ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2022, Volume 31, Number 2 [DOI: 10.13164/re.2022-2]

Show all Hide all

P. Skryja, J. Poliak, O. Wilfert [references] [full-text] [DOI: 10.13164/re.2022.0167] [Download Citations]
Multi-Spot Tracking System for Free-Space Optical Communication

This article describes a multi-spot tracking system for free space optic communications systems suitable for tracking optical terminals observed within the field-of-view of a wide angle telescope. The article explains the conversion of the terminal position to the position in the plane of the tracking sensor and the subsequent recognition and tracking of terminals. In the first part of the article camera image processing is described. Then, basic projection of optical terminal into the tracking sensor plane (into the active surface of a camera) is expressed by using geometry and matrix optics. Afterwards, the angle resolution of optical terminal in plane of the receiver is obtained by using the Airy disk approximation. The basic projection is then extended to the calculation of the Earth-satellite system followed by spot tracking, where method for determining the optical terminal and the state machine is explained.

  1. ZEDINI, E., KAMMOUN, A., ALOUINI, M. S. Performance of multibeam very high throughput satellite systems based on FSO feeder links with HPA nonlinearity. IEEE Transactions on Wireless Communications, 2020, vol. 19, no. 9, p. 5908–5923. DOI: 10.1109/TWC.2020.2998139
  2. WERNER, M., DONNER, A., LUTZ, E., et al. SatNEx - the European satellite communications network of excellence. In IEEE Vehicular Technology Conference (VTC). Milan (Italy), 2004, p. 1–1. DOI: 10.1109/VETECS.2004.1391442
  3. LUTZ, E. Co-channel interference in high-throughput multibeam satellite systems. In IEEE International Conference on Communications (ICC). London (UK), 2015, p. 885–891. DOI: 10.1109/ICC.2015.7248434
  4. WEIGEL, T., DREISCHER, T.Wide angle cross-folded telescope for multiple feeder links. In International Conference on Space Optical Systems and Applications (ICSOS). Ajaccio (Corsica, France), 2012, p. 1–5.
  5. LI, Q., LIU, L., YANG, H. High accuracy and multi-target acquisition, pointing and tracking under satellite micro-vibrations. Microgravity Science and Technology, 2020, vol. 32, no. 4, p. 715–727. DOI: 10.1007/s12217-020-09804-0
  6. JIANG, L., ZHANG, L.-Z., WANG, C., et al. Optical multiaccess free-space laser communication system. Optical Engineering, 2016, vol. 55, no. 8, p. 1–8. DOI: 10.1117/1.OE.55.8.086102
  7. RIESING, K. M. Development of a Pointing, Acquisition, and Tracking System for a Nanosatellite Laser Communications Module. Master’s Thesis, MIT, Department ofAeronautics and Astronautics, 2015. Available at: http://hdl.handle.net/1721.1/101448
  8. HASSANEIN, A. S., MOHAMMAD, S., SAMEER, M., et al. A survey on Hough transform, theory, techniques and applications. arXiv, 2015, p. 1–18. DOI: 10.48550/arXiv.1502.02160
  9. XU, C., VELASTIN, S. A weighted Mahalanobis distance Hough transformand its application for the detection of circular segments. In IEE Colloquium on Hough Transforms. London (UK), 1993, p. 1–4.
  10. ZHOU, P., WANG, X., HUANG, Q., et al. Laser spot center detection based on improved circled fitting algorithm. In IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). Xian (China), 2018, p. 316–319. DOI: 10.1109/ISISE.2010.15
  11. SINGH, S., SAURAV, S., SAINI, R., et al. Comprehensive review and comparative analysis of hardware architectures for Sobel edge detector. ISRN Electronics, 2014, vol. 2014, p. 1–9. DOI: 10.1155/2014/857912
  12. CANNY, J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, vol. PAMI-8, no. 6, p. 679–698. DOI: 10.1109/TPAMI.1986.4767851
  13. REDDY, R. P. K., NAGARAJU, C., REDDY, I. R. S. Canny Scale Edge Detection. 2016, p. 1–4 Available at: https://www.researchgate.net/publication/319701466_Canny_Scale_ Edge_Detection.
  14. SHI, Y., CHENG, X. Laser spot center detection based on the geometric feature. In International Symposium on Information Science and Engineering (ISISE). Shanghai (China), 2010, p. 322–325. DOI: 10.1109/ISISE.2010.15
  15. SALEH, B. E. A., TEICH, M. C. Fundamentals of Photonics. 2nd ed., New York (USA): Wiley, 2007. ISBN: 0471358320
  16. CAKAJ, S., KAMO, B., KOLICI, V., et al. The range and horizon plane simulation for ground stations of low earth orbiting (LEO) satellites. International Journal of Communications, Network and System Sciences, 2011, vol. 4, no. 9, p. 585–589. DOI: 10.4236/ijcns.2011.49070
  17. MUDGE, K. A., SILVA, K. K.M. B. D., CLARE, B. A., et al. Scintillation index of the free space optical channel: Phase screen modelling and experimental results. In International Conference on Space Optical Systems and Applications (ICSOS). Santa Monica (CA, USA), 2011, p. 403–409. DOI: 10.1109/ICSOS.2011.5783706

Keywords: Multi-spot tracking system, spot detection, spot projection, matrix optic, tracking optical terminal

O. Fiser, M. Kovalchuk [references] [full-text] [DOI: 10.13164/re.2022.0176] [Download Citations]
On Theoretical Accuracy of Meteorological Targets Measurement by Radar

We draw your attention to the fact that meteorological radar does not actually measure a commonly used quantity “radar reflectivity factor,” (which is not dependent on frequency) but a different quantity called “radar reflectivity.” We present the usual recalculation which is based on frequency dependency used by Rayleigh approximation of radar cross-sections (back scattering cross section of rain, cloud, fog drop). But this approximation is valid in Rayleigh region only. We concluded that for admitting error lower than 2 dB in the radar reflectivity factor determination we can use the “effective radar reflectivity factor” for frequencies up to 19 GHz only. Otherwise the error will increase. As we use (and present in this article) the Mie algorithm we can replace the Rayleigh frequency dependence estimation by more accurate radar reflectivity factor determination using the Mie scattering. The correction is presented in the form of “Correction function C” dependent on frequency and rain rate in the graphical form and polynomial approximation. Beside this we present the simplification of back scattering cross sections for Rayleigh and Optical regions and the borders values of size parameter for these regions. We added the meteorological radar equation derivation. This should support the radar measurement understanding.

