ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

September 2019, Volume 28, Number 3 [DOI: 10.13164/re.2019-3]

Show all Hide all

M. Barbuto, A. Bassotti, A. Alu, F. Bilotti, A. Toscano [references] [full-text] [DOI: 10.13164/re.2019.0499] [Download Citations]
On the Topological Robustness of Vortex Modes at Microwave Frequencies

Vortex fields carrying orbital angular momentum are robust with respect to a wide range of external disturbances and exhibit self-healing properties. These peculiar characteristics have been deeply investigated at optical frequencies but only a few of them have been observed at microwaves. In this paper, we try to partially fill this gap by investigating the topological characteristics of vortex fields radiated by standard patch antennas. In particular, we describe the behavior of a vortex mode when a metallic screen is placed in the near field of the radiating patch. Through a proper set of full-wave numerical simulations, we show that the main characteristics of the vortex mode, i.e. the spiral phase profile and the amplitude null, are preserved even if the overall radiated field is strongly perturbed by the obstacle.

  1. YAO, A. M., PADGETT, M. J. Orbital angular momentum: origins, behavior and applications. Advances in Optics and Photonics, 2011, vol. 3, p. 161–204. DOI: 10.1364/AOP.3.000161
  2. BEIJERSBERGEN, M. W., COERWINKEL, R. P. C., KRISTENSEN, M., et al. Helical-wavefront laser beams produced with a spiral phase plate. Optics Communications, 1994, vol. 112, no. 5–6, p. 321–327. DOI: 10.1016/0030-4018(94)90638-6
  3. BAZHENOV, V. Y., VASNETSOV, M. V., SOSKIN, M. S. Laser beams with screw dislocations in their wavefronts. Journal of Experimental and Theoretical Physics Letters, 1990, vol. 52, no. 8, p. 429–431.
  4. HEMSING, E., KNYAZIK, A., DUNNING, M., et al. Coherent optical vortices from relativistic electron beams. Nature Physics, 2013, vol. 9, p. 549–553. DOI: 10.1038/nphys2712
  5. THIDE, B., THEN, H., SJOHOLM, J., et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Physical Review Letters, 2007, vol. 99, no. 8, p. 1–4. DOI: 10.1103/PhysRevLett.99.087701
  6. TAMBURINI, F., MARI, E., SPONSELLI, A., et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 2012, vol. 14, p. 1–17. DOI: 10.1088/1367-2630/14/3/033001
  7. TAMBURINI, F. MARI, E., THIDE, B., et al. Experimental verification of photon angular moment and vorticity with radio techniques. Applied Physics Letters, 2011, vol. 99, no. 20, p. 204102-1–204102-3. DOI: 10.1063/1.3659466
  8. BARBUTO, M., TOSCANO, A. BILOTTI, F. Single patch antenna generating electromagnetic field with orbital angular momentum. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando (FL, USA), 2013, p. 1866–1867. DOI: 10.1109/APS.2013.6711591
  9. LIN, M., GAO, Y., LIU, P., et al. Super-resolution orbital angular momentum based radar targets detection. Electronics Letters, 2016, vol. 52, no. 13, p. 1168–1170. DOI: 10.1049/el.2016.0237
  10. BARBUTO, M., BILOTTI, F., TOSCANO, A. Patch antenna generating structured fields with a Mobius polarization state. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1345–1348. DOI: 10.1109/LAWP.2016.2634081
  11. BARBUTO, M., MIRI, M.-A., ALÙ, A., et al. Exploiting the topological robustness of composite vortices in radiation systems. Progress In Electromagnetics Research, 2018, vol. 162, p. 39–50. DOI: 10.2528/PIER18033006
  12. GALVEZ, E. J., SMILEY, N., FERNANDES, N. Composite optical vortices formed by collinear Laguerre-Gauss beams. Proceedings of SPIE 6131, Nanomanipulation with Light II, 613105, Feb. 9, 2006. DOI: 10.1117/12.646074
  13. VASNETSOV, M. V., MARIENKO, I. G., SOSKIN, M. S. Selfreconstruction of an optical vortex. Journal of Experimental and Theoretical Physics Letters, 2000, vol. 71, no. 4, p. 130–133. DOI: 10.1134/1.568297
  14. BARBUTO, M., TROTTA, F., BILOTTI, F., et al. Circular polarized patch antenna generating orbital angular momentum. Progress In Electromagnetics Research, 2014, vol. 148, p. 23–30. DOI: 10.2528/PIER14050204

Keywords: Phase singularities, vortex modes, antenna radiation pattern

Z. Sipus, Z. Eres, D. Barbaric [references] [full-text] [DOI: 10.13164/re.2019.0505] [Download Citations]
Modeling Cascaded Cylindrical Metasurfaces with Spatially-Varying Impedance Distribution

Modeling curved metasurface structures represents a computing challenge due to the complexity of considered designs. This creates a need for specialized efficient analysis methods. An approach that combines the spectral-domain field representation and surface sheet impedance concept is proposed. The considered cascaded cylindrical metasurface structures can span across only a part of a canonical surface and unit cell elements can vary along the metasurface, giving a spatially-varying sheet impedance. The analysis method is experimentally verified against a cylindrical metasurface for shaping the feed antenna beam. The problem of manufacturing curved metasurfaces is also discussed in the paper.

  1. HOLLOWAY, C. L., KUESTER, E.F., GORDON, J., et al. An overview of the theory and applications of metasurfaces: The twodimensional equivalents of metamaterials. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 2, p. 10–35. DOI: 10.1109/MAP.2012.6230714
  2. PFEIFFER C., GRBIC, A. Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis. Physical Review Applied, 2014, vol. 2, no. 4, p. 1–11. DOI: 10.1103/PhysRevApplied.2.044011
  3. PFEIFFER C., GRBIC, A. Metamaterial Huygens surfaces: Tailoring wave fronts with reflectionless sheets. Physical Review Letters, 2013, vol. 110, no. 19, p. 1–5. DOI: 10.1103/PhysRevLett.110.197401
  4. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. John Wiley& Sons, 2005. ISBN: 978-0471370475
  5. MACI, S., MINATTI, G., CASALETTI, M., et al. Metasurfing: Addressing waves on impenetrable metasurfaces. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1499–1502. DOI: 10.1109/LAWP.2012.2183631
  6. KUESTER, E. F., MOHAMED, M. A., PIKET-MAY, M., et al. Averaged transition conditions for electromagnetic fields at a metafilm. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2641–2651. DOI: 10.1109/TAP.2003.817560
  7. ZHAO, Y., BELKIN, M. A., ALÙ, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nature Communications, 2012, vol. 3, p. 870–876. DOI: 10.1038/ncomms18
  8. PFEIFFER, C., GRBIC, A. Cascaded metasurfaces for complete phase and polarization control. Applied Physics Letters, 2013, vol. 102, no. 23, p. 1–4. DOI: 10.1063/1.4810873
  9. MONTICONE, F., ESTAKHRI, N. M., ALÙ, A. Full control of nanoscale optical transmission with a composite metascreen. Physical Review Letters, 2013, vol. 110, p. 1–5. DOI:10.1103/PhysRevLett.110.203903
  10. NIEMI, T., KARILAINEN, A., TRETYAKOV, S. Synthesis of polarization transformers. IEEE Transactions on Antennas and Propagations, 2013, vol. 61, no. 6, p. 3102–3111. DOI: 10.1109/TAP.2013.2252136
  11. SELVANAYAGAM, M., ELEFTHERIADES, G.V. Polarization control using tensor Huygens surfaces. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6155–6168. DOI: 10.1109/TAP.2014.2359208
  12. PATEL, A. M., GRBIC, A. Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 5, p. 1102–1111. DOI: 10.1109/TMTT.2014.2314440
  13. ELEK, F., TIERNEY, B. B., GRBIC, A. Synthesis of printedcircuit tensor impedance surfaces controlling phase and power flow. IEEE Transactions on Antennas and Propagations, 2015, vol. 63, no. 9, p. 3956–3962. DOI: 10.1109/TAP.2015.2448234
  14. RAEKER, B. O., RUDOLPH, S. M. Arbitrary transformation of antenna radiation using a cylindrical impedance metasurface. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1101–1104. DOI: 10.1109/LAWP.2015.2494739
  15. RAEKER, B. O., RUDOLPH, S. M. Verification of arbitrary radiation pattern control using a cylindrical impedance metasurface. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 995–998. DOI: 10.1109/LAWP.2016.2616106
  16. CHEN, P.-Y., ALÙ, A. Mantle cloaking using thin patterned metasurfaces. Physical Review B, 2011, vol. 84, p. 1–13. DOI: 10.1103/PhysRevB.84.205110
  17. PADOORU, Y. R., YAKOVLEV, A. B., CHEN, P.-Y., et al. Linesource excitation of realistic conformal metasurface cloaks. Journal of Applied Physics, 2012, vol. 112, no. 10, p. 1–11. DOI: 10.1063/1.4765688
  18. SORIC, J. C., MONTI, A., TOSCANO, A., et al. Dual-polarized reduction of dipole antenna blockage using mantle cloaks. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 4827–4834. DOI: 10.1109/TAP.2015.2476468
  19. VELLUCCI, S., MONTI, A., TOSCANO, A., et al. Scattering manipulation and camouflage of electrically small objects through metasurfaces. Physical Review Applied, 2017, vol. 7, p. 1–12. DOI: 10.1103/PhysRevApplied.7.034032
  20. SIPUS, Z., BOSILJEVAC, M., GRBIC, A. Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 7, p. 1041–1047. DOI: 10.1049/iet-map.2017.0465
  21. HANSEN, J. E. (ed.) Spherical Near-Field Antenna Measurements. Stevenage (U.K.): Peregrinus, 1988. ISBN: 9780863411106
  22. SIPUS, Z., KILDAL, P.-S., LEIJON, R., et al. An algorithm for calculating Green’s functions for planar, circular cylindrical and spherical multilayer substrates. Applied Computational Electromagnetics Society Journal, 1998, vol. 13, no. 3, p. 243–254.
  23. KILDAL, P.-S., SIPUS, Z., YANG, J., et al. Useful physical images and algorithms for vector dyadic Green’s functions in 3D spatial, 2D spectral and 1D spectral domains for solving multilayer and multiregion field problems. IEEE Antennas and Propagation Magazine, 2017, vol. 59, no. 4, p. 106–116. DOI: 10.1109/MAP.2017.2706665
  24. TRETYAKOV, S. A. Analytical Modeling in Applied Electromagnetics. Norwood: Artech House, 2003. ISBN: 978-1630812836

