Vortex fields carrying orbital angular momentum are robust with respect to a wide range of external disturbances and exhibit self-healing properties. These peculiar characteristics have been deeply investigated at optical frequencies but only a few of them have been observed at microwaves. In this paper, we try to partially fill this gap by investigating the topological characteristics of vortex fields radiated by standard patch antennas. In particular, we describe the behavior of a vortex mode when a metallic screen is placed in the near field of the radiating patch. Through a proper set of full-wave numerical simulations, we show that the main characteristics of the vortex mode, i.e. the spiral phase profile and the amplitude null, are preserved even if the overall radiated field is strongly perturbed by the obstacle.
YAO, A. M., PADGETT, M. J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, vol. 3, p. 161–204. DOI: 10.1364/AOP.3.000161
BEIJERSBERGEN, M. W., COERWINKEL, R. P. C., KRISTENSEN, M., et al. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, vol. 112, no. 5–6, p. 321–327. DOI: 10.1016/0030-4018(94)90638-6
BAZHENOV, V. Y., VASNETSOV, M. V., SOSKIN, M. S. Laser beams with screw dislocations in their wavefronts. Journal of Experimental and Theoretical Physics Letters, 1990, vol. 52, no. 8, p. 429–431.
HEMSING, E., KNYAZIK, A., DUNNING, M., et al. Coherent optical vortices from relativistic electron beams. Nature Physics, 2013, vol. 9, p. 549–553. DOI: 10.1038/nphys2712
THIDE, B., THEN, H., SJOHOLM, J., et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, vol. 99, no. 8, p. 1–4. DOI: 10.1103/PhysRevLett.99.087701
TAMBURINI, F., MARI, E., SPONSELLI, A., et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 2012, vol. 14, p. 1–17. DOI: 10.1088/1367-2630/14/3/033001
TAMBURINI, F. MARI, E., THIDE, B., et al. Experimental verification of photon angular moment and vorticity with radio techniques. Applied Physics Letters, 2011, vol. 99, no. 20, p. 204102-1–204102-3. DOI: 10.1063/1.3659466
BARBUTO, M., TOSCANO, A. BILOTTI, F. Single patch antenna generating electromagnetic field with orbital angular momentum. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando (FL, USA), 2013, p. 1866–1867. DOI: 10.1109/APS.2013.6711591
LIN, M., GAO, Y., LIU, P., et al. Super-resolution orbital angular momentum based radar targets detection. Electronics Letters, 2016, vol. 52, no. 13, p. 1168–1170. DOI: 10.1049/el.2016.0237
BARBUTO, M., BILOTTI, F., TOSCANO, A. Patch antenna generating structured fields with a Mobius polarization state. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1345–1348. DOI: 10.1109/LAWP.2016.2634081
BARBUTO, M., MIRI, M.-A., ALÙ, A., et al. Exploiting the topological robustness of composite vortices in radiation systems. Progress In Electromagnetics Research, 2018, vol. 162, p. 39–50. DOI: 10.2528/PIER18033006
GALVEZ, E. J., SMILEY, N., FERNANDES, N. Composite optical vortices formed by collinear Laguerre-Gauss beams. Proceedings of SPIE 6131, Nanomanipulation with Light II, 613105, Feb. 9, 2006. DOI: 10.1117/12.646074
VASNETSOV, M. V., MARIENKO, I. G., SOSKIN, M. S. Selfreconstruction of an optical vortex. Journal of Experimental and Theoretical Physics Letters, 2000, vol. 71, no. 4, p. 130–133. DOI: 10.1134/1.568297
BARBUTO, M., TROTTA, F., BILOTTI, F., et al. Circular polarized patch antenna generating orbital angular momentum. Progress In Electromagnetics Research, 2014, vol. 148, p. 23–30. DOI: 10.2528/PIER14050204
Modeling curved metasurface structures represents a computing challenge due to the complexity of considered designs. This creates a need for specialized efficient analysis methods. An approach that combines the spectral-domain field representation and surface sheet impedance concept is proposed. The considered cascaded cylindrical metasurface structures can span across only a part of a canonical surface and unit cell elements can vary along the metasurface, giving a spatially-varying sheet impedance. The analysis method is experimentally verified against a cylindrical metasurface for shaping the feed antenna beam. The problem of manufacturing curved metasurfaces is also discussed in the paper.
HOLLOWAY, C. L., KUESTER, E.F., GORDON, J., et al. An overview of the theory and applications of metasurfaces: The twodimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 2, p. 10–35. DOI: 10.1109/MAP.2012.6230714
PFEIFFER C., GRBIC, A. Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis. Physical Review Applied, 2014, vol. 2, no. 4, p. 1–11. DOI: 10.1103/PhysRevApplied.2.044011
PFEIFFER C., GRBIC, A. Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, vol. 110, no. 19, p. 1–5. DOI: 10.1103/PhysRevLett.110.197401
MUNK, B. A. Frequency Selective Surfaces: Theory and Design. John Wiley& Sons, 2005. ISBN: 978-0471370475
MACI, S., MINATTI, G., CASALETTI, M., et al. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1499–1502. DOI: 10.1109/LAWP.2012.2183631
KUESTER, E. F., MOHAMED, M. A., PIKET-MAY, M., et al. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2641–2651. DOI: 10.1109/TAP.2003.817560
ZHAO, Y., BELKIN, M. A., ALÙ, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications, 2012, vol. 3, p. 870–876. DOI: 10.1038/ncomms18
PFEIFFER, C., GRBIC, A. Cascaded metasurfaces for complete phase and polarization control. Applied Physics Letters, 2013, vol. 102, no. 23, p. 1–4. DOI: 10.1063/1.4810873
MONTICONE, F., ESTAKHRI, N. M., ALÙ, A. Full control of nanoscale optical transmission with a composite metascreen. Physical Review Letters, 2013, vol. 110, p. 1–5. DOI:10.1103/PhysRevLett.110.203903
NIEMI, T., KARILAINEN, A., TRETYAKOV, S. Synthesis of polarization transformers. IEEE Transactions on Antennas and Propagations, 2013, vol. 61, no. 6, p. 3102–3111. DOI: 10.1109/TAP.2013.2252136
SELVANAYAGAM, M., ELEFTHERIADES, G.V. Polarization control using tensor Huygens surfaces. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6155–6168. DOI: 10.1109/TAP.2014.2359208
PATEL, A. M., GRBIC, A. Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 5, p. 1102–1111. DOI: 10.1109/TMTT.2014.2314440
ELEK, F., TIERNEY, B. B., GRBIC, A. Synthesis of printedcircuit tensor impedance surfaces controlling phase and power flow. IEEE Transactions on Antennas and Propagations, 2015, vol. 63, no. 9, p. 3956–3962. DOI: 10.1109/TAP.2015.2448234
RAEKER, B. O., RUDOLPH, S. M. Arbitrary transformation of antenna radiation using a cylindrical impedance metasurface. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1101–1104. DOI: 10.1109/LAWP.2015.2494739
RAEKER, B. O., RUDOLPH, S. M. Verification of arbitrary radiation pattern control using a cylindrical impedance metasurface. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 995–998. DOI: 10.1109/LAWP.2016.2616106
CHEN, P.-Y., ALÙ, A. Mantle cloaking using thin patterned metasurfaces. Physical Review B, 2011, vol. 84, p. 1–13. DOI: 10.1103/PhysRevB.84.205110
PADOORU, Y. R., YAKOVLEV, A. B., CHEN, P.-Y., et al. Linesource excitation of realistic conformal metasurface cloaks. Journal of Applied Physics, 2012, vol. 112, no. 10, p. 1–11. DOI: 10.1063/1.4765688
SORIC, J. C., MONTI, A., TOSCANO, A., et al. Dual-polarized reduction of dipole antenna blockage using mantle cloaks. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 4827–4834. DOI: 10.1109/TAP.2015.2476468
VELLUCCI, S., MONTI, A., TOSCANO, A., et al. Scattering manipulation and camouflage of electrically small objects through metasurfaces. Physical Review Applied, 2017, vol. 7, p. 1–12. DOI: 10.1103/PhysRevApplied.7.034032
SIPUS, Z., BOSILJEVAC, M., GRBIC, A. Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 7, p. 1041–1047. DOI: 10.1049/iet-map.2017.0465
HANSEN, J. E. (ed.) Spherical Near-Field Antenna Measurements. Stevenage (U.K.): Peregrinus, 1988. ISBN: 9780863411106
SIPUS, Z., KILDAL, P.-S., LEIJON, R., et al. An algorithm for calculating Green’s functions for planar, circular cylindrical and spherical multilayer substrates. Applied Computational Electromagnetics Society Journal, 1998, vol. 13, no. 3, p. 243–254.
KILDAL, P.-S., SIPUS, Z., YANG, J., et al. Useful physical images and algorithms for vector dyadic Green’s functions in 3D spatial, 2D spectral and 1D spectral domains for solving multilayer and multiregion field problems. IEEE Antennas and Propagation Magazine, 2017, vol. 59, no. 4, p. 106–116. DOI: 10.1109/MAP.2017.2706665
TRETYAKOV, S. A. Analytical Modeling in Applied Electromagnetics. Norwood: Artech House, 2003. ISBN: 978-1630812836
In the present work, an improved phaseless approach to microwave imaging is presented. Starting from the Contrast Source formulation of the scattering problem, a single-step procedure with no intermediate phase-retrieval process is described. The reconstruction capabilities of the proposed phaseless inverse method are numerically validated by firstly considering simple dielectric targets. Then, a slice breast model with the inclusion of a cancerous portion is analyzed. The identification of different types of breast tissue is successfully achieved, thus confirming the validity and potentialities of the proposed phaseless technique in the framework of biomedical imaging.
BELLIZZI, G., BUCCI, O. M., CATAPANO, I. Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent. IEEE Transactions on Biomedical Engineering, 2011, vol. 58, no. 9, p. 2528–2536. DOI: 10.1109/TBME.2011.2158544
COSTANZO, S., LOPEZ, G. Single-step approach to phaseless contrast-source inverse scattering. In Rocha, A., Adeli, H., Reis, L., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, 2019, vol. 932, p. 278–283. DOI: 10.1007/978-3-030-16187-3_27
VAN DEN BERG, P. M., ABUBAKAR, A. Contrast source inversion method: State of art. Journal of Electromagnetic Waves and Applications, 2001, vol. 15, no. 11, p. 1503–1505. DOI: 10.1163/156939301X00067
VAN DEN BERG, P. M., KLEINMAN, R. E. A contrast source inversion method. Inverse Problems, 1997, vol. 13, no. 6, p. 1607–1620. DOI: 10.1088/0266-5611/13/6/013
NIKOLOVA, N. K. Scalar-wave models in electromagnetic scattering. In Introduction to Microwave Imaging. Cambridge: Cambridge University Press, 2017, p. 1–110. DOI: 10.1017/9781316084267.002
COSTANZO, S., DI MASSA, G., PASTORINO, M., et al. Noninvasive microwave characterization of dielectric scatterers. In Costanzo, S. (ed.) Microwave Materials Characterization. InTech, 2012, p. 38–50. DOI: 10.5772/50842
COLTON, D., KRESS, R. The Helmholtz equation. In Inverse Acoustic and Electromagnetic Scattering Theory, 2013, p. 13–38. DOI: 10.1007/978-1-4614-4942-3_2
BURGEL, F., KAZIMIERSKI, K. S., LECHLEITER, A. IPscatt - a MATLAB Toolbox for the Inverse Medium Problem in Scattering. 2017.
TSUBURAYA, T., MENG, Z., TAKENAKA, T. Inverse scattering analysis from measurement data of total electric and magnetic fields by means of cylindrical-wave expansion. Electronics, 2019, vol. 8, no. 4, p. 1–11. DOI: 10.3390/electronics8040417
ZHENG, H., LI, L., LI, F. A multi-frequency MRCSI algorithm with phaseless data. Inverse Problems, 2009, vol. 25, no. 6, p. 1–13. DOI: 10.1088/0266-5611/25/6/065006
LI, L., ZHENG, H., LI, F. Two-dimensional contrast source inversion method with phaseless data: TM case. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 6, p. 1719–1736. DOI: 10.1109/TGRS.2008.2006360
D’URSO, M., BELKEBIR, K., CROCCO, L., et al. Phaseless imaging with experimental data: Facts and challenges. Journal of the Optical Society of America A, 2008, vol. 25, no. 1, p. 271–281. DOI: 10.1364/JOSAA.25.000271
GEFFRIN, J. M., SABOUROUX, P., EYRAUD, C. Free space experimental scattering database continuation: Experimental set-up and measurement precision. Inverse Problems, 2005, vol. 21, no. 6, p. S117–S130. DOI: 10.1088/0266-5611/21/6/S09
BELKEBIR, K., SAILLARD, M. Special section: Testing inversion algorithms against experimental data. Inverse Problems, 2001, vol. 17, no. 6, p. 1565–1571. DOI: 10.1088/0266- 5611/17/6/301
COMSOL Multiphysics®. v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden
LAZEBNIK, M., POPOVIC, D., MC CARTNEY, L., et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine and Biology, 2007, vol. 52, no. 20, p. 6093–6115. DOI: 10.1088/0031-9155/52/20/002
Reliable inverse imaging of source currents in rat’s brain requires sufficiently accurate and CPU-time moderate forward models of fields to calibrate inverse solvers. In this paper, we compare different mathematical formulations of the electromagnetic problem related to the analysis of brain waves (static, quasi-static, full-wave) and various meshes differing in the density, the type and the geometrical accuracy. A sufficiently accurate model of brain waves is then completed by the cerebrospinal fluid and the skull. The resultant composite model of rat’s head with properly set electrical parameters has to be calibrated by the outputs of measurements. That way, a realistic electromagnetic model of the head of a live rat can be obtained.
