously. The proposed antenna has an impedance bandwidth of 17.72% (4.93-5.89 GHz); this is about a 10 percent improvement over the impedance bandwidth of a conventional pentagon shape antenna and the axial ratio bandwidth is 2.4% (5.01-5.14 GHz). The designed antenna gain is around 12dBi; this is about a 9 dBi improvement over the gain of a conventional pentagon shape antenna.

  1. STUTZMAN, W. L., THIELE, G. A. Antenna Theory, and Design. 2nd ed. Hoboken (USA): Wiley, 1998. ISBN: 9780470576649
  2. YANG, W., WANG, H., CHE, W., et al. A wideband and highgain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas and Wireless Propagation. Letters, 2013, vol. 12, p. 769–772. DOI: 10.1109/LAWP.2013.2270943
  3. WANG, L., GUO, Y. X., SHENG, W. X. Wideband high-gain 60- GHz LTCC L-probe patch antenna array with a soft surface. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 1802–1809. DOI: 10.1109/TAP.2012.2220331
  4. CHENG, Y. J., GUO, Y. X., LIU, Z. G. W-band large-scale highgain planar integrated antenna array. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 3370–3373. DOI: 10.1109/TAP.2014.2310483
  5. ORR, R., GOUSSETIS, G., FUSCO, V. Design method for circularly polarized Fabry–Perot cavity antennas. IEEE Transactions on Antennas and Propagation, 2013, vol. 62, no. 1, p. 19–26. DOI: 10.1109/TAP.2013.2286839
  6. PITRA, K., RAIDA, Z., LACIK, J. Low-profile circularly polarized antenna exploiting Fabry-Perot resonator principle. Radioengineering, 2015, vol. 24, no. 4, p. 898–905. DOI: 10.13164/re.2015.0898
  7. CAO, W., LV, X., WANG, Q., et al. Wideband circularly polarized Fabry-Perot resonator antenna in Ku-band. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 4, p. 586–590. DOI: 10.1109/LAWP.2019.2896940
  8. AKBARI, M., GUPTA, S., SEBAK, A. R. High gain circularly polarized Fabry-Perot dielectric resonator antenna for MMW applications. In IEEE International Symposium on Antennas and Propagation (APSURSI). Puerto Rico, June 2016, p. 545–546. DOI: 10.1109/APS.2016.7695981
  9. ATTIA, H., ABDELGHANI, M. L., DENIDNI, T. A. Wideband and high-gain millimeter-wave antenna based on FSS Fabry-Perot cavity. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 10, p. 5589–5594. DOI: 10.1109/TAP.2017.2742550
  10. ZHENG, Y., GAO, J., ZHOU, Y., et al. Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 590–599. DOI: 10.1109/TAP.2017.2780896
  11. ASAADI, M., AFIFI, I., SEBAK, A. R. High gain and wideband high dense dielectric patch antenna using FSS superstrate for millimeter-wave applications. IEEE Access, 2018, vol. 6, p. 38243–38250. DOI: 10.1109/ACCESS.2018.2854225
  12. MERICHE, M. A., ATTIA, H., MESSAI, A., et al. Directive wideband cavity antenna with single-layer meta-superstrate. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 9, p. 1771–1774. DOI: 10.1109/LAWP.2019.2929579
  13. LEE, Y. J., YEO, J., MITTRA, R., et al. Design of a highdirectivity electromagnetic bandgap (EBG) resonator antenna using a frequency-selective surface (FSS) superstrate. Microwave and Optical Technology Letters, 2004, vol. 43, no.6, p. 462–467. DOI: 10.1002/mop.20502
  14. HOSSEINI, A., CAPOLINO, F., DE FLAVIIS, F. Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS. IEEE Transactions on. Antennas and Propagation, 2015, vol. 63, no. 3, p. 909– 921. DOI: 10.1109/TAP.2014.2386358
  15. LAU, K. L., LUK, K. M. A novel wide-band circularly polarized patch antenna based on L-probe and aperture-coupling techniques. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 577–580. DOI: 10.1109/TAP.2004.838796
  16. LAU, K. L., LUK, K. M. A wide-band circularly polarized Lprobe coupled patch antenna for dual-band operation. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 8, p. 2636–2644. DOI: 10.1109/TAP.2005.851818
  17. KIM, S. M., YANG, W. G. Single feed wideband circular polarized patch antenna. Electronic Letters, 2007, vol. 43, no. 13, p. 703–704. DOI: 10.1049/el:20070677
  18. SIEVENPIPER, D., ZHANG, L., BROAS, R. F. J., et al. High impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques. 1999, vol. 47, no. 11, p. 2059–2074. DOI: 10.1109/22.798001
  19. ZHANG, Y., VON HAGEN, J., YOUNIS, M., et al. Planar artificial magnetic conductors and patch antennas. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2704–2712. DOI: 10.1109/TAP.2003.817550
  20. NAKAMURA, T., FUKUSAKO, T. Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 6, p. 2103–2110. DOI: 10.1109/TAP.2011.2143656
  21. SRINIVAS, G., SARMA, N. V. S. N., VAKULA, D. Gain and bandwidth improvement of circularly polarized pentagonal patch antenna. In TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). Trichy (India), 2019, p. 274–277. DOI: 10.1109/IMICPW.2019.8933229
  22. BAI, B. K., THAKUR, A. Pentagonal shaped microstrip patch antenna in wireless capsule endoscopy system. In International Conference on Information Technology Convergence and Services, Software Engineering and Applications, Signal and Image Processing, Computer Science & Information Technology 04. 2012, p. 47–54. DOI: 10.5121/csit.2012.2105

Keywords: Pentagon patch antenna, circular polarization frequency selective surface superstrate, reactive impedance surface, gain, bandwidth improvement

S. Sarkar, B. Gupta [references] [full-text] [DOI: 10.13164/re.2021.0104] [Download Citations]
A Dual-Band Fabry-Perot Cavity Antenna with a Single Partially Reflecting Surface and Reduced Cavity Height for WLAN Applications

This paper proposes a dual-band Fabry-Perot Cavity Antenna (FPCA) operating at two important WLAN bands – the 2.4 GHz band and 5.8 GHz band. It exhibits Circular Polarization (CP) at 2.4 GHz and Linear Polarization (LP) at5.8 GHz. The proposed antenna uses only a single Partially Reflecting Surface (PRS) layer to achieve good 3dB gain bandwidths in both the bands. The cavity height of the antenna is also significantly reduced by using an Artificial Magnetic Conductor (AMC) ground plane. The antenna achieves a 3dB axial ratio bandwidth (AR-BW) of 7.9% at 2.4 GHz with peak measured gains of 14.3 dBi and 15.5 dBi at 2.4 GHz and 5.8 GHz respectively. The antenna also exhibits a 3dB gain BW of 7.8% in the first band and 5.5% in the second band.

  1. KUKREJA, J., CHOUDHARY, D. K., CHAUDHARY, R. K. A metamaterial inspired ZOR antenna using IDC and spiral inductor with partial ground plane for WLAN applications. Wireless Personal Communications, 2019, vol. 107, p. 137–147. DOI: 10.1007/s11277-019-06244-x
  2. KUKREJA, J., CHOUDHARY, D. K., CHAUDHARY, R. K. A short-ended compact metasurface antenna with interdigital capacitor and U-shaped strip. Wireless Personal Communications, 2019, vol. 108, p. 2149–2158. DOI: 10.1007/s11277-019-06514-8
  3. CHOUDHARY, D. K., CHAUDHARY, R. K. Compact filtering antenna using asymmetric CPW-fed based CRLH structure. AEU International Journal of Electronics and Communications, 2020, vol. 126, p. 1–6. DOI: 10.1016/j.aeue.2020.153462
  4. TRENTINI, G. V. Partially reflecting sheet arrays. IRE Transactions on Antennas and Propagation, 1956, vol. AP-4, no. 4, p. 666–671. DOI: 10.1109/TAP.1956.1144455
  5. MU, J., WANG, H., WANG, H., HUANG, Y. Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1903–1906.DOI: 10.1109/LAWP.2017.2685623
  6. AKBARI, M., GUPTA, S., FARAHANI, M., et al. Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 12, p. 5542–5546. DOI: 10.1109/TAP.2016.2623655
  7. WEILY, A. R., BIRD, T. S., GUO, Y. J. A reconfigurable highgain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 11, p. 3382–3390. DOI: 10.1109/TAP.2008.2005538
  8. ABBOU, D., VUONG, T. P., TOUHAMI, R., et al. High-gain wideband partially reflecting surface antenna for 60 GHz systems. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2704–2707. DOI: 10.1109/LAWP.2017.2742862
  9. RAZI, Z. M., REZAEI, P., VALIZADE, A. A novel design of Fabry-Perot antenna using metamaterial superstrate for gain and bandwidth enhancement. AEU International Journal of Electronics and Communications, 2015, vol. 69, no. 10, p. 1525–1532. DOI: 10.1016/j.aeue.2015.05.012
  10. WANG, N., LIU, Q., WU, C., et al. Wideband Fabry-Perot resonator antenna with two complementary FSS layers. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2463–2471. DOI: 10.1109/TAP.2014.2308533
  11. KONSTANTINIDIS, K., FERESIDIS, A. P., HALL, P. S. Multilayer partially reflective surfaces for broadband Fabry-Perot cavity antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 7, p. 3474–3481. DOI: 10.1109/TAP.2014.2320755
  12. LALBAKHSH, A., AFZAL, M. U., ESSELLE, K. P., et al. Singledielectric wideband partially reflecting surface with variable reflection components for realization of a compact high-gain resonant cavity antenna. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 3, p. 1916–1921. DOI: 10.1109/TAP.2019.2891232
  13. ZEB, B. A., GE, Y.., ESSELLE, K. P., et al. A simple dual-band electromagnetic band gap resonator antenna based on inverted reflection phase gradient. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 10, p. 4522–4529. DOI: 10.1109/TAP.2012.2207331
  14. ABDELGHANI, M. L., ATTIA, H., DENIDNI, T. A. Dual- and wideband Fabry-Perot resonator antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 473–476. DOI: 10.1109/LAWP.2016.2585087
  15. MENG, F., SHARMA, S. K. A dual-band high-gain resonant cavity antenna with a single layer superstrate. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 2320–2325. DOI: 10.1109/TAP.2015.2405082
  16. LIMA, E. B., COSTA, J. R., FERNANDES, C. A. Multiple-beam focal-plane dual-band Fabry-Perot cavity antenna with reduced beam degradation. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 7, p. 4348–4356. DOI: 10.1109/TAP.2019.2911365
  17. CHEN, J., ZHAO, Y., GE, Y., et al. Dual-band high-gain FabryPerot cavity antenna with a shared aperture FSS layer. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 13, p. 2007–2011. DOI: 10.1049/iet-map.2018.5183

Keywords: Artificial Magnetic Conductor (AMC), Circular Polarization (CP), dual-band, Fabry-Perot Cavity Antenna (FPCA), Partially Reflecting Surface (PRS), positive reflection phase gradient, WLAN

N. Mishra, R. K. Chaudhary [references] [full-text] [DOI: 10.13164/re.2021.0111] [Download Citations]
Compact Band-Pass Filter Using Modified Ω-shaped Resonator and Source Load Coupling for Transmission Zero Improvement

This article investigates a compact band-pass filter using modified Ω-shaped resonator and source load coupling for transmission zero improvement. In this article, source load coupling has been used to improve the insertion loss response and a number of transmission zeros in the upper stop-band, so that the chance of interference from adjacent wireless bands can be reduced. In order to determine the metamaterial characteristics for the designed filter structure dispersion diagram and vectored electric-field with no phase variation has been illustrated. The simulated and measured 3dB fractional bandwidth for the designed filter structure is 26.05% and 26.12% at the center frequency of 2.38 and 2.33 GHz respectively. It offers compactness with an electrical footprint area of 0.245λg × 0.201λg, where λg is the guided wavelength at the center frequency of 2.33 GHz. The presented filter structure seems a potential candidate for different wireless applications such as Bluetooth (2.4-2.48 GHz), WLAN/Wi-Fi (2.4-2.49 GHz) and Wi-MAX (2.5-2.69 GHz).

  1. POZAR D. M. Microwave Engineering. 4th ed. USA: Wiley, 2011. ISBN: 978-0-470-63155-3
  2. ZHANG, J., GU, J.-Z., CUI, B., et al. Compact and harmonic suppression open-loop resonator bandpass filter with tri-section SIR. Progress In Electromagnetics Research, 2007, vol. 69, p. 93– 100. DOI: 10.2528/PIER06120702
  3. ALLISON, R. C. Compact edge coupled filter. United States Patent 6762660 B2, July 2004.
  4. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. USA: Wiley, 2006. DOI:10.1002/0471754323
  5. LUO, X., QIAN, H., MA, J-G., et al. Wideband bandpass filter with excellent selectivity using new CSRR-based resonator. Electronics Letters, 2010, vol. 46, no. 20, p. 1390–1391. DOI: 10.1049/el.2010.1817
  6. XIAO, J. K., ZHU, M., LI, Y., et al. Coplanar waveguide bandpass filters with separated electric and magnetic couplings. Electronics Letters, 2016, vol. 52, no. 2, p. 122–124. DOI: 10.1049/el.2015.3112
  7. TANG, M.-C., SHI, T., TAN, X. A novel triple‐mode hexagon bandpass filter with meander line and central‐loaded stub. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 9–12. DOI: 10.1002/mop.29483
  8. FENG, W., GAO, X., CHE, W. Bandpass filters with improved selectivity based on dual-mode ring resonators. Progress In Electromagnetics Research Letters, 2015, vol. 56, p. 1–7. DOI: 10.2528/PIERL15072609
  9. CHOUDHARY, D. K., CHAUDHARY, R. K. A compact CPWbased dual-band filter using modified complementary split ring resonator. AEU - International Journal of Electronics and Communications, 2018, vol. 89, p. 110–115. DOI: 10.1016/j.aeue.2018.03.032
  10. CHOUDHARY, D. K., CHAUDHARY, R. K. Compact lowpass and dual-band bandpass filter with controllable transmission zero/center frequencies/passband bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 67, no. 6, p. 1044–1048. DOI: 10.1109/TCSII.2019.2931446
  11. NWAJANA, A. O., DAINKEH, A., YEO, K. S. K. Substrate integrated waveguide (SIW) bandpass filter with novel microstripCPW-SIW input coupling. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, vol. 16, p. 393–402. DOI: 10.1590/2179-10742017v16i2793
  12. WANG, K., TANG, H., WU, R., et al. A novel compact dual-band filter based on quarter-mode substrate integrated waveguide and complementary split ring resonator. Microwave and Optical Technology Letters, 2016, vol. 58, no. 11, p. 2704–2707. DOI: 10.1002/mop.30131
  13. MISHRA, N., CHAUDHARY, R. K. A miniaturized ZOR antenna with enhanced bandwidth for Wi-MAX applications. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 71–75. DOI: 10.1002/mop.29494
  14. LIAO, C. K., CHANG, C.-Y. Design of microstrip quadruplet filters with source-load coupling. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 7, p. 2302–2308. DOI: 10.1109/TMTT.2005.850442
  15. MABROUK, M., BOUSBIA, L. Study and enhanced design of RF dual band bandpass filter validation and confirmation of experimental measurements. Circuits and Systems, 2011, vol. 2, p. 293–296. DOI: 10.4236/cs.2011.24041

Keywords: Compact, bandpass filter, zeroth order resonance, source-load coupling

M. Danaeian [references] [full-text] [DOI: 10.13164/re.2021.0117] [Download Citations]
Novel Miniaturized Equal/Unequal HMSIW Filtering Power Dividers Based on the Evanescent Mode Technique

In this paper, three miniaturized equal/unequal filtering power dividers (FPDs) applying the half-mode substrate integrated waveguide (HMSIW) and metamaterial concepts are offered. The operational method of the presented structures is based on the theory of evanescent mode propagation. The stepped-impedance resonator (SIR) technique has been employed to reduce the dimension of the conventional complementary split ring resonator (CSRR) unit-cell. In this technique, the slot lines in the conventional CSRR are replaced by the stepped-impedance slot lines in the improved metamaterial unit-cell which is called SIR-CSRR unit-cell. By means of the SIR-CSRR unit-cell, three equal/unequal FPDs with arbitrary power-dividing ratio have been reported. Additionally, to further size reduction of the proposed FPDs, the HMSIW platforms are used. All of the proposed HMSIW PDs are designed at 2.4 GHz which are suitable for WLAN applications. For demonstration of the applied procedures in the proposed HMSIW FPDs, the suggested equal/unequal HMSIW FPDs have been fabricated and measured. A reasonable agreement between simulated and measured results has been achieved. The entire size of the suggested equal/unequal HMSIW FPDs is about 0.11 × 0.09 λ_g^2.