Keywords: Metasurfaces, curved metasurfaces, spectral domain approach, sheet impedance, metasurface production technology, high-frequency conductive materials

S. Costanzo, G. Lopez [references] [full-text] [DOI: 10.13164/re.2019.0512] [Download Citations]
Phaseless Single-Step Microwave Imaging Technique for Biomedical Applications

In the present work, an improved phaseless approach to microwave imaging is presented. Starting from the Contrast Source formulation of the scattering problem, a single-step procedure with no intermediate phase-retrieval process is described. The reconstruction capabilities of the proposed phaseless inverse method are numerically validated by firstly considering simple dielectric targets. Then, a slice breast model with the inclusion of a cancerous portion is analyzed. The identification of different types of breast tissue is successfully achieved, thus confirming the validity and potentialities of the proposed phaseless technique in the framework of biomedical imaging.

  1. BELLIZZI, G., BUCCI, O. M., CATAPANO, I. Microwave cancer imaging exploiting magnetic nanoparticles as contrast agent. IEEE Transactions on Biomedical Engineering, 2011, vol. 58, no. 9, p. 2528–2536. DOI: 10.1109/TBME.2011.2158544
  2. COSTANZO, S., LOPEZ, G. Single-step approach to phaseless contrast-source inverse scattering. In Rocha, A., Adeli, H., Reis, L., Costanzo, S. (eds.) New Knowledge in Information Systems and Technologies. WorldCIST'19 2019. Advances in Intelligent Systems and Computing, 2019, vol. 932, p. 278–283. DOI: 10.1007/978-3-030-16187-3_27
  3. VAN DEN BERG, P. M., ABUBAKAR, A. Contrast source inversion method: State of art. Journal of Electromagnetic Waves and Applications, 2001, vol. 15, no. 11, p. 1503–1505. DOI: 10.1163/156939301X00067
  4. VAN DEN BERG, P. M., KLEINMAN, R. E. A contrast source inversion method. Inverse Problems, 1997, vol. 13, no. 6, p. 1607–1620. DOI: 10.1088/0266-5611/13/6/013
  5. NIKOLOVA, N. K. Scalar-wave models in electromagnetic scattering. In Introduction to Microwave Imaging. Cambridge: Cambridge University Press, 2017, p. 1–110. DOI: 10.1017/9781316084267.002
  6. COSTANZO, S., DI MASSA, G., PASTORINO, M., et al. Noninvasive microwave characterization of dielectric scatterers. In Costanzo, S. (ed.) Microwave Materials Characterization. InTech, 2012, p. 38–50. DOI: 10.5772/50842
  7. COLTON, D., KRESS, R. The Helmholtz equation. In Inverse Acoustic and Electromagnetic Scattering Theory, 2013, p. 13–38. DOI: 10.1007/978-1-4614-4942-3_2
  8. BURGEL, F., KAZIMIERSKI, K. S., LECHLEITER, A. IPscatt - a MATLAB Toolbox for the Inverse Medium Problem in Scattering. 2017.
  9. TSUBURAYA, T., MENG, Z., TAKENAKA, T. Inverse scattering analysis from measurement data of total electric and magnetic fields by means of cylindrical-wave expansion. Electronics, 2019, vol. 8, no. 4, p. 1–11. DOI: 10.3390/electronics8040417
  10. ZHENG, H., LI, L., LI, F. A multi-frequency MRCSI algorithm with phaseless data. Inverse Problems, 2009, vol. 25, no. 6, p. 1–13. DOI: 10.1088/0266-5611/25/6/065006
  11. LI, L., ZHENG, H., LI, F. Two-dimensional contrast source inversion method with phaseless data: TM case. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 6, p. 1719–1736. DOI: 10.1109/TGRS.2008.2006360
  12. D’URSO, M., BELKEBIR, K., CROCCO, L., et al. Phaseless imaging with experimental data: Facts and challenges. Journal of the Optical Society of America A, 2008, vol. 25, no. 1, p. 271–281. DOI: 10.1364/JOSAA.25.000271
  13. GEFFRIN, J. M., SABOUROUX, P., EYRAUD, C. Free space experimental scattering database continuation: Experimental set-up and measurement precision. Inverse Problems, 2005, vol. 21, no. 6, p. S117–S130. DOI: 10.1088/0266-5611/21/6/S09
  14. BELKEBIR, K., SAILLARD, M. Special section: Testing inversion algorithms against experimental data. Inverse Problems, 2001, vol. 17, no. 6, p. 1565–1571. DOI: 10.1088/0266- 5611/17/6/301
  15. COMSOL Multiphysics®. v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden
  16. LAZEBNIK, M., POPOVIC, D., MC CARTNEY, L., et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Physics in Medicine and Biology, 2007, vol. 52, no. 20, p. 6093–6115. DOI: 10.1088/0031-9155/52/20/002

Keywords: Electromagnetic (EM) inverse scattering problem, Phaseless Contrast-Source Inversion method (P-CSI), breast imaging

D. Kuratko, D. K. Wojcik, J. Lacik, V. Koudelka [references] [full-text] [DOI: 10.13164/re.2019.0517] [Download Citations]
Electromagnetic Modeling of Rat’s Head: Comparison of Formulations and Models

Reliable inverse imaging of source currents in rat’s brain requires sufficiently accurate and CPU-time moderate forward models of fields to calibrate inverse solvers. In this paper, we compare different mathematical formulations of the electromagnetic problem related to the analysis of brain waves (static, quasi-static, full-wave) and various meshes differing in the density, the type and the geometrical accuracy. A sufficiently accurate model of brain waves is then completed by the cerebrospinal fluid and the skull. The resultant composite model of rat’s head with properly set electrical parameters has to be calibrated by the outputs of measurements. That way, a realistic electromagnetic model of the head of a live rat can be obtained.