HE, B. Neural Engineering. 1st ed., rev. New York (USA): Kluwer Academic/Plenum, 2005. ISBN: 978-0-306-48609-8
KURATKO, D., RAIDA, Z., CUPAL, M., et al. Electromagnetic modelling of rat’s brain: comparison of models and solvers. In Proceedings of the International Workshop on Computing, Electromagnetics, and Machine Intelligence (CEMi 2018). Stellenbosch (South Africa), 2018, p. 31–32. DOI: 10.1109/cemi.2018.8610569
RAMIREZ, R. R. Source localization. Scholarpedia, vol. 3, no. 11. DOI: 10.4249/scholarpedia.1733 [Online] Cited 2018-11-12. Available at: http://www.scholarpedia.org/article/Source_localization
HALLEZ, H., VANRUMSTE, B., GRECH, R., et al. Review of solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 2007, vol. 4, no. 1, p. 1–29. DOI: 10.1186/1743-0003-4-46
GOTO, T., HATANAKA, R., OGAWA, T., et al. An evaluation of the conductivity profile in the somatosensory barrel cortex of wistar rats. Journal of Neurophysiology, 2010, vol. 104, no. 6, p. 3388–3412. DOI: 10.1152/jn.00122.2010
BRETTE, R., DESTEXHE, A. Handbook of Neural Activity Measurement. 1st ed., rev. Cambridge (UK): Cambridge University Press, 2012. ISBN: 978-0-521-51622-8
POHL, B. M., GASCA, F., HOFMANN, U. G. IGES and .STL File of Rat Brain. [Online] Cited 2018-11-12. Available at: https: //figshare.com/articles/IGES_and_stl_file_of_a_rat_brain/823546
PAPP, E. A., LEERGAARD, T. B., CALABRESE, E., et al. Waxholme space atlas of the Sprague Dawley rat brain. NeuroImage, 2014, vol. 97, p. 374–376. DOI: 10.1016/j.neuroimage.2014.04.001
KJONIGSEN, L. J., LILLEHAUG, S., BJAALIE, J. G., et al. Waxholm Space atlas of the rat brain hippocampal region: Threedimensional delineations based on magnetic resonance and diffusion tensor imaging. NeuroImage, 2015, vol. 108, p. 441–449. DOI: 10.1016/j.neuroimage.2014.12.080.
SERGEJEVA, M., PAPP, E. A., BAKKER, R., et al. Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. Journal of Neuroscience Methods, 2015, vol. 240, p. 161–169. DOI: 10.1016/j.jneumeth.2014.11.005
JAIN, S., MITTRA, R., WIART, J. Full-wave modeling of brain waves as electromagnetic waves. Progress in Electromagnetic Research, 2015, vol. 151, p. 95–107. DOI: 10.2528/PIER15011404
. CST Studio Suite 2018 [Online] Cited 2018-11-12. Available at: https://www.cst.com/
NUNEZ, P. L., SRINIVASAN, R. Electric Fields of the Brain: The Neurophysics of EEG. 2nd ed. rev. New York (USA): Oxford University Press, 2006. ISBN 9780195050387
BUZSAKI, G. Rhythms of the Brain. 1st ed., rev. New York (USA): Oxford University Press, 2006. ISBN: 9780199828234
. Blender. [Online] Cited 2018-11-12. Available at: https://www.blender.org/
. MeshLab. [Online] Cited 2018-11-12. Available at: http://www.meshlab.net/
. Autodesk MeshMixer. [Online] Cited 2018-11-12. Available at: http://www.meshmixer.com/
. Autodesk Fusion 360. [Online] Cited 2018-11-12. Available at: https://www.autodesk.com/products/fusion-360/overview
SCHIMPF, P. H., RAMON, C., HAUEISEN, J. Dipole models for the EEG and MEG. IEEE Engineering in Medicine and Biology Society, 2002, vol. 49, no. 5, p. 409–418. DOI: 10.1109/10.995679
GUTIERREZ, Z., NEHORAI, A., MURAVCHIK, C. H. Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Transaction on Biomedical Engineering, 2004, vol. 51, no. 12, p. 2113–2122. DOI: 10.1109/TBME.2004.836507
LAI, Y., VAN DRONGELEN, W., DING, L., et al. Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clinical Neurophysiology, 2005, vol. 116, no. 2, p. 456–465. DOI: 10.1016/j.clinph.2004.08.017
ANDREUCCETTI, D., FOSSI, R., PETRUCCI, C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. [Online] IFAC-CNR. Florence (Italy). 1997. Based on data published by C. Gabriel et al. in 1996. Available at: http://niremf.ifac.cnr.it/tissprop/
A multi-input multi-output (MIMO) antenna with high isolation capability is proposed in this paper. The proposed MIMO antenna configuration is composed of two monopole antennas, each of them consists of a single rectangular grounded coplanar waveguide (GCPW) feed line, a radiation patch with two arms, two conductive elements on both sides of the feed line, and a simple ground plane on substrate backside. The overall size of the proposed MIMO antenna is 44×20 mm2 on 1.6 mm thick FR4 substrate which is more compact than many of the previously designed structures. The arrangement of two monopole antennas in the form of a MIMO antenna topology yield a dual-band operation in which the first bandwidth is in 3.06-3.89 GHz with the central frequency at 3.5 GHz for WiMAX applications, and 5.14-5.93 GHz with central frequency of 5.5 GHz for WLAN applications. Interestingly the obtained isolation level is better than -20 dB over the operating bandwithds. Simulation and measured results confirm the antenna outperformance in WiMAX and WLAN frequency range in wireless portable applications. Small size, simple structure, and high isolation without any decoupling elements are some of the advantages of the proposed design.
WEN, D., HAO, Y., MUNOZ, M. O., et al. A compact and lowprofile MIMO antenna using a miniature circular high-impedance surface for wearable applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 96–104. DOI: 10.1109/TAP.2017.2773465
LEE, J., HONG, Y.K., BAE, S., et al. Miniature Long-Term Evolution (LTE) MIMO ferrite antenna. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 603–606. DOI: 10.1109/LAWP.2011.2159468
AZARM, B., NOURINIA, J., GHOBADI, C., et al. A compact WiMAX band-notched UWB MIMO antenna with high isolation. Radioengineering, 2018, vol. 27, no. 4, p. 983–989. DOI: 10.13164/re.2018.0983
ZHANG, Z. L., WEI, K., XIE, J., et al. The MIMO antenna array with mutual coupling reduction and cross-polarization suppression by defected ground structures. Radioengineering, 2018, vol. 27, no. 4, p. 969–975. DOI: 10.13164/re.2018.0969
LUO, C. M., HONG, J. S., ZHONG, L. L. Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1766–1769. DOI: 10.1109/LAWP.2015.2423318
LIN, G. S., SUNG, C. H., CHEN, J. L., et al. Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 222–225. DOI: 10.1109/LAWP.2016.2570301
DENG, J. Y., LI, J. Y., ZHAO, L., GUO, L. A dual-band invertedF MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2270–2273. DOI: 10.1109/LAWP.2017.2713986
BARANI, I. R. R., WONG, K. L. Integrated inverted-F and openslot antennas in the metal-framed smartphone for 2×2 LTE LB and 4×4 LTE M/HB MIMO operations. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 10, p. 5004–5012. DOI: 10.1109/TAP.2018.2854191
DIOUM, I., DIALLO, A., FARSSI, S. M., LUXEY, C. A novel compact dual-band LTE antenna-system for MIMO operation. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 2291–2296. DOI: 10.1109/TAP.2014.2301151
KWON, O. Y., SONG, R., KIM, B. S. A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, p. 600–603. DOI: 10.1109/LAWP.2018.2805681
SRIVASTAVA, G., MOHAN, A. Compact MIMO slot antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1057–1060. DOI: 10.1109/LAWP.2015.2491968
REN, J., HU, W., YIN, Y., FAN, R. Compact printed MIMO antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1517–1520. DOI: 10.1109/LAWP.2014.2343454
POUYANFAR, N., GHOBADI, CH., NOURINIA, J., et al. A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radioengineering, 2018, vol. 27, no. p. 686–693. DOI: 10.13164/re.2018.0686
QUDDUS, A., SALEEM, R., SHAFIQUE, M. F., et al. Compact electronically reconfigurable WiMAX band-notched ultrawideband MIMO antenna. Radioengineering, 2018, vol. 27, no. 4, p. 998–1005. DOI: 10.13164/re.2018.0998
LIAO, W. J., HSIEH, C. Y., DAI, B. Y., et al. Inverted-F/slot integrated dual-band four-antenna system for WLAN access points. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 847–850. DOI: 10.1109/LAWP.2014.2381362
LUO, C. M., HONG, J. S., AMIN, M. Mutual coupling reduction for dual-band MIMO antenna with simple structure. Radioengineering, 2017, vol. 26, no. 1, p. 51–56. DOI: 10.13164/re.2017.0051
CHANDEL, R., KUMAR GAUTAM, A., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with a dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134
A microstrip ring antenna has a single broadside fundamental radiating mode. In this communication one of the arms of the ring has been loaded with two stubs, so that the perturbation in the fields results in broadside radiation in the next two higher order modes. This results in three broadside radiating modes. Gap coupled excitation is chosen to achieve impedance matching in all the three frequency bands. Linearly polarized radiation with gain of 2.88 dB, 4.67 dB and 6.07 dB and half-power beamwidth of 89.6°, 76.3° and 79° in the φ=90º plane has been achieved at the center frequencies of 0.9526 GHz, 1.833 GHz and 2.468 GHz respectively. This structure has been analyzed using multiport network modeling. The modeling is vindicated by experimental results.
LEE, K. F., YANG, S. L. S., KISHK, A. A. Dual- and multiband U-slot patch antennas. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 645–647. DOI: 10.1109/LAWP.2008.2010342
DAVIDSON, S. E., LONG, S. A., RICHARDS, W. F. Dual-band microstrip antennas with monolithic reactive loading. Electronics Letters, 1985, vol. 21, no. 20, p. 936–937. DOI: 10.1049/el:19850662
POLIVKA, M. Design of dualband quarter-wavelength patch antenna by tuning its natural resonances. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Honolulu (USA), June 2007, p. 996–999. DOI: 10.1109/APS.2007.4395664
SHAFAI, L. Characteristics of printed ring microstrip antennas. In Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics. Montreal (Canada), August 1996, p. 379–382. ISBN: 978-0-9692563-5-9
BAFROOEI, P. M., SHAFAI, L. Characteristics of single- and double-layer microstrip square-ring antennas. IEEE Antennas and Wireless Propagation Letters, 1999, vol. 47, no. 10, p. 1633–1639. DOI: 10.1109/8.805910
VINOY, K. J., PAL, A. Dual-frequency characteristics of Minkowski square ring antennas. IET Microwave, Antennas and Propagation, 2010, vol. 4, no. 2, p. 219–224. DOI: 10.1049/ietmap.2008.0202
WAKATSUKI, H., KIMURA, Y., HANEISHI, M. Single-layer multiband ring microstrip antennas fed by a co-planar waveguide. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Orlando (USA), July 2013, p. 926–927. DOI: 10.1109/APS.2013.6711122
DESHMUKH, A. A., RAY, K. P. Broadband proximity-fed square-ring microstrip antennas. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 2, p. 89–107. DOI: 10.1109/MAP.2014.6837068
LATIF, S. I., SHAFAI, L. Microstrip square-ring antenna with capacitive feeding for multi-frequency operation. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. San Diego (USA), July 2008, p. 1–4. DOI: 10.1109/APS.2008.4620008
PUSKELY, J., YAROVOY, A. G., ROEDERER, A. G. Two-port dual-band microstrip square ring antenna for radar applications. In Proceedings of the European Conference on Antennas and Propagations. Davos (Switzerland), April 2016, p. 1–5. DOI: 10.1109/EuCAP.2016.7481539
CHEN, W. S., WU, C. K., WONG, K. L. Square-ring microstrip antenna with a cross strip for compact circular polarization operation. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 10, p. 1566–1568. DOI: 10.1109/8.805900
TONG, K. F. A new single-fed proximity coupled circularly polarized square ring antenna. In Proceedings of the Asia-Pacific Microwave Conference. Yokohama (Japan), December 2006, p. 69–72. DOI: 10.1109/APMC.2006.4429381
DESHMUKH, A. A., RAY, K. P., CHINE, P. N. Multi-band stub loaded square ring microstrip antennas. In Proceedings of the Applied Electromagnetics Conference (AEMC). Kolkata (India), December 2009, p. 1–4. DOI: 10.1109/AEMC.5430706
BEHERA, S., VINOY, K. J. Microstrip square ring antenna for dualband operation. Progress in Electromagnetics Research, 2009, vol. 93, p. 41–56. DOI: 10.2528/PIER09021909
CHADHA, R., GUPTA, K. C. Segmentation method using impedance matrices for analysis of planar microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 1, p. 71–74. DOI: 10.1109/TMTT.1981.1130292
GUPTA, K. C., SHARMA, P. C. Segmentation and desegmentation techniques for analysis of planar microstrip antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Los Angeles (USA), June 1981, vol. 19, p. 19–22. DOI: 10.1109/APS.1981.1148597
SHARMA, P. C., GUPTA, K. C. Desegmentation method for analysis of two-dimensional microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 10, p. 1094–1098. DOI: 10.1109/TMTT.1981.1130504
PALANISAMY, V., GARG, R. Analysis of circularly polarized square ring and cross-strip microstrip antennas. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 11, p. 1340–1346. DOI: 10.1109/TAP.1986.1143766
BENALLA, A., GUPTA, K. C. Multiport network model for twoport gap-coupled rectangular microstrip patches. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Ontario (Canada), June 1991, vol. 1, p. 64–67. DOI: 10.1109/APS.1991.174774
BEHERA, S., VINOY, K. J. Multi-port network modeling of stub loaded microstrip ring antenna for dual-band operations. In Proceedings of the IEEE Asia Pacific Conference on Antennas and Propagation. Singapore, August 2012, p. 233–234. DOI: 10.1109/APCAP.2012.6333243
GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. 1st ed. Artech House, 2001. ISBN: 0–89006–513–6
OKOSHI, T., MIYOSHI, T. The planar circuit – an approach to microwave integrated circuitry. IEEE Transactions on Microwave Theory and Techniques, 1972, vol. 20, no. 4, p. 245–252. DOI: 10.11109/TMTT.1972.1127730
JAMES, J. R., HALL, P. S. Handbook of Microstrip Antennas. 2nd ed. Peter Peregrinus Ltd., 1989. ISBN: 0–86341–150–9
BEDAIR, S. S. Characteristics of some asymmetrical coupled transmission lines. IEEE Transactions on Microwave Theory and Techniques, 1984, vol. 32, no. 1, p. 108–110. DOI: 10.1109/TMTT.1984.1132620
PALANISAMY, V., GARG, R. Analysis of arbitrary shaped microstrip patch antennas using segmentation technique and cavity model. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 10, p. 1208–1213. DOI: 10.1109/TAP.1986.1143737
www.cst.com
KUMAR, G., GUPTA, K. C. Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges. IEEE Transactions on Antennas and Propagation, 1984, vol. 32, no. 12, p. 1375–1379. DOI: 10.1109/TAP.1984.1143264
KUMAR, G., GUPTA, K. C. Non radiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas. IEEE Transactions on Antennas and Propagation, 1985, vol. 33, no. 2, p. 173–178. DOI: 10.1109/TAP.1985.1143563
HOSSAIN, M. M., WAHED, M. A., MOTIN, M. A. Design and simulation of a dual-frequency E-shaped microstrip patch antenna for wireless communication. In Proceedings of the 9th International Forum on Strategic Technology. Cox’s Bazar (Bangladesh), October 2014, p. 183–186. DOI: 10.1109/IFOST.2014.6991100
ABU, M., RAHIM, M. K. A., AYOP, O. Slotted e-shape antenna design for dual frequency operation. In Proceedings of the 3rd European Conference on Antennas and Propagation. Berlin (Germany), March 2009, p. 2416–2419. ISBN: 978-3-00-024573-2
ATA, O. W., SALAMIN, M., ABUSABHA, K. Double U-slot rectangular patch antenna for multiband applications. In Proceedings of the International Symposium on Advanced Electrical and Communication Technology. Rabat (Morocco), November 2018, p. 1–6. DOI: 10.1109/ISAECT.2018.8618855
Keywords: Broadside radiation, gap–coupling, microstrip ring antenna, multiport network model
A compact ultra-wideband (UWB) printed slot antenna with additional bands of 870-960 MHz, 1.67-1.84 GHz, 2.33-2.57 GHz for GSM-900, GSM-1800 and Bluetooth respectively along with WiMAX band rejection functionality at 3.27-4.02 GHz is presented for various wireless applications. A simple circular patch fed by a trapezoidal-shaped microstrip line is conceived to cover entire UWB (3-10.5 GHz). Three additional bands have been accommodated by incorporating two pairs of spider arm-shaped resonators at the top of the slotted ground. Coupling between the extended feed line and extended back resonator is used to acquire a stop band characteristic for the reduction of possible interference between WiMAX and UWB bands. Moreover, an arc-shaped resonator and a cross-shaped slot on the feed line are conceived to enhance the bandwidth of the UWB. The proposed design is simple in structure and compact with an overall dimension of 50×50×1.6 mm3, hence length is only 0.046λ with respect to the lower edge frequency (3 GHz) of the UWB. The simulated and measured results are in good agreement that ensures the potentiality of the proposed antenna structure for UWB and multiservice wireless applications.