  1. HUUSKONEN, A., SALTIKOFF, E., HOLLEMAN, I. The operational weather radar network in Europe. Bulletin of the American Meteorological Society, 2014, vol. 95, no. 6, p. 897–907. DOI: 10.1175/BAMS-D-12-00216.1
  2. SASSEN, K., CAMPBELL, J. R., ZHU, J., et al. Lidar and triplewavelength Doppler radar measurements of the melting layer: A revised model for dark- and brightband Phenomena. Journal of Applied Meteorology, 2005, vol. 44, no. 3, p. 301–312. DOI: 10.1175/JAM-2197.1
  3. LAMER, K., OUE, M., BATTAGLIA, A., et al. Multifrequency radar observations of clouds and precipitation including the Gband. Atmospheric Measurement Techniques, 2021, vol. 14, no. 5, p. 3615–3629. DOI: 10.5194/amt-14-3615-2021
  4. KNIGHT, C. A., MILLER, L. J. First radar echoes from cumulus clouds. Bulletin of the American Meteorological Society, 1993, vol. 74, no. 2, p. 179–188.
  5. ATLAS, D. (Ed.) Radar in Meteorology. Springer, 1990. ISBN: 978-1-935704-15-7 DOI: 10.1007/978-1-935704-15-7
  6. D´AMICO, M. An Anisotropic Model of the Electromagnetic Properties of the Melting Layer, and Comparison with Radar Observations. Ph.D. Thesis. University of Essex (UK), 1997.
  7. TRIDON, F., BATTAGLIA, A., Dual-frequency radar Doppler spectral retrieval of rain drop size distributions and entangled dynamics variables: Radar Doppler spectral retrieval in rain. Journal of Geophysical Research: Atmospheres, 2015, vol. 120, no. 11, p. 5585–5601. DOI: 10.1002/2014JD023023
  8. MARSHALL, J. S., PALMER, W. M. The distribution of raindrops with size. Journal of Meteorology, 1948, vol. 5, no. 4, p. 165–166. DOI: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  9. JOSS, J., THAMS, J. C., WALDVOGEL, A. The Variation of Raindrop Size Distributions at Locarno. ETH: Wissenschaftliche Mitteilungen / Eidgenossische Kommission zum Studium der Hagelbildung und der Hagelabwehr. 1970, p. 1–7.
  10. MORRISON, J. A., CROSS, M. J., Scattering of a plane electromagnetic wave by axisymmetric raindrops. Bell System Technical Journal, 1974, vol. 53, no. 6, p. 955–1019. DOI: 10.1002/j.1538-7305.1974.tb02779.x
  11. UZUNOGLU, N. K., EVANS, B. G., HOLT, A. R. Scattering of electromagnetic radiation by precipitation particles and propagation characteristics of terrestrial and space communication systems. In Proceedings of the Institution of Electrical Engineers, 1977, vol. 124, no. 5, p. 417–424. DOI: 10.1049/piee.1977.0078
  12. FISER, O. A simple generator of forward scattering functions on spherical dielectrics. Radioengineering, 1993, vol. 2, no. 1, p. 21–22. ISSN: 1210-2512
  13. MIE, G. Contributions to the optics of turbid media, especially colloidal metal solutions (Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen). Annalen der Physik, 1908, vol. 25, no. 3, p. 377–445. (In German) DOI: 10.1002/andp.19083300302
  14. MISHCHENKO, I. M., Gustav Mie and the fundamental concept of electromagnetic scattering by particles: A perspective. Journal of Quantitative Spectroscopy and Radiative Transfer. 2009, vol. 110, no. 14–16, p. 1210–1222. DOI: 10.1016/j.jqsrt.2009.02.002
  15. MATZLER, C. MATLAB functions for Mie scattering and absorption, version 2. Technical Report, 2002, IAP Res. Rep., University of Bern.
  16. COX, A. J., DE WEERD, A. J., LINDEN, J. An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics, 2002, vol. 70, no. 6, p. 620–625. DOI: 10.1119/1.1466815
  17. PRUPPACHER, H. R., PITTER, R. L. A semi-empirical determination of the shape of clouds and raindrops. Journal of the Atmospheric Sciences, 1971, vol. 28, no. 1, p. 86–94. DOI: 10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2
  18. OGUCHI, T. Scattering properties of oblate raindrops and cross polarization of radio waves due to rain: Calculations at 19.3 and 34.8 GHz. Journal of Radio Research Laboratories, 1973, vol. 20, no. 102, p. 79–119.
  19. OGUCHI, T. Electromagnetic wave propagation and scattering in rain and other hydrometeors. In Proceedings of the IEEE, 1983, vol. 71, no. 9, p. 1029–1078. DOI: 10.1109/PROC.1983.12724
  20. HAJNY, M., MAZANEK, M., FISER, O. Ku-band rain scattering parameters calculated by MMP method. In Proceedings of the First International Workshop on Radiowave Propagation Modelling for SatCom Services at Ku band and above. Noordwijk (The Netherlands), 1998.
  21. MAGGIORI, D. Computed transmission through rain in the 1–400 GHz frequency range for spherical and elliptical drops and any polarization. Alta Frequenza, 1981, vol. 50, no. 5, p. 262–273.
  22. LEVIZZANI, V., KIDD, CH., KIRSCHBAUM, D. B., et al. (Eds.) Satellite, Precipitation Measurement. (Vol. 1, chapter 15) Springer, 2020. ISBN: 978-3-030-24568-9
  23. ERIKSSON, P., EKELUND, R., MENDROK, J., et al. A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths. Earth System Science Data, 2018, vol. 10, no. 3, p. 1301–1326. DOI: 10.5194/essd-10-1301- 2018
  24. RAY, P. Broadband complex refractive indices of ice and water. Applied Optics, 1972, vol. 11, no. 8, p. 1836–1844. DOI: 10.1364/AO.11.001836
  25. LIEBE, H. J. MPM - An atmospheric millimeter-wave propagation model. International Journal of Infrared and Millimeter Waves, 1989, vol. 10, p. 631–650. DOI: 10.1007/BF01009565
  26. STRUTT, J. W. On the light from the sky, its polarization and colour (I). Philosophical Magazine, 1871, Series 4, vol. 41, no. 271, p. 107–120. DOI: 10.1080/14786447108640452
  27. STRUTT, J. W. On the light from the sky, its polarization and colour (II). Philosophical Magazine, 1871, Series 4, vol. 41, no. 273, p. 274–279. DOI: 10.1080/14786447108640479
  28. INTERNATIONAL TELECOMMUNICATION UNION (ITU). Recommendation ITU-R P.838-3, Specific Attenuation Model for Rain for Use in Prediction Methods. Question ITU-R 201. 2013
  29. BOHREN, C. F., HUFFMAN, D. R. Absorption and Scattering of Light by Small Particles. New York (USA): John Wiley, 1983. ISBN: 9780471293408
  30. MATROSOV, S. Y. Evaluating polarimetric X-band radar rainfall estimators during HMT. Journal of Atmospheric and Oceanic Technology, 2010, vol. 27, no. 1, p. 122–134. DOI: 10.1175/2009JTECHA1318.1

Keywords: Electromagnetic reflection, meteorological radar, radar cross-sections, radar measurements

Y. Ma, S. Wu , Y. Yuan, N. Yuan [references] [full-text] [DOI: 10.13164/re.2022.0185] [Download Citations]
Parametric Modeling of Microwave Structure with Customization Responses by Combining RBF Neural Network and Pole-Residue-Based Transfer Functions

This paper proposed a parametric modeling technique for the microwave structures with a customization magnitude response by combining the RBF neural network and pole-residue-based transfer functions. The Latin hypercube sampling method is used for sampling given physical ranges and obtaining the EM behaviors of the microwave structures. A pole sorting process and a modified pole-residues splitting process are proposed to solve the pole sequence chaos and order-changing problems which occur in the modeling process. The pole-residues parameters after the above preprocessing steps are used as the inputs of the RBF neural network and the physical parameters are used as the outputs of RBF network. Then, the known magnitude response of the microwave structure are used as the prior knowledge to guide obtaining the goal pole-residues values corresponding to the giving magnitude response specification. After the training process of the RBF model, the goal pole-residues are input into the trained RBF network and the goal physical parameters corresponding to the customization responses is obtained. Finally, this model technique is illustrated by the two examples of microwave structures.

  1. BRANDL, S., DYCZIJ-EDLINGER, R. Parametric model-order reduction for accelerating the gradient-based optimization of microwave structures using finite-elements. IFAC-PapersOnLine, 2018, vol. 51, no. 2, p. 190–195. DOI: 10.1016/j.ifacol.2018.03.033
  2. KOZIEL, S., OGURTSOV, S., LEIFSSON, L. Physics-based surrogates for low-cost modeling of microwave structures. Procedia Computer Science, 2013, vol. 18, p. 869–878. DOI: 10.1016/j.procs.2013.05.252
  3. ZHANG, Q., GUPTA, K., DEVABHAKTUNI, V. Artificial neural networks for RF and microwave design - From theory to practice. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1339–1350. DOI: 10.1109/TMTT.2003.809179
  4. RAYAS-SANCHEZ, J. E. EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 1, p. 420–435. DOI: 10.1109/TMTT.2003.820897
  5. MKADEM, F., BOUMAIZA, S. Physically inspired neural network model for RF power amplifier behavioral modeling and digital predistortion. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 4, p. 913–923. DOI: 10.1109/TMTT.2010.2098041
  6. ROOT, D. E. Future device modeling trends. IEEE Microwave Magazine, 2012, vol. 13, no. 7, p. 45–59. DOI: 10.1109/MMM.2012.2216095
  7. YU, H., CHALAMALASETTY, H., SWAMINATHAN, M. Modeling of voltage-controlled oscillators including I/O behavior using augmented neural networks. IEEE Access, 2019, vol. 7, p. 38973–38982. DOI: 10.1109/ACCESS.2019.2905136
  8. SADROSSADAT, A., CAO, Y., ZHANG, Q. Parametric modeling of microwave passive components using sensitivity-analysisbased adjoint neural-network technique. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 1, p. 1733–1747. DOI: 10.1109/TMTT.2013.2253793
  9. SHARMA, K., PANDEY, G. Efficient modelling of compact microstrip antenna using machine learning. AEU - International Journal of Electronics and Communications, 2021, vol. 135, p. 1–13. DOI: 10.1016/j.aeue.2021.153739
  10. FENG, F., ZHANG, Q. Parametric modeling using sensitivity-based adjoint neuro-transfer functions for microwave passive components. In IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO). Ottawa (Canada), 2015, p. 1–3. DOI: 10.1109/NEMO.2015.7415028
  11. XIAO, L., SHAO, W., JIN, F. Multi-parameter modeling with ANN for antenna design. IEEE Transactions on Antennas and Propagation, 2016, vol. 66, no. 7, p. 3718–3723. DOI: 10.1109/TAP.2018.2823775
  12. FENG, F., ZHANG, C., MA, J. Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 1, p. 60–77. DOI: 10.1109/TMTT.2015.2504099
  13. FENG, F., GONGAL-REDDY,V.-M.-R., ZHANG, C., et al. Parametric modeling of microwave components using adjoint neural networks and pole-residue transfer functions withEMsensitivity analysis. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 6, p. 1955–1975. DOI: 10.1109/TMTT.2017.2650904
  14. ZHANG, J., FENG, F., ZHANG,W., et al. A novel training approach for parametric modeling of microwave passive components using Pade via Lanczos and EM sensitivities. IEEE Transactions on Microwave Theory and Techniques, 2020, vol. 68, no. 6, p. 2215–2233. DOI: 10.1109/TMTT.2020.2979445
  15. GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 1999, vol. 14, no. 3, p. 1052–1061. DOI: 10.1109/61.772353