  1. HE, B. Neural Engineering. 1st ed., rev. New York (USA): Kluwer Academic/Plenum, 2005. ISBN: 978-0-306-48609-8
  2. KURATKO, D., RAIDA, Z., CUPAL, M., et al. Electromagnetic modelling of rat’s brain: comparison of models and solvers. In Proceedings of the International Workshop on Computing, Electromagnetics, and Machine Intelligence (CEMi 2018). Stellenbosch (South Africa), 2018, p. 31–32. DOI: 10.1109/cemi.2018.8610569
  3. RAMIREZ, R. R. Source localization. Scholarpedia, vol. 3, no. 11. DOI: 10.4249/scholarpedia.1733 [Online] Cited 2018-11-12. Available at: http://www.scholarpedia.org/article/Source_localization
  4. HALLEZ, H., VANRUMSTE, B., GRECH, R., et al. Review of solving the forward problem in EEG source analysis. Journal of NeuroEngineering and Rehabilitation, 2007, vol. 4, no. 1, p. 1–29. DOI: 10.1186/1743-0003-4-46
  5. GOTO, T., HATANAKA, R., OGAWA, T., et al. An evaluation of the conductivity profile in the somatosensory barrel cortex of wistar rats. Journal of Neurophysiology, 2010, vol. 104, no. 6, p. 3388–3412. DOI: 10.1152/jn.00122.2010
  6. BRETTE, R., DESTEXHE, A. Handbook of Neural Activity Measurement. 1st ed., rev. Cambridge (UK): Cambridge University Press, 2012. ISBN: 978-0-521-51622-8
  7. POHL, B. M., GASCA, F., HOFMANN, U. G. IGES and .STL File of Rat Brain. [Online] Cited 2018-11-12. Available at: https: //figshare.com/articles/IGES_and_stl_file_of_a_rat_brain/823546
  8. PAPP, E. A., LEERGAARD, T. B., CALABRESE, E., et al. Waxholme space atlas of the Sprague Dawley rat brain. NeuroImage, 2014, vol. 97, p. 374–376. DOI: 10.1016/j.neuroimage.2014.04.001
  9. KJONIGSEN, L. J., LILLEHAUG, S., BJAALIE, J. G., et al. Waxholm Space atlas of the rat brain hippocampal region: Threedimensional delineations based on magnetic resonance and diffusion tensor imaging. NeuroImage, 2015, vol. 108, p. 441–449. DOI: 10.1016/j.neuroimage.2014.12.080.
  10. SERGEJEVA, M., PAPP, E. A., BAKKER, R., et al. Anatomical landmarks for registration of experimental image data to volumetric rodent brain atlasing templates. Journal of Neuroscience Methods, 2015, vol. 240, p. 161–169. DOI: 10.1016/j.jneumeth.2014.11.005
  11. JAIN, S., MITTRA, R., WIART, J. Full-wave modeling of brain waves as electromagnetic waves. Progress in Electromagnetic Research, 2015, vol. 151, p. 95–107. DOI: 10.2528/PIER15011404
  12. . CST Studio Suite 2018 [Online] Cited 2018-11-12. Available at: https://www.cst.com/
  13. NUNEZ, P. L., SRINIVASAN, R. Electric Fields of the Brain: The Neurophysics of EEG. 2nd ed. rev. New York (USA): Oxford University Press, 2006. ISBN 9780195050387
  14. BUZSAKI, G. Rhythms of the Brain. 1st ed., rev. New York (USA): Oxford University Press, 2006. ISBN: 9780199828234
  15. . Blender. [Online] Cited 2018-11-12. Available at: https://www.blender.org/
  16. . MeshLab. [Online] Cited 2018-11-12. Available at: http://www.meshlab.net/
  17. . Autodesk MeshMixer. [Online] Cited 2018-11-12. Available at: http://www.meshmixer.com/
  18. . Autodesk Fusion 360. [Online] Cited 2018-11-12. Available at: https://www.autodesk.com/products/fusion-360/overview
  19. SCHIMPF, P. H., RAMON, C., HAUEISEN, J. Dipole models for the EEG and MEG. IEEE Engineering in Medicine and Biology Society, 2002, vol. 49, no. 5, p. 409–418. DOI: 10.1109/10.995679
  20. GUTIERREZ, Z., NEHORAI, A., MURAVCHIK, C. H. Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Transaction on Biomedical Engineering, 2004, vol. 51, no. 12, p. 2113–2122. DOI: 10.1109/TBME.2004.836507
  21. LAI, Y., VAN DRONGELEN, W., DING, L., et al. Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clinical Neurophysiology, 2005, vol. 116, no. 2, p. 456–465. DOI: 10.1016/j.clinph.2004.08.017
  22. ANDREUCCETTI, D., FOSSI, R., PETRUCCI, C. An Internet Resource for the Calculation of the Dielectric Properties of Body Tissues in the Frequency Range 10 Hz–100 GHz. [Online] IFAC-CNR. Florence (Italy). 1997. Based on data published by C. Gabriel et al. in 1996. Available at: http://niremf.ifac.cnr.it/tissprop/

Keywords: Forward brain model, rat’s head, numerical analysis, Maxwell equations.

H. Taghizadeh, Ch. Ghobadi, B. Azarm, M. Majidzadeh [references] [full-text] [DOI: 10.13164/re.2019.0528] [Download Citations]
Grounded Coplanar Waveguide-fed Compact MIMO Antenna for Wireless Portable Applications

A multi-input multi-output (MIMO) antenna with high isolation capability is proposed in this paper. The proposed MIMO antenna configuration is composed of two monopole antennas, each of them consists of a single rectangular grounded coplanar waveguide (GCPW) feed line, a radiation patch with two arms, two conductive elements on both sides of the feed line, and a simple ground plane on substrate backside. The overall size of the proposed MIMO antenna is 44×20 mm2 on 1.6 mm thick FR4 substrate which is more compact than many of the previously designed structures. The arrangement of two monopole antennas in the form of a MIMO antenna topology yield a dual-band operation in which the first bandwidth is in 3.06-3.89 GHz with the central frequency at 3.5 GHz for WiMAX applications, and 5.14-5.93 GHz with central frequency of 5.5 GHz for WLAN applications. Interestingly the obtained isolation level is better than -20 dB over the operating bandwithds. Simulation and measured results confirm the antenna outperformance in WiMAX and WLAN frequency range in wireless portable applications. Small size, simple structure, and high isolation without any decoupling elements are some of the advantages of the proposed design.

  1. WEN, D., HAO, Y., MUNOZ, M. O., et al. A compact and lowprofile MIMO antenna using a miniature circular high-impedance surface for wearable applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 96–104. DOI: 10.1109/TAP.2017.2773465
  2. LEE, J., HONG, Y.K., BAE, S., et al. Miniature Long-Term Evolution (LTE) MIMO ferrite antenna. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 603–606. DOI: 10.1109/LAWP.2011.2159468
  3. AZARM, B., NOURINIA, J., GHOBADI, C., et al. A compact WiMAX band-notched UWB MIMO antenna with high isolation. Radioengineering, 2018, vol. 27, no. 4, p. 983–989. DOI: 10.13164/re.2018.0983
  4. ZHANG, Z. L., WEI, K., XIE, J., et al. The MIMO antenna array with mutual coupling reduction and cross-polarization suppression by defected ground structures. Radioengineering, 2018, vol. 27, no. 4, p. 969–975. DOI: 10.13164/re.2018.0969
  5. LUO, C. M., HONG, J. S., ZHONG, L. L. Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1766–1769. DOI: 10.1109/LAWP.2015.2423318
  6. LIN, G. S., SUNG, C. H., CHEN, J. L., et al. Isolation improvement in UWB MIMO antenna system using carbon black film. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 222–225. DOI: 10.1109/LAWP.2016.2570301
  7. DENG, J. Y., LI, J. Y., ZHAO, L., GUO, L. A dual-band invertedF MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2270–2273. DOI: 10.1109/LAWP.2017.2713986
  8. BARANI, I. R. R., WONG, K. L. Integrated inverted-F and openslot antennas in the metal-framed smartphone for 2×2 LTE LB and 4×4 LTE M/HB MIMO operations. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 10, p. 5004–5012. DOI: 10.1109/TAP.2018.2854191
  9. DIOUM, I., DIALLO, A., FARSSI, S. M., LUXEY, C. A novel compact dual-band LTE antenna-system for MIMO operation. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 2291–2296. DOI: 10.1109/TAP.2014.2301151
  10. KWON, O. Y., SONG, R., KIM, B. S. A fully integrated shark-fin antenna for MIMO-LTE, GPS, WLAN, and WAVE applications. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, p. 600–603. DOI: 10.1109/LAWP.2018.2805681
  11. SRIVASTAVA, G., MOHAN, A. Compact MIMO slot antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1057–1060. DOI: 10.1109/LAWP.2015.2491968
  12. REN, J., HU, W., YIN, Y., FAN, R. Compact printed MIMO antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1517–1520. DOI: 10.1109/LAWP.2014.2343454
  13. POUYANFAR, N., GHOBADI, CH., NOURINIA, J., et al. A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radioengineering, 2018, vol. 27, no. p. 686–693. DOI: 10.13164/re.2018.0686
  14. QUDDUS, A., SALEEM, R., SHAFIQUE, M. F., et al. Compact electronically reconfigurable WiMAX band-notched ultrawideband MIMO antenna. Radioengineering, 2018, vol. 27, no. 4, p. 998–1005. DOI: 10.13164/re.2018.0998
  15. LIAO, W. J., HSIEH, C. Y., DAI, B. Y., et al. Inverted-F/slot integrated dual-band four-antenna system for WLAN access points. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 847–850. DOI: 10.1109/LAWP.2014.2381362
  16. LUO, C. M., HONG, J. S., AMIN, M. Mutual coupling reduction for dual-band MIMO antenna with simple structure. Radioengineering, 2017, vol. 26, no. 1, p. 51–56. DOI: 10.13164/re.2017.0051
  17. CHANDEL, R., KUMAR GAUTAM, A., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with a dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134