FEDERAL COMMUNICATIONS COMMISSION. Federal Communication Commission Revision of Part 15 of Commission’s Rules Regarding Ultra-wideband Transmission Systems. First Report and Order FCC, 02. V48, Washington, DC, USA, 2002.
LIANG, J., CHIAU, C. C., CHEN, X., et al. Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 2004, vol. 40, p. 1246–1247. DOI: 10.1049/el:20045966
AHMED, O., SEBAK, A. R. A printed monopole antenna with two steps and a circular slot for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 411–413. DOI: 10.1109/LAWP.2008.2001026
CHENG, S., HALLBJORNER, P., RYDBERG, A. Printed slot planar inverted cone antenna for ultra-wideband applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 18–21. DOI: 10.1109/LAWP.2007.914115
MISHRA, R., JAYASINGHE, J., MISHRA, R. G., et al. Design and performance analysis of a rectangular microstrip line feed ultra-wide band antenna. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, vol. 9, no. 6, p. 419–426. DOI: 10.14257/ijsip.2016.9.6.36
OJAROUDI, N., OJAROUDI, M. Novel design of dual bandnotched monopole antenna with bandwidth enhancement for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 698–701. DOI: 10.1109/LAWP.2013.2264713
ACHARJEE, J., MANDAL, K., MANDAL, S. K., et al. A compact printed monopole antenna with enhanced bandwidth and variable dual band notch for UWB applications. Journal of Electromagnetic Waves and Applications, 2016, vol. 60, p. 1980–1992. DOI: 10.1080/09205071.2016.1234419
KUNDU, S., CHATTERJEE, A., JANA, S. K., et al. A high gain dual notch compact UWB antenna with minimal dispersion for ground penetrating radar application. Radioengineering, 2018, vol. 27, no. 4, p. 990–997. DOI: 10.13164/re.2018.0990
LIN, C., JIN, P., ZIOLKOWSKI, R. Single, dual and tri-bandnotched ultra-wideband (UWB) antennas using capacitively loaded loop (CLL) resonators. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 102–109. DOI: 10.1109/TAP.2011.2167947
KUNDU, S., JANA, S. K. Leaf‐shaped CPW‐fed UWB antenna with triple notch bands for ground penetrating radar applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 4, p. 930–936. DOI: 10.1002/mop.31075
KAHNG, S., SHIN, E. C., JANG, G. H., et al. A UWB antenna combined with the CRLH metamaterial UWB bandpass filter having the bandstop at the 5 GHz-band WLAN. In IEEE Antennas and Propagation Society International Symposium. Charleston (SC, USA), June 2009. DOI: 10.1109/APS.2009.5172114
YILDIRIM, B. S., CETINER, B. A., ROQUETA, G., et al. Integrated Bluetooth and UWB antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 149–152. DOI: 10.1109/LAWP.2009.2013371
GORAI, A., PAL, M., GHATAK, R. A compact fractal-shaped antenna for ultra-wideband and Bluetooth wireless systems with WLAN rejection functionality. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2163–2166. DOI: 10.1109/LAWP.2017.2702208
YADAV, S., GAUTAM, A. K., KANAUJIA, B. K., et al. Design of band-rejected UWB planar antenna with integrated Bluetooth band. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 14, p. 1528–1533. DOI: 10.1049/iet-map.2016.0118
SAMADI TAHERI, M. M., HASSANI, H. R., NEZHAD, S. M. A. UWB printed slot antenna with Bluetooth and dual notch bands. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 255–258. DOI: 10.1109/LAWP.2011.2119391
SRIVASTAVA, K., KUMAR, A., KANAUJIA, B. K., et al. Integrated GSM-UWB Fibonacci-type antennas with single, dual, and triple notched bands. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 6, p. 1004–1012. DOI: 10.1049/iet-map.2017.0074
REDDY, G. S., KAMMA, A., MISHRA, S. K., et al. Compact Bluetooth/UWB dual-band planar antenna with quadruple bandnotch characteristics. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 872–875. DOI: 10.1109/LAWP.2014.2320892
BOD, M., HASSANI, H. R., SAMADI TAHERI, M. M. Compact UWB printed slot antenna with extra Bluetooth, GSM and GPS bands. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 531–534. DOI: 10.1109/LAWP.2012.2197849
CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134
RISCO, S., ANGUERA, J., ANDUJAR, A., et al. Coupled monopole antenna design for multiband handset devices. Microwave and Optical Technology Letters, 2010, vol. 52, no. 2, p. 359–364. DOI: 10.1002/mop.24893
Keywords: UWB, printed antenna, extra bands, band rejection, GSM-900, WiMAX
This paper proposes a novel design of a triple band frequency selective surface (FSS) that acts as a bandstop filter at 1.92 GHz, 3.5 GHz and 5.64 GHz. The bandstop frequencies resemble to GSM, WLAN and WiMAX application bands respectively. The structure is polarization insensitive since its frequency response remains unaltered for both TE and TM modes of electromagnetic wave propagation. The main attractive feature of the structure is its highly stable response under oblique incident angle upto ± 800 at both TE and TM polarizations. Surface current distribution and equivalent circuit modelling are presented to demonstrate the resonance characteristic of the FSS. The structure is compact with an overall unit cell area of 0.09λ x 0.09λ, where λ is the wavelength corresponding to the lowest resonant frequency. The proposed structure is compared with other multi-bandstop FSS structures in literature to highlight its superior functionality in terms of stability under oblique incidence and compactness. A prototype comprising of 6 x 6 array of the proposed unit cell is fabricated and the measured results are in good agreement with the simulated results.
ZHAO, P., ZONG, Z., LI, B., et al. Miniaturised bandstop frequency selective surface based on quasi-lumped inductor and capacitor. Electronics Letters, 2017, vol. 53, no. 10, p. 642–644. DOI: 10.1049/el.2017.0548
ZHANG, K., JIANG, W., GONG, S. Design of bandpass frequency selective surface absorber using LC resonators. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2586–2589. DOI: 10.1109/LAWP.2017.2734918
KERN, D. J., WERNER, D. H., MONORCHIO, A., et al. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 8–17. DOI: 10.1109/TAP.2004.840540
ZHONG, T., ZHANG, H., WU, R., et al. A frequency selective surface with polarization rotation based on substrate integrated waveguide. Progress in Electromagnetics Research Letters, 2016, vol. 60, p. 121–125. DOI: 10.2528/PIERL16031502
GHOSH, A., MITRA, A., DAS, S. Meander line‐based low profile RIS with defected ground and its use in patch antenna miniaturization for wireless applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 3, p. 732–738. DOI: 10.1002/mop.30384
BILAL, M., SALEEM, R., SHABBIR, T., et al. A novel miniaturized FSS based electromagnetic shield for SATCOM applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 9, p. 2107–2112. DOI: 10.1002/mop.30696
LI, J., ZENG, Q., LIU, R., et al. A compact dual-band beamsweeping antenna based on active frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 4, p. 1542–1549. DOI: 10.1109/TAP.2017.2669719
LIU, N., SHENG, X. J., FAN, J. J. A compact miniaturized frequency selective surface with stable resonant frequency. Progress in Electromagnetics Research Letters, 2016, vol. 62, p. 17–22. DOI: 10.2528/PIERL16070608
GHOSH, S., SRIVASTAVA, K. V. An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 3, p. 218–220. DOI: 10.1109/LMWC.2017.2661683
CAN, S., KAPUSUZ, K. Y., YILMAZ, A. E. A dual-band polarization independent FSS having a transparent substrate for ISM and Wi-Fi shielding. Microwave and Optical Technology Letters, 2017, vol. 59, no. 9, p. 2249–2253. DOI: 10.1002/mop.30715
KHAJEVANDI, S., ORAIZI, H., POORDARAEE, M. Design of planar dual-bandstop FSS using square-loop-enclosing superformula curves. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 5, p. 731–734. DOI: 10.1109/LAWP.2018.2812698
NASROLLAHI, H., YEGANEH, A. N., SEDIGHY, S. H., et al. Compact, dual polarized, mutliband frequency selective surface with wideband spurious rejection. Microwave and Optical Technology Letters, 2017, vol. 59, no. 4, p. 888–893. DOI: 10.1002/mop.30420
LIU, N., SHENG, X., ZHANG, C., et al. A miniaturized triband frequency selective surface based on convoluted design. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2384–2387. DOI: 10.1109/LAWP.2017.2719859
POOJALI, J., RAY, S., PESALA, B., et al. Quad-band polarization-insensitive millimeter-wave frequency selective surface for remote sensing. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1796–1799. DOI: 10.1109/LAWP.2017.2679204
KARTAL, M., GOLEZANI, J. J., DOKEN, B. A triple band frequency selective surface design for GSM systems by utilizing a novel synthetic resonator. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2724–2727. DOI: 10.1109/TAP.2017.2670230
KARTAL, M., DOKEN, B. Triple band frequency selective surface design for global system for mobile communication systems. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 11, p. 1154–1158. DOI: 10.1049/iet-map.2016.0021
POZAR, D. M. Microwave Engineering. 4th ed., rev. Hoboken, New Jersey: John Wiley & Sons, 2012. ISBN: 978-81-265-4190-4
YILMAZ, A. E, KUZUOGLU, M. Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering, 2009, vol. 18, no. 2, p. 95–102. ISSN 1210-2512
CPW-fed zigzag monopole radiators can be used to excite wide slots etched on the CPW-grounds for gain enhancement purposes, without significantly altering its resonance. The circuit analysis for CPW-fed zigzag monopole acting as a feed to a wide square slot is presented. Later, the uniform zigzag feed is tapered to support a gradual propagation constant modification. In both cases, the zigzag feed is conceived as an array of two constituent monopoles fed from the same source with modified propagation constants. Simulations along with the measured results are provided to validate the theoretical work which showed less than 2% error achieved in the predictions. Measured gains of the radiators are reported at their resonance frequencies, 2.93dB and 3.19dB respectively for the uniform and tapered zigzag feeds, which validates the observation of gain enhancement in this article.