  1. DANAEIAN, M., AFROOZ, K., HAKIMI, A. Miniaturization of substrate integrated waveguide filters using novel compact metamaterial unit-cells based on SIR technique. AEU-International Journal of Electronics and Communications, 2018, vol. 84, p. 62–73. DOI: 10.1016/j.aeue.2017.11.008
  2. DANAEIAN, M., AFROOZ, K. Compact metamaterial unit-cell based on stepped-impedance resonator technique and its application to miniaturize substrate integrated waveguide filter and diplexer. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 2, p. 1–13. DOI: 10.1002/mmce.21537
  3. ZHU, Y., SONG, K., FAN, M., et al. Wideband single-ended-tobalanced power divider with intrinsic common-mode suppression. IEEE Microwave and Wireless Components Letters, 2020, vol. 30, no. 4, p. 379–382. DOI: 10.1109/LMWC.2020.2973863
  4. FENG, T., MA, K., WANG, Y. A self-packaged power divider with compact size and low loss. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 11, p. 2437–2441. DOI: 10.1109/TCSII.2020.2965970
  5. HAYATI, M., ZARGHAMI, S. Analysis of asymmetric coupling lines and design of a Wilkinson power divider based on harmonic suppression network. AEU-International Journal of Electronics and Communications, 2020, vol. 115, p. 1–11. DOI: 10.1016/j.aeue.2019.153047
  6. MOZNEBI, A.-R., AFROOZ, K., DANAEIAN, M., et al. Fourway filtering power divider using SIW and eighth-mode SIW cavities with ultra-wide out-of-band rejection. IEEE Microwave and Wireless Components Letters, 2019, vol. 29, no. 9, p. 586–588. DOI: 10.1109/LMWC.2019.2931115
  7. MOZNEBI, A.-R., DANAEIAN, M., ZAREZADEH, E., et al. Ultra-compact two‐way and four‐way SIW/HMSIW power dividers loaded by complementary split‐ring resonators. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 10, p. 1–8. DOI: 10.1002/mmce.21878
  8. MOZNEBI, A.-R., AFROOZ, K., DANAEIAN, M., et al. Compact filtering power divider based on corrugated third‐mode circular SIW cavities. Microwave and Optical Technology Letters, 2020, vol. 62, no. 5, p. 1900–1905. DOI: 10.1002/mop.32259
  9. DANAEIAN, M., MOZNEBI, A.-R., AFROOZ, K., et al. Miniaturized equal/unequal SIW power divider with bandpass response loaded by CSRRs. Electronics Letters, 2016, vol. 52, no. 22, p. 1864–1866. DOI: 10.1049/el.2016.2203
  10. DANAEIAN, M., MOZNEBI, A.-R., AFROOZ, K., et al. Miniaturized filtering SIW power divider with arbitrary powerdividing ratio loaded by open complementary split-ring resonators. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 9, p. 1827–1832. DOI: 10.1017/S175907871700071X
  11. CAO, Q., LIU, H., GAO, L. Design of high selectivity filtering power divider with high out-of-band rejection. Electromagnetics, 2019, vol. 39, no. 7, p. 473–480. DOI: 10.1080/02726343.2019.1658162
  12. LU, D., YU, M., BARKER, N. S., et al. A simple and general method for filtering power divider with frequency-fixed and frequency-tunable fully canonical filtering-response demonstrations. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 5, p. 1812–1825. DOI: 10.1109/TMTT.2019.2903504
  13. WANG, X., ZHU, X-W., TIAN, L., et al. Design and experiment of filtering power divider based on shielded HMSIW/QMSIW technology for 5G wireless applications. IEEE Access, 2019, vol. 7, p. 72411–72419. DOI: 10.1109/ACCESS.2019.2920150
  14. SHERAFAT VAVIRI, H., ZARGHAMI, S., SHAMA, F., et al. Compact bandpass Wilkinson power divider with harmonics suppression. AEU-International Journal of Electronics and Communications, 2020, vol. 117, p. 1–8. DOI: 10.1016/j.aeue.2020.153107
  15. DONG, J., SHI, J., XU, K. Compact wideband differential filtering power divider based on three-line coupled structure with lumped elements. Electronics Letters, 2020, vol. 56, no. 12, p. 609–611. DOI: 10.1049/el.2020.0475
  16. LUO, M., TANG, X. H., XU, X., et al. Filtering power divider with good output balance and unsymmetrical structure. Microwave and Optical Technology Letters, 2020, vol. 62, no. 4, p. 1557–1563. DOI: 10.1002/mop.32237
  17. HE, Z., YOU, C. J., LENG, S., et al. Compact power divider with improved isolation and bandpass response. Microwave and Optical Technology Letters, 2017, vol. 59, no. 7, p. 1776–1781. DOI: 10.1002/mop.30621
  18. DURAISAMY, T., BARIK, R. K., SHOLAMPETTAI SUBRAMANIAN, K., et al. A novel SIW based dual‐band power divider using double‐circular complementary split ring resonators. Microwave and Optical Technology Letters, 2019, vol. 61, no. 6, p. 1529–1533. DOI: 10.1002/mop.31772
  19. BARIK, R. K., CHENG, Q. S., PRADHAN, N. C., et al. A compact SIW power divider for dual-band applications. Radioengineering, 2020, vol. 29, no. 1, p. 94–100. DOI: 10.13164/re.2020.0094
  20. LIU, B., LYU, Y. P., ZHU, L., et al. A compact triple-mode bandpass filter with wide-stopband using half-mode substrate integrated waveguide cavity loaded with slots. Microwave and Optical Technology Letters, 2020, vol. 62, no. 3, p. 1056–1059. DOI: 10.1002/mop.32124
  21. SUN, Q., BAN, Y. L., LIAN, J. W., et al. Millimeter-wave multi beam antenna based on folded C-type SIW. IEEE Transactions on Antennas and Propagation, 2020, vol. 68, no. 5, p. 3465–3476. DOI: 10.1109/TAP.2020.2966050
  22. HUANG, L., CHA, H., ZHANG, S. Compact wideband-folded ridge substrate-integrated waveguide filter. IEEE Microwave and Wireless Components Letters, 2020, vol. 30, no. 3, p. 241–244. DOI: 10.1109/LMWC.2020.2971659
  23. DANAEIAN, M., MOZNEBI, A.-R., AFROOZ, K. A novel super compact half-mode substrate integrated waveguide filter using modified complementary split-ring resonator. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 6, p. 1–8. DOI: 10.1002/mmce.21709
  24. POZAR, D. M. Microwave Engineering. 4th ed. University of Massachusetts at Amherst: John Wiley & Sons, 2012. ISBN-13: 978-0470631553

Keywords: Filtering power divider (FPD), half mode substrate integrated waveguide (HMSIW), evanescent mode technique, electric dipoles, stepped-impedance resonators, arbitrary power division and miniaturization

J. Milanovic, A. Katalinic Mucalo, M. Gal [references] [full-text] [DOI: 10.13164/re.2021.0125] [Download Citations]
Comparison between Measured Data-Carrying VDSL2 Cable Radiation and Radiation Limits for Wire-Line Telecommunication Networks

Digital subscriber line (DSL) is a technology that are widely used for bringing high-speed Internet access to the users’ premises. Unfortunately, the use of the DSL over existing copper telecommunication networks can result in radiation that can cause interference to radio systems operating in the same frequency range. To restrict such radio disturbances various radiation limits for wire-line telecommunication networks have been proposed. However, radiation limits differ significantly from each other which makes it difficult to adopt common protection criteria. In this paper, the comparison between defined radiation limits and measurements of the E-field radiation from the copper telecommunication cable is performed based on the measurement methodology described in the ITU-T K.60 Recommendation. The aim of the measurement was to assess whether the radiation from the aerial copper telecommunication cable (type: TK59U-xDSL) when VDSL2 profile 17a technology is used, meets radiation limits mostly used in the European Union. Measurement results have shown that the radiation from the cable is approximately 6 dB above limits proposed by the ECC/REC(05)04 Recommendation, which could cause intolerable errors in radio signal reception, thus disabling radio service to operate as intended. The obtained results show that the power spectral density (PSD) should be reduced by 10 dB in order to assure an adequate protection of radio services.

  1. LAFATA, P. Examination of multiplexing VDSL2 over ADSL2+ line. Elektronika ir Elektrotechnika, 2013, vol. 19, no. 8, p. 123–127. DOI: 10.5755/j01.eee.19.8.3116
  2. SVEDEK, V., JURIN, G., WEBER, M. Increasing availability of broadband access over copper network infrastructure. In Proceedings of the 34th Int. Convention MIPRO. Opatija (Croatia), 2011, p. 407–412. ISBN: 978-953-233-059-5
  3. ZAFARUDDIN, S. M., BERGEL, I., LESHEM, A. Signal processing for Gigabit-rate wireline communications: An overview of the state of the art and research challenges. IEEE Signal Processing Magazine, 2017, vol. 34, no. 5, p. 141–164. DOI: 10.1109/MSP.2017.2712824
  4. KRINSKY, D. M., VEENEMAN, D. E., OLSHANSKY, R. Bandwidth selection for the very high-rate digital subscriber line (VDSL) system. In Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications. Dallas (USA), 1996, p. 1432–1436. DOI: 10.1109/ICC.1996.533645
  5. NORHAN, N., NURODDIN, A. C. M., ASROKIN, A. VDSL2 capacity performance evaluation: Simulation vs measurement. In Proceedings of IEEE Conference on Systems, Process and Control (ICSPC). Melaka (Malaysia), 2017, p. 140–145. DOI: 10.1109/SPC.2017.8313036
  6. MAZZENGA, F., GIULIANO, R. Log-normal approximation for VDSL performance evaluation. IEEE Transactions on Communications, 2016, vol. 64, no. 12, p. 5266–5277. DOI: 10.1109/TCOMM.2016.2613108
  7. TAKAHASHI, T., NIU, L., HUBING, T. Estimation of common mode current on coaxial cable with twisted wire pair. In Proceedings of International Symposium on EMC. Tokyo (Japan), 2014, p. 553–556. ISBN: 978-4-8855-2287-1
  8. HUAGANG WANG, MENG, T. R., WEN, L. S. Measurement and analysis of electromagnetic emissions for broadband power line (BPL) communication. In Proceedings of IEEE 5th International Symposium on Electromagnetic Compatibility. Beijing (China), 2017, p. 1–4. DOI: 10.1109/EMC-B.2017.8260355
  9. KASPER, J., MAGDOWSKI, M., VICK, R. Measurement of the stochastic electromagnetic field coupling to transmission line networks of single-line above a ground plane. In 2016 International Symposium on Electromagnetic Compatibility - EMC EUROPE. Wroclaw (Poland), 2016, p. 223–228. DOI: 10.1109/EMCEurope.2016.7739170
  10. DE CLERCQ, L., PEETERS, M., SCHELSTRAETE, S., et al. Mitigation of radio interference in xDSL transmission. IEEE Communications Magazine, 2020, vol. 38, no. 3, p. 168–173. DOI: 10.1109/35.825655
  11. STOLLE, R. Electromagnetic coupling of twisted pair cables. IEEE Journal on Selected Areas in Communications, 2002, vol. 20, no. 5, p. 883–892. DOI: 10.1109/JSAC.2002.1007371
  12. OLSEN, R. G. Technical considerations for broadband powerline (BPL) communication. In. Proceedings of the 16th International Zurich Symposium and Tech. Exhibition on EMC. Zurich (Switzerland), 2005, p. 1–6.
  13. COOK, J. W., KIRKBY, R. H., BOOTH, G. M., et al. The noise and crosstalk environment for ADSL and VDSL systems. IEEE Communications Magazine, 1999, vol. 37, no. 5, p. 73–78. DOI: 10.1109/35.762859
  14. OKSMAN, V., STROBEL, R., WANG, X., et al. The ITU-T’s new G.fast standard brings DSL into the gigabit era. IEEE Communications Magazine, 2016, vol. 54, no. 3, p. 118–126. DOI: 10.1109/MCOM.2016.7432157
  15. GALLI, S., KERPEZ, J. J., MARIOTTE, H., et al. PLC-to-DSL interference: Statistical model and impact on VDSL2, vectoring, and G.fast. IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 7, p. 1992–2005. DOI: 10.1109/JSAC.2016.2566118
  16. SJOBERG, F., NILSSON, R., BORJESSON, P. O., et al. Digital RFI suppression in DMT-based VDSL systems. IEEE Transactions on Circuits and Systems, 2004, vol. 51, no. 11, p. 2300–2312. DOI: 10.1109/TCSI.2004.836865
  17. TEIXEIRA, E. A., DOS SANTOS, M. V. PLC-to-LAN interference analysis and electromagnetic shielding. In Proceedings of 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech). Balaclava (Mauritius), 2016, p. 194–198. DOI: 10.1109/EmergiTech.2016.7737337
  18. OKSMAN, V., STROBEL, R., STARR, T., et al. MGFAST: A new generation of copper broadband access. IEEE Communications Magazine, 2019, vol. 57, no. 8, p. 14–21. DOI: 10.1109/MCOM.2019.1800844
  19. ZHANG, C., HU, X., LIU, Y., et al. Multiple interacting narrowband interferences suppression algorithm for OFDM systems. IEEE Access, 2020, vol. 8, p. 62310–62321. DOI: 10.1109/ACCESS.2020.2984816
  20. DROOGHAAG, B., MAES, J., EL FANI, M., et al. Exploring field noise on G.fast frequencies. In IEEE Global Communications Conference (GLOBECOM 2017). Singapore (Singapore), 2017, p. 1–6. DOI: 10.1109/GLOCOM.2017.8254973
  21. WOLKERSTORFER, M., MECKLENBRAUKER, C. F. Variational inequality approach to spectrum balancing in vectoring xDSL networks. In Proceedings of IEEE International Conference on Communications (ICC). Paris (France), 2017, p. 1–7. DOI: 10.1109/ICC.2017.7997154
  22. MIKAC, V., ILIC, Z., BERISA, T., et al. Capacity analysis of RTbased VDSL2 copper access networks. In Proceedings of the 22nd International Conference on Software, Telecommunications and Computer Networks (SoftCOM). Split (Croatia), 2014, p. 165–169. DOI: 10.1109/SOFTCOM.2014.7039081
  23. ATTANASIO, V., PENNA, S., MARIER, G., et al. Ultra broadband access network performance in a multi operator scenario. In Proceedings of the 17th International Telecommunications Network Strategy and Planning Symposium (Networks). Montreal (Canada), 2016, p. 115–120. DOI: 10.1109/NETWKS.2016.7751162
  24. MAZZENGA, F., GIULIANO, R. Analytical performance evaluation of VDSL2. IEEE Communications Letters, 2016, vol. 21, no. 1, p. 44–47. DOI: 10.1109/LCOMM.2016.2618369
  25. AL-NEAMI, I., HEALY, C. T., JOHNSTON, M., et al. Investigation into impulsive noise techniques for a G.fast system. In Proceedings of the 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). Budapest (Hungary), 2018, p. 1–5. DOI: 10.1109/CSNDSP.2018.8471864
  26. AMEMIYA, F., KUWABARA, N., IDEGUCHI, T. Estimation of electromagnetic interference field emitted from telecommunications line. IEICE Transactions on Communications, 1995, vol. E78-B, no. 2, p. 159–167. ISSN: 0916-8516
  27. TAYLO, C. D., CASTILLO, J. P. On the response of a terminated twisted-wire cable excited by a plane-wave electromagnetic field. IEEE Transactions on Electromagnetic Compatibility, 1980, vol. EMC-22, no. 1, p. 16–19. DOI: 10.1109/TEMC.1980.303816
  28. MOULIN, F., OUZZIF, M., ZEDDAM, A., et al. Discretemultitone-based ADSL and VDSL systems performance analysis in an impulse noise environment. IEE Proceedings – Science, Measurement and Technology, 2003, vol. 150, no. 6, p. 273–278. DOI: 10.1049/ip-smt:20031072
  29. ITU-T. Telecommunication Union ITU-T Recommendation. Measuring Arrangements to Assess the Degree of Unbalance about Earth, ITU-T Rec. O.9. 1999, p. 1–21.
  30. CHAMBERLIN, K., KOMISAREK, K., SIVAPRASAD, K. A method of-moments solution to the twisted-pair transmission line. IEEE Transactions on Electromagnetic Compatibility, 1995, vol. 37, no. 1, p. 121–126. DOI: 10.1109/15.350252
  31. ITU-T. Telecommunication Union ITU-T Recommendation. Emission Levels and Test Methods for Wireline Telecommunication Networks to Minimize Electromagnetic Disturbance of Radio Services, ITU-T K.60. 2016, p. 1–18.
  32. ECC. Electronic Communication Committee. Criteria for the Assessment of Radio Interferences Caused by Radiated Disturbances from Wire-line Telecommunication Networks, ECC/REC/(05)04. 2005, p. 1–3.
  33. ECC. Electronic Communication Committee. PLT, DSL, Cable Communications (including cable TV), lans and their Effect on Radio Services, ECC Report 24. 2003, p. 1–112.
  34. RADIOCOMMUNICATIONS AGENCY. Electromagnetic Radiation from Telecommunications Systems Operating over Material Substances in the Frequency Range 9 kHz to 300 MHz, MPT1570. 2003, p. 1–9.
  35. ITU-T. Telecommunication Union ITU-T Recommendation. Very High Speed Digital Subscriber Line Transceivers 2 (VDSL2), Rec. G.993.2. 2016, p. 1–252.
  36. WANG, J., SONG, X., SU, D. Near-field radiation calculation of irregular wiring twisted-wire pairs based on mode decomposition. IEEE Transactions on Electromagnetic Compatibility, 2017, vol. 59, no. 2, p. 600–608. DOI: 10.1109/TEMC.2016.2635263

Keywords: Electromagnetic interference, radio emission, radiation limits, TK59U-xDSL cable, VDSL2

A. A. Althuwayb [references] [full-text] [DOI: 10.13164/re.2021.0135] [Download Citations]
Design of Quad-Band Rat-Race Coupler for GSM/WiMAX/WLAN/Satellite Applications

In this communication, a novel quad-band rat-race coupler (RRC) is developed for GSM/WiMAX/WLAN/Satellite applications. A conventional RRC is converted to exhibit quad-band operation by using a quad-band microstrip-line (QBML). The proposed QBML is constructed by two coupled-lines, one series transmission-line and two short-ended stubs. The ABCD matrix method is applied to develop the design formulas. Based on these formulas, a quad-band RRC operating at 1.8 GHz, 3.5 GHz, 5.4 GHz, and 7.1 GHz is designed and verified through fabrication and measurement. The measurement and full-wave simulation responses are very much consistent as expected.