Keywords: Monopole antennas, multiple-input–multiple-output (MIMO), WiMAX applications, WLAN application, wireless portable devices

S. Pradhan, B. Gupta [references] [full-text] [DOI: 10.13164/re.2019.0535] [Download Citations]
Multiport Network Model of Double–stub Loaded Microstrip Ring Antenna for Tri–band Operation

A microstrip ring antenna has a single broadside fundamental radiating mode. In this communication one of the arms of the ring has been loaded with two stubs, so that the perturbation in the fields results in broadside radiation in the next two higher order modes. This results in three broadside radiating modes. Gap coupled excitation is chosen to achieve impedance matching in all the three frequency bands. Linearly polarized radiation with gain of 2.88 dB, 4.67 dB and 6.07 dB and half-power beamwidth of 89.6°, 76.3° and 79° in the φ=90º plane has been achieved at the center frequencies of 0.9526 GHz, 1.833 GHz and 2.468 GHz respectively. This structure has been analyzed using multiport network modeling. The modeling is vindicated by experimental results.

  1. LEE, K. F., YANG, S. L. S., KISHK, A. A. Dual- and multiband U-slot patch antennas. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 645–647. DOI: 10.1109/LAWP.2008.2010342
  2. DAVIDSON, S. E., LONG, S. A., RICHARDS, W. F. Dual-band microstrip antennas with monolithic reactive loading. Electronics Letters, 1985, vol. 21, no. 20, p. 936–937. DOI: 10.1049/el:19850662
  3. POLIVKA, M. Design of dualband quarter-wavelength patch antenna by tuning its natural resonances. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Honolulu (USA), June 2007, p. 996–999. DOI: 10.1109/APS.2007.4395664
  4. SHAFAI, L. Characteristics of printed ring microstrip antennas. In Proceedings of the Symposium on Antenna Technology and Applied Electromagnetics. Montreal (Canada), August 1996, p. 379–382. ISBN: 978-0-9692563-5-9
  5. BAFROOEI, P. M., SHAFAI, L. Characteristics of single- and double-layer microstrip square-ring antennas. IEEE Antennas and Wireless Propagation Letters, 1999, vol. 47, no. 10, p. 1633–1639. DOI: 10.1109/8.805910
  6. VINOY, K. J., PAL, A. Dual-frequency characteristics of Minkowski square ring antennas. IET Microwave, Antennas and Propagation, 2010, vol. 4, no. 2, p. 219–224. DOI: 10.1049/ietmap.2008.0202
  7. WAKATSUKI, H., KIMURA, Y., HANEISHI, M. Single-layer multiband ring microstrip antennas fed by a co-planar waveguide. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Orlando (USA), July 2013, p. 926–927. DOI: 10.1109/APS.2013.6711122
  8. DESHMUKH, A. A., RAY, K. P. Broadband proximity-fed square-ring microstrip antennas. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 2, p. 89–107. DOI: 10.1109/MAP.2014.6837068
  9. LATIF, S. I., SHAFAI, L. Microstrip square-ring antenna with capacitive feeding for multi-frequency operation. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. San Diego (USA), July 2008, p. 1–4. DOI: 10.1109/APS.2008.4620008
  10. PUSKELY, J., YAROVOY, A. G., ROEDERER, A. G. Two-port dual-band microstrip square ring antenna for radar applications. In Proceedings of the European Conference on Antennas and Propagations. Davos (Switzerland), April 2016, p. 1–5. DOI: 10.1109/EuCAP.2016.7481539
  11. CHEN, W. S., WU, C. K., WONG, K. L. Square-ring microstrip antenna with a cross strip for compact circular polarization operation. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 10, p. 1566–1568. DOI: 10.1109/8.805900
  12. TONG, K. F. A new single-fed proximity coupled circularly polarized square ring antenna. In Proceedings of the Asia-Pacific Microwave Conference. Yokohama (Japan), December 2006, p. 69–72. DOI: 10.1109/APMC.2006.4429381
  13. DESHMUKH, A. A., RAY, K. P., CHINE, P. N. Multi-band stub loaded square ring microstrip antennas. In Proceedings of the Applied Electromagnetics Conference (AEMC). Kolkata (India), December 2009, p. 1–4. DOI: 10.1109/AEMC.5430706
  14. BEHERA, S., VINOY, K. J. Microstrip square ring antenna for dualband operation. Progress in Electromagnetics Research, 2009, vol. 93, p. 41–56. DOI: 10.2528/PIER09021909
  15. CHADHA, R., GUPTA, K. C. Segmentation method using impedance matrices for analysis of planar microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 1, p. 71–74. DOI: 10.1109/TMTT.1981.1130292
  16. GUPTA, K. C., SHARMA, P. C. Segmentation and desegmentation techniques for analysis of planar microstrip antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Los Angeles (USA), June 1981, vol. 19, p. 19–22. DOI: 10.1109/APS.1981.1148597
  17. SHARMA, P. C., GUPTA, K. C. Desegmentation method for analysis of two-dimensional microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 10, p. 1094–1098. DOI: 10.1109/TMTT.1981.1130504
  18. PALANISAMY, V., GARG, R. Analysis of circularly polarized square ring and cross-strip microstrip antennas. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 11, p. 1340–1346. DOI: 10.1109/TAP.1986.1143766
  19. BENALLA, A., GUPTA, K. C. Multiport network model for twoport gap-coupled rectangular microstrip patches. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Ontario (Canada), June 1991, vol. 1, p. 64–67. DOI: 10.1109/APS.1991.174774
  20. BEHERA, S., VINOY, K. J. Multi-port network modeling of stub loaded microstrip ring antenna for dual-band operations. In Proceedings of the IEEE Asia Pacific Conference on Antennas and Propagation. Singapore, August 2012, p. 233–234. DOI: 10.1109/APCAP.2012.6333243
  21. GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. 1st ed. Artech House, 2001. ISBN: 0–89006–513–6
  22. OKOSHI, T., MIYOSHI, T. The planar circuit – an approach to microwave integrated circuitry. IEEE Transactions on Microwave Theory and Techniques, 1972, vol. 20, no. 4, p. 245–252. DOI: 10.11109/TMTT.1972.1127730
  23. JAMES, J. R., HALL, P. S. Handbook of Microstrip Antennas. 2nd ed. Peter Peregrinus Ltd., 1989. ISBN: 0–86341–150–9
  24. BEDAIR, S. S. Characteristics of some asymmetrical coupled transmission lines. IEEE Transactions on Microwave Theory and Techniques, 1984, vol. 32, no. 1, p. 108–110. DOI: 10.1109/TMTT.1984.1132620
  25. PALANISAMY, V., GARG, R. Analysis of arbitrary shaped microstrip patch antennas using segmentation technique and cavity model. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 10, p. 1208–1213. DOI: 10.1109/TAP.1986.1143737
  26. www.cst.com
  27. KUMAR, G., GUPTA, K. C. Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges. IEEE Transactions on Antennas and Propagation, 1984, vol. 32, no. 12, p. 1375–1379. DOI: 10.1109/TAP.1984.1143264
  28. KUMAR, G., GUPTA, K. C. Non radiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas. IEEE Transactions on Antennas and Propagation, 1985, vol. 33, no. 2, p. 173–178. DOI: 10.1109/TAP.1985.1143563
  29. HOSSAIN, M. M., WAHED, M. A., MOTIN, M. A. Design and simulation of a dual-frequency E-shaped microstrip patch antenna for wireless communication. In Proceedings of the 9th International Forum on Strategic Technology. Cox’s Bazar (Bangladesh), October 2014, p. 183–186. DOI: 10.1109/IFOST.2014.6991100
  30. ABU, M., RAHIM, M. K. A., AYOP, O. Slotted e-shape antenna design for dual frequency operation. In Proceedings of the 3rd European Conference on Antennas and Propagation. Berlin (Germany), March 2009, p. 2416–2419. ISBN: 978-3-00-024573-2
  31. ATA, O. W., SALAMIN, M., ABUSABHA, K. Double U-slot rectangular patch antenna for multiband applications. In Proceedings of the International Symposium on Advanced Electrical and Communication Technology. Rabat (Morocco), November 2018, p. 1–6. DOI: 10.1109/ISAECT.2018.8618855