LAOHAPENSAENG, C., FREE, C., ROBERTSON, I. D. Simplified analysis of printed strip monopole antenna fed by a CPW. In Proceedings of the Asia-Pacific Microwave Conference. Suzhou (China), 2005, p. 1–4. DOI: 10.1109/APMC.2005.1606956
BANERJEE, A., BANDYOPADHYAY, A. K. Theoretical investigation on the input impedance of a CPW-fed strip monopole antenna. Microwave and Optical Technology Letters, 2017, vol. 59, no. 2, p. 346–348. DOI: 10.1002/mop.30287
BANERJEE, A., CHATTERJEE, S., GUPTA, B., et al. Theoretical investigation on input characteristics of CPW-fed wide rectangular monopole structures. In IEEE International Conference on Antenna Innovations and Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). Bangalore (India), 2017. DOI: 10.1109/IAIM.2017.8402614
BANERJEE A., PATRA K., CHATTERJEE S., et al. Theoretical investigations on the resonance characteristics of CPW-fed miniaturized strip monopole antennas. Radioengineering, 2018, vol. 27, no. 4, p. 948–955. DOI: 10.13164/re.2018.0948
SIM, C. Y. D., CHEN, H. D., CHIU, K. C., et al. Coplanar waveguide-fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 14, p. 1529–1535. DOI: 10.1049/iet-map.2012.0174
HU, L., HUA, W. Wide dual-band CPW-fed slot antenna. Electronics Letters, 2011, vol. 47, no. 14, p. 789–790. DOI: 10.1049/el.2011.0909
Ansoft Corp HFSS v.13
Zealand Corp IE3D v.10
ESTARKI, M. D., VAUGHAN, R. G. Theoretical methods for the impedance and bandwidth of the thin dipole. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 01, p. 62–81. DOI: 10.1109/MAP.2013.6474485
Keywords: Circuit model analysis, closed-form expressions, uniform and tapered zigzag monopole, Wide-Slot Radiator, Gain Enhancement
A miniaturized frequency scanned leaky wave antenna (LWA) based on half mode substrate integrated waveguide (HMSIW) with open stop-band suppression is proposed. The modified cross-slot is etched on the top of HMSIW as the radiating element. The folded and unfolded ground plane designs of the proposed HMSIW LWA are compared and analyzed w.r.t their bloch impedance characteristics and it is found that further miniaturization and gain improvement at broadside by ~ 2dBi are achieved for folded ground plane design. The proposed LWA scans a region from -40° to +24° as the frequency range increases from 12 to 17 GHz with broadside at 15.5 GHz. The HMSIW LWA with folded ground plane is fabricated and its performance is experimentally measured showing the close agreement between the simulation and the measured results.
DESLANDES, D., WU, K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters, 2001, vol. 11, no. 2, p. 68–70. DOI: 10.1109/7260.914305
HONG, W., LIU, B., WANG, Y., et al, Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application. In Proceedings of 31st International Conference on Infrared and Millimeter Waves. Shanghai (China), 2006, p. 18–22. DOI: 10.1109/ICIMW.2006.368427
NGUYEN-TRONG, N., KAUFMANN, T., FUMEAUX, C. A wideband omnidirectional horizontally polarized traveling-wave antenna based on half-mode substrate integrated waveguide. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 682–685. DOI: 10.1109/LAWP.2013.2263492
RUMSEY, V. H. Traveling wave slot antennas. Journal of Applied Physics, 1953, vol. 24, no. 11, p. 1358–1365. DOI: 10.1063/1.1721178
NGUYEN-TRONG, N., HALL, L. T., FUMEAUX, C. Variational analysis of substrate-integrated waveguides with longitudinal slot. In Proceedings of International Applied Computational Electromagnetics Society Symposium (ACES). Florence (Italy), 2017, p. 1–2. DOI: 10.23919/ROPACES.2017.7916367
LAI, Q., FUMEAUX, C., HONG, W. et al, Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Transactions on Microwave and Theory Techniques, 2009, vol. 57 no. 8, p. 1996–2004. DOI: 10.1109/TMTT.2009.2025429
WILLIAMS, J. T., BACCARELLI, P., PAULOTTO, S. et al. 1-D combline leaky-wave antenna with the open-stopband suppressed: Design considerations and comparisons with measurements. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4484–4492. DOI: 10.1109/TAP.2013.2271234
LIU, L., CALOZ, C., ITOH, T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electronics Letters, 2006, vol. 38, no. 23, p. 1414–1416. DOI: 10.1049/el:20020977
NASIMUDDIN, N., CHEN, Z. N., QING, X. Multilayered composite right/left-handed leaky-wave antenna with consistent gain. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 11, p. 5056–5062. DOI: 10.1109/TAP.2012.2207680
NASIMUDDIN, N., CHEN, Z. N., QING, X. Tapered composite right/left-handed leaky-wave antenna for wideband broadside radiation. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 624–629. DOI: 10.1002/mop.28916
NASIMUDDIN, N., CHEN, Z. N., QING, X. Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 7, p. 3451–3457. DOI: 10.1109/TAP.2013.2256094
AGRAWAL, R., BELWAL, P., GUPTA, S. C. Continuous beam scanning in substrate integrated waveguide leaky wave antenna. Progress in Electromagnetic Research M, 2017, vol. 62, p. 19–28. DOI: 10.2528/PIERM17091104
GUGLIELMI, M., JACKSON, D. R. Broadside radiation from periodic leaky-wave antennas. IEEE Transactions on Antennas and Propagation, 1993. vol. 41, no. 1, p. 31–37. DOI: 10.1109/8.210112
LYU, Y., LIU, X., WANG, P. Y., et al. Leaky-wave antennas based on non-cutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2155–2164. DOI: 10.1109/TAP.2016.2550054
OTTO, S., AL-BASSAM, A., RENNING, A., et.al. Transversal asymmetry in periodic leaky-wave antennas for Bloch impedance and radiation efficiency equalization through broadside. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 5037–5054. DOI: 10.1109/TAP.2014.2343621
AGRAWAL, R., BELWAL, P., GUPTA, S. Asymmetric substrate integrated waveguide leaky wave antenna with open stop band suppression and radiation efficiency equalization through broadside. Radioengineering, 2018, vol. 27, no. 2, p. 409–416. DOI: 10.13164/re.2018.0409
SUNTIVES, A., HUM, S. V. A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2540–2544. DOI: 10.1109/TAP.2012.2189726
XU, J., HONG, W., TANG, H. et al. Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 85–88. DOI: 10.1109/LAWP.2008.919353
POURGHORBAN SAGHATI, A., MIRSALEHI, M. M., NESHATI, M. H. A HMSIW circularly polarized leaky-wave antenna with backward, broadside, and forward radiation. IEEE Antennas Wireless Propagation Letters, 2014, vol. 13, p. 451–454. DOI: 10.1109/LAWP.2014.2309557
ZHANG, H., JIAO, Y. C., ZHAO, G., et al. Half-mode substrate integrated waveguide-based leaky-wave antenna loaded with meandered lines. Electronics. Letters, 2017, vol. 53, no. 17, p. 1172–1174. DOI: 10.1049/el.2017.2251
DONG, Y., ITOH, T. Composite right / left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 3, p. 767–775. DOI: 10.1109/TAP.2010.2103025
PAULOTTO, S., BACCARELLI, P., FREZZA, F., et al. Full-wave modal dispersion analysis and broadside optimization for a class of microstrip. IEEE Transactions on Microwave Theory and Technique, 2008, vol. 56, no. 12, p. 2826–2837. DOI: 10.1109/TMTT.2008.2007333
SARKAR, A., ADHIKARY, M., SHARMA, A., et al. Composite right-/left-handed based compact and high gain leaky-wave antenna using complementary spiral resonator on HMSIW for Ku band applications. IET Microwaves and Antennas Propagation, 2018, vol. 12, no. 8, p. 1310–1315. DOI: 10.1049/iet-map.2017.0478
OTTO, S., CHEN, Z., AL-BASSAM, A., et al. Circular polarization of periodic leaky-wave antennas with axial asymmetry : Theoretical proof and experimental demonstration. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 1817–1829. DOI: 10.1109/TAP.2013.2297169
LIU, L., GU, X., ZHU, L., et al. A novel half mode substrate integrated waveguide leaky-wave antenna with continuous forward-to-backward beam scanning functionality. International Journal of RF & Microwave Computer-aided Engineering, 2018, vol. 28, no. 9, p. 1–6. DOI: 10.1002/mmce.21559
MUJUMDAR, M., ALPHONES, A., NASIMUDDIN. Compact leaky wave antenna with periodical slots on half mode substrate integrated waveguide. In Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 1740–1741. DOI: 10.1109/APS.2015.7305259
Full-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical opti¬mization is challenging due to expensive simulations and large number of parameters. In this paper, a novel gradi¬ent-based procedure with numerical derivatives is pro¬posed for expedited optimization of compact microstrip impedance matching transformers. The method restricts the use of finite differentiation which is replaced for se¬lected parameters by a rank-one Broyden updating for¬mula. The usage of the formula is governed by an ac¬ceptance parameter which is made dependent on the pa¬rameter space dimensionality. This facilitates handling circuits of various complexities. The proposed approach is validated using three impedance matching transformer circuits with the number of parameters varying from ten to twenty. A significant speedup of up to 50 percent is demon¬strated with respect to the reference algorithm.
CARIOU, M., POTELON, B., QUENDO, C., et al. Compact Xband filter based on substrate integrated coaxial line stubs using advanced multilayer PCB technology. IEEE Transactions on Microwave Theory and Techniques, 2017. vol. 65, no. 2, p. 496–503. DOI: 10.1109/TMTT.2016.2632114
FUJIMOTO, K., MORISHITA, H. Modern Small Antennas. Cambridge (UK): Cambridge University Press, Cambridge, 2014. ISBN: 978-0-521-87786-2, DOI: 10.1017/CBO9780511977602
TSENG, C.-H., CHEN, H.-J. Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 11, p. 734–736. DOI: 10.1109/LMWC.2008.2005225
KOZIEL, S., KURGAN P. Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21240
MAO, Y., GUO, S., CHEN, M. Compact dual-band monopole antenna with defected ground plane for Internet of Things. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 8, p. 1332–1338. DOI: 10.1049/iet-map.2017.0860
LI, W., HEI, Y., GRUBB, P. M., et al. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access, 2018, vol. 6, p. 50290–50298. DOI: 10.1109/ACCESS.2018.2868707
TANG, H., WANG, K. WU, R., et al. A novel broadband circularly polarized monopole antenna based on C-shaped radiator. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 964–967. DOI: 10.1109/LAWP.2016.2615159
TING, H. L., HSU, S. K., WU, T. L. A novel and compact eightport forward-wave directional coupler with arbitrary coupling level design using four-model control theory. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 2, p. 467–475. DOI: 10.1109/TMTT.2016.2623709
KOZIEL, S., BEKASIEWICZ, A. Rapid simulation-driven multiobjective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2454–2461. DOI: 10.1109/TMTT.2016.2583427
KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/LMWC.2016.2615005
SHEIKHI, A., ALIPOUR, A., ABDIPOUR, A. Design of compact wide stopband microstrip low-pass filter using T-shaped resonator. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 2, p. 111–113. DOI: 10.1109/LMWC.2017.2652862
LI, W., TU, Z., CHU, Q., et al. Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 11, p. 1120–1123. DOI: 10.1109/LAWP.2015.2496159
PANDEY, G. K., VERMA, H., MESHRAM, M. K. Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 2015, vol. 51, no. 4, p. 308–310. DOI: 10.1049/el.2014.3540
SRIVASTAVA, G., MOHAN, A., CHAKRABARTY, A. Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1139–1142. DOI: 10.1109/lawp.2016.2624736
KOZIEL, S., KURGAN, P. Compact cell topology selection for size-reduction-oriented design of microstrip rat-race couplers. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21261
ZHANG, Y., NIKOLOVA, N. K., MESHRAM, M. K. Design optimization of planar structures using self-adjoint sensitivity analysis. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 3060–3066. DOI: 10.1109/TAP.2012.2194684
BURGARD, S., FARLE, O., LOEW, P. Fast shape optimization of microwave devices based on parametric reduced-order models. IEEE Transactions on Magnetics, 2014, vol. 50, no. 2, p. 629–632. DOI: 10.1109/TMAG.2013.2282420
KOZIEL, S., YANG, X. S., ZHANG, Q. J. (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering. London (UK): Imperial College Press, 2013. ISBN: 978-1848169166 DOI: 10.1142/p860
BANDLER, J. W., CHENG, Q. S., DAKROURY, S. A., et al. Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 1, p. 337–361. DOI: 10.1109/TMTT.2003.820904
SU, Y., LI, J., FAN, Z., et al. Shaping optimization of double reflector antenna based on manifold mapping. In International Applied Computational Electromagnetics Society Symposium (ACES). Shuzou (China), 2017, p. 1–2. ISBN: 978-0-9960-0785-6
LEIFSSON, L., KOZIEL, S. Surrogate modeling and optimization using shape-preserving response prediction: a review. Engineering Optimization, 2014, vol. 48, no. 3, p. 476–496. DOI: 10.1080/0305215X.2015.1016509
KOZIEL, S., BEKASIEWICZ, A. Rapid microwave design optimization in frequency domain using adaptive response scaling. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 9, p. 2749–2757. DOI: 10.1109/TMTT.2016.2590551
KOZIEL, S. Fast simulation-driven antenna design using responsefeature surrogates. International Journal of RF & Microwave Computer Aided Engineering, 2015, vol. 25, no. 5, p. 394–402. DOI: 10.1002/mmce.20873
DE VILLIERS, D. I. L., COUCKUYT, I., DHAENE, T. Multiobjective optimization of reflector antennas using kriging and probability of improvement. In IEEE AP-S International Symposium on Antennas and Propagation. San Diego (USA), 2017, p. 985–986, DOI: 10.1109/APUSNCURSINRSM.2017.8072535
ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3781–3797. DOI: 10.1109/TMTT.2018.2841889
ZHANG, J., ZHANG, C., FENG, F., et al. Polynomial chaos-based approach to yield-driven EM optimization. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 7, p. 3186–3199. DOI: 10.1109/TMTT.2018.2834526
KOZIEL, S., KURGAN, P. Rapid design of miniaturized branchline couplers through concurrent cell optimization and surrogateassisted fine-tuning. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 9, p. 957–963. DOI: 10.1049/iet-map.2014.0600
NOCEDAL, J., WRIGHT, S. J. Numerical Optimization. 2nd ed. New York (USA): Springer, 2006. ISBN: 978-0-387-40065-5 DOI: 10.1007/978-0-387-40065-5
KOZIEL, S. Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. Applied Computational Electromagnetics Society Journal, 2010, vol. 25, no. 7, p. 578–586.