  1. KAWAI, T., OHTA, I., ENOKIHARA A. Design methods for broadband 3dB branch-line and rat-race hybrids. IEICE Electronics Express, 2013, vol. 10, no. 12, p. 1–14, DOI: 10.1587/elex.10.20132004
  2. WANG, S., HUANG, B., LI, Z. A miniaturized 10/24-GHz ratrace coupler using synthetic transmission lines on glass substrate. IEICE Electronics Express, 2011, vol. 10, no. 17, p. 1425–1430. DOI: 10.1587/elex.8.1425
  3. SONG, W., DEGUCHI, H., TSUJI, M. A harmonic suppression and size-reduced rat-race hybrid coupler using dual coupled-lines. IEICE Electronics Express, 2012, vol. 9, no. 13, p. 1083–1089. DOI: 10.1587/elex.8.1425
  4. TSENG, C. H., CHANG, C. L. A rigorous design methodology for compact planar branch-line and rat-race couplers with asymmetrical T-structures. IEICE Electronics Express, 2012, vol. 60, no. 7, p. 2085–2091. DOI: 10.1109/TMTT.2012.2195019
  5. CHANG, W. S., LIANG, C. H., CHANG, C. Y. Wideband high-isolation and perfect-balance microstrip rat-race coupler. IEICE Electronics Express, 2012, vol. 48, no. 7, p. 382–383. DOI: 10.1049/el.2012.0227
  6. TSENG, C. H., CHEN, H. J. Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 11, p. 734–736. DOI: 10.1109/LMWC.2008.2005225
  7. WU, L. S., MAO, J., YIN, W. Y. Miniaturization of rat-race coupler with dual-band arbitrary power divisions based on stepped-impedance double-sided parallel-strip line. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 2, no. 12, p. 2017–2030. DOI: 10.1109/TCPMT.2012.2211597
  8. TOLIN, E., BAHR, A. Miniaturized and reconfigurable rat-race coupler based on artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2020, vol. 30, no. 4, p. 375–377. DOI: 10.1109/LMWC.2020.2972738
  9. KOU, J. T., WU, J. S., CHIOU, Y. C. Miniaturized rat race coupler with suppression of spurious passband. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 1, p. 46–48. DOI: 10.1109/LMWC.2006.887254
  10. TAN, X., LIN, F. A novel rat-race coupler with widely tunable frequency. IEEE Microwave and Wireless Components Letters, 2019, vol. 67, no. 3, p. 957–967. DOI: 10.1109/TMTT.2018.2889453
  11. FENG, W., CHE, W. SHI, C., et al. Balanced rat-race couplers with wideband common-mode suppression. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 12, p. 4724–4732. DOI: 10.1109/TMTT.2019.2946158
  12. LIN, F., MA, H. Design of a class of filtering couplers with reconfigurable frequency. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 9, p. 4017–4028. DOI: 10.1109/TMTT.2018.2842755
  13. BARIK, R. K., SIDDIQUI, R., KUMAR, K. V. P., et al. Design of a novel dual-band low noise amplifier incorporating dualband impedance transformer. 2016 International Conference on Signal Processing and Communications (SPCOM), 2016, p. 1–5. DOI: 10.1109/SPCOM.2016.7746652
  14. CHENG, K. M. M., WONG, F. L. Dual-band rat-race coupler design using tri-section branch-line. Electronics Letters, 2007, vol. 43, no. 6, p. 41–42. DOI: 10.1049/el:20070018
  15. CAI, L. P., CHENG, K. M. M. A novel design of dual-band rat-race coupler with reconfigurable power-dividing ratio. IEEE Microwave and Wireless Components Letters , 2018, vol. 28, no. 1, p. 16–18. DOI: 10.1109/LMWC.2017.2779807
  16. TSENG, C. H., MOU, C. H., LIN, C. C., et al. Design of microwave dual-band rat-race couplers in printed-circuit board and GIPD technologies. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 6, no. 2, p. 262–271. DOI: 10.1109/TCPMT.2015.2507371
  17. CHIN, K. S., LIN, K. M., WEI, Y. H., et al. Compact dual-band branch-line and rat-race couplers with stepped-impedance-stub lines. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 5, p. 1213–1221. DOI: 10.1109/TMTT.2010.2046064
  18. CHENG, K. K. M., WONG, F. L. A novel rat race coupler design for dual-band applications. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 8, p. 521–523. DOI: 10.1109/LMWC.2005.852792
  19. KRISHNA, I. S., BARIK, R. K., KARTHIKEYAN, S. S. A dual-band crossover using cross-shaped microstrip line for small and large band ratios. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 8, p. 1629–1635. DOI: 10.1017/S1759078717000290
  20. ZHANG, H., CHEN, K. J. Design of dual-band rat-race couplers. IET Microwaves Antennas & Propagation, 2009, vol. 3, no. 3, p. 514–521. DOI: 10.1049/iet-map.2008.0019
  21. HE, Q., SHEN, J., LIU, Q., et al. A simplified dual-band rat-race hybrid for arbitrary power division ratio with only single shunt stub. Journal of Electromagnetic Waves and Applications, 2013, vol. 27, no. 16, p. 2101–2109. DOI: 10.1080/09205071.2013.832396
  22. BARIK, R. K., KARTHIKEYAN, S. S. Dual-frequency impedance transformer using coupled-line for ultra-high transforming ratio. Radioengineering, 2017, vol. 26, no. 4, p. 1067–1074. DOI: 10.13164/re.2017.1067
  23. BARIK, R. K., KUMAR, K. V. P., KARTHIKEYAN, S. S. Design of a dualband microstrip branchline balun using T-shaped coupled lines. Microwave Optical Technology Letters, 2017, vol. 59, no. 5, p. 1197–1202. DOI: 10.1002/mop.30502
  24. BARIK, R. K., CHENG, Q. S., KARTHIKEYAN, S. S. An automatic design approach for microstrip line impedance transformer for triple-band application. In 2019 IEEE Asia-Pacific Microwave Conference (APMC). Singapore, 2019, p. 207–209. DOI: 10.1109/APMC46564.2019.9038330
  25. BARIK, R. K., KARTHIKEYAN, S. S. Design of dual/tri-frequency impedance transformer with ultra-high transforming ratio. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 10, p. 1951–1960. DOI: 10.1017/S1759078717000952
  26. WANG, Z., JANG, J. S., PARK, C. W. Tri-band rat-race coupler using resonators. In IEEE International Conference on Microwave Technology & Computational Electromagnetics. Beijing (China), 2011, p. 186–189. DOI: 10.1109/ICMTCE.2011.5915197
  27. CHENG, W. G., MING, W., GNAG, L., et al. Compact tri-band rat-race coupler based on novel metamaterial transmission line. In Asia-Pacific Microwave Conference (APMC). Nanjing (China), 2015, p. 1–3. DOI: 10.1109/APMC.2015.7411702
  28. CHU, Q. X., LIN F. A novel tri-band rat race coupler with T?shape step impedance transformers. Microwave and Optical Technology Letters, 2010, vol. 52, no. 6, p. 1240–1244. DOI: 10.1002/mop.25186
  29. BARIK, R. K., KARTHIKEYAN, S. S. A novel quad-band impedance transformer with ultra-high transforming ratio. AEU - International Journal of Electronics and Communications, 2017, vol. 78, p. 157–161. DOI: 10.1016/j.aeue.2017.05.030
  30. VELAN, S., KINGSLY, S. KANGASABAI, M., et al. Quad-band rat-race coupler with suppression of spurious pass-bands. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 7, p. 490–492. DOI: 10.1109/LMWC.2016.2575017
  31. PAPANASTASIOU, A. C., GEORGHIOU, E. G, ELEFTHERIADES, G V. A quad-band rat-race coupler based on the generalized negative refractive-index transmission-line concept. In European Microwave Conference. Nuremberg (Germany), 2013, p. 302–305. DOI: 10.23919/EuMC.2013.6686651

Keywords: Rat-race coupler, quad-band, coupled-line

K. Krestovnikov, E. Cherskikh, A. Saveliev [references] [full-text] [DOI: 10.13164/re.2021.0142] [Download Citations]
Structure and Circuit Solution of a Bidirectional Wireless Power Transmission System in Applied Robotics

In this paper the development of structure and circuit solution for a bidirectional wireless power transmission system is presented, based on current fed push-pull inverter. Existing solutions are analyzed, as well their structures and characteristics. The principle of operation of the developed circuit solution is described in receiving/transmitting mode, an electrical principal circuit is given with respective ratios calculated. The SPICE modeling of the system was performed, and the theoretically calculated dependency of energy transmission efficiency from the transmitted power was obtained. The developed structure includes a step-up DC-DC converter, which enables to obtain the output voltage of the system, active in receiving mode, being equal or higher than the voltage of the power supply of energy-transmitting system. Therefore, the proposed bidirectional wireless power transmitting system can be utilized within a swarm robotic system with unified robots, having identical power supply batteries. Practical application of the proposed solution is relevant for energy transmission among autonomous robots, energy transmission from power supply source to robot and in reverse direction.

  1. NAGY, I. Behaviour study of a multi-agent mobile robot system during potential field building. Acta Polytechnica Hungarica, 2009, vol. 6, no. 4, p. 111–136. ISSN 1785-8860
  2. NAGY, I. From exploring to optimal path planning: Considering error of navigation in multi-agent mobile robot domain. Acta Polytechnica Hungarica, 2014, vol. 11, no. 6, p. 39–55. DOI: 10.12700/APH.11.06.2014.06.3
  3. MADAWALA, U. K., THRIMAWITHANA, D. J. A bidirectional inductive power interface for electric vehicles in V2G systems. Transactions on Industrial Electronics, 2011, vol. 58, no. 10, p. 4789–4796. DOI: 10.1109/TIE.2011.2114312
  4. ZHAO, L., THRIMAWITHANA, D. J., MADAWALA, U. K. Hybrid bidirectional wireless EV charging system tolerant to pad misalignment. Transactions on Industrial Electronics, 2017, vol. 64, no. 9, p. 7079–7086. DOI: 10.1109/TIE.2017.2686301
  5. LEE, J. Y., HAN, B. M. A bidirectional wireless power transfer EV charger using self-resonant PWM. Transactions on Power Electronics, 2014, vol. 30, no. 4, p. 1784–1787. DOI: 10.1109/TPEL.2014.2346255
  6. BOJARSKI, M., KUTTY, K. K., CZARKOWSKI, D., et al. Multiphase resonant inverters for bidirectional wireless power transfer. In Proceedings of International Electric Vehicle Conference (IEVC). Florence (Italy), 2014, p. 1–7. DOI: 10.1109/IEVC.2014.7056191
  7. TRITSCHLER, J., REICHERT, S., GOELDI, B. A practical investigation of a high power, bidirectional charging system for electric vehicles. In Proceedings of 16th European Conference on Power Electronics and Applications. Lappeenranta (Finland), 2014, p. 1–7. DOI: 10.1109/EPE.2014.6910809
  8. SAMANTA, S., RATHORE, A. K., THRIMAWITHANA, D. J. Bidirectional current-fed half-bridge (C)(LC)–(LC) configuration for inductive wireless power transfer system. Transactions on Industry Applications, 2017, vol. 53, no. 4, p. 4053–4062. DOI: 10.1109/TIA.2017.2682793
  9. MOHAMED, A. A., MARIM, A. A., MOHAMMED, O. A. Magnetic design considerations of bidirectional inductive wireless power transfer system for EV applications. IEEE Transactions on Magnetics, 2017, vol. 53, no. 6, p. 1–5. DOI: 10.1109/TMAG.2017.2656819
  10. HUANG, M., LU, Y., MARTINS, R. P. A reconfigurable bidirectional wireless power transceiver for battery-to-battery wireless charging. Transactions on Power Electronics, 2018, vol. 34, no. 8, p. 7745–7753. DOI: 10.1109/TPEL.2018.2881285
  11. MIURA, S., NISHIJIMA, K., NABESHIMA, T. Bi-directional wireless charging between portable devices. In Proceedings of International Conference on Renewable Energy Research and Applications (ICRERA). Madrid (Spain), 2013, p. 775–778. DOI: 10.1109/ICRERA.2013.6749857
  12. MADAWALA, U. K., NEATH, M., THRIMAWITHANA, D. J. A power-frequency controller for bidirectional inductive power transfer systems, IEEE Transactions on Industrial Electronics, 2011, vol. 60, no. 1, p. 310–317. DOI: 10.1109/TIE.2011.2174537
  13. WU, H., GU, B., WANG, X., et al. Design and control of a bidirectional wireless charging system using GaN devices. In Proceedings of Applied Power Electronics Conference and Exposition (APEC). Anaheim (CA, USA), 2019, p. 864–869. DOI: 10.1109/APEC.2019.8721909
  14. KRESTOVNIKOV, K., CHERSKIKH, E., SMIRNOV, P. Wireless power transmission system based on coreless coils for resource reallocation within robot group. In Proceedings of International Conference on Interactive Collaborative Robotics. Istanbul (Turkey), 2019, p. 193–203. DOI: 10.1007/978-3-030- 26118-4_19
  15. SAVELIEV, A., KRESTOVNIKOV, K., SOLENI, S. Development of a wireless charger for a mobile robot technical platform. In Proceedings of Intelligent Power Systems, Materials of the V International Youth Forum. Tomsk (Russia), 2017, p. 197–201.
  16. PAVLIUK, N., SMIRNOV, P., KOVALEV, A. Constructional and architectural solutions for service mobile platform with pluggable modules. Izvestiya Tula State University. Technical Science, 2019, vol. 10, p. 181–193. ISSN 2071-6168
  17. KRESTOVNIKOV, K., CHERSKIKH, E., RONZHIN, A. Mathematical model of a swarm robotic system with wireless bidirectional energy transfer A. Robotics: Industry 4.0 Issues & New Intelligent Control Paradigms, Studies in Systems, Decision and Control, 2020, vol. 272, p. 13–23. DOI: 10.1007/978-3-030- 37841-7
  18. ABDOLKHANI, A., HU, A. P., TIAN, J. Autonomous polyphase current-fed push-pull resonant converter based on ring coupled oscillators. Journal of Emerging and Selected Topics in Power Electronics, 2015, vol. 3, no. 2, p. 568–576. DOI: 10.1109/JESTPE.2014.2377171
  19. ABDOLKHANI, A., HU, A. P. Improved autonomous current-fed push-pull resonant inverter. IET Power Electronics, 2014, vol. 7, no. 8, p. 2103–2110. DOI: 10.1049/iet-pel.2013.0749
  20. HU, A. P., SI, P. A low cost portable car heater based on a novel current-fed push-pull inverter. In Proceedings Australasian Universities Power Engineering Conference (AUPEC 2004). Brisbane (Australia), 2004, p. 1–5.
  21. KRESTOVNIKOV, K., CHERSKIKH, E., SHABANOVA, A. Circuit designs and engineering solutions based on synchronous rectifier for wireless energy transfer system. Modeling, Optimization and Information Technology, 2019, vol. 7, no. 4, p. 1–15. DOI: 10.26102/2310-6018/2019.27.4.018 (In Russian)
  22. KRESTOVNIKOV, K., CHERSKIKH, E., PAVLIUK, N. Concept of a synchronous rectifier for wireless power transfer system. In Proceedings of 18th International Conference on Smart Technologies (EUROCON 2019). Novi Sad (Serbia), 2019, p. 1–5. DOI: 10.1109/EUROCON.2019.8861856
  23. KRESTOVNIKOV, K., SAVELIEV, A., SHABANOVA, A., et al. Comparative study of synchronous and non-synchronous rectifiers for use in the receiving part of a wireless charging system. In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”. Tula (Russia), 2020, p. 675–685. DOI: 10.1007/978-981-13-9267-2_56
  24. PAVLIUK, N., KHARKOV, I., ZIMULDINOV, E., et al. Development of multipurpose mobile platform with a modular structure. In Proceedings of 14th International Conference on Electromechanics and Robotics “Zavalishin's Readings”. Tula (Russia), 2020, p. 137–147. DOI: 10.1007/978-981-13-9267-2_12