Keywords: Broadside radiation, gap–coupling, microstrip ring antenna, multiport network model

A. Das, J. Acharjee, K. Mandal [references] [full-text] [DOI: 10.13164/re.2019.0544] [Download Citations]
Compact UWB Printed Slot Antenna with Three Extra Bands and WiMAX Rejection Functionality

A compact ultra-wideband (UWB) printed slot antenna with additional bands of 870-960 MHz, 1.67-1.84 GHz, 2.33-2.57 GHz for GSM-900, GSM-1800 and Bluetooth respectively along with WiMAX band rejection functionality at 3.27-4.02 GHz is presented for various wireless applications. A simple circular patch fed by a trapezoidal-shaped microstrip line is conceived to cover entire UWB (3-10.5 GHz). Three additional bands have been accommodated by incorporating two pairs of spider arm-shaped resonators at the top of the slotted ground. Coupling between the extended feed line and extended back resonator is used to acquire a stop band characteristic for the reduction of possible interference between WiMAX and UWB bands. Moreover, an arc-shaped resonator and a cross-shaped slot on the feed line are conceived to enhance the bandwidth of the UWB. The proposed design is simple in structure and compact with an overall dimension of 50×50×1.6 mm3, hence length is only 0.046λ with respect to the lower edge frequency (3 GHz) of the UWB. The simulated and measured results are in good agreement that ensures the potentiality of the proposed antenna structure for UWB and multiservice wireless applications.

  1. FEDERAL COMMUNICATIONS COMMISSION. Federal Communication Commission Revision of Part 15 of Commission’s Rules Regarding Ultra-wideband Transmission Systems. First Report and Order FCC, 02. V48, Washington, DC, USA, 2002.
  2. LIANG, J., CHIAU, C. C., CHEN, X., et al. Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 2004, vol. 40, p. 1246–1247. DOI: 10.1049/el:20045966
  3. AHMED, O., SEBAK, A. R. A printed monopole antenna with two steps and a circular slot for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 411–413. DOI: 10.1109/LAWP.2008.2001026
  4. CHENG, S., HALLBJORNER, P., RYDBERG, A. Printed slot planar inverted cone antenna for ultra-wideband applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 18–21. DOI: 10.1109/LAWP.2007.914115
  5. MISHRA, R., JAYASINGHE, J., MISHRA, R. G., et al. Design and performance analysis of a rectangular microstrip line feed ultra-wide band antenna. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, vol. 9, no. 6, p. 419–426. DOI: 10.14257/ijsip.2016.9.6.36
  6. OJAROUDI, N., OJAROUDI, M. Novel design of dual bandnotched monopole antenna with bandwidth enhancement for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 698–701. DOI: 10.1109/LAWP.2013.2264713
  7. ACHARJEE, J., MANDAL, K., MANDAL, S. K., et al. A compact printed monopole antenna with enhanced bandwidth and variable dual band notch for UWB applications. Journal of Electromagnetic Waves and Applications, 2016, vol. 60, p. 1980–1992. DOI: 10.1080/09205071.2016.1234419
  8. KUNDU, S., CHATTERJEE, A., JANA, S. K., et al. A high gain dual notch compact UWB antenna with minimal dispersion for ground penetrating radar application. Radioengineering, 2018, vol. 27, no. 4, p. 990–997. DOI: 10.13164/re.2018.0990
  9. LIN, C., JIN, P., ZIOLKOWSKI, R. Single, dual and tri-bandnotched ultra-wideband (UWB) antennas using capacitively loaded loop (CLL) resonators. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 102–109. DOI: 10.1109/TAP.2011.2167947
  10. KUNDU, S., JANA, S. K. Leaf‐shaped CPW‐fed UWB antenna with triple notch bands for ground penetrating radar applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 4, p. 930–936. DOI: 10.1002/mop.31075
  11. KAHNG, S., SHIN, E. C., JANG, G. H., et al. A UWB antenna combined with the CRLH metamaterial UWB bandpass filter having the bandstop at the 5 GHz-band WLAN. In IEEE Antennas and Propagation Society International Symposium. Charleston (SC, USA), June 2009. DOI: 10.1109/APS.2009.5172114
  12. YILDIRIM, B. S., CETINER, B. A., ROQUETA, G., et al. Integrated Bluetooth and UWB antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 149–152. DOI: 10.1109/LAWP.2009.2013371
  13. GORAI, A., PAL, M., GHATAK, R. A compact fractal-shaped antenna for ultra-wideband and Bluetooth wireless systems with WLAN rejection functionality. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2163–2166. DOI: 10.1109/LAWP.2017.2702208
  14. YADAV, S., GAUTAM, A. K., KANAUJIA, B. K., et al. Design of band-rejected UWB planar antenna with integrated Bluetooth band. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 14, p. 1528–1533. DOI: 10.1049/iet-map.2016.0118
  15. SAMADI TAHERI, M. M., HASSANI, H. R., NEZHAD, S. M. A. UWB printed slot antenna with Bluetooth and dual notch bands. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 255–258. DOI: 10.1109/LAWP.2011.2119391
  16. SRIVASTAVA, K., KUMAR, A., KANAUJIA, B. K., et al. Integrated GSM-UWB Fibonacci-type antennas with single, dual, and triple notched bands. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 6, p. 1004–1012. DOI: 10.1049/iet-map.2017.0074
  17. REDDY, G. S., KAMMA, A., MISHRA, S. K., et al. Compact Bluetooth/UWB dual-band planar antenna with quadruple bandnotch characteristics. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 872–875. DOI: 10.1109/LAWP.2014.2320892
  18. BOD, M., HASSANI, H. R., SAMADI TAHERI, M. M. Compact UWB printed slot antenna with extra Bluetooth, GSM and GPS bands. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 531–534. DOI: 10.1109/LAWP.2012.2197849
  19. CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134
  20. RISCO, S., ANGUERA, J., ANDUJAR, A., et al. Coupled monopole antenna design for multiband handset devices. Microwave and Optical Technology Letters, 2010, vol. 52, no. 2, p. 359–364. DOI: 10.1002/mop.24893

Keywords: UWB, printed antenna, extra bands, band rejection, GSM-900, WiMAX

A. Ghosh, A. Banerjee, S. Das [references] [full-text] [DOI: 10.13164/re.2019.0552] [Download Citations]
Design of Compact Polarization Insensitive Triple Bandstop Frequency Selective Surface with High Stability under Oblique Incidence

This paper proposes a novel design of a triple band frequency selective surface (FSS) that acts as a bandstop filter at 1.92 GHz, 3.5 GHz and 5.64 GHz. The bandstop frequencies resemble to GSM, WLAN and WiMAX application bands respectively. The structure is polarization insensitive since its frequency response remains unaltered for both TE and TM modes of electromagnetic wave propagation. The main attractive feature of the structure is its highly stable response under oblique incident angle upto ± 800 at both TE and TM polarizations. Surface current distribution and equivalent circuit modelling are presented to demonstrate the resonance characteristic of the FSS. The structure is compact with an overall unit cell area of 0.09λ x 0.09λ, where λ is the wavelength corresponding to the lowest resonant frequency. The proposed structure is compared with other multi-bandstop FSS structures in literature to highlight its superior functionality in terms of stability under oblique incidence and compactness. A prototype comprising of 6 x 6 array of the proposed unit cell is fabricated and the measured results are in good agreement with the simulated results.