CONN, A. R., GOULD, N. I. M., TOINT, P. L. Trust Region Methods. Philadelphia (USA): MPS-SIAM Series on Optimization, 2000. ISBN: 0-89871-460-5 DOI: 10.1137/1.9780898719857
BROYDEN, C. G. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 1965, vol. 19, no. 92, p. 577–593. DOI: 10.1090/S0025-5718-1965- 0198670-6
In this paper, an ultra-thin metamaterial absorber with a stretching transformation (ST) pattern is proposed and fabricated in the low-frequency range. The absorber is composed of dielectric layer, metal patch loading resistor and variable capacitor which produce its tunability. In order to expand the tunable bandwidth, we applied the ST with various coefficients x and y to the unit cell pattern. Measurement and simulated results show that the structure can be tuned to provide a continuously variable reflectivity level of less than -10 dB from 0.68 to 2.13 GHz at bias voltages of 10–40 V. The total thickness of this absorber was only λ/31 of the center frequency. Both measurements and simulated results indicate that this absorber can be thin and achieve a tunable absorption simultaneously.
LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. Perfect metamaterial absorber. Physical Review Letters, 2006, vol. 100, no. 20, p. 1–4. DOI: 10.1103/PhysRevLett.100.207402
WATTS, C. M., LIU, X. L., PADILLA, W. J. Metamaterial electromagnetic wave absorbers. Advanced Materials, 2012, vol. 24, no. 23, p. 98–120. DOI: 10.1002/adma.201200674
YUAN, W. CHENG, Y. Low-frequency and broadband metamaterial absorber based on lumped elements: Design, characterization and experiment. Applied Physics A, 2014, vol. 117, no. 4, p. 1915–1921. DOI: 10.1007/s00339-014-8637-3
HAN, Y., CHE, W. Q. Low-profile broadband absorbers based on capacitive surfaces. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 74–78. DOI: 10.1109/LAWP.2016.2556753
LI, X. S. J., CAO, Y., GAO, J., et al. Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 5155–5160. DOI: 10.1109/TAP.2015.2475634
LI, S. J., WU, P. X., XU, H. X., et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors and strong coupling effects. Nanoscale Research Letters, 2018, vol. 13, p. 1–13. DOI: 10.1186/s11671-018-2810-0
ZUO, W. Q., YANG, Y., HE, X. X., et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 928–931. DOI: 10.1109/LAWP.2016.2614703
LEE, J., LIM, S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 2011, vol. 47, no. 1, p. 8–9. DOI: 10.1049/el.2010.2770
GU, S., SU, B., ZHAO, X. P. Planar isotropic broadband metamaterial absorber. Journal of Applied Physics, 2013, vol. 114, no. 16, p. 1–6. DOI: 10.1063/1.4826911
SHANG, S., YANG, S. Z., TAO, L., et al. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber. AIP Advances, 2016, vol. 6, no. 7, p. 1–8. DOI: 10.1063/1.4958660
ZHONG, H. T., YANG, X. X., TAN, C., et al. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Applied Physics Letters, 2016, vol. 109, no. 25, p. 1–4. DOI: 10.1063/1.4973282
ZHU, J. F., MA, Z. F., SUN, W. J., et al. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, vol. 105, no. 2, p. 1–4. DOI: 10.1063/1.4890521
BANADAKI, M. D., HEIDARI, A. A., NAKHKASH, M. A metamaterial absorber with a new compact unit cell. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 2, p. 205–208. DOI: 10.1109/LAWP.2017.2780231
ZUO, W. Q., YANG. Y., HE, X. X., et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 329–332. DOI: 10.1109/LAWP.2016.2574885
XU, W. H., HE, Y., KONG, P., et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications. Journal of Applied Physics, 2015, vol. 118, no. 18, p. 1–8. DOI: 10.1063/1.4934683
AZAD, A. K., TAYLOR, A. J., SMIRNOVA, E., et al. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Applied Physics Letters, 2008, vol. 92, no. 1, p. 1–3. DOI: 10.1063/1.2829791
FU, L., SCHWEIZER, H., GUO, H., et al. Synthesis of transmission line models for metamaterial slabs at optical frequencies. Physical Review B, 2008, vol. 78, no. 11, p. 1–9. DOI: 10.1103/PhysRevB.78.115110
Keywords: low-frequency, wideband, ultra-thin, ST coefficients, tunability.
This paper presents a kind of broadband, low-loss tunable phase shifter based on transmission line metamaterial. An inherent high-pass backward-wave response property of a left-handed metamaterial based on coplanar waveguide (CPW) transmission line was used to realize a microwave phase shifter. The commercial software Ansoft HFSS was used to design and analyze for the transmission line metamaterial phase shifter structure, and the resulting S-parameters were used to characterize its performance. A transmission line metamaterial phase shifter was fabricated on Copper-Clad Board. The designed four unit-cells phase shifter provides a 0-190o continuous phase shift at 7.2 GHz using varactors biased from 0 V to 6 V with relatively low insertion loss.
VESELAGO, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi, 1968, vol. 10, no. 4, p. 509–514. DOI: 10.1070/PU1968v010n04ABEH003699
SMITH, D. R., PADILLA, W. J., VIER, D. C., et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, vol. 84, no. 18, p. 4184–4187. DOI: 10.1103/physrevlett.84.4184
CHEN, H. S., RAN, L. X., HUANGFU, J. T., et al. Left-handed materials composed of only S-shaped resonators. Physical Review E, 2004, vol. 70, no. 5, p. 1–4. DOI: 10.1103/PhysRevE.70. 057605
SANADA, A., CALOZ, C., ITOH, T. Characteristics of the composite right/left-handed transmission lines. IEEE Microwaves and Wireless Components Letters, 2004, vol. 14, no. 2, p. 68–70. DOI: 10.1109/lmwc.2003.822563
MAO, S. G., CHEN, S. L., HUANG, C. W. Effective electromagnetic parameters of novel distributed left-handed microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1515–1521. DOI: 10.1109/tmtt.2005.845192
LI, N., YU, H., YANG, C., et al. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS. Solid-State Electronics, 2015, vol. 113, p. 54–60. DOI: 10.1016/j.sse.2015.05.006
MARTIN, F., FALCONE, F., BONACHE, J., et al. Split ring resonator based left handed coplanar waveguide. Applied Physics Letters, 2003, vol. 83, p. 4652–4654. DOI: 10.1063/1.1631392
FALCONE, F., LOPETEGI, T., BAENA, J. D., et al. Effective negative-epsilon stop-band microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, p. 280–282. DOI: 10.1109/lmwc.2004.828029
GIL, I., GARCIA-GARCIA, J., BONACHE, J., et al. Varactorloaded split rings resonators for tuneable notch filters at microwave frequencies, Electronics Letters, 2004, vol. 40, p. 1347–1348. DOI: 10.1049 /el:20046389
VELEZ, A., BONACHE, J., MARTIN, F. Varactor-Loaded Complementary Split Ring Resonators (VLCSRR) and their application to tunable metamaterial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 1, p. 28–30. DOI: 10.1109/lmwc.2007.911983
IYER, A. K., ELEFTHERIADES, G. V. Negative refractive index metamaterials supporting 2-D waves. In IEEE MTT-S International Microwave Symposium Digest. Seattle (WA, USA), 2002, p. 1067–1070. DOI: 10.1109/mwsym.2002.1011823
CALOZ, C., ITOH, T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. In IEEE Antennas and Propagation Society International Symposium. San Antonio (TX, USA), 2002, vol. 2, p. 412–415. DOI: 10.1109/APS.2002.1016111
OLINER, A. A. A periodic-structure negative-refractive-index medium without resonant elements. In IEEE Antennas and Propagation Society International Symposium. San Antonio (TX, USA), 2002, p. 41.
GIERE, A., DAMM, C., SCHEELE, P., JAKOBY, R. LH phase shifter using ferroelectric varactors. In Proceeding of the IEEE Radio and Wireless Symposium. San Diego (CA, USA), 2006, p. 403–406. DOI: 10.1109 /RWS.2006.1615180
CALOZ, C., SANADA, A., ITOH, T. A novel composite right- /left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 3, p. 980–992. DOI: 10.1109/tmtt.2004.823579
KHOLODNYAK, D., ZAMESHAEVA, E., TURGALIEV, V., et al. Tunable dual-frequency immittance inverters on dual-composite right/left handed transmission lines (D-CRLH TL) with variable capacitors. IEICE Transactions on Electronics, 2016, vol. E99-C, no. 10, p. 1113–1121. DOI: 10.1587/transele.e99.c.1113
JACKSON, D., CALOZ, C., ITOH, T. Leaky-wave antennas. Proceedings IEEE, 2012, vol. 100, no. 7, p. 2194–2206. DOI: 10.1109/JPROC. 2012.2187410
CHOI, J., SEO, C. Broadband VCO using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator. Microwave and Optical Technology Letters, 2008, vol. 50, no. 4, p. 1078–1082. DOI: 10.1002/mop.23305
OURIR, A., ABDEDDAIM, R., DE ROSNY, J. Tunable trapped mode in symmetric resonator designed for metamaterials. Progress In Electromagnetics Research, 2010, vol. 101, p. 115–123. DOI: 10.2528/pier09120709
POWELL, D. A., SHADRIVOV, I. V., KIVSHAR, Y. S. Asymmetric parametric amplification in nonlinear left-handed transmission lines. Applied Physics Letters, 2009, vol. 94, p. 1–3. DOI: 10.1063/1.3089842
WANG, Z. B., FENG, Y. J., ZHU, B., et al. Dark Schrodinger solitons and harmonic generation in left-handed nonlinear transmission line. Journal of Applied Physics, 2010, vol. 107, p. 1–5. DOI: 10.1063/1.3418556
CHOI, S., SU, W., TENTZERIS, M. M., et al. A novel fluidreconfigurable advanced and delayed phase line using inkjetprinted microfluidic composite right/left-handed transmission line. IEEE Microwaves and Wireless Components Letters, 2015, vol. 25, no. 2, p. 142–144. DOI: 10.1109/lmwc.2014.2382685
MICHISHITA, N., KITAHARA, H., YAMADA, Y., et al. Tunable phase shifter using composite right/left-handed transmission line with mechanically variable MIM capacitors. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1579–1581. DOI: 10.1109/lawp.2011.2181147
ABDALLA, M. A. Y., PHANG, K, ELEFTHERIADES, G. V. Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 8, p. 1611–1623. DOI: 10.1109/tmtt.2007.901076
DURAN-SINDREU, M., DAMM, C., SAZEGAR, M., et al. Electrically tunable composite right/left handed transmission-line based on open resonators and barium-stronium-titanate thick films. In IEEE MTT-S International Microwave Symposium. Baltimore (MD, USA), 2011, p. 1–4. DOI: 10.1109/mwsym.2011.5973393
KIM, H., KOZYREV, A. B., KARBASSI, A., et al. Compact lefthanded transmission line as a linear phase-voltage modulator and efficient harmonic generator. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 3, p. 571–578. DOI: 10.1109/tmtt.2007.891692
DAMM, C., SCHUSSLER, M., OERTEL, M., et al. Compact tunable periodically LC loaded microstrip line for phase shifting applications. In IEEE MTT-S International Microwave Symposium. Long Beach (CA, USA), 2005, p. 2003–2006. DOI: 10.1109/mwsym.2005.1517137
KUYLENSTIERNA, D., VOROBIEV, A., LINNER, P., et al. Composite right/left handed transmission line phase shifter using ferroelectric varactors. IEEE Microwaves and Wireless Components Letters, 2006, vol. 16, no. 4, p. 167–169. DOI: 10.1109/ lmwc.2006.872145
PERRUISSEAU-CARRIER, J., TOPALLI, K., AKIN, T. Low-loss Ku-band artificial transmission line with MEMS tuning capability. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 6, p. 377–379. DOI: 10.1109/lmwc.2009.2020022
ABBASI, M. A. B., ANTONIADES, M. A., NIKOLAOU, S. A compact reconfigurable NRI-TL metamaterial phase shifter for antenna applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 1025–1030. DOI: 10.1109/TAP.2017.2777520
ELLINGER, F., JACKEL, H., BACHTOLD, W. Varactor-loaded transmission-line phase shifter at C-band using lumped elements. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1135–1140. DOI: 10.1109/TMTT. 2003.809670
CALOZ, C., ITOH, T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 5, p. 1159–1166. DOI: 10.1109/TAP.2004.827249
SALEH, B. A., TEICH, M. C. Fundamentals of Photonics. New York: Wiley, 1991. DOI:10.1002/0471213748
Keywords: Transmission line metamaterial, tunable phase shifter, varactor, broadband
A novel design of fractional-order microwave integrator using shunt connected open-stubs with transmission line sections in cascade is proposed. Design is obtained by optimizing the L1-norm based error function in Z-domain having not more than absolute magnitude error value of 0.01. Optimization is done using nature inspired cuckoo search algorithm. Superiority of the design in terms of magnitude error performance is identified by comparing it with the results obtained from some widely used benchmark optimization algorithms. The obtained design is implemented on a RT/Duroid 5880 substrate having 20 mil thickness, and results for the measured magnitude response are found to be in good agreement with ideal one over the frequency range of 1.0 GHz to 6.8 GHz.