Keywords: Bidirectional wireless power transmission system, current fed push-pull inverter, swarm robotics, synchronous rectifier

A. Contreras, M. Urdaneta [references] [full-text] [DOI: 10.13164/re.2021.0150] [Download Citations]
Analysis of Variance of the Diode Parameters in Multiband Rectifiers for RF Energy Harvesting

The aim of this work was the characterization of the diode parameters from the single diode and voltage doubler rectifiers employed in multiband rectennas. For that, an analysis of variance was made through the 2: factorial design for determining the effects on the RF-DC conversion efficiency, with basis on the diode families that have been used in this type of rectennas. For both types of rectifiers the most influential parameters were the junction capacitance and the saturation current. The results in the trends of the parameter levels showed that the diode must have a high level of saturation current and a low level of junction capacitance, mainly. Additionally, these must have a low level of series resistance and emission coefficient. There were no interactions of the parameters for each evaluated load resistance. Among the diode families employed in literature, there was no particular family that complies with these criteria. Therefore, the selection of the diode family must be made through a trade-off between the parameters, which is accomplished by the family SMS-763x.

  1. CONTRERAS, A., URDANETA, M. Rectennas for energy harvesting from RF communication systems: A review (in Spanish). Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 2020, vol. 43, no. 2, p. 98–109. DOI: 10.22209/rt.v43n2a06
  2. CANSIZ, M., ALTINEL, D., KARABULUT, K. G. Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 2019, vol. 174, p. 292–309. DOI: 10.1016/j.energy.2019.02.100
  3. DIVAKARAN, S., KRISNA, D. D., NASIMUDDIN, N. RF energy harvesting systems: An overview and design issues. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 29, p. 1–15. DOI: 10.1002/mmce.21633
  4. VISSER, H. Indoor wireless RF energy transfer for powering wireless sensors. Radioengineering, 2012, vol. 21, no. 4, p. 963–973. ISSN: 1210-2512
  5. SURENDER, D., KHAN, T., TALUKDAR, F., et al. Key components of rectenna system: A Comprehensive Survey. IETE Journal of Research, 2020, p. 1–28. DOI: 10.1080/03772063.2020.1761268
  6. SHAHABUDDIN, A., SHALU, P., AKTER, N. Optimized process design of RF energy harvesting circuit for low power devices. International Journal of Applied Engineering Research, 2018, vol. 13, no. 2, p. 849–854. ISSN: 0973-4562
  7. SONG, C., HUANG, Y., ZHOU, J., et al. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Transactions on Antennas and Propagation, 2017, vol. 64, no. 4, p. 2057–2062. DOI: 10.1109/TAP.2017.2670359
  8. ROEHR, W. Rectifier Applications Handbook. 1st ed. Denver (USA): ON Semiconductor, 2001.
  9. RANDA, M., MAHA, A., MENNA, A., et al. A foldable textile-based broadband archimedean spiral rectenna for RF energy harvesting. In 16th Mediterranean Microwave Symposium (MMS). Abu Dhabi (UAE), 2016, p. 1–4. DOI: 10.1109/MMS.2016.7803872
  10. SINGH, N., KANAUJIA, B., BEG, M., et al. A dual polarized multiband rectenna for RF energy harvesting. AEU - International Journal of Electronics and Communications, 2018, vol. 93, no. 2018, p. 123–131. DOI: 10.1016/j.aeue.2018.06.020
  11. INDUMATHI, G., KARTHIKA, K. Rectenna design for RF energy harvesting in wireless sensor networks. In 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). Coimbatore (India), 2015, p. 9–12. DOI: 10.1109/ICECCT.2015.7226171
  12. AGRAWAL, S., PARIHAR, M., KONDEKAR, P. Broadband rectenna for radio frequency energy harvesting application broadband rectenna for radio frequency energy harvesting application. IETE Journal of Research, 2017, vol. 64, no. 3, p. 347–353. DOI: 10.1080/03772063.2017.1356755
  13. SINGH, B., GHOSH, S., CHAKRABARTI, S. Design optimization and implementation of multiband rectenna for efficient radio frequency energy harvesting. In 2017 IEEE International Conference on Industrial and Information Systems (ICIIS). Peradeniya (Sri Lanka), 2017, p. 1–6. DOI: 10.1109/ICIINFS.2017.8300355
  14. PALAZZI, V., HESTER, J., BITO, J., et al. A novel ultralightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Transactions on Microwave Theory and Techniques , 2018, vol. 66, no. 1, p. 366–379. DOI: 10.1109/TMTT.2017.2721399
  15. AGRAWAL, S., PARIHAR, M., KONDEKAR, P. A quad-band antenna for multi-band radio frequency energy harvesting circuit. AEU - International Journal of Electronics and Communications, 2018, vol. 85, p. 99–107. DOI: 10.1016/j.aeue.2017.12.035
  16. NARESH, B., SINGH, V., BHARGAVI, V. Dual band RF energy harvester for wearable electronic technology. In 2017 Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB). Chennai (India), 2017, no. 1, p. 3–6. DOI: 10.1109/AEEICB.2017.7972428
  17. TISSIER, J., LATRACH, M. Broadband rectenna for ambient RF energy harvesting applications. In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal (Canada), 2017, p. 2–4. DOI: 10.23919/URSIGASS.2017.8105356
  18. CHEN, Y., CHIU, C. Characterization of the lossyness of matching networks for RF energy-harvesting rectennas. In 11th European Conference on Antennas and Propagation (EUCAP). Paris (France), 2017, p. 2053–2056. DOI: 10.23919/EuCAP.2017.7928097
  19. ZAINUDDIN, N., ZAKARIA, Z., HUSAIN, M., et al. Design of wideband antenna for RF energy harvesting system. In 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). Bandung (Indonesia), 2013, p. 162–166. DOI: 10.1109/ICICI-BME.2013.6698485
  20. IBRAHIM, R., VOYER, D., ZOGHBI, M., et al. Novel design for a rectenna to collect pulse waves at 2.4 GHz. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 1, p. 357–365. DOI: 10.1109/TMTT.2017.2749579
  21. KHEMAR, A., KACHA, A., TAKHEDMIT, H., et al. Design and experiments of a dual-band rectenna for ambient RF energy harvesting in urban environments. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 1, p. 49–55. DOI: 10.1049/iet-map.2016.1040
  22. SONG, C., HUANG, Y., ZHOU, J., et al. Improved ultra-wideband rectennas using hybrid resistance compression technique. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 4, p. 2057–2062. DOI: 10.1109/TAP.2017.2670359
  23. SONG, S., SU, M., LIU, Y., et al. A novel broadband rectenna for energy harvesting. In International Symposium on Antennas and Propagation (ISAP). Okinawa (Japan), 2016, no. 3, p. 1082–1083. ISBN: 978-4-88552-313-7
  24. HO, D., KHARRAT, I., VOUNG, V., et al. Dual-band rectenna for ambient RF energy harvesting at GSM 900 MHz and 1800 MHz. In IEEE International Conference on Sustainable Energy Technologies (ICSET) Dual-Band. Hanoi (Vietnam), 2016, p. 306–310. DOI: 10.1109/ICSET.2016.7811800
  25. SHEN, S., CHIU, C., MURCH, R. A dual-port triple-band lprobe microstrip patch rectenna for ambient RF energy harvesting. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 3071–3074. DOI: 10.1109/LAWP.2017.2761397
  26. ZENG, M., LI, Z., ANDRENKO, et al. A compact dual-band rectenna for gsm900 and gsm1800 energy harvesting. International Journal of Antennas and Propagation, 2018, vol. 2018, p. 1–10. DOI: 10.1155/2018/4781465
  27. AVAGO. HSMS-282x Surface Mount RF Schottky Barrier Diodes. 15 pages. [Online] Cited 2020-07-03. Available at: https://datasheetspdf.com/pdf/963454/AVAGO/HSMS-2822/1
  28. AGILENT. HSMS-285x Series Surface Mount Zero Bias Schottky Detector Diodes. 13 pages. [Online] Cited 2020-07-04. Available at: https://datasheet.octopart.com/HSMS-2850-BLK-Avagodatasheet-46446.pdf
  29. H. PACKARD. HSMS-2860 Series Surface Mount Microwave Schottky Detector Diodes. 6 pages. [Online] Cited 2020-07-05. Available at: https://datasheetspdf.com/pdf/815268/HP/HSMS-2860/1
  30. SKYWORKS. Surface Mount Mixer and Detector Schottky Diodes. 10 pages. [Online] Cited 2020-07-05. Available at: https://www.rfmw.com/datasheets/skyworks/200041i.pdf
  31. MONTGOMERY, D. (Diseno y Analisis de Experimentos). 2nd ed. Mexico (Mexico): Limusa, Wiley, 2004. ISBN: 9681861566
  32. SAUTER, M. From GSM to LTE-Advanced Pro and 5G. 3rd ed. New Jersey (US): John Wiley & Sons Ltd, 2017. ISBN: 9781119346906
  33. COLLADO, A., DASKALAKIS, S., NIOTAKI, K., et al. Rectifier design challenges for RF wireless power transfer and energy harvesting systems. Radioengineering, 2017, vol. 26, no. 2, p. 411–417. DOI: 10.13164/re.2017.0411

Keywords: Diode Parameters, Multiband Rectifier, ANOVA, RF Energy Harvesting

V. J. Dowling, V. A. Slipko, Y. V. Pershin [references] [full-text] [DOI: 10.13164/re.2021.0157] [Download Citations]
Modeling Networks of Probabilistic Memristors in SPICE

Efficient simulation of stochastic memristors and their networks requires novel modeling approaches. Utilizing a master equation to find occupation probabilities of network states is a recent major departure from typical memristor modeling [Chaos, solitons fractals 142, 110385 (2021)]. In the present article we show how to implement such master equations in SPICE – a general purpose circuit simulation program. In the case studies we simulate the dynamics of acdriven probabilistic binary and multi-state memristors, and dc-driven networks of probabilistic binary and multi-state memristors. Our SPICE results are in perfect agreement with known analytical solutions. Examples of LTspice code are included.

  1. VLADIMIRESCU, A. The SPICE Book. 1st ed., New York (USA): Wiley, 1994. ISBN: 9780471609261
  2. KUNDERT, K. The Designer’s Guide to SPICE and SPECTRE. 1st ed., Berlin (Germany): Springer Science & Business Media, 1995. ISBN: 9781475770117
  3. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512
  4. BENDERLI, S., WEY, T. A. On SPICE macromodelling of TiO2 memristors. Electronics Letters, 2009, vol. 45, no. 7, p. 377–378. DOI: 10.1049/el.2009.3511
  5. RAK, A., CSEREY, G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 632–636. DOI: 10.1109/TCAD.2010.2042900
  6. SHARIFI, M. J., BANADAKI, Y. M. General SPICE models for memristor and application to circuit simulation of memristorbased synapses and memory cells. Journal of Circuits, Systems and Computers, 2010, vol. 19, no. 2, p. 407–424. DOI:10.1142/S0218126610006141
  7. ZHANG, X., HUANG, Z., YU, J. Memristor model for SPICE. IEICE TRANSACTIONS on Electronics, 2010, vol. E93-C, no. 3, p. 355–360. DOI: 10.1587/transele.E93.C.355
  8. PERSHIN, Y. V., DI VENTRA, M. SPICE model of memristive devices with threshold. Radioengineering, 2013, vol. 22, no. 2, p. 485–489. ISSN: 1210-2512
  9. BIOLEK, D., DI VENTRA, M., PERSHIN, Y. V. Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering, 2013, vol. 22, no. 4, p. 945–986.
  10. XU, K. D., ZHANG, Y. H., WANG, L., et al. Two memristor SPICE models and their applications in microwave devices. IEEE Transactions on Nanotechnology, 2014, vol. 13, no. 3, p. 607–616. DOI: 10.1109/TNANO.2014.2314126
  11. VOURKAS, I., BATSOS, A., SIRAKOULIS, G. C. SPICE modeling of nonlinear memristive behavior. International Journal of Circuit Theory and Applications, 2015, vol. 43, no. 5, p. 553–565. DOI: 10.1002/cta.1957
  12. LI, Q., SERB, A., PRODROMAKIS, T., et al. A memristor SPICE model accounting for synaptic activity dependence. PloS one, 2015, vol. 10, no. 3, p. 1–12. DOI: 10.1371/journal.pone.0120506
  13. BIOLEK, D., KOLKA, Z., BIOLKOVA, V., et al. Memristor models for SPICE simulation of extremely large memristive networks. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, p. 389–392. DOI: 10.1109/ISCAS.2016.7527252
  14. GARCIA-REDONDO, F., GOWERS, R. P., CRESPO-YEPES, A., et al. SPICE compact modeling of bipolar/unipolar memristor switching governed by electrical thresholds. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, vol. 63, no. 8, p. 1255–1264. DOI: 10.1109/TCSI.2016.2564703
  15. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of 2009 European Conference on Circuit Theory and Design, 2009, p. 249–252. DOI: 10.1109/ECCTD.2009.5274934
  16. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  17. DI VENTRA, M., PERSHIN, Y. V., CHUA, L. O. Circuit elements with memory: memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 2009, vol. 97, no. 10, p. 1717–1724. DOI: 10.1109/JPROC.2009.2021077
  18. JO, S. H., KIM, K. H., LU, W. Programmable resistance switching in nanoscale two-terminal devices. Nano letters, 2009, vol. 9, no. 1, p. 496–500. DOI: 10.1021/nl803669s
  19. GABA, S., SHERIDAN, P., ZHOU, J., et al. Stochastic memristive devices for computing and neuromorphic applications. Nanoscale, 2013, vol. 5, no. 13, p. 5872–5878. DOI: 10.1039/c3nr01176c
  20. GABA, S., KNAG, P., ZHANG, Z., et al. Memristive devices for stochastic computing. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS). Melbourne (Australia), 2014, p. 2592–2595. DOI: 10.1109/ISCAS.2014.6865703
  21. MEDEIROS-RIBEIRO, G., PERNER, F., CARTER, R., et al. Lognormal switching times for titanium dioxide bipolar memristors: origin and resolution. Nanotechnology, 2011, vol. 22, no. 9, p. 095702. DOI: 10.1088/0957-4484/22/9/095702
  22. MENZEL, S., VALOV, I., WASER, R., et al. Statistical modeling of electrochemical metallization memory cells. In 2014 IEEE 6th International Memory Workshop (IMW). Taipei (Taiwan), 2014, p. 1–4. DOI: 10.1109/IMW.2014.6849360
  23. NAOUS, R., AL-SHEDIVAT, M., SALAMA, K. N. Stochasticity modeling in memristors. IEEE Transactions on Nanotechnology, 2016, vol. 15, no. 1, p. 15–28. DOI: 10.1109/TNANO.2015.2493960
  24. DOWLING, V. J., SLIPKO, V. A., PERSHIN, Y. V. Probabilistic memristive networks: application of a master equation to networks of binary ReRAM cells. "Chaos, solitons fractals", 2021, vol. 142, p. 110385. DOI: 10.1016/j.chaos.2020.110385

Keywords: Memristors, SPICE, networks, probabilistic computing

K. Bhardwaj, M. Srivastava [references] [full-text] [DOI: 10.13164/re.2021.0164] [Download Citations]
Emulation of Three-Pinch-Off Memristor Emulator Based on Highly Non-Linear Charge-Flux Characteristics

The presented work describes an exclusive mathematical model for the multi-pinch-off behaviour generated by such non-linear memristors. The described mathematical results are based on the calculation of inflection points present on the memristor charge-flux curve, which have not been studied so far. The consideration of inflection points can be very useful in deciding various aspects of non-linear memristive applications. On the basis of derived mathematical conditions; VDTA active element based, a three-pinch-off memristor emulator has been developed, without employing any multiplier IC. For the first time, such compact emulator circuit has been proposed, which uses only two VDTAs and three grounded passive elements, to emulate multi-pinch-off behaviour at moderate frequencies. The behaviour of presented emulator is studied by performing simulations under PSPICE environment for CMOS VDTA. The presented VDTA based three-pinch-off memristor is also implemented using commercially available IC LM13700 and verified.