  1. ZHAO, P., ZONG, Z., LI, B., et al. Miniaturised bandstop frequency selective surface based on quasi-lumped inductor and capacitor. Electronics Letters, 2017, vol. 53, no. 10, p. 642–644. DOI: 10.1049/el.2017.0548
  2. ZHANG, K., JIANG, W., GONG, S. Design of bandpass frequency selective surface absorber using LC resonators. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2586–2589. DOI: 10.1109/LAWP.2017.2734918
  3. KERN, D. J., WERNER, D. H., MONORCHIO, A., et al. The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 1, p. 8–17. DOI: 10.1109/TAP.2004.840540
  4. ZHONG, T., ZHANG, H., WU, R., et al. A frequency selective surface with polarization rotation based on substrate integrated waveguide. Progress in Electromagnetics Research Letters, 2016, vol. 60, p. 121–125. DOI: 10.2528/PIERL16031502
  5. GHOSH, A., MITRA, A., DAS, S. Meander line‐based low profile RIS with defected ground and its use in patch antenna miniaturization for wireless applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 3, p. 732–738. DOI: 10.1002/mop.30384
  6. BILAL, M., SALEEM, R., SHABBIR, T., et al. A novel miniaturized FSS based electromagnetic shield for SATCOM applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 9, p. 2107–2112. DOI: 10.1002/mop.30696
  7. LI, J., ZENG, Q., LIU, R., et al. A compact dual-band beamsweeping antenna based on active frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 4, p. 1542–1549. DOI: 10.1109/TAP.2017.2669719
  8. LIU, N., SHENG, X. J., FAN, J. J. A compact miniaturized frequency selective surface with stable resonant frequency. Progress in Electromagnetics Research Letters, 2016, vol. 62, p. 17–22. DOI: 10.2528/PIERL16070608
  9. GHOSH, S., SRIVASTAVA, K. V. An angularly stable dual-band FSS with closely spaced resonances using miniaturized unit cell. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 3, p. 218–220. DOI: 10.1109/LMWC.2017.2661683
  10. CAN, S., KAPUSUZ, K. Y., YILMAZ, A. E. A dual-band polarization independent FSS having a transparent substrate for ISM and Wi-Fi shielding. Microwave and Optical Technology Letters, 2017, vol. 59, no. 9, p. 2249–2253. DOI: 10.1002/mop.30715
  11. KHAJEVANDI, S., ORAIZI, H., POORDARAEE, M. Design of planar dual-bandstop FSS using square-loop-enclosing superformula curves. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 5, p. 731–734. DOI: 10.1109/LAWP.2018.2812698
  12. NASROLLAHI, H., YEGANEH, A. N., SEDIGHY, S. H., et al. Compact, dual polarized, mutliband frequency selective surface with wideband spurious rejection. Microwave and Optical Technology Letters, 2017, vol. 59, no. 4, p. 888–893. DOI: 10.1002/mop.30420
  13. LIU, N., SHENG, X., ZHANG, C., et al. A miniaturized triband frequency selective surface based on convoluted design. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2384–2387. DOI: 10.1109/LAWP.2017.2719859
  14. POOJALI, J., RAY, S., PESALA, B., et al. Quad-band polarization-insensitive millimeter-wave frequency selective surface for remote sensing. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1796–1799. DOI: 10.1109/LAWP.2017.2679204
  15. KARTAL, M., GOLEZANI, J. J., DOKEN, B. A triple band frequency selective surface design for GSM systems by utilizing a novel synthetic resonator. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2724–2727. DOI: 10.1109/TAP.2017.2670230
  16. KARTAL, M., DOKEN, B. Triple band frequency selective surface design for global system for mobile communication systems. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 11, p. 1154–1158. DOI: 10.1049/iet-map.2016.0021
  17. POZAR, D. M. Microwave Engineering. 4th ed., rev. Hoboken, New Jersey: John Wiley & Sons, 2012. ISBN: 978-81-265-4190-4
  18. YILMAZ, A. E, KUZUOGLU, M. Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model. Radioengineering, 2009, vol. 18, no. 2, p. 95–102. ISSN 1210-2512

Keywords: Frequency selective surface, bandstop filter, polarization insensitive, oblique incidence angle, compact

A. Banerjee, S. Chatterjee, B. Gupta, A. K. Bandyopadhyay [references] [full-text] [DOI: 10.13164/re.2019.0559] [Download Citations]
Analysis of Uniform and Tapered CPW-fed Zigzag Monopoles Used as Feed Structures for Wide-Slot Radiators

CPW-fed zigzag monopole radiators can be used to excite wide slots etched on the CPW-grounds for gain enhancement purposes, without significantly altering its resonance. The circuit analysis for CPW-fed zigzag monopole acting as a feed to a wide square slot is presented. Later, the uniform zigzag feed is tapered to support a gradual propagation constant modification. In both cases, the zigzag feed is conceived as an array of two constituent monopoles fed from the same source with modified propagation constants. Simulations along with the measured results are provided to validate the theoretical work which showed less than 2% error achieved in the predictions. Measured gains of the radiators are reported at their resonance frequencies, 2.93dB and 3.19dB respectively for the uniform and tapered zigzag feeds, which validates the observation of gain enhancement in this article.

  1. LAOHAPENSAENG, C., FREE, C., ROBERTSON, I. D. Simplified analysis of printed strip monopole antenna fed by a CPW. In Proceedings of the Asia-Pacific Microwave Conference. Suzhou (China), 2005, p. 1–4. DOI: 10.1109/APMC.2005.1606956
  2. BANERJEE, A., BANDYOPADHYAY, A. K. Theoretical investigation on the input impedance of a CPW-fed strip monopole antenna. Microwave and Optical Technology Letters, 2017, vol. 59, no. 2, p. 346–348. DOI: 10.1002/mop.30287
  3. BANERJEE, A., CHATTERJEE, S., GUPTA, B., et al. Theoretical investigation on input characteristics of CPW-fed wide rectangular monopole structures. In IEEE International Conference on Antenna Innovations and Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). Bangalore (India), 2017. DOI: 10.1109/IAIM.2017.8402614
  4. BANERJEE A., PATRA K., CHATTERJEE S., et al. Theoretical investigations on the resonance characteristics of CPW-fed miniaturized strip monopole antennas. Radioengineering, 2018, vol. 27, no. 4, p. 948–955. DOI: 10.13164/re.2018.0948
  5. SIM, C. Y. D., CHEN, H. D., CHIU, K. C., et al. Coplanar waveguide-fed slot antenna for wireless local area network/worldwide interoperability for microwave access applications. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 14, p. 1529–1535. DOI: 10.1049/iet-map.2012.0174
  6. HU, L., HUA, W. Wide dual-band CPW-fed slot antenna. Electronics Letters, 2011, vol. 47, no. 14, p. 789–790. DOI: 10.1049/el.2011.0909
  7. Ansoft Corp HFSS v.13
  8. Zealand Corp IE3D v.10
  9. ESTARKI, M. D., VAUGHAN, R. G. Theoretical methods for the impedance and bandwidth of the thin dipole. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 01, p. 62–81. DOI: 10.1109/MAP.2013.6474485

Keywords: Circuit model analysis, closed-form expressions, uniform and tapered zigzag monopole, Wide-Slot Radiator, Gain Enhancement

R. Agrawal, P. Belwal, S. C. Gupta [references] [full-text] [DOI: 10.13164/re.2019.0565] [Download Citations]
Half Mode Substrate Integrated Waveguide Leaky Wave Antenna with Broadside Gain Enhancement for Ku-Band Applications

A miniaturized frequency scanned leaky wave antenna (LWA) based on half mode substrate integrated waveguide (HMSIW) with open stop-band suppression is proposed. The modified cross-slot is etched on the top of HMSIW as the radiating element. The folded and unfolded ground plane designs of the proposed HMSIW LWA are compared and analyzed w.r.t their bloch impedance characteristics and it is found that further miniaturization and gain improvement at broadside by ~ 2dBi are achieved for folded ground plane design. The proposed LWA scans a region from -40° to +24° as the frequency range increases from 12 to 17 GHz with broadside at 15.5 GHz. The HMSIW LWA with folded ground plane is fabricated and its performance is experimentally measured showing the close agreement between the simulation and the measured results.