WEST, B. J., BOLOGNA, M., GRIGOLINI, P. Physics of Fractal Operators. New York: Springer, 2003. DOI: 10.1007/978-0-387- 21746-8
DEBNATH, L. Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, 2003, vol. 54, p. 3413–3442. DOI: 10.1155/S0161171203301486
CHEN, Y. Q., MOORE, K. L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, vol. 49, no. 3, p. 363–367. DOI: 10.1109/81.989172
BARBOSA, R. S., MACHADO, J. A. T., SILVA, M. F. Time domain design of fractional differintegrators using least-squares. Signal Processing, 2006, vol. 86, no. 10, p. 2567–2581. DOI: 10.1016/j.sigpro.2006.02.005
TSENG, C. C. Design of FIR and IIR fractional order Simpson digital integrators. Signal Processing, 2007, vol. 87, no. 5, p. 1045–1057. DOI: 10.1016/j.sigpro.2006.09.006
KRISHNA, B. T. Studies of fractional order differentiators and integrators: A survey. Signal Processing, 2011, vol. 91, no. 3, p. 386–426. DOI: 10.1016/j.sigpro.2010.06.022
ROMERO, M., DE MADRID, A. P., MANOSO, C., et al. IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Transactions, 2013, vol. 52, no. 4, p. 461–468. DOI: 10.1016/j.isatra.2013.02.002
YADAV, R., GUPTA, M. New improved fractional order integrators using PSO optimization. International Journal of Electronics, 2015, vol. 102, no. 3, p. 490–499. DOI: 10.1080/00207217.2014.901424
MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm. IET Signal Processing, 2016, vol. 10, no. 9, p. 1135–1156. DOI: 10.1049/iet-spr.2016.0298
MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Infinite impulse response approximations to the non-integer order integrator using Cuckoo Search Algorithm. In: Saeed, K., Homenda, W., Chaki, R. (eds.) Computer Information Systems and Industrial Management CISIM 2017. 2017, p. 548–556. DOI: 10.1007/978-3-319-59105-6_47
LE BIHAN, J. Novel class of digital integrators and differentiators. Electronics Letters, 1993, vol. 29, no. 11, p. 971–973. DOI: 10.1049/el:19930647
AL-ALAOUI, M. A. A class of second order integrators and lowpass differentiators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, vol. 42, no. 4, p. 220–223. DOI: 10.1109/81.382477
PAPAMARKOS, N., CHAMZAS, C. A new approach for the design of digital integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1996, vol. 43, no. 9, p. 785–791. DOI: 10.1109/81.536749
NGO, N. Q. A new approach for the design of wideband digital integrator and differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, vol. 53, no. 9, p. 936–940. DOI: 10.1109/TCSII.2006.881806
TSENG, C.C., LEE, S. L. Digital IIR integrator design using Richardson extrapolation and fractional delay. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, vol. 55, no. 8, p. 2300–2309. DOI: 10.1109/TCSI.2008.920099
AL-ALAOUI, M. A. Class of digital integrators and differentiators. IET Signal Processing, 2011, vol. 5, no. 2, p. 251–260. DOI: 10.1049/iet-spr.2010.0107
UPADHYAY, D. K., SINGH, R. K. Recursive wideband digital differentiator and integrator. Electronics Letters, 2011, vol. 47, no. 11, p. 647–648. DOI: 10.1049/el.2011.0420
UPADHYAY, D. K. Class of recursive wideband digital differentiators and integrators. Radio Engineering, 2012, vol. 21, no. 3, p. 904–910. ISSN: 1210-2512
KARABOGA, N. A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute, 2009, vol. 346, no. 4, p. 328–348. DOI: 10.1016/j.jfranklin.2008.11.003
JALLOUL, M. K., AL-ALAOUI, M. A. Design of recursive digital integrators and differentiators using particle swarm optimization. International Journal of Circuit Theory and Applications, 2016, vol. 44, no. 5, p. 948–967. DOI: 10.1002/cta.2115
AGGARWAL, A., RAWAT, T. K., UPADHYAY, D. K. Optimal design of L1-norm based IIR digital differentiators and integrators using the bat algorithm. IET Signal Processing, 2017, vol. 11, no. 1, p. 26–35. DOI: 10.1049/iet-spr.2016.0010
MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Computing, 2018, vol. 22, no. 11, p. 3757–3783. DOI: 10.1007/s00500-017-2595-6
HSUE, C. W., TSAI, L. C., KAN, S. T. Implementation of a trapezoidal rule microwave integrator. Microwave and Optical Technology Letters, 2005, vol. 48, no. 4, p. 822–825. DOI: 10.1002/mop.21485
HSUE, C. W., TSAI, L. C., TSAI, Y. H. Time constant control of microwave integrators using transmission lines. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 3, p. 1043–1047. DOI: 10.1109/TMTT.2006.869722
TSAI, L. C., FANG, H. S. Design and implementation of secondorder microwave integrators. Microwave and Optical Technology Letters, 2011, vol. 53, no. 9, p. 1983–1986. DOI: 10.1002/mop.26210
GUPTA, M., UPADHYAY, D. K. Comments on: Design and implementation of second-order microwave integrators. Microwave and Optical Technology Letters, 2018, vol. 60, no. 2, p. 526–528. DOI: 10.1002/mop.30996
TSAI, L. C. Application of microwave integrators for interference suppression. Progress In Electromagnetics Research C, 2017, vol. 72, p. 123–132. DOI: 10.2528/PIERC16112505
AGGARWAL, A., KUMAR, M., RAWAT, T. K., et al. Optimal design of 2-D FIR digital differentiator using L1-norm based cuckoo-search algorithm. Multidimensional Systems and Signal Processing, 2017, vol. 28, no. 4, p. 1569–1567. DOI: 10.1007/s11045-016-0433-0
YANG, X. S., DEB, S. Cuckoo search via Levy flights. In Proceeding of World Congress on Nature and Biologically Inspired Computing. Coimbatore (India), 2009, p. 210–214. DOI: 10.1109/NABIC.2009.5393690
RASHEDI, E., NEZAMABADI-POUR, H., SARYAZDI, S. GSA: A gravitational search algorithm. Information Sciences, 2009, vol. 179, no. 13, p. 2232–2248. DOI: 10.1016/j.ins.2009.03.004
MARINI, F., WALCZAK, B. Particle swarm optimization (PSO): A tutorial. Chemometrics and Intelligent Laboratory Systems, 2015, vol. 149, Part B, p. 153–165. DOI: 10.1016/j.chemolab.2015.08.020
CHUANG, Y. C., CHEN, C. T., HWANG, C. A simple and efficient real-coded genetic algorithm for constrained optimization. Applied Soft Computing, 2015, vol. 38, p. 87–105. DOI: 10.1016/j.asoc.2015.09.036
Keywords: Fractional-order, integrator, line elements, microwave, optimization
This article describes waffle power MOSFET segmentation and defines its analytic models. Although waffle gate pattern is well-known architecture for effective channel scaling without requirements on process modification, no until today precise model considering segmentation of MOSFETs with waffle gate patterns, due to bulk connections, has been there proposed. Two different MOSFET topologies with gate waffle patterns have been investigated and compared with the same on-resistance of a standard MOSFET with finger gate pattern. The first one with diagonal metal interconnections allows reaching more than 40 % area reduction. The second MOSFET with the more simple orthogonal metal interconnections allows saving more than 20 % area. Moreover, new models defining conditions where segmented power MOSFETs with waffle gate patterns occupy less area than the standard MOSFET with finger gate pattern, have been introduced.
MILNES, A. G. Semiconductor Devices and Integrated Electronics. Dordrecht (The Netherlands): Springer, 1980. ISBN: 978-94-011-7021-5
MALIK, S. Q., GEIGER, R. L., Minimization of area in low-resistance MOS switches. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. Lansing (MI, USA), 2000, vol. 3, p. 1392–1395. DOI: 10.1109/MWSCAS.2000.951473
WU, W., LAM, S., KO, P. K., et al. Comparative analysis and parameter extraction of enhanced waffle MOSFET. In IEEE Conference on Electron Devices and Solid-State Circuits. Hong Kong (China), 2003, p. 193–196. DOI: 10.1109/EDSSC.2003.1283512
VEMURU, S. R. Layout comparison of MOSFETs with large W/L ratios. Electronics Letters, 1992, vol. 28, no. 25, p. 2327–2329. DOI: 10.1049/el:19921498
MADHYASTHA, S. Design of Circuit Breakers for Large Area CMOS VLSI Circuits. Dept. of Electrical Engineering McGill University, 1989. Theses. [Online] Available at: http://digitool.Library.McGill.CA:80/R/-?func=dbin-jumpfull&object_id=59551&silo_library=GEN01
ZHOU, X., LUO, P., HE, L., et al. A radiation-hard waffle layout for BCD power MOSFET. In IEEE 12th International Conference on ASIC (ASICON). Guiyang (China), 2017, p. 773–775. DOI: 10.1109/ASICON.2017.8252590
CHEN, S., LIN, C., CHANG, S., et al. ESD reliability comparison of different layout topologies in the 0.25-μm 60-V nLDMOS power devices. In International Symposium on Next-Generation Electronics (ISNE). Taipei (Taiwan), 2015, p. 1–4. DOI: 10.1109/ISNE.2015.7132028
S. Inc, Silvaco, Inc. TCAD simulation Tool, DeckBuild Deck Editor Version 4.4.3.R:, Synopsys Inc, 2018.
VACULA, P, HUSAK, M. Comparison of waffle and standard gate pattern base on specific on-resistance. ElectroScope, 2014, vol. 2014, no. VIII. ISSN: 1802-4564. [Online] Available at: http://147.228.94.30/images/PDF/Rocnik2014/Cislo3_2014/r8c3c7 .pdf, http://hdl.handle.net/11025/11823
KARBAN, P., MACH, F., KUS, P., et al. Numerical solution of coupled problems using code Agros2D. Computing, 2013, vol. 95, no. 1 Supplement, p. 341–408. DOI: 10.1007/s00607-013-0294-4
TEKCAN, T., KIRISKEN, B. Reliability test procedures for achieving highly robust electronic products. In 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS). San Jose (CA, USA), 2010, p. 1–6. DOI: 10.1109/RAMS.2010.5447982
ZHOU, Y., CONNERNEY, D., CARROLL, R., et al. Modeling MOS snapback for circuit-level ESD simulation using BSIM3 and VBIC models. In The 6th International Symposium on Quality Electronic Design (ISQED'05). San Jose (CA, USA), 2005, p. 476–481. DOI: 10.1109/ISQED.2005.81
Keywords: Power MOSFET, waffle MOSFET, specific on-resistance, integrated circuits
In this paper, a novel compressed sensing (CS) acquisition and joint recovery of spatiotemporal correlated signals algorithm is presented for effective data collection and precise sensors data streams reconstruction in wireless sensor networks. The CS-based proposed method utilizes~an iterative re-weighted l1-minimization and a l2 regularization to increase the reconstruction accuracy with a small number of required data transmission. Moreover, we develop~an alternating direction method of multipliers based algorithm to efficiently solve the resulting optimization problem. Numerical experiments are conducted on several test signals with~a variety of sampling ratios. The experimental results verify the effectiveness of the proposed scheme in terms of reconstruction accuracy and consumption time compared with the state of the art algorithms.