  1. CHUA, L. O. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  2. BABACAN, Y., KACAR. F. Memristor emulator with spike timing dependent plasticity. AEU–International Journal of Electronics and Communications, 2017, vol. 73, p. 16–22. DOI: 10.1016/j.aeue.2016.12.025
  3. BABACAN, Y., KACAR. F., GURKAN, K. A spiking and bursting neuron circuit based on memristor. Neurocomputing, 2016, vol. 203, p. 86–91. DOI: 10.1016/j.neucom.2016.03.060
  4. YESIL, A., BABACAN, Y., KACAR, F. A new floating memristor based on CBTA with grounded capacitors. Journal of Circuits, Systems and Computers, 2019, vol. 28, no. 13. DOI: 10.1142/S0218126619502177
  5. RANJAN, R. K., RANI, N., PAL, R., et al. Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectronics Journal, 2017, vol. 60, p. 119–28. DOI: 10.1016/j.mejo.2016.12.004
  6. SOZEN, H., CAM, U. Electronically tunable memristor emulator circuit. Analog Integrated Circuits and Signal Processing, 2016, vol. 89, p. 655–663. DOI: 10.1007/s10470-016-0785-2
  7. PETROVIC, P. B. Floating incremental/decremental fluxcontrolled memristor emulator circuit based on single VDTA. Analog Integrated Circuits and Signal Processing, 2018, vol. 96, p. 417–433. DOI: 10.1007/s10470-018-1177-6
  8. BABACAN, Y., YESIL, A., KACAR, F. Memristor emulator with tunable characteristic and its experimental results. AEU– International Journal of Electronics and Communications, 2017, vol. 81, p. 99–104. DOI: 10.1016/j.aeue.2017.07.012
  9. ZHAO, Q., WANG, C., ZHANG, X. A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos, 2019, vol. 29, p. 1–14. DOI: 10.1063/1.5081076
  10. LI, Z., ZENG, Y., MA, M. A novel floating memristor emulator with minimal components. Active and Passive Electronic Components, 2017, p. 1–12. DOI: 10.1155/2017/1609787
  11. YANG, C., CHOI, H., PARK, S., et al. A memristor emulator as a replacement of a real memristor. Semiconductor Science and Technology, 2015, vol. 30, no. 1, p. 1–9. DOI: 10.1088/0268- 1242/30/1/015007
  12. BALATTI, S., AMBROGIO, S, WANG, Z., et al. Voltagecontrolled cycling endurance of HfOx-based resistive-switching memory. IEEE Transactions on Electron Devices, 2015, vol. 62, no. 10, p. 3365–3372. DOI: 10.1109/TED.2015.2463104
  13. BIOLEK, D., BIOLKOVA, V., KOLKA, Z. Memristor pinched hysteresis loops: Touching points, Part I. In International Conference on Applied Electronics. Pilsen (Czech Republic), 2014, p. 37–40. DOI: 10.1109/AE.2014.7011663
  14. MAIZOUB, S., ELKAWIL, A. S., PSYCHALINOS, C., et al. On the mechanism of creating pinched hysteresis loop using a commercial memristor device. AEU–International Journal of Electronics and Communication, 2019, vol. 111, p. 1–4. DOI: 10.1016/j.aeue.2019.152923
  15. CHUA, L. Everything you wish to know about memristors but are afraid to ask. Radioengineering, 2015, vol. 24, no. 2, p. 319–368. DOI: 10.13164/re.2015.0319
  16. HAMED, E. M., FOUDA, M. E., ALHARBI, A. G., et al. Experimental verification of triple lobes generation in fractional memristive circuits. IEEE Access, 2018, vol. 6, p. 75169–75180. DOI: 10.1109/ACCESS.2018.2882942
  17. HAMED, E. M., FOUDA, M. E., RADWAN, A. G. Conditions and emulation of double pinch-off points in fractional-order memristor. In IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), 2018, p. 1–5. DOI: 10.1109/ISCAS.2018.8351761
  18. HAMED, E. M., FOUDA, M. E., RADWAN, A. G. Multiple pinch-off points in memristive equations: Analysis and experiments. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, vol. 66, no. 8, p. 3052–3063. DOI: 10.1109/TCSI.2019.2912821
  19. CHUA, L. Resistance switching memories are memristors. Applied Physics A: Material Science and Processing, 2011, vol. 102, no. 4, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  20. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Interpreting area of pinched memristor hysteresis loop. Electronics Letters, 2014, vol. 50, no. 2, p. 74–75. DOI: 10.1049/el.2013.3108
  21. WANG, X., ZHANG, X., GAO, M. A novel voltage-controlled trivalued memristor and its application in chaotic systems. Complexity, 2020, p. 1–8. DOI: 10.1155/2020/6949703
  22. BIOLEK, D., SENANI, R., BIOLKOVA, V., KOLKA Z., et al. Active elements for analog signal processing: Classification, review and new proposals. Radioengineering, 2008, vol. 17, no. 4, p. 15–32. ISSN: 1210-2512
  23. PRASAD, D., BHASKAR, D. R., SRIVASTAVA, M. Universal current-mode biquad filter using a VDTA. Circuits and Systems (USA), 2013, vol. 4, no. 1, p. 29–33. DOI: 10.4236/cs.2013.41006
  24. SRIVASTAVA, M., PRASAD, D. VDTA based electronically tunable purely active simulator circuit for realizing floating resistance. Journal of Engineering Science and Technology Review, 2015, vol. 8, no. 3, p. 112–116. DOI: 10.25103/jestr.083.15
  25. SRIVASTAVA, M. New grounded series/parallel lossy inductor simulators with electronic control. Journal of Engineering Research, 2018, vol. 6, no. 1, p. 118–135. ISSN: 2630-6891
  26. SRIVASTAVA, M., PRASAD, D., BHASKAR, D. R. Voltage mode quadrature oscillator employing single VDTA and grounded capacitors. Contemporary Engineering Sciences, 2014, vol. 7, no. 27, p. 1501–1507. DOI: 10.12988/ces.2014.49185

Keywords: Three-pinch-off memristor, LM13700, memristor, VDTA

C. L. Zhao, F. F. Yang, D. K. Waweru [references] [full-text] [DOI: 10.13164/re.2021.0172] [Download Citations]
Reed-Solomon Coded Cooperative Spatial Modulation Based on Nested Construction for Wireless Communication

This paper proposes the Reed-Solomon coded cooperative spatial modulation (RSCC-SM) scheme based on nested construction of two Reed-Solomon (RS) codes over quasi-static Rayleigh fading channel. In this construction, the RS code with larger number of consecutive roots is employed at the relay node while the RS code with less number of consecutive roots is employed at the source node. The RS code with excessive roots at the relay node offers some extra redundancy. The enhanced bit error rate (BER) performance will be obtained if source and relay RS codes are jointly decoded at the destination node. Therefore, the authors propose the joint RS decoding based on two different approaches known as naive approach and smart approach. Monte Carlo simulated results reveal that the proposed RSCC-SM scheme utilizing smart approach not only outperforms its corresponding coded non-cooperative scheme but also outperforms its counterpart RSCC-SM scheme employing naive approach under identical conditions.

  1. GUO, S., ZHANG, H. X., ZHANG, P, et al. Signal shaping for generalized spatial modulation and generalized quadrature spatial modulation. IEEE Transactions on Wireless Communications, 2019, vol. 18, no. 8, p. 4047–4059. DOI: 10.1109/TWC.2019.2920822
  2. ZHAO, C., YANG, F., UMAR, R., et al. Two-source asymmetric turbo-coded cooperative spatial modulation scheme with code matched interleaver. Electronics, 2020, vol. 9, no. 1, p. 1–20. DOI: 10.3390/electronics9010169
  3. MESLEH, R. Y., HAAS, H., SINANOVIC, S. Spatial modulation. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 4, p. 2228–2241. DOI: 10.1109/TVT.2008.912136
  4. FENG, D., XU, H., ZHENG, J., et al. Nonbinary LDPC-coded spatial modulation. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 4, p. 2786–2799. DOI: 10.1109/TWC.2018.2803170
  5. VAN DER MEULEN, E. C. Three-terminal communication channels. Advances in Applied Probability, 1971, vol. 3, no. 1, p. 120–154. DOI: 10.2307/1426331
  6. MESLEH, R. Y., IKKI, S. S. Performance analysis of spatial modulation with multiple decode and forward relays. IEEE Wireless Communications Letters, 2013, vol. 2, no. 4, p. 423–426. DOI: 10.1109/WCL.2013.051513.130256
  7. EJAZ, S., YANG, F., XU, H. Labeling diversity for 2 × 2 WLAN coded-cooperative networks. RadioEngineering, 2015, vol. 24, no. 2, p. 470–480. DOI: 10.13164/re.2015.0470
  8. HUNTER, T. E., NOSRATINIA, A. Diversity through coded cooperation. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 2, p. 283–289. DOI: 10.1109/TWC.2006.02006
  9. ZHANG, S. W., YANG, F. F., TANG, L., et al. Joint design of QC-LDPC codes for coded cooperation system with joint iterative decoding. International Journal of Electronics, 2015, vol. 103, no. 3, p. 384–405. DOI: 10.1080/00207217.2015.1036374
  10. MUGHAL, S., YANG, F. F., EJAZ, S., et al. Asymmetric turbo code for coded-cooperative wireless communication based on matched interleaver with channel estimation and multi-receive antennas at the destination. RadioEngineering, 2017, vol. 26, no. 3, p. 878–889. DOI: 10.13164/re.2017.0878
  11. UMAR, R., YANG, F. F., XU, H. J., et al. Multi-level construction of polar coded single carrier-FDMA based on MIMO antennas for coded cooperative wireless communication. IET Communications, 2018, vol. 12, no. 10, p. 1253–1262. DOI: 10.1049/ietcom.2017.1436
  12. QIU, J., CHEN, L., LIU, S. A novel concatenated coding scheme: RS-SC-LDPC codes. IEEE Communication Letter, 2020, vol. 24, no. 10, p. 2092–2095. DOI: 10.1109/LCOMM.2020.3004917
  13. AL-MOLIKI, Y. M., ALDHAEEBI, M. A., ALMWALD, G. A., et al. The performance of RS and RSCC coded cooperation systems using higher order modulation schemes. In Proceedings of 6th International Conference on Intelligent Systems, Modelling and Simulation. Kuala Lumpur (Malaysia), 2015, p. 211–214. DOI: 10.1109/ISMS.2015.11
  14. ALMAWGANI, A. H. M., SALLEH, M. F. M. RS coded cooperation with adaptive cooperation level scheme over multipath Rayleigh fading channel. In Proceedings of IEEE 9th Malaysia International Conference on Communications (MICC). Kuala Lumpur (Malaysia), 2009, p. 480–484. DOI: 10.1109/MICC.2009.5431555
  15. ALMAWGANI, A. H. M., SALLEH, M. F. M. Coded cooperation using Reed Solomon codes in slow fading channel. IEICE Electronics Express, 2010, vol. 7, no. 1, p. 27–32. DOI: 10.1587/elex.7.27
  16. MUGHAL, S., YANG, F., XU, H., et al. Coded cooperative spatial modulation based on multi-level construction of polar code. Telecommunication Systems, 2019, vol. 70, p. 435–446. DOI: 10.1007/s11235-018-0485-6
  17. BARRY, J. R., LEE, E. A., MESSERSCHMITT, D. G. Digital Communication. 3rd ed. Springer US, 2004. ISBN: 978-1-4615- 0227-2
  18. BASAR, E., AYGOLU, U., PANAYIRCI, E., et al. New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 8, p. 2670–2680. DOI: 10.1109/TWC.2011.061511.101745

Keywords: Reed-Solomon (RS) code, joint RS decoding, nested construction, coded cooperation, Spatial Modulation (SM)

P. Ma, X. Tang, S. Lou, K. Liu, G. Ou [references] [full-text] [DOI: 10.13164/re.2021.0184] [Download Citations]
Code Tracking Performance Analysis of GNSS Receivers with Blanking Model under Periodic Pulse Interference

As one of the most common types of interference, pulse interference and its suppression methods have been widely studied, in which the blanking method consumes less hardware resources and it is more commonly used in the Global Navigation Satellite System (GNSS) receivers. Previous studies used carrier-to-noise ratio (CNR) as an indicator to evaluate the performance of the receiver after pulse suppression. However, CNR is not the most important parameter that should be measured. The main function of the GNSS receiver is to measure the distance between the satellite and the receiver. How the pulse interference with different periods and duty cycle affects the ranging performance of the navigation receiver after blanking has not been fully studied. This paper focuses on the influence of the blanking method on the code tracking performance. Through derivation and simulation, it can be found that the ranging accuracy of the delay locked loop may not be deteriorated sometimes when the blanking operation plays a role of narrow correlation and the frequency of the pulse interference is close to the pseudo code. However, the blanking algorithm will cause large code tracking deviation, which will seriously affect the ranging performance of the receiver.