Keywords: Parametric modeling, customization response, RBF neural network, pole-residue-based transfer functions

A. Bordbar, F. Mohajeri, Z. Ghorbani [references] [full-text] [DOI: 10.13164/re.2022.0193] [Download Citations]
Gain and Bandwidth Enhancement of a Metamaterial Loaded Antipodal Vivaldi Antenna Fed by Substrate Integrated Waveguide

This paper proposes a novel wideband, high-gain, compact Vivaldi antenna operating in the 14.7-20.5 GHz frequency range, where the antenna is fed by the substrate integrated waveguide (SIW). A Negative Index Metamaterial (NIM) has been designed, with its parameters extracted using MATLAB software. The NIM was developed to address the deficiencies of conventional Antipodal Vivaldi antennas. With a measured gain of over 5.3 dBi, the fabricated antenna performs satisfactorily across the entire bandwidth. Due to its low profile and short transversal dimension, the proposed antenna is suitable for antenna arrays; consequently, the proposed antenna design could be a viable option for modern communication and radar systems.

  1. HOOD, A. Z., KARACOLAK, T., TOPSAKAL, E. A small antipodal Vivaldi antenna for ultrawide-band applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 656–660. DOI: 10.1109/LAWP.2008.921352
  2. GJOKAJ, V., PAPAPOLYMEROU, J., ALBRECHT, J. D., et al. A compact receive module in 3-D printed Vivaldi antenna. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, vol. 10, no. 2, p. 343–346. DOI: 10.1109/TCPMT.2019.2961345
  3. YANG, K., HOANG, M. H., BAO, X., et al. Dual-stub Ka-band Vivaldi antenna with integrated bandpass filter. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 5, p. 668–671. DOI: 10.1049/iet-map.2017.0488
  4. GIBSON, P. The Vivaldi aerial. In The 9th European Microwave Conference. Brighton (UK), 1979, p. 101–105. DOI: 10.1109/EUMA.1979.332681
  5. JANASWAMY, R., SCHAUBERT, D. Analysis of the tapered slot antenna. IEEE Transactions on Antennas and Propagation, 1987, vol. 35, no. 9, p. 1058–1065. DOI: 10.1109/TAP.1987.1144218
  6. BAI, J., SHI, S., PRATHER, D. W. Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 4, p. 1051–1057. DOI: 10.1109/TMTT.2011.2113970
  7. FEI, P., JIAO, Y. C., HU, W., et al. A miniaturized antipodal Vivaldi antenna with improved radiation characteristics. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 127–130. DOI: 10.1109/LAWP.2011.2112329
  8. OMAR, S. A., IQBAL, A., SARAEREH, O. A., et al. An array of M-shaped Vivaldi antennas for UWB applications. Progress in Electromagnetics Research Letters, 2017, vol. 68, p. 67–72. DOI: 10.2528/PIERL17041506
  9. LIU, H., YANG, W., ZHANG, A., et al. A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications. IEEE Access, 2018, vol. 6, p. 76282–76288. DOI: 10.1109/ACCESS.2018.2882914
  10. LI, L., XIA, X., LIU, Y., et al. Wideband balanced antipodal Vivaldi antenna with enhanced radiation parameters. Progress in Electromagnetics Research, 2016. vol. 66, p. 163–171. DOI: 10.2528/PIERC16051704
  11. ELSHERBINI, A., ZHANG. C., LIN. S., et al. UWB antipodal Vivaldi antennas with protruded dielectric rods for higher gain, symmetric patterns and minimal phase center variations. In 2007 IEEE Antennas and Propagation Society International Symposium. Honolulu (USA), 2007, p. 1973–1976. DOI: 10.1109/APS.2007.4395909
  12. SELLAL, K. On substrate integrated waveguide slot antennas. Microwave and Optical Technology Letters, 2015, vol. 57, no. 6, p. 1511–1516. DOI: 10.1002/mop.29125
  13. OKAN, T., AKCAM, N. Wideband low-cost FR4 epoxy-based antenna with H-shaped slot for V-band applications. International Journal of RF and Microwave Computer-Aided Engineering, 2021, vol. 31, no. 2, p. 1–9. DOI: 10.1002/mmce.22348
  14. BHASKAR, M., JOHARI, E., AKHTER, Z., et al. Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 233–238. DOI: 10.1002/mop.29534
  15. ZHOU, B., CUI, T. J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 326–329. DOI: 10.1109/LAWP.2011.2142170
  16. ALHAVARI, A. R. H., ISMAIL, A., MAHDI, M. A., et al. Antipodal Vivaldi antenna performance booster exploiting snug-in negative index metamaterial. Progress in Electromagnetics Research, 2012, vol. 27, p. 265–279. DOI: 10.2528/PIERC12012906
  17. WANG, Y. W., WANG, G. M., ZONG, B. F. Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas and Wireless Propagation Letters, 2013. vol. 12, p. 1380–1383. DOI: 10.1109/LAWP.2013.2285182
  18. KUMAR, P., AKHTER, Z., JHA, A. K., et al. Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 2333–2334. DOI: 10.1109/APS.2015.7305555
  19. SMITH, D., VIER, D., KOSCHNY, T., et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, vol. 71, no. 3, p. 1–11. DOI: 10.1103/PhysRevE.71.036617
  20. KAZEMI, R., FATHY, E., SADEGHZADEH, R. A. Ultra-wide band Vivaldi antenna array using low loss SIW power divider and GCPW wide band transition. In 2012 IEEE Radio and Wireless Symposium. Santa Clara (USA), 2012, p. 39–42. DOI: 10.1109/RWS.2012.6175309
  21. MAHDAVI. D., SUDHAKAR. A. Design and development of tapered slot Vivaldi antenna for ultra-wideband applications. IAETSD Journal for Advanced Research in Applied Sciences, 2018, vol. 5, no. 4, p. 511–515. ISSN: 2394-8442
  22. NAWAZ, M. I., HUILING, Z., KASHIF, M. Substrate integrated waveguide (SIW) to microstrip transition at X-band. In Proceedings of the 2014 International Conference on Circuits, Systems and Control. Interlaken (Switzerland), 2014, p. 61–63. ISBN: 978-1-61804-216-3
  23. CASSIVI, Y., PERREGRINI, L., ARCIONI, P., et al. Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 9, p. 333–335. DOI: 10.1109/LMWC.2002.803188

Keywords: Antipodal Vivaldi, bandwidth, gain, negative index metamaterial, substrate integrated waveguide (SIW)

Y. M. Wang, L. Y. Ma, Y. Z. Chen [references] [full-text] [DOI: 10.13164/re.2022.0201] [Download Citations]
Electromagnetic Energy Coupling Path and Protection Method of UAV Datalink against Broad-Spectrum High-Power Microwave Radiation

To verify the adaptability of unmanned aerial vehicle (UAV) datalinks to the electromagnetic environment comprising broad-spectrum high-power microwave radiation, strong electromagnetic pulse (EMP) tests were conducted using ultra wideband (UWB) radiation source at different radiation field strengths and repetition frequencies. For UAV datalinks, interference, disturbance, degradation and other effects were found in the tests. The electromagnetic energy coupling path of the broad-spectrum high-power microwave radiation was determined by adjusting the test status of UAV datalink as well as by protecting its key parts. The radio frequency front end, power cable and terminal interfaces on the housing surface were found to be weak electromagnetic links. The methods of the protection of radio frequency front end and power cable against strong EMPs were proposed. In addition, protection effects obtained by using different protection modules of radio frequency front end as well as by applying power spike pulse suppressors were compared and validated.