DONOHO, D. L. Compressed sensing. IEEE Transaction on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
JAHANSHAHI, J. A., ESLAMI, M., GHORASHI, S. A. PSD map construction scheme based on compressive sensing in cognitive radio networks. IEICE Transaction on Communications, 2012, vol. 95, no. 4, p. 1056–1065. DOI: 10.1587/transcom.E95.B.1056
JAHANSHAHI, J. A., ESLAMI, M., GHORASHI, S. A. Compressed sensing based dynamic PSD map construction in cognitive radio networks. Radioengineering, 2013, vol. 22, no. 2, p. 526–535. ISSN: 1805-9600
GUI, G., MEHBODNIYA, A., ADACHI, F. Sparse LMS/F algorithms with application to adaptive system identification. Wireless Communications and Mobile Computing, 2015, vol. 15, no. 12, p. 1649–1658. DOI: 10.1002/wcm.2453
GU, Y., JIN, J., MEI, S. l0 norm constraint LMS algorithm for sparse system identification. IEEE Signal Processing Letters, 2009, vol. 16, no. 9, p. 774–777. DOI: 10.1109/LSP.2009.2024736
HONG, X., JUBIN, G., CHEN, S. Zero-attracting recursive least squares algorithms. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 1, p. 213–221. DOI: 10.1109/TVT.2016.2533664
LI, Y., WANG, Y., ALBU, F. Sparse channel estimation based on a reweighted least-mean mixed-norm adaptive filter algorithm. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO). Budapest (Hungary), 2016, p. 2380–2384. DOI: 10.1109/EUSIPCO.2016.7760675
LI, Y., JIANG, Z., MOHAMMED, O., et al. Mixed norm constrained sparse APA algorithm for satellite and network echo channel estimation. IEEE Access, 2018, vol. 6, p. 65901–65908. DOI: 10.1109/ACCESS.2018.2878310
LI, Y., JIANG, Z., SHI, W., HAN, X., CHEN, B. Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, p. 1–5. DOI: 10.1109/TCSII.2019.2891654
CHENG, J., JIANG, H., MA, X., et al. Efficient data collection with sampling in WSNs: Making use of matrix completion techniques. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). Miami (USA), 2010, p. 1–5. DOI: 10.1109/GLOCOM.2010.5684139
STANKOVIC, L., DAKOVIC, M., VUJOVIC, S. Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Processing, 2014, vol. 8, no. 3, p. 246–256. DOI: 10.1049/iet-spr.2013.0385
STANKOVIC, S., OROVIC, I. An approach to 2D signals recovering in compressive sensing context. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 4, p. 1700–1713. DOI: 10.1007/s00034-016-0366-8
JIANG, T., ZHANG, X.W., LI, Y. Bayesian compressive sensing using reweighted laplace priors. AEU-International Journal of Electronics and Communications, 2018, vol. 97, p. 178–184. DOI: 0.1016/j.aeue.2018.10.005
AKYILDIZ, I. F., VURAN, M. C., AKAN, O. B. On exploiting spatial and temporal correlation in Wireless Sensor Networks. In Proceedings of the Conference on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). Cambridge (UK), 2004, p. 71–80. DOI: 10.1016/j.procs.2013.09.025
BARON, D., WAKIN, M. B., DUARTE, M., et al. Distributed compressed sensing. Preprint, arXiv:0901.3403v1, 2006, p. 1–42. Available at: http://arxiv.org/pdf/0901.3403v1.pdf
DURATE, M. F., WAKIN, M. B., BARON, D., et al. Measurement bounds for sparse signal ensembles via graphical models.IEEE Transactions on Information Theory, 2013, vol. 59, no. 7, p. 4280–4289. DOI: 10.1109/TIT.2013.2252051
MASOUM, A., MERATNIA, N., HAVINGA, P. A distributed compressive sensing technique for data gathering in wireless sensor networks. Procedia Computer Science, 2013, vol. 21, p. 207–216. DOI: 10.1016/j.procs.2013.09.028
QUER, G., MASIERO, R., PILLONETTO, G., et al. Sensing, compression, and recovery for WSNs: Sparse signal modeling and monitoring framework. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 10, p. 3447–3461. DOI: 10.1109/TWC.2012.081612.110612
ASIF, M. S., ROMBERG, J. Sparse recovery of streaming signals using `1-homotopy. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 16, p. 4209–4223. DOI: 10.1109/TSP.2014.2328981
LEINONEN, M., CODREANU, M., JUNTTI, M. Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 3, p. 1622–1635. DOI: 10.1109/TWC.2014.2371017
CANDES, E. J., WAKIN, M. B., BOYD, S. P. Enhancing sparsity by reweighted `1 minimization. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5, p. 877–905. DOI: 10.1007/s00041-008-9045-x
JAHANSHAHI, J. A., DANYALI, H., HELFROUSH, M. S. A distributed compressed sensing-based algorithm for the joint recovery of signal ensemble. Radioengineering, 2018, vol. 27, no. 2, p. 587–594. DOI: 10.13164/re.2018.0587
PARIKH, N., BOYD, S. Proximal algorithms. Foundations and Trends in Optimization, 2014, vol. 1, no. 3, p. 127–239. DOI:10.1561/2400000003
CHENG, J., YE, Q., JIANG, H., et al. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 2, p. 850–861. DOI: 10.1109/TWC.2012.121412.120148
BLUMENSATH, T., DAVIES, M. E. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5, p. 629–654. DOI: 10.1007/s00041-008-9035-z
ESLAHI, N., AGHAGOLZADEH, A., ANDARGOLI, S.M.H. Image/video compressive sensing recovery using joint adaptive sparsity measure. Neurocomputing, 2016, vol. 200, p. 88–109. DOI: 10.1016/j.neucom.2016.03.013
DAUBECHIES, I., DEFRISE, M., DE MOL, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, vol. 57, no. 11, p. 1413–1457. DOI: 10.1002/cpa.20042
INTEL BERKELEY RESEARCH LAB. Intel Lab Data. Real sensors’ readings from intel berkeley research lab. Available at: http://db.csail.mit.edu/labdata/labdata.html
VASWANI, N., LU, W. Modified-CS: Modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 9, p. 4595–4607. DOI: 10.1109/TSP.2010.2051150
LU, W., VASWANI, N. Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 1, p. 182–196. DOI: 10.1109/TSP.2011.2170981
Can the Dual-Sequence-Frequency-Hopping (DSFH) as a military emergency communication mode work under strong color noise? And is there any detection improvement of the DSFH signal via stochastic resonance (SR) processing under color noise? To deal with this problem, we analyze the physical feature of the DSFH signal. Firstly, the signal models of transmission, reception and the intermediate frequency (IF) are constructed. And the scale transaction is used to adjust the IF signal to fit the SR. Secondly, the non-markovian Langevin Equation (LE) is transformed into a markovian one by expand the 1-D LE to~a 2-D one. Thirdly, the non-autonomous Fokker-Plank Equation (FPE) is transformed into an autonomous one by assuming that the SR transition of magnetic particles is instantaneous and introducing the decision time. Therefore, the analytical periodic steady solution of the probability density function (PDF) with the parameter of the correlation time of the color noise is obtained. Finally, the detection probability, false alarm probability and Receiver Operating Characteristics (ROC) curve are obtained, under the criterion of the maximum~a posterior probability (MAP). Theoretical and simulation results show as below: 1) whether the DSFH can work under strong color noise is decided by the correlation time of the color noise; 2) when the power intensity of the color noise is constant, the smaller the correlation time with the bigger local SNR, the greater PDF difference of the SR output under two hypothesis, leading to better detection performance.
FITZEK, F. H. P. The medium is the message. In Proceedings of the IEEE International Conference on Communications (ICC). Istanbul (Turkey), 2006, p. 5016–5021. DOI: 10.1109/ICC.2006.255461
ZHOU, X., KYRITSI, P., EGGERS, P. C. F. The medium is the message: Secure communication via waveform coding in MIMO systems. In Proceedings of the IEEE Vehicular Technology Conference (VTC). Dublin (Ireland), 2007, p. 491–495. DOI: 10.1109/VETECS.2007.112
QUAN, H., ZHAO, H., CUI, P. Anti-jamming frequency hopping system using multiple hopping patterns. Wireless Personal Communications, 2015, vol. 81, no. 3, p. 1159–1176. ISSN: 0929-6212. DOI: 10.1007/s11277-014-2177-1
ZHAO, H., QUAN, H.-D., CUI, P.-Z. Follower-jamming resistible multi-sequence frequency hopping wireless communication. Systems Engineering and Electronics, 2015, vol. 66, no. 3, p. 671–678. ISSN: 1001-506X. DOI: 10.3969/j.issn.1001-506X.2015.03.31 (in Chinese)
DU, C., QUAN, H., CUI, P., et al. Carrier sense random packet CDMA protocol in dual-channel networks. Radioengineering, 2015, vol. 24, no. 2, p. 507–517. ISSN: 1210-2512. DOI: 10.13164/re.2015.0507
BENZI, R., SUTERA, A., VULPIANI, A. The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 1981, vol. 14, no. 11, p. 453–457. ISSN: 1751-8113. DOI: 10.1088/0305-4470/14/11/006
ZHANG, G., SONG, Y., ZHANG, T.-G. Characteristic analysis of exponential type mono-stable stochastic resonance under Levy noise. Journal of Electronics & Information Technology, 2017, no. 4, p. 893–900. ISSN: 1009-5896. DOI: 10.11999/JEIT160579 (in Chinese)
WANG, S., WANG, F.-Z. Adaptive stochastic resonance system in terahertz radar signal detection. Acta Physica Sinica, 2018, vol. 67, no. 16, p. 1–7. ISSN: 1000-3290. DOI: 10.7498/aps.67.20172367 (in Chinese)
KRAUSS, P., METZNER, C., SCHILLING, A. Adaptive stochastic resonance for unknown and variable input signals. Scientific Reports, 2017, vol. 7, no. 1, p. 1–8. ISSN: 2045-2322. DOI: 10.1038/s41598-017-02644-w
HANGGI, P., JUNG, P., ZERBE, C., et al. Can colored noise improve stochastic resonance? Journal of Statistical Physics, 1993, vol. 7, no. 1, p. 25–47. ISSN: 0022-4715. DOI: 10.1007/bf01053952
FUENTES, M. A., TORAL, R., WIO, H. S. Enhancement of stochastic resonance: The role of non Gaussian noises. Physica A, 2001, vol. 295, no. 1, p. 114–122. ISSN: 0378-4371. DOI: 10.1016/s0378-4371(01)00062-0
FUENTES, M. A., WIO, H. S., TORAL, R. Effective Markovian approximation for non-Gaussian noises: A path integral approach. Physica A, 2002, vol. 303, no. 1, p. 91–104. ISSN: 0378-4371. DOI: 10.1016/s0378-4371(01)00435-6
JIA, Y. , YU, S. N. , LI, J. R. Stochastic resonance in a bistable system subject to multiplicative and additive noise. Physical Review E, 2000, vol. 62, no. 2, p. 1869–1878. ISSN: 1539-3755. DOI: 10.1103/PhysRevE.62.1869
XU, B. , LI, J., DUAN, F., et al. Effects of colored noise on multifrequency signal processing via stochastic resonance with tuning system parameters. Chaos, Solitons and Fractals, 2003, vol. 16, no. 1, p. 93–106. ISSN: 0960-0779. DOI: 10.1016/s0960-0779(02)00201-1
HU, N.-G. Theory and Method of Detecting Weak Characteristic Signals of Stochastic Resonance. Beijing (China): National Defense Industry Press, 2012. p. 85–86. ISBN: 9787118081558 (in Chiness)
HU, G. Stochastic Forces and Nonlinear Systems. Shanghai (China): Shanghai Scientific and Technological Education Publishing House, 1994. p. 184–208, 222–232. ISBN: 7542808931/O.53 (in Chiness)
Keywords: Dual-Sequence Frequency Hopping, stochastic resonance, detection performance, color noise
In order to improve the direction-of-arrival (DOA) estimation performance of quasi-stationary signals (QSS) using a uniform circular array (UCA), this paper addresses novel method in the context of sparse representation framework. Based on the Khatri-Rao transform, UCA can achieve a higher number of degrees of freedom to resolve more signals than the number of sensors. Then, by exploiting the two-dimensional (2-D) joint grid of UCA, the estimations of elevation and azimuth angles can be obtained from the sparse representation perspective. Finally, an expectation-maximization iteration method is developed to estimate DOAs of QSS from a Bayesian perspective. Since SBL makes full use of the sparse structure of QSS, thus the proposed algorithm possesses higher angular resolution and better DOA estimation precision compared with existing methods. Numerical simulation demonstrate the validity of the proposed method.
SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/tap.1986.1143830
ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
RANKINE, L., STEVENSON, N., MESBAH, M., et al. A nonstationary model of newborn EEG. IEEE Transactions on Biomedical Engineering, 2007, vol. 54, no. 1, p. 19–28. DOI: 10.1109/TBME. 2006.886667
ASANO, F., HAYAMIZU, S., YAMADA, T., et al. Speech enhancement based on the subspace method. IEEE Transactions on Speech and Audio Processing, 2000, vol. 8, no. 5, p. 497–507. DOI: 10.1109/89.861364
KWAN, C., HO, K. C., MEI, G., et al. An automated acoustic system to monitor and classify birds. EURASIP Journal on Applied Signal Processing, 2006, vol. 2006, p. 1–19. DOI: 10.1155/ASP/2006/96706
MA, W. K., HSIEH, T. H., CHI, C. Y. Underdetermined DOA estimation of quasi-stationary signals with unknown spatial noise covariance: A Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 4, p. 2168–2180. DOI: 10.1109/TSP.2009.2034935
WANG, Y. X., HASHEMI-SAKHTSARI, A., TRINKLE, M., et al. Sparsity-aware DOA estimation of quasi-stationary signals using nested arrays. Signal Processing, 2018, vol. 144, p. 87–98. DOI: 10.1016/j.sigpro.2017.09.029
CAO, M. Y., HUANG, L., QIAN, C., et al. Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array. Signal Processing, 2015, vol. 106, p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012
PALANISAMY, P., KISHORE, C. 2-D DOA estimation of quasistationary signals based on Khatri-Rao subspace approach. In Proceeding of IEEE International Conference on Recent Trends in Information Technology. Chennai (India), 2011, p. 798–803. DOI: 10.1109/ICRTIT.2011.5972295
MALIOUTOV, D., ÇETIN, M., WILLSKY, A. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
YIN, J. H., CHEN, T. Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4489–4493. DOI: 10.1109/TSP.2011.2158425
STOICA, P., BABU, P., LI, J. SPICE: A sparse covariance-based estimation method for array processing. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 2, p. 629–638. DOI: 10.1109/TSP.2010.2090525
TIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, vol. 1, p. 211–244. DOI: 10.1162/15324430152748236
DAI, J., BAO, X., XU, W., et al. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Processing Letter, 2017, vol. 24, no. 1, p. 46–50. DOI: 10.1109/lsp.2016.2636319
JI, S., XUE, Y., CARIN, L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 6, p. 2346–2356. DOI: 10.1109/TSP.2007.914345
YANG, Z., XIE, L., ZHANG, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 10.1109/TSP.2012.2222378
WIPF, D. P., RAO, B. D. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 8, p. 2153–2164. DOI: 10.1109/TSP.2004.831016
CHEVALIER, P., ALBERA, L., FERREOL, A., et al. On the virtual array concept for higher order array processing, IEEE Transactions on Signal Processing, 2005, vol. 53, no. 4, p. 1254–1271. DOI: 10.1109/TSP.2005.843703
PORAT, B., FRIEDLANDER, B. Direction finding algorithms based on high-order statistics. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 9, p. 2016–2024. DOI: 10.1109/78.134434
CHAMBERS, C., TOZER, T. C., SHARMAN, K. C., et al. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 12, p. 3085–3098. DOI: 10.1109/78.553482
BABAROSSA, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 6, p. 1511–1515. DOI: 10.1109/78.388866
Infrared (IR) target detection and tracking are commonly used in modern defense systems. Target detection is the first and very important step for several surveillance applications. Long distance between imager and targets or bad weather conditions mostly cause dim target appearance with low signal-to-noise ratio (SNR) in IR images. In this study, dim targets in IR images are enhanced and detected using saliency detection algorithms, which have not been used in IR wavelength before. Performances of the algorithms are evaluated on common IR datasets. Algorithms are compared in terms of SNR, receiver operating characteristic (ROC) and area under curve (AUC) score. Effects of parameter selection are also considered for automatic target detection. Furthermore, feasibility of the methods for real-time applications are discussed.