  1. LIU, Y., RAN, Y., KE, T., et al. Code tracking performance analysis of GNSS signal in the presence of CW interference. Signal Processing, 2011, vol. 91, no. 4, p. 970–987, DOI: 10.1016/j.sigpro.2010.09.022
  2. GAO, G. X. DME/TACAN interference and its mitigation in L5E5 bands. In Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation. Fort Worth (TX, USA), September 2007, p. 1191–1200.
  3. BORIO, D., O'DRISCOLL, C., FORTUNY-GUASCH, J. Pulsed pseudolite signal effects on non-participating GNSS receivers. In Proceedings of International Conference on Indoor Positioning and Indoor Navigation. Guimaraes (Portugal), September 2011, p. 1–6. DOI: 10.1109/IPIN.2011.6071912
  4. PARKINSON, B. W., ENGE, P., AXELRAD, P., et al. Global Positioning System: Theory and Applications. Vol. I. Washington, DC (USA): AIAA, 1996. ISBN: 1-56347-106-X
  5. DOVIS, F. GNSS Interference Threats and Countermeasures. Norwood, (MA USA): Artech House, 2015. ISBN: 978-1-60807- 810-3
  6. KAPLAN, E. D., HEGARTY, C. Understanding GPS: Principles and Applications. 2nd ed. Norwood, (MA, USA): Artech House, 2005. ISBN:978-7-121-04584-4
  7. FANG, W., WU, R. WANG, W., et al. DME pulse interference suppression based on NLS for GPS. In Proceedings of 2012 IEEE 11th International Conference on Signal Processing. Beijing (China), October 2012, p. 174–178. DOI: 10.1109/ICoSP.2012.6491629
  8. ANYAEGBU, E., BRODIN, G., COOPER, J., et al. An integrated pulsed interference mitigation for GNSS receivers. Journal of Navigation, 2008, vol. 61, no. 2, p. 239–255, DOI: 10.1017/s0373463307004572
  9. LI, L., WANG, W., LU, D., et al. Wavelet packet transformation based technique in mitigation DME pulsed interference for GNSS. In Proceedings of China Satellite Navigation Conference. Nanjing (China), May 2014, p. 715–724. DOI: 10.1007/978-3-642-54737- 9_62
  10. GAO, G. X., SGAMMINI, M., LU, M., et al. Protecting GNSS receivers from jamming and interference. Proceedings of the IEEE, 2016, vol. 104, no. 6, p. 1327–1338, DOI: 10.1109/JPROC.2016.2525938
  11. HEGARTY, C., VAN DIERENDONCK, A. J., BOBYN, D., et al. Suppression of pulsed interference through blanking. In Proceedings of the IAIN World Congress and the 56th Annual Meeting of the Institute of Navigation. San Diego (CA, USA), June 2000, p. 399–408.
  12. GRABOWSKI, J., HEGARTY, C. Characterization of L5 receiver performance using digital pulse blanking. In Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation. Portland (OR, USA), September 2002, p. 1630–1635.
  13. BORIO, D., CANO, E. Optimal Global Navigation Satellite System pulse blanking in the presence of signal quantization. IET Signal Processing, 2013, vol. 7, no. 5, p. 400–410. DOI: 10.1049/iet-spr.2012.0199
  14. GARCIA-PENA, A., JULIEN, O., GAKNE, P. V., et al. Efficient DME/TACAN blanking method for GNSS-based navigation in civil aviation. In Proceedings of the 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation. Miami (FL, USA), September 2019, p. 1438–1452. DOI: 10.33012/2019.16993
  15. HUO, S., NIE, J., WANG, F. Block-flow noise power estimation algorithm for pulsed interference detection of GNSS receivers. Electronics Letters, 2015, vol. 51, no. 19, p. 1522–1524. DOI: 10.1049/el.2015.1445
  16. MUSUMECI, L., SAMSON, J., DOVIS, F. Performance assessment of pulse blanking mitigation in presence of multiple Distance Measuring Equipment/Tactical Air Navigation interference on Global Navigation Satellite Systems signals. IET Radar, Sonar & Navigation, 2014, vol. 8, no. 6, p. 647–657. DOI: 10.1049/iet-rsn.2013.0198
  17. GARCIA-PENA, A., MACABIAU, C., JULIEN, O., et al. Impact of DME/TACAN on GNSS L5/E5a receiver. In Proceedings of the 2020 ITM. San Diego (CA, USA), January 2020, p. 207–211. DOI: 10.33012/2020.17207
  18. BEK, M. K., SHAHEEN, E. M., ELGAMEL, S. A. Mathematical analyses of pulse interference signal on post-correlation carrier-tonoise ratio for the global positioning system receivers. IET Radar, Sonar & Navigation, 2015, vol. 9, no. 3, p. 266–275. DOI: 10.1049/iet-rsn.2014.0155
  19. BASTIDE, F., CHATRE, E., MACABIAU, C., et al. GPS L5 and GALILEO E5a/E5b signal-to-noise density ratio degradation due to DME/TACAN signals simulations and theoretical derivation. In Proceedings of the 2004 National Technical Meeting of the Institute of Navigation. San Diego (CA, USA), January 2004, p. 1049–1062.
  20. MUSUMECI, L., DOVIS, F. Effect of pulse blanking on navigation data demodulation performance in GNSS system. In Proceedings of 2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014. Monterey (CA, USA), May 2014, p. 1248–1257. DOI: 10.1109/PLANS.2014.6851500
  21. YESTE OJEDA, O. A., GRAJAL, J., LOPEZ-RISUENO, G. Analytical performance of GNSS receivers using interference mitigation techniques. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 2, p. 885–906. DOI: 10.1109/taes.2013.6494387
  22. BETZ, J. W., KOLODZIEJSKI, K. R. Generalized theory of code tracking with an early-late discriminator. Part I: Lower bound and coherent processing. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1538–1556. DOI: 10.1109/taes.2009.5310316
  23. BETZ, J. W., KOLODZIEJSKI, K. R. Generalized theory of code tracking with an early-late discriminator. Part II: Noncoherent processing and numerical results. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1557–1564. DOI: 10.1109/taes.2009.5310317
  24. HOLMES, J. K. Spread Spectrum Systems for GNSS and Wireless Communications. Norwood (MA, USA), 2007. ISBN: 978-7-121- 18082-8
  25. STANSELL, T. A. RTCM SC-104 Recommended pseudolite signal specification. Navigation, 1986, vol. 33, no. 1, p. 42–59. DOI: 10.1002/j.2161-4296.1986.tb00923.x
  26. BORIO, D., O'DRISCOLL, C. Design of a general pseudolite pulsing scheme. IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 1, p. 2–16. DOI: 10.1109/taes.2013.110277

Keywords: Pulse interference, pulse blanking, code tracking, delay locked loop, GNSS receiver

J. Liu, S. Wang, Z. Hao, J. Zhang [references] [full-text] [DOI: 10.13164/re.2021.0196] [Download Citations]
Satellite Communication Synchronization Based on Combining Multi-Differential Correlations in the High Doppler Channel

In this paper, a pilot-aided synchronization method based on combining multi-differential correlations (MDCS) is proposed to overcome the obstacles in the synchronization of high-speed mobile satellite communication links. The proposed approach can optimally use the original synchronization pilot, and the existing transmitter would not need any modification. Additionally, the performance of proposed method is investigated on theoretical level, including the principle of mitigating the frequency offset deterioration and the derivation of closed synchronization probability expression. Finally, a set of simulations were operated to verify the MDCS performance, and the results proved that the MDCS significantly outperformed the existing approaches for large frequency offset and strong channel noise.

  1. KOZLOWSKI, S. A carrier synchronization algorithm for SDR-based communication with LEO satellites. Radioengineering, 2018, vol. 27, no. 1, p. 299–306. DOI: 10.13164/RE.2018.0299
  2. LV, H. C., LU, X. C., WU, J. F. A method of two-way satellite-ground time synchronization under inter-satellite links system. Yuhang Xuebao/Journal of Astronautics, 2017, vol. 38, no. 7, p. 728–734. DOI: 10.3873/j.issn.1000-1328.2017.07.008
  3. WANG, L, XU, D. An anti-frequency offset fine time synchronization method and its performance analysis. Journal of Electronics & Information Technology, 2011, vol. 33, no. 2, p. 300–303. DOI: 10.3724/SP.J.1146.2010.00346
  4. MA, Y., ZHOU, S., YAN, C., et al. Design of OFDM timing synchronization based on correlations of preamble symbol. In Proceedings of the IEEE 83th Vehicular Technology Conference(VTC Spring). Nanjing (China), 2016, p. 1–5. DOI: 10.1109/VTCSpring.2016.7504190
  5. GUL, M. M. U., MA, X., LEE, S. Timing and frequency synchronization for OFDM downlink transmissions using Zadoff-Chu sequences. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 3, p. 1716–1729. DOI: 10.1109/TWC.2014.2372757
  6. Al-HADDAD, M. K., ZIBOON, H. T. Joint carrier frequency and symbol timing synchronization sequence for FBMC based system. Physical Communication, 2020, vol. 42. DOI: 10.1016/j.phycom.2020.101165
  7. DAS, A., MOHANTY, B., SAHU, B. Modified CAZAC sequence based timing synchronization scheme for OFDM system. Wireless Personal Communications, 2019, vol. 108, no. 1, p. 37–49. DOI: 10.1007/s11277-019-06386-y
  8. JIANG, Y. WANG, Y. CAO, P., et al. Robust and low-complexity timing synchronization for DCO-OFDM LiFi systems. IEEE Journal on Selected Areas in Communications, 2018, vol. 36, no. 1, p. 53–65. DOI: 10.1109/JSAC.2017.2774419
  9. LI, L., YAO, W., HAN, L., et al. Timing synchronization algorithm based on FH sequence for coherent optical OFDM systems with carrier frequency offset. Optoelectronics Letters, 2019, vol. 15, no. 4, p. 288–291. DOI: 10.1007/s11801-019-8171-9
  10. MAREY, M., STEENDAM, H. Analysis of the narrowband interference effect on OFDM timing synchronization. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 9, p. 4558–4566. DOI: 10.1109/TSP.2007.896020
  11. CUI, G., HE, Y., LI, P., et al. Enhanced timing advanced estimation with symmetric Zadoff-Chu sequences for satellite systems. IEEE Communications Letters, 2015, vol. 19, no. 5, p. 747–750. DOI: 10.1109/LCOMM.2015.2411610
  12. LI, P., HE, Y., CUI, G., et al. A novel timing advanced estimation algorithm for eliminating frequency offset in satellite system. In 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Hong Kong (China), 2015, p. 1792–1796. DOI: 10.1109/PIMRC.2015.7343589
  13. ZHAO, Y., CAO, J., LI, Y. An improved timing synchronization method for eliminating large Doppler shift in LEO satellite system. In Proceedings of the IEEE 18th International Conference on Communication Technology (ICCT). Chongqing (China), 2018, p. 762–766. DOI: 10.1109/ICCT.2018.8600170
  14. JIE, T., FANG, W., MINGQI, L. Synchronization based on preamble symbol for DVB-T2 system. Tongxin Xuebao/Journal on Communications, 2017, vol. 38, no. 8, p. 1–7. DOI: 10.11959/j.issn.1000-436x.2017167
  15. ZARRABIZADEH, M., SOUSA, E. A differentially coherent PN code acquisition receiver for CDMA systems. IEEE Transactions on Communications, 1997, vol. 45, no. 11, p. 1456–1465. DOI: 10.1109/26.649772
  16. VILLANTI, M., SALMI, P., CORAZZA G. E. Differential post detection integration techniques for robust code acquisition. IEEE Transactions on Communications, 2007, vol. 55, no. 11, p. 2172–2184. DOI: 10.1109/TCOMM.2007.908535
  17. REY IGLESIAS, D., GARCIA SANCHEZ, M. Semi-Markov model for low elevation satellite-earth radio propagation channel. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2481–2490. DOI: 10.1109/TAP.2012.2189707
  18. LOPEZ-SALCEDO, J. A. Simple closed-form approximation to Ricean sum distributions. IEEE Signal Processing Letters, 2009, vol. 16, no. 3, p. 153–155. DOI: 10.1109/LSP.2008.2012223

Keywords: Satellite communication, pilot-aided synchronization, multi-differential correlation, high Doppler channel, frequency offset

M. Simic, M. Stankovic, V. D. Orlic [references] [full-text] [DOI: 10.13164/re.2021.0204] [Download Citations]
Automatic Modulation Classification of Real Signals in AWGN Channel Based on Sixth-Order Cumulants

Automatic modulation classification (AMC) represents an important integral part of modern communication systems. While novel AMC algorithms based on complex neural network structures showed significant performance improvements, in practical applications low algorithm complexity of AMC algorithms based on higher-order cumulants still make them very attractive. AMC algorithm based on sixth-order cumulants showed very good performance in this context, especially when it comes to distinguishing Binary Phase Shift Keying (BPSK) signals from complex constellations. Still, no further analysis of expected performance with other real constellations was presented for this algorithm so far. In this paper, the performance was explored in a wider context of real signals classification, by observing various Pulse Amplitude Modulation (PAM) constellations, whose statistical features are presented for the first time. Their classification performance was tested via Monte – Carlo simulations, and explained through the presence of bias under conditions of strong additive white Gaussian noise channel, reported in this paper for real signals for the first time. One new approach in AMC is proposed, which ensures improvement in the classification of real signal constellations. Achieved improvement is confirmed in many Monte – Carlo experiments, where proposed new AMC scheme is tested versus the most popular standard higher-order cumulants-based algorithms.

  1. ELDEMERDASH, Y. A., DOBRE, O. A., ONER, M. Signal identification for multiple-antenna wireless systems: Achievements and challenges. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 3, p. 1524–1551. DOI: 10.1109/COMST.2016.2519148
  2. AL-NUAIMI, D. H., HASHIM, I. A., ZAINAL ABIDIN, I. S., et al. Performance of feature-based techniques for automatic digital modulation recognition and classification: A Review. Electronics, 2019, vol. 8, no. 12, p. 1–25. DOI: 10.3390/electronics8121407
  3. ZHANG, T., SHUAI, C., ZHOU, Y. Deep learning for robust automatic modulation recognition method for IoT applications. IEEE Access, 2020, vol. 8, p. 117689–117697. DOI: 10.1109/ACCESS.2020.2981130
  4. BOZOVIC, R., SIMIC, M. Spectrum sensing based on higher order cumulants and kurtosis statistics tests in cognitive radio. Radioengineering, 2019, vol. 29, no. 2, p. 464–472. DOI: 10.13164/re.2019.0464
  5. PAJIC, M. S., VEINOVIC, M., PERIC, M., et al. Modulation order reduction method for improving the performance of AMC algorithm based on sixth-order cumulants. IEEE Access, 2020, vol. 8, p. 106386–106394. DOI: 10.1109/ACCESS.2020.3000358
  6. HAZZA, A., SHOAIB, M., ALSHEBEILI, S. A., et al. An overview of feature-based methods for digital modulation classification. In 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA). Sharjah (United Arab Emirates), 2013, p. 1–6. DOI: 10.1109/ICCSPA.2013.6487244
  7. LEE, J. H., KIM, J., KIM, B., et al. Robust automatic modulation classification technique for fading channels via deep neural network. Entropy, 2017, vol. 19, no. 9, p. 1–11. DOI: 10.3390/e19090454
  8. LEE, S. H., KIM, K.-Y., SHIN, Y. Effective feature selection method for deep learning-based automatic modulation classification scheme using higher-order statistics. Applied Sciences, 2020, vol. 10, no. 2, p. 1–14. DOI: 10.3390/app10020588
  9. WU, H., SAQUIB, M., YUN, Z. Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 8, p. 3098–3105. DOI: 10.1109/TWC.2008.070015
  10. ORLIC, V. D., DUKIC, M. L. Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 2009, vol. 13, no. 12, p. 917–919. DOI: 10.1109/LCOMM.2009.12.091711
  11. PENNACCHIO, A. A., LUSTOSA DA COSTA, J. P. C., BORDINI, V. M., et al. Eigenfilter-based automatic modulation classification with offsets for distributed antenna systems. In XXXIV Simposio Brasilerio de telecomunicacoes e processamento. Sinais, 2016, p. 260–261. DOI: 10.14209/SBRT.2016.8
  12. LI, X., DONG, F., ZHANG, S., et al. A survey on deep learning techniques in wireless signal recognition. Wireless Communications and Mobile Computing, 2019, p. 1–12. DOI: 10.1155/2019/5629572
  13. SWAMI, A., SADLER, B. M. Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 2000, vol. 48, no. 3, p. 416–429. DOI: 10.1109/26.837045
  14. YANG, C., HE, Z., PENG, Y., et al. Deep learning aided method for automatic modulation recognition. IEEE Access, 2019, vol. 7, p. 109063–109068. DOI: 10.1109/ACCESS.2019.2933448
  15. HUANG, S., LIN, C., ZHOU, K., et al. Identifying physical-layer attacks for IoT security: An automatic modulation classification approach using multi-module fusion neural network. Physical Communication, 2020, vol. 43, p. 1–10. DOI: 10.1016/j.phycom.2020.101180
  16. ZHANG, Y., ANSARI, N., SU, W. Multi-sensor signal fusionbased modulation classification by using wireless sensor networks. Wireless Communications and Mobile Computing, 2015, vol. 15, no. 12, p. 1621–1632. DOI: 10.1002/wcm.2450
  17. TEKBIYIK, K., EKTI, A. R., GORCIN, A., et al. Robust and fast automatic modulation classification with CNN under multipath fading channels. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Antwerp (Belgium), 2020, p. 1–6. DOI: 10.1109/VTC2020-Spring48590.2020.9128408
  18. SHI, Y., XU, H., JIANG, L., et al. Few-shot modulation classification method based on feature dimension reduction and pseudo-label training. IEEE Access, 2020, vol. 8, p. 140411 to 140425. DOI: 10.1109/ACCESS.2020.3012712
  19. ZHANG, X., SUN, J., ZHANG, X. Automatic modulation classification based on novel feature extraction algorithms. IEEE Access, 2020, vol. 8, p. 16362–16371. DOI: 10.1109/ACCESS.2020.2966019
  20. IEEE Standard for Ethernet - Amendment 1: Physical Layer Specifications and Management Parameters for 2.5 Gb/s and 5 Gb/s Operation over Backplane. In IEEE Std 802.3cb-2018 (Amendment to IEEE Std 802.3-2018), 2019, p. 1–206, DOI: 10.1109/IEEESTD.2019.8604150
  21. IEEE Standard for Ethernet - Amendment 4: Physical Layers and Management Parameters for 50Gb/s, 200Gb/s, and 400Gb/s Operation over Single-Mode Fiber. In IEEE Std 802.3cn-2019 (Amendment to IEEE Std 802.3-2018 as amended by IEEE Std 802.3cb-2018, IEEE Std 802.3bt-2018, and IEEE Std 802.3cd2018), 2019, p. 1–87. DOI: 10.1109/IEEESTD.2019.8937109
  22. IEEE Standard for Ethernet Amendment 3: Physical Layer and Management Parameters for 25 Gb/s and 40 Gb/s Operation, Types 25GBASE-T and 40GBASE-T. In IEEE Std 802.3bq-2016 (Amendment to IEEE Std 802.3-2015 as amended by IEEE Std 802.3bw-2015, and IEEE Std 802.3by-2016), 2016, p. 1–211. DOI: 10.1109/IEEESTD.2016.7572861
  23. BASILE, C., CAVALLERANO, A. P., DEISS, M. S., et al., The US HDTV standard. IEEE Spectrum, 1995, vol. 32, no. 4, p. 36–45. DOI: 10.1109/6.375998
  24. LI, X., WEI, J. L., BAMIEDAKIS, N., et al. Avalanche photodiode enhanced PAM-32 5 Gb/s LED-POF link. In 2014 The European Conference on Optical Communication (ECOC). Cannes (France), 2014, p. 1–3. DOI: 10.1109/ECOC.2014.6964013
  25. PENG, L., LIU, M., HELARD, M., et al. PN-PAM scheme for short range optical transmission over SI-POF - an alternative to Discrete Multi-Tone (DMT) scheme. Journal of the European Optical Society-Rapid Publications, 2017, vol. 13, no. 1, p. 1–12. DOI: 10.1186/s41476-017-0048-6
  26. ALNWAIMI, G., BOUJEMAA, H., ARSHAD, K. Optimal packet length for free-space optical communications with average SNR feedback channel. Journal of Computer Networks and Communications, 2019, p. 1–8. DOI: 10.1155/2019/4703284
  27. ORLIC, V. D., DUKIC, M. L. Properties of an algorithm for automatic modulation classification based on sixth-order cumulants. In Proceedings of the XLIV ICEST 2009 Conference. Veliko Tarnovo (Bulgaria), 2009, vol. 2, p. 635–638. ISBN: 978- 954-438-796-9
  28. GHAURI, S. A. KNN based classification of digital modulated signals. IIUM Engineering Journal, 2016, vol. 17, no. 2, p. 71–82. DOI: 10.31436/iiumej.v17i2.641
  29. BLOCK, H. W., FANG, Z. A. Multivariate extension of Hoeffding’s lemma. The Annals of Probability, 1988, vol. 16, no. 4, p. 1803–1820. [Online] Cited 2020-10-16. Available at: http://www.jstor.org/stable/2243993
  30. SIMIC, M., STANKOVIC, M., ORLIC, V. D., Simulation Code for Matlab. [Online] Cited 2021-02-13. Available at: https://github.com/CumulantsAMC/Radioengineering/blob/main/ Mcode_AMC_simulations_Simic_Radioengineering.m