  1. ZHANG, D. X., CHEN, Y. Z., CHENG, E. W., et al. Effects of electromagnetic interference (EMI) on information link of UAV. Transactions of Beijing Institute of Technology, 2019, vol. 39, no. 7, p. 756–762. (In Chinese) DOI: 10.15918/j.tbit1001- 0645.2019.07.016
  2. DU, B. Z., CHEN, Y. Z., CHENG, E. W., et al. Experiment analysis of continuous wave electromagnetic irradiation effect for a certain type of UAV data link. Journal of Microwaves, 2018, vol. 34, no. 2, p. 86–91. (In Chinese) DOI: 10.14183/j.cnki.1005- 6122.201802017
  3. ZHANG, D. X., CHENG, E. W., WAN, H. J., et al. Prediction of electromagnetic compatibility for dynamic datalink of UAV. IEEE Transactions on Electromagnetic Compatibility, 2019, vol. 61, no. 5, p. 1474–1482. DOI: 10.1109/TEMC.2018.2867641
  4. SAKHAROV, K. Y., SUKHOV, A. V., UGOLEV, V. L., et al. Study of UWB electromagnetic pulse impact on commercial unmanned aerial vehicle. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). Amsterdam (Netherlands), 2018, p. 40–43. DOI: 10.1109/EMCEurope.2018.8484992
  5. ZHANG, D. X., ZHOU, X., CHENG, E. W., et al. Investigation on effects of HPM pulse on UAV’s datalink. IEEE Transactions on Electromagnetic Compatibility, 2019, vol. 62, no. 3, p. 829–839. DOI: 10.1109/TEMC.2019.2915285
  6. HAO, R. R., ZHANG, X. D., GAO, H., et al. A novel high-altitude electromagnetic pulse (HEMP) protection circuit for RF applications. Microelectronics Journal, 2019, vol. 84, no. 2, p. 1–8. DOI: 10.1016/j.mejo.2018.12.005
  7. LI, Y. N., TAN, Z. L. Design and research of the fast rise time electromagnetic pulse protection module based on PIN diode. Acta Armamentarii, 2018, vol. 39, no. 10, p. 2066–2072. (In Chinese) DOI: 10.3969/j.issn.1000-1093.2018.10.021
  8. LI, Y. N., TAN, Z. L., PENG, C. Z., et al. Simulation and design of RF front end electromagnetic protection module based on HF communication. Acta Electronica Sinica, 2018, vol. 46, no. 6, p. 1421–1427. (In Chinese) DOI: 10.3969/j.issn.0372- 2112.2018.06.022
  9. DU, B. Z., CHEN, Y. Z., CHENG, E. W. Strong electromagnetic pulse comprehensive protection methods research for UAV. In The 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT). Dalian (China), 2017, p. 1–4. DOI: 10.2991/icmeit-17.2017.1
  10. ZHOU, P., LV, Y. H, SONG, Y. S., et al. Discussion on transient electromagnetic pulse protection methods of aerospace system. In The 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM). Hangzhou (China), 2015, p. 405–407. DOI: 10.1109/CEEM.2015.7368716

Keywords: UAV datalink, EMP, UWB, electromagnetic environment effects, electromagnetic protection

S. Bhattacharjee, M. Midya, S. R. Bhadra Chaudhuri, M. Mitra [references] [full-text] [DOI: 10.13164/re.2022.0210] [Download Citations]
A Wideband Wearable Antenna with AMC Ground Plane for WBAN Applications

A flexible wearable antenna with wideband characteristics and having a conical radiation pattern which is suitable for ON body application is presented. To realize a compact antenna size, characteristic modal (CM) analysis is performed initially, and the ground plane of the antenna is utilized to generate one of the resonant modes. The quasi-current loop in the feed layer patch is used to generate another resonant mode. Combination of these two modes has resulted in the wideband performance of the antenna from 4.72 to 6.08 GHz. A planar wideband artificial magnetic conductor (AMC) is used beneath the antenna. This AMC surface compensates the undesired coupling taking place due to the ground radiator thereby reducing the specific absorption rate (SAR) to 76.4% and enhancing the gain of the antenna. The performance of the antenna in terms of return loss, gain, efficiency, SAR and bending sensitivity is studied.

  1. WERNER D. H., JIANG, Z. H. (Eds.) Electromagnetics of Body Area Networks: Antennas, Propagation and RF Systems. 1st ed. Piscataway (NJ, USA): IEEE Press, 2016. ISBN: 978-1119029465
  2. JIANG, Z. H., GREGORY, M. D., WERNER, D. H. Design and experimental investigation of a compact circularly polarized integrated filtering antenna for wearable biotelemetric devices. IEEE Transactions on Biomedical Circuits and Systems, 2016, vol. 10, no. 2, p. 328–338. DOI: 10.1109/TBCAS.2015.2438551
  3. BJORNINEN, T., YANG, F. Low-profile head-worn antenna with a monopole-like radiation pattern. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 794–797. DOI: 10.1109/LAWP.2015.2475158
  4. TAK, J., LEE, S., CHOI, J. All-textile higher order mode circular patch antenna for on-body to on-body communications. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 6, p. 576–584. DOI: 10.1049/iet-map.2014.0203
  5. PARASKEVOPOULOS, A., DE SOUSA FONSECA, D., SEAGER, R. D., et al. Higher-mode textile patch antenna with embroidered vias for on-body communication. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 7, p. 802–807. DOI: 10.1049/iet-map.2015.0650
  6. CAO, Y. F., ZHANG, X. Y., MO, T. Low-profile conical-pattern slot antenna with wideband performance using artificial magnetic conductors. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 5, p. 2210–2218. DOI: 10.1109/TAP.2018.2809619
  7. CAO, Y. F., SHI, X. R., ZHANG, X. Y., et al. A compact and wide band slot antenna with conical radiation pattern using artificial magnetic conductors. In Proceedings of the International Symposium on Electromagnetic Compatibility (EMC). Beijing (China), Oct. 2017, p. 1–4. DOI: 10.1109/EMC-B.2017.8260489
  8. SHARMA, M., PARINI, C. G. A miniature wideband antenna for wearable systems. In Proceedings of the Loughborough Antennas and Propagation Conference (LAPC 2013). Loughborough (UK), 2013, p. 619–623. DOI: 10.1109/LAPC.2013.6711975
  9. YAN, S., VOLSKIY, V. VANDENBOSCH, G. A. E. Compact dual-band textile PIFA for 433 MHz / 2.4 GHz ISM bands. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2436–2439. DOI: 10.1109/LAWP.2017.2723419
  10. BHATTACHARJEE, S., MAITY, S., BHADRA CHAUDHURI, S. R., et al. A compact dual band dual polarized omnidirectional antenna for ON body applications. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 8, p. 5044–5053. DOI: 10.1109/TAP.2019.2891633
  11. YAN, S., SOH, P. J., VANDENBOSCH, G. A. E. Low-profile dual-band textile antenna with artificial magnetic conductor plane. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6587–6490. DOI: 10.1109/TAP.2014.2359194
  12. BHATTACHARJEE, S., MIDYA, M., MITRA, M., et al. Performance enhancement of meander line antenna with AMC ground for wearable applications. In Proceedings of the Asia- Pacific Microwave Conference (APMC-2016). New Delhi (India), 2016. DOI: 10.1109/APMC.2016.7931491
  13. BOHANNON, N. L., BERNHARD, J-T. Design guidelines using characteristic mode theory for improving the bandwidth of PIFAs. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 459–465. DOI: 10.1109/TAP.2014.2374213
  14. KARACOLAK, T., HOOD, A. Z., TOPSAKAL, E. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 1001–1008. DOI: 10.1109/TMTT.2008.919373
  15. IEEE. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Standard C95, IEEE 1999.
  16. TAK, J., CHOI, J. Circular-ring patch antenna with higher order mode for on-body communications. Microwave and Optical Technology Letters, 2013, vol. 56, no. 7, p. 1543–1547. DOI: 10.1002/mop.28374

Keywords: Wearable, AMC, SAR, wideband

T. Ettaghzouti, D. Khlaifia, N. Zitouni, N. Hassen [references] [full-text] [DOI: 10.13164/re.2022.0216] [Download Citations]
Low Voltage High Performance CMOS Current Mode Four-Quadrant Analog Multiplier Circuit

This paper describes a new CMOS current mode four-quadrant analog multiplier circuit. The proposed design is based on a high performance squarer cell, whose main core is realized by the up–down topology trans-linear loop using flipped voltage followers (FVF). The simulation results are verified by TSPICE simulator based on the BSIM3v3 transistor model for TSMC 0.18 µm CMOS process available from level 49 MOSIS at 25◦C with ± 0.75 V supply voltage. The proposed multiplier offers improved characteristics compared to the multipliers previously exposed in the literature. It has a wide dynamic range. The total harmonic distortion is about 0.42% at 1 kHz with peak-to-peak input current of 40 µA. The −3 dB bandwidth is more than 850 MHz and a maximum power consumption is of approximately 105 µW.