  1. DESLANDES, D., WU, K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters, 2001, vol. 11, no. 2, p. 68–70. DOI: 10.1109/7260.914305
  2. HONG, W., LIU, B., WANG, Y., et al, Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application. In Proceedings of 31st International Conference on Infrared and Millimeter Waves. Shanghai (China), 2006, p. 18–22. DOI: 10.1109/ICIMW.2006.368427
  3. NGUYEN-TRONG, N., KAUFMANN, T., FUMEAUX, C. A wideband omnidirectional horizontally polarized traveling-wave antenna based on half-mode substrate integrated waveguide. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 682–685. DOI: 10.1109/LAWP.2013.2263492
  4. RUMSEY, V. H. Traveling wave slot antennas. Journal of Applied Physics, 1953, vol. 24, no. 11, p. 1358–1365. DOI: 10.1063/1.1721178
  5. NGUYEN-TRONG, N., HALL, L. T., FUMEAUX, C. Variational analysis of substrate-integrated waveguides with longitudinal slot. In Proceedings of International Applied Computational Electromagnetics Society Symposium (ACES). Florence (Italy), 2017, p. 1–2. DOI: 10.23919/ROPACES.2017.7916367
  6. LAI, Q., FUMEAUX, C., HONG, W. et al, Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Transactions on Microwave and Theory Techniques, 2009, vol. 57 no. 8, p. 1996–2004. DOI: 10.1109/TMTT.2009.2025429
  7. WILLIAMS, J. T., BACCARELLI, P., PAULOTTO, S. et al. 1-D combline leaky-wave antenna with the open-stopband suppressed: Design considerations and comparisons with measurements. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 9, p. 4484–4492. DOI: 10.1109/TAP.2013.2271234
  8. LIU, L., CALOZ, C., ITOH, T. Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability. Electronics Letters, 2006, vol. 38, no. 23, p. 1414–1416. DOI: 10.1049/el:20020977
  9. NASIMUDDIN, N., CHEN, Z. N., QING, X. Multilayered composite right/left-handed leaky-wave antenna with consistent gain. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 11, p. 5056–5062. DOI: 10.1109/TAP.2012.2207680
  10. NASIMUDDIN, N., CHEN, Z. N., QING, X. Tapered composite right/left-handed leaky-wave antenna for wideband broadside radiation. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 624–629. DOI: 10.1002/mop.28916
  11. NASIMUDDIN, N., CHEN, Z. N., QING, X. Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 7, p. 3451–3457. DOI: 10.1109/TAP.2013.2256094
  12. AGRAWAL, R., BELWAL, P., GUPTA, S. C. Continuous beam scanning in substrate integrated waveguide leaky wave antenna. Progress in Electromagnetic Research M, 2017, vol. 62, p. 19–28. DOI: 10.2528/PIERM17091104
  13. GUGLIELMI, M., JACKSON, D. R. Broadside radiation from periodic leaky-wave antennas. IEEE Transactions on Antennas and Propagation, 1993. vol. 41, no. 1, p. 31–37. DOI: 10.1109/8.210112
  14. LYU, Y., LIU, X., WANG, P. Y., et al. Leaky-wave antennas based on non-cutoff substrate integrated waveguide supporting beam scanning from backward to forward. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2155–2164. DOI: 10.1109/TAP.2016.2550054
  15. OTTO, S., AL-BASSAM, A., RENNING, A., et.al. Transversal asymmetry in periodic leaky-wave antennas for Bloch impedance and radiation efficiency equalization through broadside. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 10, p. 5037–5054. DOI: 10.1109/TAP.2014.2343621
  16. AGRAWAL, R., BELWAL, P., GUPTA, S. Asymmetric substrate integrated waveguide leaky wave antenna with open stop band suppression and radiation efficiency equalization through broadside. Radioengineering, 2018, vol. 27, no. 2, p. 409–416. DOI: 10.13164/re.2018.0409
  17. SUNTIVES, A., HUM, S. V. A fixed-frequency beam-steerable half-mode substrate integrated waveguide leaky-wave antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2540–2544. DOI: 10.1109/TAP.2012.2189726
  18. XU, J., HONG, W., TANG, H. et al. Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 85–88. DOI: 10.1109/LAWP.2008.919353
  19. POURGHORBAN SAGHATI, A., MIRSALEHI, M. M., NESHATI, M. H. A HMSIW circularly polarized leaky-wave antenna with backward, broadside, and forward radiation. IEEE Antennas Wireless Propagation Letters, 2014, vol. 13, p. 451–454. DOI: 10.1109/LAWP.2014.2309557
  20. ZHANG, H., JIAO, Y. C., ZHAO, G., et al. Half-mode substrate integrated waveguide-based leaky-wave antenna loaded with meandered lines. Electronics. Letters, 2017, vol. 53, no. 17, p. 1172–1174. DOI: 10.1049/el.2017.2251
  21. DONG, Y., ITOH, T. Composite right / left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 3, p. 767–775. DOI: 10.1109/TAP.2010.2103025
  22. PAULOTTO, S., BACCARELLI, P., FREZZA, F., et al. Full-wave modal dispersion analysis and broadside optimization for a class of microstrip. IEEE Transactions on Microwave Theory and Technique, 2008, vol. 56, no. 12, p. 2826–2837. DOI: 10.1109/TMTT.2008.2007333
  23. SARKAR, A., ADHIKARY, M., SHARMA, A., et al. Composite right-/left-handed based compact and high gain leaky-wave antenna using complementary spiral resonator on HMSIW for Ku band applications. IET Microwaves and Antennas Propagation, 2018, vol. 12, no. 8, p. 1310–1315. DOI: 10.1049/iet-map.2017.0478
  24. OTTO, S., CHEN, Z., AL-BASSAM, A., et al. Circular polarization of periodic leaky-wave antennas with axial asymmetry : Theoretical proof and experimental demonstration. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 4, p. 1817–1829. DOI: 10.1109/TAP.2013.2297169
  25. LIU, L., GU, X., ZHU, L., et al. A novel half mode substrate integrated waveguide leaky-wave antenna with continuous forward-to-backward beam scanning functionality. International Journal of RF & Microwave Computer-aided Engineering, 2018, vol. 28, no. 9, p. 1–6. DOI: 10.1002/mmce.21559
  26. MUJUMDAR, M., ALPHONES, A., NASIMUDDIN. Compact leaky wave antenna with periodical slots on half mode substrate integrated waveguide. In Proceedings of IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 1740–1741. DOI: 10.1109/APS.2015.7305259

Keywords: Miniaturization, folded ground plane, half mode substrate integrated waveguide, broadside gain enhancement, leaky wave antenna

S. Koziel, A. Pietrenko-Dabrowska [references] [full-text] [DOI: 10.13164/re.2019.0572] [Download Citations]
Efficient Gradient-Based Algorithm with Numerical Derivatives for Expedited Optimization of Multi-Parameter Miniaturized Impedance Matching Transformers

Full-wave electromagnetic (EM) simulation tools have become ubiquitous in the design of microwave components. In some cases, e.g., miniaturized microstrip components, EM analysis is mandatory due to considera¬ble cross-coupling effects that cannot be accounted for otherwise (e.g., by means of equivalent circuits). These effects are particularly pronounced in the structures in¬volving slow-wave compact cells and their numerical opti¬mization is challenging due to expensive simulations and large number of parameters. In this paper, a novel gradi¬ent-based procedure with numerical derivatives is pro¬posed for expedited optimization of compact microstrip impedance matching transformers. The method restricts the use of finite differentiation which is replaced for se¬lected parameters by a rank-one Broyden updating for¬mula. The usage of the formula is governed by an ac¬ceptance parameter which is made dependent on the pa¬rameter space dimensionality. This facilitates handling circuits of various complexities. The proposed approach is validated using three impedance matching transformer circuits with the number of parameters varying from ten to twenty. A significant speedup of up to 50 percent is demon¬strated with respect to the reference algorithm.