Keywords: Automatic modulation classification, feature-based, cumulants, pulse amplitude modulation, real constellations, AWGN

J. Suganya, J. A. Baskaradas, U. Sciacca, A. Zirizzotti [references] [full-text] [DOI: 10.13164/re.2021.0215] [Download Citations]
Simplified Analytical Approach for an Airborne Bent Wire Ground Penetrating RADAR Antenna System

In this paper, modified analytical equations for the total electric field intensity in the far field region of a 10 MHz bent wire antenna have been proposed. The antenna system is meant for the airborne ground penetrating RADAR application for bedrock survey. This bent antenna is having vertical, slant and horizontal segments joined together along with the parasitic element. The current in the antenna wire is assumed to be a sinusoidal distribution which drops to zero at the ends. Current in both the energized and parasitic elements contribute to the fields in the far field region of the antenna system. Separate field equations for the various segments of the antenna system have been derived and finally summed to obtain the required equation for the electric field intensity at the far field region of the antenna. The MATLAB R2017b© simulation results of the far field antenna analytical equations show good agreement with the HFSS© simulation results of the 10 MHz antenna system. Direct measurements of these radiation characteristics in a typical GPR environment present a lot of practical difficulties. In this work, the influence of the helicopter on the 10 MHz GPR antenna during the airborne survey, is simulated using EMPro© and analysed. This placement analysis resuls from the simulation gives us the appropriate range of distance values that can be maintained between the helicopter and antenna during the glaciological survey before performing the real time survey. A tradeoff between scattering parameter (S11) and directivity is considered to propose the optimum distance. The Overall antenna structure seems to be a promising candidate for low frequency airborne GPR glacier explorations.

  1. SCOTT BENNETT, W. A basic theorem that simplifies the analysis of wire antennas. IEEE Antennas and Propagation Magazine, 1998, vol. 40, no. 1, p. 22–30. DOI: 10.1109/74.667322
  2. HAMID, M. A. K., BOERNER, W. M., SHAFAI, L., et al. Radiation characteristics of bent-wire antennas. IEEE Transactions on Electromagnetic Compatibility, 1970, vol. 12, no. 3, p. 106–111. DOI: 10.1109/TEMC.1970.303078
  3. TSUKIJI, T., TOU, S. On polygonal loop antennas. IEEE Transactions on Antennas and Propagation, 1980, vol. 28, no. 4, p. 571–575. DOI: 10.1109/TAP.1980.1142380
  4. EGASHIRA, S., TAGUCHI, M., SAKITANI, A. Consideration on the measurement of current distribution on bent wire antennas. IEEE Transaction on Antennas and Propagation, 1988, vol. 36, no. 7, p. 918–926. DOI: 10.1109/8.7196
  5. GOMEZ MARTIN, R., RUBIO BRETONES, A., FERNANDEZ PANTOJA, M. Radiation characteristics of thin-wire V-antennas excited by arbitrary time-dependent currents. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 12, p. 1877–1880. DOI: 10.1109/8.982473
  6. CHAN, K. K., SILVESTER, P. Analysis of the log-periodic Vdipole antenna. IEEE Transactions on Antennas and Propagation, 1975, vol. 23, no. 3, p. 397–401. DOI: 10.1109/TAP.1975.1141070
  7. KYLE, R. Mutual coupling between log-periodic antennas. IEEE Transactions on Antennas and Propagation, 1970, vol. 18, no. 1, p. 15–22. DOI: 10.1109/TAP.1970.1139613
  8. BHATNAGAR, P. S., SACHAN, S. B. L. Analysis of infinite zigzag antenna. IEE-IERE Proceedings - India, 1976, vol. 14, no. 2, p. 44–46. DOI: 10.1049/iipi.1976.0015
  9. SENGUPTA, D. The radiation characteristics of a zig-zag antenna. IRE Transactions on Antennas and Propagation, 1958, vol. 6, no. 2, p. 191–194. DOI: 10.1109/TAP.1958.1144571
  10. THIELE, G. A. Analysis of yagi-uda-type antennas. IEEE Transactions on Antennas and Propagation, 1969, vol. 17, no. 1, p. 24–31. DOI: 10.1109/TAP.1969.1139356
  11. CHENG, D. K., CHEN, C. A. Optimum element spacings for Yagi-Uda arrays. IEEE Transactions on Antennas and Propagation, 1973, vol. 21, no. 5, p. 615–623. DOI: 10.1109/TAP.1973.1140551
  12. WALKINSHAW, W. Theoretical treatment of short Yagi aerials. Journal of the Institution of Electrical Engineers - Part IIIA: Radiolocation, 1946, vol. 93, no. 3, p. 598–614. DOI: 10.1049/ji3a-1.1946.0148
  13. KING, R. W. P. The linear antenna-eighty years of progress. Proceedings of the IEEE, 1967, vol. 55, no. 1, p. 2–16. DOI: 10.1109/PROC.1967.5373
  14. NAKANO, H., YAMAUCHI, J., NOGAMI, K. Effects of wire radius and arm bend on a rectangular spiral antenna. Electronics Letters, 1983, vol. 19, no. 23, p. 957–958. DOI: 10.1049/el:19830651
  15. NAKANO, H., MINEGISHI, Y., HIROSE, K. Effects of feed wire on radiation characteristics of a dual spiral antenna. Electronics Letters, 1988, vol. 24, no. 6, p. 363–364. DOI: 10.1049/el:19880246
  16. CHAO, H., STRAIT, B., TAYLOR, C. Radiation and scattering by configurations of bent wires with junctions. IEEE Transactions on Antennas and Propagation, 1971, vol. 19, no. 5, p. 701–702. DOI: 10.1109/TAP.1971.1140021
  17. FANTE, R., HAZARD, K., DOLAN, J. RCS of bent wires. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 1, p. 130–132. DOI: 10.1109/TAP.1968.1139098
  18. SHLIVINSKI, A., HEYMAN, E., KASTNER, R. Antenna characterization in the time domain. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 7, p. 1140–1149. DOI: 10.1109/8.596907
  19. SIAKAVARA, K., SAHALOS, J. N. A simplification of the synthesis of parallel wire antenna arrays. IEEE Transactions on Antennas and Propagation, 1989, vol. 37, no. 7, p. 936–940. DOI: 10.1109/8.29388
  20. SUGANYA, J., SCIACCA, U., BASKARADAS, J. A., et al. Analysis of bent wire antenna resonant frequency for different bent angles. Radio Science, 2019, vol. 54, no. 12, p. 1240–1251. DOI: 10.1029/2019RS006906
  21. URBINI, S., CAFARELLA, L., TABACCO, I. E., et al. RES signatures of ice bottom near to Dome C (Antarctica). IEEE Transactions on Geoscience and Remote Sensing, 2015, vol. 53, no. 3, p. 1558–1564. DOI: 10.1109/TGRS.2014.2345457
  22. URBINI, S., ZIRIZZOTTI, A., BASKARADAS, J. A., et al. Airborne Radio Echo Sounding (RES) measures on Alpine glaciers to evaluate ice thickness and bedrock geometry: Preliminary results from pilot tests performed in the Ortles Cevedale Group (Italian Alps). Annals of Geophysics, 2017, vol. 60, no. 2, p. 1–12. DOI: 10.4401/ag-7122

Keywords: Analytical equations, bent wire antenna, electric field intensity, far field equations, placement analysis, parasitic element

H. P. Wang, Z. Y. Bi, Y. X. Zhou, F. Li, K. P. Wang, X. Y. Lu, Z. G. Wang [references] [full-text] [DOI: 10.13164/re.2021.0227] [Download Citations]
Wearable and Wireless Distributed Multi-site FES Prototype for Selective Stimulation and Fatigue Reduction: A Case Study

The objective of the work is to evaluate the feasibility of improving selective stimulation and reducing muscle fatigue in upper extremity rehabilitation with a self-designed multi-site functional electrical stimulation (FES) prototype. The design of the prototype is a distributed architecture concept, and all the modules communicate within a single local area network controlled by the Android application (APP). To improve the efficiency of the prototype, the APP was developed to utilize a simple online algorithm to perform a rapid real-time search for the optimal stimulation site. One healthy subject participated in a multi-site FES trial consisting of a search for the optimal stimulating electrode test and a fatigue stimulation test. Comparing the results of the online automatic search for the optimal stimulation site test with the results of the offline analysis, the average Location Error for the extension and flexion motions were 1.5 cm and 2.8 cm, respectively. For the fatigue stimulation test, all the assessments of the multi-site sequential stimulation group were higher than those of the conventional stimulation, with a significant 193% higher Fatigue Index (P=0.003) and 300% longer Fatigue Time (P=0.005). These results suggest that multi-site FES may exert positive effects on selective stimulation and stimulation fatigue reduction in healthy subjects.

  1. POPOVIC-MANESKI, L., KOSTIC, M., BEJELIC, G., et al. Multi-pad electrode for effective grasping: Design. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, vol. 21, no. 4, p. 648–654. DOI: 10.1109/TNSRE.2013.2239662
  2. LONG, C. An electrophysiologic splint for the hand. Archives of Physical Medicine and Rehabilitation, 1963, vol. 44, p. 499–503. PMID: 14050723
  3. MERLETTI, R., ACIMOVIC, R., GROBELNIK, S., CVILAK, G. Electrophysiological orthosis for the upper extremity in hemiplegia: feasibility study. Archives of Physical Medicine and Rehabilitation, 1975, vol. 56, no.12, p. 507–513. PMID: 1081869
  4. MALESEVIC, N. M., POPOVIC-MANESKI, L. Z., ILIC, V., et al. A multi-pad electrode based functional electrical stimulation system for restoration of grasp. Journal of Neuroengineering and Rehabilitation, 2012, vol. 9, p. 1–12. DOI:10.1186/1743-0003-9-66
  5. NATHAN, R. H., OHRY, A. Upper limb functions regained in quadriplegia: a hybrid computerized neuromuscular stimulation system. Archives of Physical Medicine and Rehabilitation, 1990, vol. 71, no.6, p. 415–421. PMID: 2334287
  6. FUJII, T., SEKI, K., HANDA, Y. Development of a new FES system with trained super-multichannel surface electrodes. In Proceedings of 9th Annual Conference IFESS. Bournemouth (UK), 2004, p. 21–24.
  7. KELLER, T., LAWRENCE, M., KUHN, A., et al. New multichannel transcutaneous electrical stimulation technology for rehabilitation. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2006). New York (USA) 2006, p. 194–197. DOI: 10.1109/IEMBS.2006.259399
  8. POPOVIC-BIJELIC, A., BIJELIC, G., JORGOVANOVIC, N., et al. Multi-field surface electrode for selective electrical stimulation. Artificial Organs, 2005, vol. 29, p. 448–452. DOI: 10.1111/j.1525- 1594.2005.29075.x
  9. O’DWYER, S., O’KEEFFE, D., COOTE, S., et al. An electrode configuration technique using an electrode matrix arrangement for FES-based upper arm rehabilitation systems. Medical Engineering & Physics, 2006, vol. 28, no. 2, p. 166–176. DOI: 10.1016/j.medengphy.2005.03.010
  10. POPOPVIC-MANESKI, L., TOPALOVIC, I., JOVICIC, N., et al. Stimulation map for control of functional grasp based on multichannel EMG recordings. Medical Engineering & Physics, 2016, vol. 38, no. 11, p. 1251–1259. DOI: 10.1016/j.medengphy.2016.06.004
  11. CREMA, A., MALESEVIC, N., FURFARO, I., et al. A wearable multi-site system for NMES-based hand function restoration. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, vol. 26, no. 2, p. 428–440. DOI: 10.1109/TNSRE.2017.2703151
  12. JAHANSHAHI, J. A., DANYALI, H., HELFROUSH, M. S. A modified compressed sensing-based recovery algorithm for wireless sensor networks. Radioengineering, 2019, vol. 28, no. 3, p. 610–617. DOI: 10.13164/re.2019.0610
  13. SIMONE, L. K., SUNDARRAJAN, N., LUO, X., et al. A low cost instrumented glove for extended monitoring and functional hand assessment. Journal of Neuroscience Methods, 2007, vol. 160, no. 2, p. 335–348. DOI: 10.1016/j.jneumeth.2006.09.021
  14. OESS, N. P., WANEK, J., CURT, A. Design and evaluation of a low-cost instrumented glove for hand function assessment. Journal of Neuroengineering and Rehabilitation, 2012, vol. 9, p. 1–11. DOI: 10.1186/1743-0003-9-2
  15. GENTNER, R., CLASSEN, J. Development and evaluation of a low-cost sensor glove for assessment of human finger movements in neurophysiological settings. Journal of Neuroscience Methods, 2009, vol. 178, p. 138–147. DOI: 10.1016/j.jneumeth.2008.11.005
  16. WANG, H. P., GUO, A. W, ZHOU, Y. X., et al. A wireless wearable surface functional electrical stimulator. International Journal of Electronics, 2017, vol. 104, no. 9, p. 1514–1526. DOI: 10.1080/00207217.2017.1312708
  17. POPOVIC, D. B., POPOVIC, M. B. Automatic determination of the optimal shape of a surface electrode: selective stimulation. Journal of Neuroscience Methods, 2009, vol. 178, p. 174–181. DOI: 10.1016/j.jneumeth.2008.12.003
  18. ZHOU, Y. X., WANG, H. P., BAO, X. L, et al. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features. Journal of Neural Engineering, 2015, vol. 13, p. 1–15. DOI: 10.1088/1741-2560/13/1/016004
  19. NGUYEN, R., MASANI, K., MICERA, S., et al. Spatially distributed sequential stimulation reduces fatigue in paralyzed triceps surae muscles: a case study. Artificial Organs, 2011, vol. 35, p. 1174–1180. DOI: 10.1111/j.1525-1594.2010.01195.x
  20. KUHN, A., KELLER, T., MICERA, S., et al. Array electrode design for transcutaneous electrical stimulation: A simulation study. Medical Engineering & Physics, 2009, vol. 31, p. 945–951. DOI: 10.1016/j.medengphy.2009.05.006
  21. KUHN, A., KELLER, T., LAWRENCE, M., et al. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, vol. 18, no. 3, p. 255–262. DOI: 10.1109/TNSRE.2009.2039807
  22. DE LUCA, C., LE FEVER, R., MCCUE, M., et al. Behaviour of human motor units in different muscles during linearly varying contractions. The Journal of Physiology, 1982, vol. 329, no. 1, p. 113–128. DOI: 10.1113/jphysiol.1982.sp014293
  23. KAMEN, G., DU, D. C. C. Independence of motor unit recruitment and rate modulation during precision force control. Neuroscience, 1999, vol. 88, no. 2, p. 643–653. DOI: 10.1016/S0306-4522(98)00248-6
  24. KRALJ, A. R., BAJD, T. Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury. CRC Press, 1989. ISBN 9780849345296
  25. HENNEMAN, E. Relation between size of neurons and their susceptibility to discharge. Science, 1957, vol. 126, no. 3287, p. 1345–1347. DOI: 10.1126/science.126.3287.1345
  26. JABRE, J. F., SPELLMAN, N. T. The demonstration of the size principle in humans using macro electromyography and precision decomposition. Muscle & Nerve, 1996, vol. 19, no. 3, p. 338–341. DOI: 10.1002/(SICI)1097-4598(199603)19:3<338::AID-MUS9> 3.0.CO;2-E
  27. PECKHAM, P., MORTIMER, J., MARSOLAIS, E. Alteration in the force and fatigability of skeletal muscle in quadriplegic humans following exercise induced by chronic electrical stimulation. Clinical Orthopaedics and Related Research, 1976, vol. 114, p. 326–334. DOI: 10.1097/00003086-197601000-00041
  28. MOHR, T., ANDERSEN, J. L., BIERING-SORENSEN, F., et al. Long term adaptation to electrically induced cycle training in severe spinal cord injured individuals. Spinal Cord, 1997, vol. 35, p. 1–16. DOI: 10.1038/sj.sc.3100343
  29. PECKHAM, P. H. KNUSTSON, J. S. Functional electrical stimulation for neuromuscular applications. Annual Review of Biomedical Engineering, 2005, vol. 7, p. 327–360. DOI: 10.1146/annurev.bioeng. 6.040803.140103
  30. SHEFFLER, L. R., CHAE, J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle & Nerve, 2007, vol. 35, no. 5, p. 562–590. DOI: 10.1002/mus.20758
  31. DE LUCA, C. J. Myoelectrical manifestations of localized muscular fatigue in humans. Critical Reviews in Biomedical Engineering, 1984, vol. 11, no. 4, p. 251–279. PMID: 6391814
  32. SCOTT BICKEL, C., GREGORY, C. M., DEAN, J. C. Motor unit recruitment during neuromuscular electrical stimulation: A critical appraisal. European Journal of Applied Physiology, 2011, vol. 111, p. 1–9. DOI: 10.1007/s00421-011-2128-4
  33. BIERING-SORENSEN, B., BRUUN KRISTENSEN, I., KJAER, M., et al. Muscle after spinal cord injury. Muscle & Nerve, 2009, vol. 40, no. 4, p. 499–519. DOI: 10.1002/mus.21391
  34. MALESEVIC, N. M., POPOVIC, L. Z., SCHWIRTLICH, L., et al. Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle & Nerve, 2010, vol. 42, no. 4, p. 556–562. DOI :10.1002/mus.21736
  35. IEC 62226-3-1:2007/AMD1:2016, Exposure to electric or magnetic fields in the low and intermediate frequency range - Methods for calculating the current density and internal electric field induced in the human body, Part 3-1: Exposure to electric fields - Analytical and 2D numerical models. European Standard EN 62226-3-1, 2016, p. 1–54.