  1. POPA, C. Improved accuracy current-mode multiplier circuits with applications in analog signal processing. IEEE Transactions on Very Large Scale Integration (VlSI) Systems, 2014, vol. 22, no. 2, p. 443–447. DOI: 10.1109/TVLSI.2013.2239670
  2. SOTNER, R., JERABEK. J., PROKOP. R., et al. A CMOS multiplied input differential difference amplifier: A new active device and its applications. Applied Sciences, 2017, vol. 7, no. 1, p. 1–13. DOI: 10.3390/app7010106
  3. MURALIDHARANA, V., SATHISH KUMAR, V. Design and implementation of low power and high-speed multiplier using quaternary carry look-ahead adder. Microprocessors and Microsystems, 2020, vol. 75, p. 1–9. DOI: 10.1016/j.micpro.2020.103054
  4. ALOUI, I., HASSEN, N., BESBES, K. A CMOS current mode four quadrant analog multiplier free from mobility reduction. International Journal of Electronics and Communications, 2017, vol. 82, p. 119–126. DOI: 10.1016/j.aeue.2017.08.006
  5. NADERI SAATLO, A. High-precision CMOS analog computational circuits based on a new linearly tunable OTA. Radioengineering, 2016, vol. 25, no. 2, p. 297–304. DOI: 10.13164/re.2016.0297
  6. DANESH, M., JAYARAJ, A., CHANDRASEKARAN, S., et al. Ultra-low power analog multiplier based on translinear principle. In IEEE International Symposium on Circuits and Systems (ISCAS). Sapporo (Japan), 2019, p. 1–5. DOI: 10.1109/ISCAS.2019.8702330
  7. SAJJADI-KIA, H. An analog cell and its applications in analog signal processing. International Journal of Circuit Theory and Applications, 2011, vol. 39, no. 2, p. 195–201. DOI: 10.1002/cta.628
  8. AGHAEI, T., NADERI SAATLO, A. An efficient architecture for accurate and low power CMOS analog multiplier. Journal of Circuits, Systems and Computers, 2020, vol. 30, no. 3, p. 1–18. DOI: 10.1142/S0218126621500456
  9. GHANAVATI, B., TAGHAVI, M. E. Low-voltage CMOS multiplier circuit based on the translinear principle. Universal Journal of Electrical and Electronic Engineering, 2014, vol. 2, no. 3, p. 124–127. DOI: 10.13189/ujeee.2014.020305
  10. DEMARTINOS, A. C., PSYCHALINOS, C., KHATEB, F. Ultralow voltage CMOS current-mode four-quadrant multiplier. International Journal of Electronics Letters, 2014, vol. 2, no. 4, p. 224–233. DOI: 10.1080/21681724.2014.900824
  11. NADERI, A., KHOEI, A., HADIDI, K., et al. A new high speed and low power four-quadrant CMOS analog multiplier in current mode. International Journal of Electronics and Communications, 2009, vol. 63, no. 9, p. 769–775. DOI: 10.1016/j.aeue.2008.06.002
  12. SATANSUP, J., TANGSRIRAT, W. 1.5-V CMOS current multiplier/divider. International Journal of Electrical and Computer Engineering, 2018, vol. 8, no. 3, p. 1478–1487.
  13. ANDREOU, A G., BOAHEN, K A. Translinear circuits in subthreshold CMOS. Analog Integrated Circuits and Signal Processing, 1996, vol. 9, no. 2, p. 141–166. DOI: 10.1007/BF00166411
  14. FARSHIDI, E., GHANAVATI NEJAD, T. A new two-quadrant squarer/divider circuit for true RMS-to-DC converters in MOS technology. Measurement, 2012, vol. 45, no. 4, p. 778–784. DOI: 10.1016/j.measurement.2011.12.009
  15. NADERI, A., MOJARRAD, H., GHASEMZADEH, H., et al. Four-quadrant CMOS analog multiplier based on new current squarer circuit with high-speed. In IEEE Eurocon. St. Petersburg (Russia), 2009, p. 282–287. DOI: 10.1109/EURCON.2009.5167644
  16. SEON, J. Design and application of precise analog computational circuits. Analog Integrated Circuits and Signal Processing, 2008, vol. 71, no. 1, p. 55–66. DOI: 10.1007/s10470-007-9119-8
  17. ETTAGHZOUTI, T., HASSEN, N., GARRADHI, K., et al. Wide bandwidth CMOS four-quadrant mixed mode analogue multiplier using a second generation current conveyor circuit. Turkish Journal of Electrical Engineering & Computer Sciences. 2018, vol. 26, no. 2, p. 882–894. DOI: 10.3906/elk-1708-179
  18. ETTAGHZOUTI, T., HASSEN, N., BESBES, K. High performance low voltage low power voltage mode analog multiplier circuit. In International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT). Hammamet (Tunisia), 2016, p. 527–531. DOI: 10.1109/SETIT.2016.7939926
  19. ABUELMA’ATTI, M T., AL-QAHTANI, M A. A current-mode current-controlled current-conveyor-based analogue multiplier/divider. International Journal of Electronics, 1998, vol. 85, no. 1, p. 71–77. DOI: 10.1080/002072198134364
  20. RIEWRUJA, V., RERKRATN, A. Four-quadrant analogue multiplier using operational amplifier. International Journal of Electronics, 2011, vol. 98, no. 4, p. 459–474. DOI: 10.1080/00207217.2010.520155
  21. KAEWDANG, K., FONGSAMUT, C., SURAKAMPONTORN, W. A wide-band current-mode OTA-based analog multiplierdivider. In Proceedings of the 2003 International Symposium on Circuits and Systems. Bangkok (Thailand), 2003, p. 349–352. DOI: 10.1109/iscas.2003.1205572
  22. TANGSRIRAT, W., CHANNUMSIN, O., PIMPOL, J. Electronically adjustable capacitance multiplier circuit with a single voltage differencing gain amplifier (VDGA). Journal of Microelectronics, Electronic Components and Materials, 2019, vol. 49, no. 4, p. 211–217. DOI: 10.33180/InfMIDEM2019.40
  23. NADERI SAATLO, A., OZOGUZ, I. S. Design of a high-linear, high-precision analog multiplier, free from body effect. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, p. 820–832. DOI: 10.3906/elk-1307-159
  24. AGHAEI, T., NADERI SAATLO, A. A new strategy to design low power translinear based CMOS analog multiplier. Integration, the VLSI Journal, 2019, vol. 69, p. 180–188. DOI: 10.1016/j.vlsi.2019.03.009
  25. MARYAN, M., AZHARI, S. A MOS translinear cell-based configurable block for current mode analog signal processing. Analog Integrated Circuits and Signal Processing, 2017, vol. 92, no. 1, p. 1–13. DOI: 10.1007/s10470-017-0959-6
  26. MARYAN, M., GHANAATIAN, A., AZHARI S., et al. Lowpower high-speed analog multiplier/divider based on a new current squarer circuit. Arabian Journal for Science and Engineering, 2018, vol. 43, p. 2909–2918. DOI: 10.1007/s13369-017-2968-2
  27. DIAZ-SANCHEZ, A., MATEUS-ARDILA, J C., ZAMORAMEJIA, G., et al. A four quadrant high-speed CMOS analog multiplier based on the flipped voltage follower cell. International Journal of Electronics and Communications, 2021, vol. 130, p. 1–14. DOI: 10.1016/j.aeue.2020.153582
  28. AL-ABSI, M. A., AS-SABBAN, I. A. A new highly accurate CMOS current-mode four-quadrant multiplier. Arabian Journal for Science and Engineering, 2014, vol. 40, no. 2, p. 551–558. DOI: 10.1007/s13369-014-1551-3
  29. AL-ABSI, M., HUSSEIN, A., TAHERABUELMA’ATTI, M. A low voltage and low power current-mode analog computational circuit. Circuits, Systems, and Signal Processing, 2013, vol. 32, no. 1, p. 321–331. DOI: 10.1007/s00034-012-9446-6
  30. DE LA CRUZ-BLAS, C., THOMAS-ERVITI, G., ALGUETAMIGUEL, J., et al. CMOS analogue current-mode multiplier/divider circuit operating in triode-saturation with bulkdriven techniques. Integration, the VLSI journal, 2017, vol. 59, p. 243–246. DOI: 10.1016/j.vlsi.2017.06.001
  31. GRAVATI, M., VALLE, M., FERRI, G., et al. A novel currentmode very low power analog CMOS four quadrant multiplier. In Proceedings of the 31st European Solid-State Circuits Conference. Grenoble (France), 2005, p. 495–498. DOI: 10.1109/ESSCIR.2005.1541668
  32. LOPEZ-MARTIN, A., CARLOSENA, A. Design of MOS translinear multiplier/dividers in analog VLSI. VLSI Design, 2000, vol. 11, no. 4, p. 321–329. DOI: 10.1155/2000/21852
  33. LOPEZ-MARTIN, A., CARLOSENA, A. Current-mode multiplier/ divider circuits based on the MOS translinear principle. Analog Integrated Circuits and Signal Processing, 2001, vol. 28, p. 265–275. DOI: 10.1023/A:1011256011011
  34. GHANAVATI, B., MOGHADDAM, E. T. Low-voltage CMOS multiplier circuit based upon the translinear principle. Universal Journal of Electrical and Electronic Engineering, 2014, vol. 2, no. 3, p. 124–127. DOI: 10.13189/ujeee.2014.020305

Keywords: Multiplier, four-quadrant, CMOS, current mode, translinear loop, low voltage

N. M. Giang, L. D. Manh [references] [full-text] [DOI: 10.13164/re.2022.0224] [Download Citations]
A Simple Approach for Improving Bandwidth and Isolation of Wilkinson Power Divider

A simple approach to improve both the bandwidth and isolation of the Wilkinson power divider for using in L-band satellite communications is presented in this paper. To enhance the bandwidth, a multi-section method based on the Chebychev impedance transformation is employed. In order to improve the isolation performance between output ports, the values of isolation resistors are carefully determined by using the iterative approximation method combined with an investigation procedure. In order to validate the proposed design, a two-way and eight-way power divider prototypes were fabricated and tested on a Rogers RO4003C material. Good agreements between simulations and measurements are obtained in a frequency range from 0.8 GHz to 2.2 GHz. The two-way power divider had a fractional bandwidth of 106% with an isolation of better than 30 dB. The eight-way power divider achieved the bandwidth and isolation of 109% and better than 24 dB, respectively. Both the power dividers exhibit the phase imbalance of less than 3 degrees, and amplitude imbalance of less than 0.02 dB. Compared with the other works, the proposed power dividers deliver broader bandwidth and improved isolation while still retaining good insertion loss, low phase and amplitude imbalance in the operation frequency range.