ACHANTA, R., HEMAMI, S., ESTRADA, F., et al. Frequency tuned salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach (FL, USA), 2009, p. 1594–1604. DOI: 10.1109/CVPR.2009.5206596
HOU, X., ZHANG, L. Saliency detection: A spectral residual approach. In IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis (USA), 2007, p. 1–8. DOI: 10.1109/CVPR.2007.383267
HOU, X., HAREL, J., KOCH, C. Image signature: Highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, vol. 34, no. 1, p. 194–201. DOI: 10.1109/TPAMI.2011.146
BULLING, A., ALT, F., SCHMIDT, A. Increasing the security of gaze-based cued-recall graphical passwords using saliency masks. In SIGCHI International Conference on Human Factors in Computing Systems. Austin (TX, USA), 2012, p. 3011–3020. DOI: 10.1145/2207676.2208712
ITTI, L., KOCH, C., NIEBUR, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, vol. 20, no. 11, p. 1254–1259. DOI: 10.1109/34.730558
CHENG, M., ZHANG, G., MITRA, N., et al. Global contrast based salient region detection. In IEEE International Conference on Computer Vision and Pattern Recognition. Colorado Springs (USA), 2011, p. 409–416. DOI: 10.1109/CVPR.2011.5995344
GOFERMAN, S., ZELNIK-MANOR, L., TAL, A. Context-aware saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition. San Francisco (CA, USA), 2010, p. 2376–2383. DOI: 10.1109/CVPR.2010.5539929
HAREL, J., KOCH, C., PERONA, P. Graph-based visual saliency. In Proceedings of Neural Information Processing Systems (NIPS). Canada, 2006, p. 545–552.
BORJI, A., SIHITE, D., ITTI, L. Salient object detection: A benchmark. In European Conference on Computer Vision. Florence (Italy), 2012, part 2, p. 414–429. DOI: 10.1007/978-3-642-33709-3_30
WANG, X., PENG, Z., KONG, D., et al. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 10, p. 5481–5493. DOI: 10.1109/TGRS.2017.2709250
MA, R., YU, Y., YUE, X. Survey on image saliency detection methods. In IEEE International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). Xian (China), 2015, p. 329–338. DOI: 10.1109/CyberC.2015.98
GARG, A., NEGI, A. A survey on visual saliency detection and computational methods. International Journal of Engineering and Technology, 2017, vol. 9, p. 2742–2753. DOI: 10.21817/ijet/2017/v9i4/170904406
AMCOM-database [Online] Available at: http:://www.cs.ucf.edu/~vision/projects/meanshift/means hift.html
SENSIAC-database [Online] Available at: https://www.dsiac.org/resources/research-materials/cds-dvdsdatabases/atr-algorithm-development-image-database
Keywords: Infrared images, target detection, dim target, saliency
In this work, we propose a method based on a simulation that incorporates several models to provide the set of parameters needed on Over-The-Horizon radars (OTHR) performance evaluation, which consists in a versatile software tool. Obtaining the signals involved during transmission and reception is a complex and challenging task. Among them, the received signal is fundamental to design methods and algorithms in the target detection strategy. The parameters in the transmission and reception processes that define the radio link main features are determined in terms of target type, ionospheric conditions, radio link characteristics, and other environmental properties. The determination is done combining models to work assembled in a software tool that simulates the OTHR radio link. The tool gives the possibility of step away from the linear model, which uses mainly constant parameters and it is used commonly. A large number of set up parameters and also interconnections among several models enable to simulate nearer to actual search sceneries.
HEADRICK, J. M., SKOLNIK, M. I. Over-the-horizon radar in the HF band. Proceedings of the IEEE, 1974, vol. 62, no. 6, p. 664–673. DOI: 10.1109/PROC.1974.9506
FABRIZIO, G. A. High Frequency Over-the-Horizon Radar. Fundamental Principles, Signal Processing, and Practical Applications. 1st ed. New York (United States): McGraw Hill, 2013. ISBN: 978-0387231907
HEADRICK, J. M., THOMASON, J. F. Applications of high‐frequency radar. Radio Science, 1998, vol. 33, no. 4, p. 1045–1054. DOI: 10.1029/98RS01013
KUSCHEL H., HECKENBACH J., MULLER S., et al. On the potentials of passive, multistatic, low frequency radars to counter stealth and detect low flying targets. In 2008 IEEE Radar Conference. Rome (Italy), 2008. DOI: 10.1109/RADAR.2008.4720984
AZZARONE, A., BIANCHI, C., PEZZOPANE, M., et al. IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere. Computers and Geosciences, 2012, vol. 42, p. 57–63. DOI: 10.1016/j.cageo.2012.02.008
NAGARAJOO, K. Ray tracing in realistic 3D ionospheric model. In Proceeding of the 2015 International Conference on Space Science and Communication (IconSpace). Langkawi (Malaysia), 2015, p. 267–272. DOI: 10.1109/IconSpace.2015.7283764
DAVIS, K. Ionospheric Radio Propagation. Washington (USA): Dept. of Commerce, National Bureau of Standards, 1965. ISBN: 1124067051
ZOLESI, B., CANDER, L. R. Ionospheric Prediction and Forecasting. Berlin (Germany): Springer, 2014. ISBN: 978-3-642- 38429-5
BILITZA, D., ALTADILL, D., ZHANG, Y., et al. The International Reference Ionosphere 2012 - a model of international collaboration. Journal of Space Weather and Space Climate (SWSC), 2014, vol. 4, p. 1–12. DOI: 10.1051/swsc/2014004
JONES, R. M., STEPHENSON, J. J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75–76. Department of Commerce, Office of Telecommunication. Washington (USA): U.S. Government Printing Office, 1975.
ITU (International Telecommunication Union), Radiocommunication vocabulary, Recommendation ITU-R V.573-5. Geneva (Switzerland), 2007.
ITU (International Telecommunication Union), Radio Noise, Recommendation ITU-R P.372-12. Geneva (Switzerland), 2015.
SKOLNIK, M. I. Radar Handbook. 3rd ed. (USA): McGraw-Hill, 2008. ISBN: 978-0-07158942-0
BARTON, D. K., LEONOV, S. A. (eds.) Radar Technology Encyclopedia. (USA): Artech House, 1998. ISBN 0-89006-893-3
BILLINGSLEY, J. B. Low-Angle Radar Land Clutter. Measurements and Empirical Models. New York (USA): William Andrew Publishing, 2002. ISBN: 1-891121-16-2
DIAZ CHARRIS, V., GOMEZ TORRES, J. M. Analysis of radar cross section assessment methods and parameters affecting it for surface ships. Ship Science & Technology, 2012, vol. 6, p. 91–106. DOI: 10.25043/19098642.72
EL-DARYMLI, K., GILL, E. W., MCGUIRE, P., et al. Automatic target recognition in synthetic aperture radar imagery: A state-ofthe-art review. IEEE Access, 2016, vol. 4, p. 6014–6058. DOI: 10.1109/ACCESS.2016.2611492
DAVIES, K. Ionospheric Radio. London (UK): The Institution of Engineering and Technology, 1990. ISBN: 0 86341 186 X
FRIIS, H. T. A note on a simple transmission formula. Proceedings of the I.R.E., 1946, vol. 34, no. 5, p. 254–256. DOI: 10.1109/JRPROC.1946.234568
ITU (International Telecommunication Union), Method for the Prediction of the Performance of HF Circuits ITU-R P.533-13. Geneva (Switzerland), 2015.
FRANCIS, D. B., CERVERA, M. A., FRAZER, G. J. Performance prediction for design of a network of skywave over-the-horizon radars. IEEE Aerospace and Electronic Systems Magazine, 2017, vol. 32, p. 18–28. DOI: 10.1109/MAES.2017.170056
PEDERICK, L. H., CERVERA, M. A. A directional HF noise model: Calibration and validation in the Australian region. Radio Science, 2016, vol. 51, p. 25–39. DOI: 10.1002/2015RS005842
GEORGE, P. L., BRADLEY, P. A. A new method of predicting the ionospheric absorption of high frequency waves at oblique incidence. Telecommunication Journal, 1974, vol. 41, p. 307–311.
Recent studies have shown that deep learning algorithms are very effective for evaluating the security of embedded systems. The deep learning technique represented by Convolutional Neural Networks (CNNs) has proven to be a promising paradigm in the profiled side-channel analysis attacks. In this paper, we first proposed a novel CNNs architecture called DeepSCA. Considering that this work may be reproduced by other researchers, we conduct all experiments on the public ASCAD dataset, which provides electromagnetic traces of a masked 128-bit AES implementation. Our work confirms that DeepSCA significantly reduces the number of side-channel traces required to perform successful attacks on highly desynchronized datasets, which even outperforms the published optimized CNNs model. Additionally, we find that DeepSCA pre-trained from the synchronous traces works well in presence of desynchronization or jittering after a slight fine-tuning.
KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis. In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology. London (UK), 1999, p. 388–397. DOI: 10.1007/3-540-48405-1_25
MARTINASEK, Z., HAJNY, J., MALINA, L. Optimization of power analysis using neural network. In Proceedings of the 12th International Conference Smart Card Research and Advanced Applications (CARDIS). Berlin (Germany), 2013, p. 94–107. DOI: 10.1007/978- 3-319-08302-5_7
WHITNALL, C., OSWALD, E. Robust profiling for DPA-style attacks. In Proceedings of the 17th International Workshop Cryptographic Hardware and Embedded Systems (CHES). Saint-Malo (France), 2015, p. 3–21. DOI: 10.1007/978-3-662-48324-4_1
MARTINASEK, Z., ZEMAN, V., MALINA, L., et al. k-Nearest neighbors algorithm in profiling power analysis attack. Radioengineering, 2016, vol. 25, no. 2, p. 365–382. DOI: 10.13164/re.2016.0365
HOSPODAR, G., GIERLICHS, B., MULDER, D. E., et al. Machine learning in side-channel analysis: A first study. Journal of Cryptographic Engineering, 2011, vol. 1, no. 4, p. 293–302. DOI: 10.1007/s13389-011-0023
HEUSER, A., ZOHNER, M. Intelligent machine homicide - breaking cryptographic devices using support vector machines. In Proceedings of the Constructive Side-Channel Analysis and Secure Design: Third International Workshop (COSADE). Darmstadt (Germany), 2012, p. 249–264. DOI: 10.1007/978-3-642-29912-4_18
BARTKEWITZ, T., LEMKE-RUST, K. Efficient template attacks based on probabilistic multi-class support vector machines. In Proceedings of Smart Card Research and Advanced Applications. Graz (Austria), 2013, p. 263–276. DOI: 10.1007/978-3-642-37288-9_18
HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Wavelet support vector machine algorithm in power analysis attacks. Radioengineering. 2017, vol. 26, no. 3, p. 890–902. DOI: 10.13164/re.2017.0890
HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Exploiting support vector machine algorithm to break the secret key. Radioengineering, 2018, vol. 27, no. 1, p. 289–298. DOI: 10.13164/re.2018.0289
MAGHREBI, H., PORTIGLIATTI, T., PROUFF, E. Breaking cryptographic implementations using deep learning techniques. Cryptology ePrint Archive, Report 2016/921, 2016, p. 1–25. Available at: https://eprint.iacr.org/2016/921
CAGLI, E., DUMAS, C., PROUFF, E. Convolutional neural networks with data augmentation against jitterbased countermeasures - profiling attacks without pre-processing. In Proceedings of the 19th International Conference on Cryptographic Hardware and Embedded Systems (CHES). Taipei (Taiwan), 2017, p. 45–68. DOI: 10.1007/978-3-319-66787-4
PROUFF, E., STRULLU, R., BENADJILA, R., et al. Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053, 2018, p. 1–45. Available at: https://eprint.iacr.org/2018/053.
GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. Cambridge (USA): MIT Press, 2016. Available at: http://www.deeplearningbook.org. ISBN: 0262035618
BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, vol. 2, no. 1, p. 1–127. DOI: 10.1561/2200000006
IOFFE, S., SZEGEDY, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML). Lille (France), 2015, p. 448–456.
SANTURKAR, S., TSIPRAS, D., ILYAS, A., et al. How does batch normalization help optimization? arXiv, 2018, p. 1–26. Available at: https://arxiv.org/abs/1805.11604
SIMONYAN, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, p. 1–14. Available at: https://arxiv.org/abs/1409.1556
JARRETT, K., KAVUKCOUOGLU, K., RANZATO, M., et al. What is the best multistage architecture for object recognition? In Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV). Kyoto (Japan), 2009, p. 2146–2153. DOI: 10.1109/ICCV.2009.5459469
CHOLLET, F., et al. Keras: Deep Learning for Humans. Available at: https://github.com/fchollet/keras
ABADI, M., AGARWAL, A., BARHAM, P., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 2015, p. 1–19. Available at: https://arxiv.org/abs/1603.04467. Software available at: https://tensorflow.org
RAWAT, W., WANG, Z., Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 2017, vol. 29, no. 9, p. 2352–2449. DOI: 10.1162/neco_a_00990
VAN DYK, D. A., MENG, X.-L. The art of data augmentation. Journal of Computational and Graphical Statistics, 2001, vol. 10, no. 1, p. 1–50. DOI: 10.1198/10618600152418584
IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv, 2016, p. 1–13. Available at: https://arxiv.org/abs/1602.07360
HOWARD, A. G., ZHU, M., CHEN, B., et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv, 2017, p. 1–9. Available at: https://arxiv.org/abs/1704.04861
ZHANG, X., ZHOU, X., LIN, M., et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City (USA), 2018, p. 1–9. DOI: 10.1109/CVPR.2018.00716
Keywords: Side-channel analysis, deep learning, convolutional neural networks, DeepSCA