Keywords: Functional electrical stimulation (FES), wireless communication, local area network, wearable device

R. Duarte, M. Alencar, W. Lopes, F. Carvalho, W. Queiroz, D. Almeida [references] [full-text] [DOI: 10.13164/re.2021.0237] [Download Citations]
Performance of Cell-Free Systems with Channel Reciprocity Errors

Cell-free systems are characterized by the absence of a cell-based spatial subdivision. In these systems a large number of access points may serve each user, which contribute to improve signal transmission conditions. In this context, it is important to obtain equations that describe the behavior of the system, as a function of its main parameters. Such equations become more complete when more effects are taken into account. One of these effects is the loss of channel reciprocity due to radiofrequency (RF) mismatch. This paper proposes the introduction of a multiplicative model for the reciprocity errors resulting from RF mismatch in all devices of a cell-free model. Additionally, it also proposes the use of different levels of mismatch for each device. The main contribution of this work is an analytical expression for the downlink achievable rates in the presence of multiplicative reciprocity errors due to RF mismatch. Based on it, one can compute the approximate value of the achievable rates. The analytical expression is used in scenarios with and without line-of-sight. It is shown that the analytical expression is very close when there is line-of-sight, as it provides achievable rate values closer to that obtained by using Monte Carlo simulation.

  1. WANG, D., WANG, J., YOU, X., et al. Spectral efficiency of distributed MIMO systems. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, no. 10, p. 2112–2127. DOI: 10.1109/JSAC.2013.131012
  2. KAMGA, G. N., XIA, M., AÏSSA, S. Spectral-efficiency analysis of massive MIMO systems in centralized and distributed schemes. IEEE Transactions on Communications, 2016, vol. 64, no. 5, p. 1930–1941. DOI: 10.1109/TCOMM.2016.2519513
  3. NAYEBI, E., ASHIKHMIN, A., MARZETTA, T. L., et al. Cell-free massive MIMO systems. In Proceedings of the 49th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 2015. DOI: 10.1109/ACSSC.2015.7421222
  4. NGO, H. Q., ASHIKHMIN, A., YANG, H., et al. Cell-free Massive MIMO systems: uniformly great service for everyone. In Proceedings of the IEEE 16th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Stockholm (Sweden), 2015. DOI: 10.1109/SPAWC.2015.7227028
  5. CHEN, Z., BJORNSON, E. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Transactions on Communications, 2018, vol. 66, no. 11, p. 5205–5219. DOI: 10.1109/TCOMM.2018.2846272
  6. NGO, H. Q., TRAN, L. N., DUONG, T. Q., et al. On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Transactions on Green Communications and Networking, 2018, vol. 2, no. 1, p. 25–39. DOI: 10.1109/TGCN.2017.2770215
  7. OZDOGAN, O., BJORNSON, E., ZHANG, J. Cell-free massive MIMO with rician fading: estimation schemes and spectral efficiency. In Proceedings of the 52nd Asilomar Conference on Signals, Systems, and Computers. Pacific Grove (USA), 2018. DOI: 10.1109/ACSSC.2018.8645135
  8. SANGUINETTI, L., BJORNSON, E. Cell-free versus cellular massive MIMO: what processing is needed for cell-free to win? In 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Cannes (France), 2019. DOI: 10.1109/SPAWC.2019.8815488
  9. ALONZO, M., BUZZI, S. Cell-free and user-centric massive MIMO at millimeter wave frequencies. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal (Canada), 2017, p. 1–5. DOI: 10.1109/PIMRC.2017.8292302
  10. MAI, T. C., NGO, H. Q., DUONG, T. Q. Uplink spectral efficiency of cell-free massive MIMO with multi-antenna users. In Proceedings of the 3rd International Conference on Recent Advances in Signal Processing, Telecommunications and Computing (SigTelCom). Hanoi (Vietnam), 2019, p. 126–129. DOI: 10.1109/SIGTELCOM.2019.8696221
  11. NGO, H.Q., ASHIKHMIN, A., YANG, H., et al. Cell-free massive MIMO vs small cells. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 3, p. 1834–1850. DOI: 10.1109/TWC.2017.2655515
  12. ZHANG, J., WEI, Y., BJORNSON, E., et al. Spectral and energy efficiency of cell-free massive MIMO systems with hardware impairments. In Proceedings of the 9th International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing (China), 2017. DOI: 10.1109/WCSP.2017.8171057
  13. ZHANG, J., WEI, Y., BJORNSON, E., et al. Performance analysis and power control of cell-free massive MIMO systems with hardware impairments. IEEE Access, 2018, vol. 6, p. 55302–55314. DOI: 10.1109/ACCESS.2018.2872715
  14. NGO, H. Q. Massive MIMO: Fundamentals and System Designs. Linkoping (Sweden): Linkoping University (Science and Technology), 2015. ISBN 9789175191478
  15. SCHENK, T. RF Imperfections in High-Rate Wireless Systems: Impact and Digital Compensation. New York (USA): Springer, 2008. ISBN: 978-1-4020-6903-1
  16. WEI, H., WANG, D., ZHU, H., et al. Mutual coupling calibration for multiuser massive MIMO systems. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 1, p. 606–619. DOI: 10.1109/TWC.2015.2476467
  17. MI, D., DIANATI, M., ZHANG, L., et al. Massive MIMO performance with imperfect channel reciprocity and channel estimation error. IEEE Transactions on Communications, 2017, vol. 65, no. 9, p. 3734–3748. DOI: 10.1109/TCOMM.2017.2676088
  18. KALTENBERGER, F., JIANG, H., GUILLAUD, M., et al. Relative channel reciprocity calibration in MIMO/TDD systems. In Proceedings of the IEEE Future Network and Mobile Summit. Florence (Italy), 2010, p. 1–10.
  19. CHEN, Y., GAO, X., XIA, X. G., et al. A robust precoding for RF mismatched massive MIMO transmission. In Proceedings of the IEEE ICC Signal Processing for Communications Symposium. Paris (France), 2017. DOI: 10.1109/ICC.2017.7996781
  20. OZDOGAN, O., BJORNSON, E., ZHANG, J. Performance of cellfree massive MIMO with rician fading and phase shifts. IEEE Transactions on Wireless Communications, 2019, vol. 18, no. 11, p. 5299–5315. DOI:10.1109/TWC.2019.2935434
  21. DUARTE, R. M., ALENCAR, M. S., LOPES, W. T. A., et al. Cell-free systems performance under RF mismatch. In Proceedings of the IEEE Latin-American Conference on Communications (LatinCom). Salvador (Brazil), 2019. DOI: 10.1109/LATINCOM48065.2019.8938026
  22. DUARTE, R. M., ALENCAR, M. S., LOPES, W. T. A., et al. Performance of a cell-free MIMO under RF mismatch. In Proceedings of the 22nd ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM). Miami Beach (USA), 2019, p. 207–210. DOI: 10.1145/3345768.3355943
  23. ROGALIN, R., BURRSALIOGLU, O. Y., PAPADOPOULOS, H., et al. Scalable synchronization and reciprocity calibration for distributed multiuser MIMO. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 4, p. 1815–1831. DOI: 10.1109/TWC.2014.030314.130474
  24. ALCATEL-LUCENT. document TSG RAN WG159, R1- 100426: Channel Reciprocity Modeling and Performance Evaluation. [Online] Cited 2020-08-05. Available at: https://www.3gpp.org/DynaReport/TDocExMtg–R1-59–27294.html
  25. IBRAHIM, A. A. I., ASHKHMIN, A., MARZETTA, T. L., et al. Cellfree massive MIMO systems utilizing multi-antenna access points. In 2017 51st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove (USA), 2017. DOI: 10.1109/ACSSC.2017.8335610
  26. MAI, T. C., NGO, H. Q., DUONG, T. Q. Cell-free massive MIMO with multi-antenna users. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim (USA), 2018. DOI: 10.1109/GlobalSIP.2018.8646330
  27. ZHENG, K., OU, S., YIN, X. Massive MIMO channel models: a survey. International Journal of Antennas and Propagation, 2014, vol. 2014. DOI: 10.1155/2014/848071
  28. 3RD GENERATION PARTNERSHIP PROJECT (3GPP). Technical Specification Group Radio Access Network: Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations (Release 15) - TR 25.996 V15.0.0 (2018-06). [Online] Cited 2020-04-05. Available at: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=1382
  29. PROAKIS, J., SALEHI, M. Digital Communications. New York (USA): McGraw-Hill Education, 5rd edition, 2007. ISBN: 978-0072957167
  30. ALCATEL-LUCENT. document TSG RAN WG164, R1- 110804: Channel Reciprocity Modeling and Performance Evaluation. [Online] 2020-08-05. Available at: https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_64/Docs/
  31. BIGUESH, M., GERSHMAN, A. B. Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 6, p. 884–893. DOI: 10.1109/TSP.2005.863008
  32. BUZZI, S., D’ANDREA, C. Cell-free massive MIMO: user-centric approach. IEEE Wireless Communications Letters, 2017, vol. 6, no. 6, p. 706–709. DOI: 10.1109/LWC.2017.2734893
  33. MARZETTA, T. L. Noncooperative cellular wireless with unlimited numbers of basestation antennas. IEEE Transactions on Wireless Communications, 2010, vol. 9, no. 11, p. 3590–3600. DOI: 10.1109/TWC.2010.092810.091092
  34. NGO, H. Q., LARSSON, E. G., MARZETTA, T. L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 2013, vol. 61, no. 4, p. 5205–5219. DOI: 10.1109/TCOMM.2013.020413.110848
  35. BJORNSON, E., HOYDIS, J., SANGUINETTI, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Boston (USA): Now Publishers Inc, 2018. ISBN: 978-1680839852

Keywords: Achievable rates, cell-free systems, channel reciprocity, line-of-sight, RF mismatch

C. Kantana, G. Baudoin, O. Venard, [references] [full-text] [DOI: 10.13164/re.2021.0250] [Download Citations]
Thresholds Optimization of Decomposed Vector Rotation Model for Digital Predistortion of RF Power Amplifier

In this paper, we propose an efficient approach for optimizing the decomposed vector rotation (DVR) model for digital predistortion (DPD). The DVR model’s basis functions are constructed piecewise by dividing the input space into segments bounded by thresholds. This paper investigates how to set the thresholds optimally using an iterative approach based on the decomposition of the global optimization problem into a set of unimodal sub-problems so that a unidirectional minimization can be used to optimize the positions of thresholds. The proposed approach has been evaluated using measurements from a real power amplifier (PA). The experimental results illustrate the efficiency of the proposed optimization approach and show that the thresholds’ optimization improves linearization performances significantly compared to conventional DVR with uniform segmentation.

  1. KATZ, A., WOOD, J., CHOKOLA, D. The evolution of pa linearization: from classic feedforward and feedback through analog and digital predistortion, IEEE Microwave Magazine, 2016, vol. 17, no. 2, p. 32–40. DOI: 10.1109/MMM.2015.2498079
  2. JABBOUR, C., DESGREYS, P., DALLET, D. Digitally Enhanced Mixed Signal Systems. Stevenage (UK): Institution of Engineering and Technology, 2019. ISBN: 9781785616099
  3. DING, L., ZHOU, G. T., MORGAN, D. R., et al. A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 2004, vol. 52, no. 1, p. 159–165. DOI: 10.1109/TCOMM.2003.822188
  4. MORGAN, D.R., ZHENGXIANG, M., JAEHYEONG K., et al. A generalized memory polynomial model for digital predistortion of rf power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
  5. ZHU, A., PEDRO, J. C., BRAZIL, T. J. Dynamic deviation reductionbased Volterra behavioral modeling of rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, p. 4323–4332. DOI: 10.1109/TMTT.2006.883243
  6. KANTANA, C., VENARD, O., BAUDOIN, G. Comparison of GMP and DVR models. 2018 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMIC), 2018, p. 1–3. DOI: 10.1109/INMMIC.2018.8430008
  7. ZHU, A. Decomposed vector rotation-based behavioral modeling for digital predistortion of rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 2, p. 737–744. DOI: 10.1109/TMTT.2014.2387853
  8. CAVERS, J. K. Optimum table spacing in predistorting amplifier linearizers. IEEE Transactions on Vehicular Technology, 1999, vol. 48, no. 5, p. 1699–1705. DOI: 10.1109/25.790551
  9. MAGESACHER, T., SINGERL, P., MATALN, M. Optimal segmentation for piecewise rf power amplifier models. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 909–911. DOI: 10.1109/LMWC.2016.2614974
  10. MATEO, C., CARRO, P., GARCIA-DUCAR, P., et. al. Radioover-fiber linearization with optimized genetic algorithm CPWL model. Optics Express, 2017, vol. 25, p. 3694–3708. DOI: 10.1364/OE.25.003694
  11. CHUA, L. O. Section-wise piecewise-linear functions: canonical representation, properties, and applications. Proceedings of the IEEE, 1977, vol. 65, no. 6, p. 915–929. DOI: 10.1109/PROC.1977.10589
  12. KIEFER, J. Sequential minimax search for a maximum. Proceedings of the American Mathematical Society, 1953, vol. 4, no. 3, p. 502–506. DOI:10.2307/2032161
  13. BURR, I. W. Cumulative frequency functions. The Annals of Mathematical Statistics, 1942, p. 215–232. DOI:10.1214/aoms/1177731607

Keywords: Power amplifiers, digital predistortion, DVR, optimization of thresholds