  1. RAUF, A. A., TAHIR, J., RAZA, A., et al. 16 ways X-band Wilkinson power divider for phased array transmitter. In Proceeding of the 15th International Bhurban Conference on Applied Sciences and Technology. Islamabad (Pakistan), 2018, p. 835–840. DOI: 10.1109/IBCAST.2018.8312321
  2. WANG, S., CHIANG, M.-J., CHANG, C.-T. A novel CMOS 24- GHz in-phase power divider using synthetic coupled lines. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2016, vol. 5, no. 3, p. 398–403. DOI: 10.1109/TCPMT.2015.2401039
  3. PACKIARAJ, D., RAMESH, M., KALGHATGI, A. T. Broadband equal power divider. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, vol. 16, no. 2, p. 363–370. DOI: 10.1590/2179-10742017v16i2757
  4. XU, K., XU, J., LI, D. Wilkinson filtering power divider using coupled lines and T-shaped stub. Microwave and Optical Technology Letters, 2019, vol. 61, no. 11, p. 2540–2544. DOI: 10.1002/mop.31914
  5. SINGH, P. K., BASU, S., WANG, Y.-H. Coupled line power divider with compact size and bandpass response. Electronics Letters, 2009, vol. 45, no. 17, p. 892–894. DOI: 10.1049/el.2009.1488
  6. LAN, X., CHANG-CHIEN, P., FONG, F., et al. Ultra-wideband power divider using multi-wafer packaging technology. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 1, p. 46–48. DOI: 10.1109/LMWC.2010.2091262
  7. CHAO, S.-F., LIN, W.C. Filtering power divider with good isolation performance. Electronics Letters, 2014, vol. 50, no. 11, p. 815–817. DOI: 10.1049/el.2014.0171
  8. KAO, J., TSAI, Z., LIN, K., et al. A modified Wilkinson power divider with isolation bandwidth improvement. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 9, p. 2768–2780. DOI: 10.1109/TMTT.2012.2206402
  9. LAKRIT, S., MEDKOUR, H., DAS, S., et al. Design and analysis of integrated Wilkinson power divider fed conformal high gain UWB array antenna with band rejection characteristics for WLAN applications. Journal of Circuits, Systems and Computers, 2021, vol. 30, no. 8, p. 1–20. DOI: 10.1142/S0218126621501334
  10. DENG, Y., WANG, J., ZHU, L., et al. Filtering power divider with good isolation performance and harmonic suppression. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 12, p. 984–986. DOI: 10.1109/LMWC.2016.2623244
  11. POZAR, D. M. Microwave Engineering. New York: Wiley, 2012. ISBN: 978-0-470-63155-3
  12. COHN, S. B. A class of broadband three-port TEM-mode hybrids. IEEE Transactions on Microwave Theory and Techniques, 1968, vol. 16, no. 2, p. 110–116. DOI: 10.1109/TMTT.1968.1126617
  13. SONG, K., ZHAO, P., CHEN, Y., et al. Compact high-isolation planar eight-way power divider using zero-phase isolation circuit. IET Microwaves, Antennas & Propagation, 2020, vol. 14, no. 8, p. 774–778. DOI: 10.1049/iet-map.2019.0788
  14. CHEN, A., ZHUANG, Y., ZHOU, J., et al. Design of a broadband Wilkinson power divider with wide range tunable bandwidths by adding a pair of capacitors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 66, no. 4, p. 567–571. DOI: 10.1109/TCSII.2018.2803076
  15. YU, T., LIN, B. S., CHANG, Y. Eight-way radial power splitter including ring shape isolation network. Electronics Letters, 2017, vol. 53, no. 24, p. 1587–1589. DOI: 10.1049/el.2017.3486
  16. HONG, Y., KIMBALL, D. F., ASBECK, P. M., et al. Singleended and differential radial power combiners implemented with a compact broadband probe. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 6, p. 1565–1572. DOI: 10.1109/TMTT.2010.2049165
  17. KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/LMWC.2016.2615005

Keywords: Wilkinson oower divider, high isolation, wideband PD, Chebyshev impedance transformation, satellite communication

K. S. Sanagavarapu, M. Pullakandam [references] [full-text] [DOI: 10.13164/re.2022.0231] [Download Citations]
Object Tracking Based Surgical Incision Region Encoding using Scalable High Efficiency Video Coding for Surgical Telementoring Applications

Surgical telementoring is an advanced tele-medicine concept where the expert surgeon guides the onsite novice present at the remote location. The efficient telementoring system requires the wireless transmission of high-quality surgical video with less bitrate in less time. The bit rate of the surgical video can be decreased by segmenting the surgical incision region and removing the background region. The High Efficiency Video Coding (HEVC) standard has provided promising results for surgical telementoring applications. But the Rate-Distortion Optimization (RDO) search process in HEVC increases the complexity that in turn increases the encoding time. We propose the method which involves the segmentation of the surgical incision region using the Kernelized Correlation Filter (KCF) object tracking technique. The segmented region is encoded by the complexity-efficient Scalable HEVC (SHVC) to meet the resolution of an end-user device. The complexity of SHVC is decreased by using the Convolutional Neural Network (CNN) and Long- and Short- Term Memory (LSTM) to predict the Coding Tree Unit (CTU) structure. The results show that the proposed method decreases the bitrate significantly for segmented surgical video sequences without degradation in Peak Signal-to-Noise Ratio (PSNR). These results are obtained for the surgical video sequences with slow-moving objects. Furthermore, the CNN+LSTM approach reduces the encoding time of standard SHVC by 51% with negligible Rate-Distortion (RD) performance loss.

  1. SULLIVAN, G. J., OHM, J. R., HAN, W. J., et al. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits, Systems for Video Technology, 2012, vol. 22, no. 12, p. 1649–1668. DOI: 10.1109/TCSVT.2012.2221191
  2. WIEGAND, T., OHM, J. R., SULLIVAN, G. J., et al. Special section on the joint call for proposals on high efficiency video coding (HEVC) standardization. IEEE Transactions on Circuits, Systems for Video Technology, 2010, vol. 20, no. 12, p. 1661–1666. DOI: 10.1109/TCSVT.2010.2095692
  3. WIEGAND, T., SULLIVAN, G. J., BJONTEGAARD, G., et al. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits, Systems for Video Technology, 2003, vol. 13, no. 7, p. 560–576. DOI: 10.1109/TCSVT.2003.815165
  4. SCHWARZ, H., MARPE, D., WIEGAND, T. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits, Systems for Video Technology, 2007, vol. 17, no. 9, p. 1103–1120. DOI: 10.1109/TCSVT.2007.905532
  5. OHM, J. R., SULLIVAN, G. J., SCHWARZ, H., et al. Comparison of the coding efficiency of video coding standards-including high efficiency video coding (HEVC). IEEE Transactions on Circuits, Systems for Video Technology, 2012, vol. 22, no. 12, p. 1669–1684. DOI: 10.1109/TCSVT.2012.2221192
  6. YE, Y., ANDRIVON, P. The scalable extensions of HEVC for ultrahighdefinition video delivery. IEEE Transactions on Multimedia, 2014, vol. 21, no. 3, p. 58–64. DOI: 10.1109/MMUL.2014.47
  7. BOYCE, J. M., YE, Y., CHEN, J., et al. Overview of SHVC: Scalable extensions of the high efficiency video coding standard. IEEE Transactions on Circuits, Systems for Video Technology, 2016, vol. 26, no. 1, p. 20–34. DOI: 10.1109/TCSVT.2015.2461951
  8. CHEN, C., BOYCE, J., YE, Y., et al. Scalable HEVC (SHVC) Test Model 6 (SHM 6). In Meeting MPEG 108 - Valencia. Valencia (Spain), 2014, JCTVC-Q1007, p. 1–9.
  9. YIN, P., XIU, X., YE, Y. Inter-layer reference picture placement. In Meeting of the Joint Collaborative Team on Video Coding (JCT-VC). Geneva (Switzerland), 2013, JCTVC-L0174.
  10. COMANICIU, D., MEER, P. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, vol. 24, no. 5, p. 603–619. DOI: 10.1109/34.1000236
  11. XU, M., DENG, X., LI, S., et al. Region-of-interest based conversational HEVC coding with hierarchical perception model of face. IEEE Journal of Selected Topics in Signal Processing, 2014, vol. 8, no. 3, p. 475–489. DOI: 10.1109/JSTSP.2014.2314864
  12. GOKTURK, S. B., TOMASI, C., GIROD, B., et al. Medical image compression based on region of interest, with application to colon CT images. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine, Biology Society (EMBC). Istanbul (Turkey), 2001, p. 2453–2456. DOI: 10.1109/IEMBS.2001.1017274
  13. YU, H., LIN, Z., PAN, F. Applications, improvement of H.264 in medical video compression. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, vol. 52, no. 12, p. 2707–2716. DOI: 10.1109/TCSI.2005.857869
  14. WU, Y., LIU, P., GAO, Y., et al. Medical ultrasound video coding with H. 265/HEVC based on ROI extraction. PLoS One, 2016, vol. 11, no. 11, p. 1–13. https://doi.org/10.1371/journal.pone.0165698
  15. KHIRE, S., ROBERTSON, S., JAYANT, N., et al. Region-of-interest video coding for enabling surgical telementoring in low-bandwidth scenarios. In Military Communications Conference (MILCON). Orlando (USA), 2012, p. 1–6. DOI: 10.1109/MILCOM.2012.6415792
  16. GROIS, D., KAMINSKY, E., HADAR, O. ROI adaptive scalable video coding for limited bandwidth wireless networks. In IFIP Wireless Days (WD). Venice (Italy), 2010, p. 1–5. DOI: 10.1109/WD.2010.5657709
  17. BARSAKAR, T., MANKAR, V. A novel approach for medical video compression using kernel based meanshift ROI coding techniques. In Conference on Advances in Signal Processing (CASP). Pune (India), 2016, p. 212–216. DOI: 10.1109/CASP.2016.7746167
  18. MUBEEN, G., ALI, T., BAKR, M., et al. Perceptually lossless surgical telementoring system based on non-parametric segmentation. Journal of Medical Imaging and Health Informatics, 2019, vol. 9, no. 3, p. 464–473. DOI: 10.1166/jmihi.2019.2512
  19. XIE, W., YAO, Z., JI, E., et al. Artificial intelligence based computed tomography processing framework for surgical telementoring of congenital heart disease. ACM Journal on Emerging Technologies in Computing Systems, 2021, vol. 17, no. 4, p. 1–24. DOI: 10.1145/3457613
  20. PENG, L., CHENMENG, L., CHANGLIN, X., et al.AWearable augmented reality navigation system for surgical telementoring based on Microsoft HoloLens. Annals of Biomedical Engineering, 2020, vol. 49, no. 1, p. 287–298. DOI: 10.1007/s10439-020-02538-5
  21. BADRINARAYANAN, V., KENDALL, A., CIPOLLA, R. Seg- Net: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, no. 12, p. 2481–2495. DOI: 10.1109/TPAMI.2016.2644615
  22. WEI, H., ZHOU, X., ZHOU,W., et al. Visual saliency based perceptual video coding in HEVC. In IEEE International Symposium on Circuits and Systems (ISCAS). Montreal (Canada), 2016, p. 2547–2550. DOI: 10.1109/ISCAS.2016.7539112
  23. WANG, L., PEDERSEN, P. C., STRONG, D. M., et al. Smartphonebased wound assessment system for patients with diabetes. IEEE Transactions on Biomedical Engineering, 2015, vol. 62, no. 2, p. 477–488. DOI: 10.1109/TBME.2014.2358632
  24. RAMYA, R., JENITTA, A. Foot injury detection usingK-means clustering, mean shift segmentation algorithm. International Journal of Advanced Research in Basic Engineering Sciences and Technology, 2017, vol. 3, no. 24, p. 323–329. ISSN: 2395-695X
  25. WANNOUS, H., TREUILLET, S., LUCAS, Y. Robust tissue classification for reproducible wound assessment in telemedicine environments. Journal of Electronic Imaging, 2010, vol. 19, no. 2, p. 1–9. DOI: 10.1117/1.3378149
  26. WANG, C., YAN, X., SMITH, M., et al. A unified framework for automatic wound segmentation, analysis with deep convolutional neural networks. In International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan (Italy), 2015, p. 2415–2418. DOI: 10.1109/EMBC.2015.7318881
  27. GOYAL, M., REEVES,N. D., DAVISON, A. K., et al.DFUNet: Convolutional neural networks for diabetic foot ulcer classification. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, vol. 4, no. 5, p. 728–739. DOI: 10.1109/TETCI.2018.2866254
  28. HENRIQUES, J. F., CASEIRO, R., MARTINS, P., et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, vol. 37, no. 3, p. 583–596. DOI: 10.1109/TPAMI.2014.2345390
  29. FRAUNHOFER HEINRICH HERTZ INSTITUTE. SHVC Reference Software Version. [Online] Cited 04-July-2021. Available at: hevc.hhi.fraunhofer.de/svn/svn_SHVCSoftware/tags/SHM-12.1
  30. BJONTEGAARD, G. Calculation of Average PSNR Differences Between RD Curves. ITU-T SG16/Q6 Document, VCEG-M33, Austin, 2001.
  31. BJONTEGAARD, G. Improvements of the BD-PSNR Model. ITU-T SG16/Q6 Document, VCEG-AI11, Berlin, 2008.
  32. STANFORD UNIVERSITY. Echocardiogram Ultrasound Dataset. [Online] Cited 21-July-2021. Available at: https://echonet.github.io/dynamic/
  33. XIPH.ORG FOUNDATION. Xiph.org Video Test Media. [Online] Cited 21-July-2021. Available at: https://media.xiph.org/video/derf/
  34. ZHANG, Y., KWONG, S.,WANG, X., et al. Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 2015, vol. 24, no. 7, p. 2225–2238. DOI: 10.1109/TIP.2015.2417498
  35. SHI, N., MA, R., LI, P., et al. Efficient mode decision algorithm for scalable high efficiency video coding. Proceedings of SPIE Optoelectronic Imaging, Multimedia Technology, 2014, vol. 9273, p. 1–8. DOI: 10.1117/12.2071709
  36. HASSAN, A., GHAFOOR, M., TARIQ, S. A., et al. High efficiency video coding (HEVC)-based surgical telementoring system using shallow convolutional neural network. Journal of Digital Imaging, 2019, vol. 32, p. 1027–1043. DOI: 10.1007/s10278-019-00206-2
  37. MCCLELLAN, T. Z-Plasty of Scar Contracture (Finger). [Online] Cited 07-July-2021. Available at: https://youtu.be/wdseg3UvXrI
  38. MCCLELLAN, T. The Digital Nerve Was Cut. [Online] Cited 05-July-2021. Available at: https://youtu.be/CY1HYIBrAwQ
  39. MCCLELLAN, T. Flexor Digitorum Profundus (FDP) Finger Tendon Repair. [Online] Cited 06-July-2021. Available at: https://youtu.be/boMlEa3P43g
  40. MCCLELLAN, T. Foreign Body (BB) Removal from Finger. [Online] Cited 07-July-2021. Available at: https://youtu.be/DWQ6WX3ImBU
  41. MCCLELLAN, T. Ganglion Cyst: Flexor Tendon Sheath (Finger). [Online] Cited 04-July-2021. Available at: https://youtu.be/hDZBE8tcctE
  42. MCCLELLAN, T. Ganglion Cyst Volar Wrist. [Online] Cited 04-July-2021. Available at: https://youtu.be/ZgNJ8YDA7dY
  43. VANGELISTI. NuGrip Arthroplasty (Thumb Arthritis Joint Replacement Surgery). [Online] Cited 06-July-2021. Available at: https://youtu.be/YZgDQl5kWFs
  44. MCCLELLAN, T. Small Finger Extensor Tendon Saw Injury Cut Repair. [Online] Cited 04-July-2021. Available at: https://youtu.be/3o7cgZsd3bs
  45. MCCLELLAN, T. Running Subcuticular Suture. [Online] Cited 05-July-2021. Available at: https://youtu.be/CiW93U-3XcQ

Keywords: Surgical telementoring, object tracking, KCF tracker, region of interest, High Efficiency Video Coding

M. Ye, J. Tang, Y. Zhao, R. Su [references] [full-text] [DOI: 10.13164/re.2022.0243] [Download Citations]
Design of h¯-CPM-LFM Radar-Communication Integration Signal

In light of the increasing requirement for the electromagnetic spectrum, the integration of radar and communication is widely concerned because of its equipment miniaturizing and high efficiency of spectrum. To address the issue that the communication information in integrated signals for radar and communication affects detection performance, A novel integrated signal is proposed in this paper. Inspired by the high communication efficiency of shaped octal phase-shift keying (S8PSK) and high spectral efficiency of the three-section integrated waveform k-LFM-CPM, we generate a new type of modulation ℎ¯-CPM by the introduction of a precoding method with low complexity and a time-varying modulation index h, h-CPM is used to encode communication data into LFM radar waveform to form a novel radar and communication integration waveform ℎ¯-CPM-LFM. Numerical results show that the designed waveform is at least 10 dB less spectrum extension than other integration waveforms when carrying large amounts of communication information and has excellent BER performance under the condition of strong out-of-band interference. Ambiguity function analysis shows that the waveform has excellent detection performance comparable to LFM.

  1. GUERCI, J. R., GUERCI, R. M., LACKPUT, A., et al. Joint design and operation of shared spectrum access for radar and communications. In IEEE Radar Conference (RadarCon). Arlington (USA), 2015, p. 761–766. DOI: 10.1109/RADAR.2015.7131098
  2. LIU, Y., LIAO, J., XU, Z., et al. Adaptive OFDM integrated radar and communications waveform design based on information theory. IEEE Communications Letters, 2017, vol. 21, no. 10, p. 2174–2177. DOI: 10.1109/LCOMM.2017.2723890
  3. WEI, S., ZOU, Y., ZHANG, T., et al. An integrated longitudinal and lateral vehicle following control system with radar and vehicle-tovehicle communication. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 2, p. 1116–1127. DOI: 10.1109/TVT.2018.2890418
  4. ZHU, S., LI, X., YANG, Y., et al. Adaptive waveform optimization method for OFDM radar communication jamming. In IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE). Guangzhou (China), 2021, p. 600–605. DOI: 10.1109/ICCECE51280.2021.9342472
  5. ZHANG, S., ZENG, Y., ZHANG, R. Cellular-enabled UAV communication: A connectivity-constrained trajectory optimization perspective. IEEE Transactions on Communications, 2019, vol. 67, no. 3, p. 2580–2604. DOI: 10.1109/TCOMM.2018.2880468
  6. KHAN, M. N., GILANI, S. O., JAMIL, M., et al. Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access, 2018, vol. 6, p. 30039–30048. DOI: 10.1109/ACCESS.2018.2840535
  7. KHAN, M. N., KASHIF, H., RAFAY, A., Performance and optimization of hybrid FSO/RF communication system in varying weather. Photonic Network Communications, 2021, vol. 41, p. 47–56. DOI: 10.1007/s11107-020-00914-8
  8. PAUL, B., CHIRIYATH, A. R., BLISS, D. W. Survey of RF communications and sensing convergence research. IEEE Access, 2017, vol. 5, p. 252–270. DOI: 10.1109/ACCESS.2016.2639038
  9. ROBERTON, M., BROWN, E. R. Integrated radar and communications based on chirped spread-spectrum techniques. In IEEE MTT-S International Microwave Symposium Digest. Philadelphia (USA), 2003, p. 611–614. DOI: 10.1109/MWSYM.2003.1211013
  10. LUO, Y., ZHANG, Q., HONG,W., et al.Waveform design and highresolution imaging of cognitive radar based on compressive sensing. Science in China: Information Science, 2012, vol. 55, no. 11, p. 2590–2603. DOI: 10.1007/s11432-011-4527-x
  11. LI, M. J., WANG, W. Q., ZHENG, Z. Communication-embedded OFDM chirp waveform for delay-Doppler radar. IET Radar Sonar & Navigation, 2017, vol. 12, no. 3, p. 353–360. DOI: 10.1049/iet-rsn.2017.0369
  12. HU, L., DU, Z., XUE, G. Radar-communication integration based on OFDM signal. In IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Macau (China), 2014, p. 442–445. DOI: 10.1109/ICSPCC.2014.6986232
  13. ELLINGER, J., ZHANG, Z., WICKS, M., et al. Multi-carrier radar waveforms for communications and detection. IET Radar Sonar & Navigation, 2016, vol. 11, no. 3, p. 444–452. DOI: 10.1049/iet-rsn.2016.0244
  14. KNAAK, R. A. Fundamentals of radar signal processing. 2nd ed. New York: McGraw-Hill Education, 2014. ISBN: 9787121278112
  15. ROBERTON, M., BROWN, E. R. Integrated radar and communications based on chirped spread-spectrum techniques. In IEEE MTTS International Microwave Symposium Digest. Philadelphia (USA), 2003, p. 611–614. DOI: 10.1109/MWSYM.2003.1211013
  16. ZENG, S. Q., DENG, W. W. Physics-based modelling method for automotive radar with frequency shift keying and linear frequency modulation. International Journal of Vehicle Design, 2015, vol. 67, no. 3, p. 237–258. DOI: 10.1504/IJVD.2015.069468
  17. LIU, Z. P., CHEN, X. B., WANG, X. M., et al. Communication analysis of integrated waveform based on LFM and MSK. IET Conference Proceedings. Hangzhou (China), 2015, p. 1–5. DOI: 10.1049/cp.2015.1017
  18. ZHAO, Z., JIANG, D. A novel integrated radar and communication waveform based on LFM signal. In IEEE International Conference on Electronics Information and Emergency Communication. Beijing (China), 2015, p. 219–223. DOI: 10.1109/ICEIEC.2015.7284525
  19. AULIN, T., RYDBECK, N., SUNDBERG, C. Continuous phase modulation - part II: Partial response signaling. IEEE Transactions on Communications, 1981, vol. 29, no. 3, p. 210–225. DOI: 10.1109/TCOM.1981.1094985
  20. LI, Q., DAI, K., ZHANG, Y., et al. Integrated waveform for a joint radar-communication system with high-speed transmission. IEEE Wireless Communications Letters, 2019, vol. 8, no. 4, p. 1208–1211. DOI: 10.1109/LWC.2019.2911948
  21. ZHANG, Y., LI, Q., HUANG, C., et al. A modified waveform design for radar-communication integration based on LFM-CPM. In IEEE 85th Vehicular Technology Conference (VTC Spring). Sydney (USA), 2017, p. 1–5. DOI: 10.1109/VTCSpring.2017.8108563
  22. ZHANG, Y., LI, Q., HUANG, C., et al. Waveform design for joint radar-cmmunication with nonideal power amplifier and outband interference. In IEEE Wireless Communications and Networking Conference (WCNC). San Francisco (USA), 2017, p. 1–6. DOI: 10.1109/WCNC.2017.7925543
  23. LIU, Y., CAO, N., MAO, M. H., et al. Novel radar and communication integration waveform based on shaped octal phase-shift keying modulation. Physical Communication, 2020, vol. 38, p. 1874–4907. DOI: 10.1016/j.phycom.2019.100985
  24. SAHIN, C., JAKABOSKY, P. M., MCCORMICK, J. G., et al.Anovel approach for embedding communication symbols into physical radar waveforms. In IEEE Radar Conference (RadarConf). Seattle (USA), 2017, p. 1498–1503. DOI: 10.1109/RADAR.2017.7944444
  25. CAMPANELLA, M., GARBO, G., MAMOLA, G., et al. A study on spectral optimisation in partial response CPM signals. European Transactions on Telecommunications, 1995, vol. 6, no. 2, p. 153–159. DOI: 10.1002/ett.4460060207
  26. LEVANON, N., MOZESON, E. Radar Signals. John Wiley & Sons, 2004. ISBN: 9780471473787
  27. ZEPERNICK, H. J., FINGER, A. Pseudo Random Signal Processing: Theory and Application. John Wiley & Sons, 2013. ISBN: 9780470866573
  28. AHMED, E. T., ALI, M., SARKAR, M. Z. I., et al. BER performance analysis of rayleigh fading channel in an outdoor environment with MLSE In International Conference on Electrical and Computer Engineering (ICECE). Dhaka (Bangladesh), 2012, p. 157–160. DOI: 10.1109/ICECE.2012.6471509
  29. KHAN, M. N., HASNAIR, S. K., JAMIL, M., et al. Electronic Signals and Systems Analysis, Design and Applications International Edition. River Publishers, 2020. ISBN: 8770221707
  30. MEN, H. Z., SONG, Z. Q., LIAO, G. S., et al. Ambiguity function analysis of radar-communication integrated waveform based on FDM and TDM technologies. Artificial Intelligence for Communications and Networks, 2019, vol. 286, p. 293-307. DOI: 10.1007/978-3-030-22968-9_26

Keywords: LFM, joint communication-radar, adaptive waveform design, ambiguity function, bit error rate (BER)