  1. CARIOU, M., POTELON, B., QUENDO, C., et al. Compact Xband filter based on substrate integrated coaxial line stubs using advanced multilayer PCB technology. IEEE Transactions on Microwave Theory and Techniques, 2017. vol. 65, no. 2, p. 496–503. DOI: 10.1109/TMTT.2016.2632114
  2. FUJIMOTO, K., MORISHITA, H. Modern Small Antennas. Cambridge (UK): Cambridge University Press, Cambridge, 2014. ISBN: 978-0-521-87786-2, DOI: 10.1017/CBO9780511977602
  3. TSENG, C.-H., CHEN, H.-J. Compact rat-race coupler using shunt-stub-based artificial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 11, p. 734–736. DOI: 10.1109/LMWC.2008.2005225
  4. KOZIEL, S., KURGAN P. Inverse modeling for fast design optimization of small-size rat-race couplers incorporating compact cells. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21240
  5. MAO, Y., GUO, S., CHEN, M. Compact dual-band monopole antenna with defected ground plane for Internet of Things. IET Microwaves, Antennas and Propagation, 2018, vol. 12, no. 8, p. 1332–1338. DOI: 10.1049/iet-map.2017.0860
  6. LI, W., HEI, Y., GRUBB, P. M., et al. Compact inkjet-printed flexible MIMO antenna for UWB applications. IEEE Access, 2018, vol. 6, p. 50290–50298. DOI: 10.1109/ACCESS.2018.2868707
  7. TANG, H., WANG, K. WU, R., et al. A novel broadband circularly polarized monopole antenna based on C-shaped radiator. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 964–967. DOI: 10.1109/LAWP.2016.2615159
  8. TING, H. L., HSU, S. K., WU, T. L. A novel and compact eightport forward-wave directional coupler with arbitrary coupling level design using four-model control theory. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 2, p. 467–475. DOI: 10.1109/TMTT.2016.2623709
  9. KOZIEL, S., BEKASIEWICZ, A. Rapid simulation-driven multiobjective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2454–2461. DOI: 10.1109/TMTT.2016.2583427
  10. KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/LMWC.2016.2615005
  11. SHEIKHI, A., ALIPOUR, A., ABDIPOUR, A. Design of compact wide stopband microstrip low-pass filter using T-shaped resonator. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 2, p. 111–113. DOI: 10.1109/LMWC.2017.2652862
  12. LI, W., TU, Z., CHU, Q., et al. Differential stepped-slot UWB antenna with common-mode suppression and dual sharp-selectivity notched bands. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 11, p. 1120–1123. DOI: 10.1109/LAWP.2015.2496159
  13. PANDEY, G. K., VERMA, H., MESHRAM, M. K. Compact antipodal Vivaldi antenna for UWB applications. Electronics Letters, 2015, vol. 51, no. 4, p. 308–310. DOI: 10.1049/el.2014.3540
  14. SRIVASTAVA, G., MOHAN, A., CHAKRABARTY, A. Compact reconfigurable UWB slot antenna for cognitive radio applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 1139–1142. DOI: 10.1109/lawp.2016.2624736
  15. KOZIEL, S., KURGAN, P. Compact cell topology selection for size-reduction-oriented design of microstrip rat-race couplers. International Journal of RF & Microwave Computer Aided Engineering, 2018, vol. 28, no. 5. DOI: 10.1002/mmce.21261
  16. ZHANG, Y., NIKOLOVA, N. K., MESHRAM, M. K. Design optimization of planar structures using self-adjoint sensitivity analysis. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 3060–3066. DOI: 10.1109/TAP.2012.2194684
  17. BURGARD, S., FARLE, O., LOEW, P. Fast shape optimization of microwave devices based on parametric reduced-order models. IEEE Transactions on Magnetics, 2014, vol. 50, no. 2, p. 629–632. DOI: 10.1109/TMAG.2013.2282420
  18. KOZIEL, S., YANG, X. S., ZHANG, Q. J. (Eds.) SimulationDriven Design Optimization and Modeling for Microwave Engineering. London (UK): Imperial College Press, 2013. ISBN: 978-1848169166 DOI: 10.1142/p860
  19. BANDLER, J. W., CHENG, Q. S., DAKROURY, S. A., et al. Space mapping: the state of the art. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 1, p. 337–361. DOI: 10.1109/TMTT.2003.820904
  20. SU, Y., LI, J., FAN, Z., et al. Shaping optimization of double reflector antenna based on manifold mapping. In International Applied Computational Electromagnetics Society Symposium (ACES). Shuzou (China), 2017, p. 1–2. ISBN: 978-0-9960-0785-6
  21. LEIFSSON, L., KOZIEL, S. Surrogate modeling and optimization using shape-preserving response prediction: a review. Engineering Optimization, 2014, vol. 48, no. 3, p. 476–496. DOI: 10.1080/0305215X.2015.1016509
  22. KOZIEL, S., BEKASIEWICZ, A. Rapid microwave design optimization in frequency domain using adaptive response scaling. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 9, p. 2749–2757. DOI: 10.1109/TMTT.2016.2590551
  23. KOZIEL, S. Fast simulation-driven antenna design using responsefeature surrogates. International Journal of RF & Microwave Computer Aided Engineering, 2015, vol. 25, no. 5, p. 394–402. DOI: 10.1002/mmce.20873
  24. DE VILLIERS, D. I. L., COUCKUYT, I., DHAENE, T. Multiobjective optimization of reflector antennas using kriging and probability of improvement. In IEEE AP-S International Symposium on Antennas and Propagation. San Diego (USA), 2017, p. 985–986, DOI: 10.1109/APUSNCURSINRSM.2017.8072535
  25. ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3781–3797. DOI: 10.1109/TMTT.2018.2841889
  26. ZHANG, J., ZHANG, C., FENG, F., et al. Polynomial chaos-based approach to yield-driven EM optimization. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 7, p. 3186–3199. DOI: 10.1109/TMTT.2018.2834526
  27. KOZIEL, S., KURGAN, P. Rapid design of miniaturized branchline couplers through concurrent cell optimization and surrogateassisted fine-tuning. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 9, p. 957–963. DOI: 10.1049/iet-map.2014.0600
  28. NOCEDAL, J., WRIGHT, S. J. Numerical Optimization. 2nd ed. New York (USA): Springer, 2006. ISBN: 978-0-387-40065-5 DOI: 10.1007/978-0-387-40065-5
  29. KOZIEL, S. Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. Applied Computational Electromagnetics Society Journal, 2010, vol. 25, no. 7, p. 578–586.
  30. CONN, A. R., GOULD, N. I. M., TOINT, P. L. Trust Region Methods. Philadelphia (USA): MPS-SIAM Series on Optimization, 2000. ISBN: 0-89871-460-5 DOI: 10.1137/1.9780898719857
  31. BROYDEN, C. G. A class of methods for solving nonlinear simultaneous equations. Mathematics of Computation, 1965, vol. 19, no. 92, p. 577–593. DOI: 10.1090/S0025-5718-1965- 0198670-6

Keywords: Microwave design closure, EM simulation, design optimization, trust-region framework, Broyden update, impedance transformers

G. W. Zhang, J. Gao, X. Y. Cao, H. H. Yang, L. R. Jidi [references] [full-text] [DOI: 10.13164/re.2019.0579] [Download Citations]
An Ultra-Thin Low-Frequency Tunable Metamaterial Absorber Based on Lumped Element

In this paper, an ultra-thin metamaterial absorber with a stretching transformation (ST) pattern is proposed and fabricated in the low-frequency range. The absorber is composed of dielectric layer, metal patch loading resistor and variable capacitor which produce its tunability. In order to expand the tunable bandwidth, we applied the ST with various coefficients x and y to the unit cell pattern. Measurement and simulated results show that the structure can be tuned to provide a continuously variable reflectivity level of less than -10 dB from 0.68 to 2.13 GHz at bias voltages of 10–40 V. The total thickness of this absorber was only λ/31 of the center frequency. Both measurements and simulated results indicate that this absorber can be thin and achieve a tunable absorption simultaneously.

  1. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. Perfect metamaterial absorber. Physical Review Letters, 2006, vol. 100, no. 20, p. 1–4. DOI: 10.1103/PhysRevLett.100.207402
  2. WATTS, C. M., LIU, X. L., PADILLA, W. J. Metamaterial electromagnetic wave absorbers. Advanced Materials, 2012, vol. 24, no. 23, p. 98–120. DOI: 10.1002/adma.201200674
  3. YUAN, W. CHENG, Y. Low-frequency and broadband metamaterial absorber based on lumped elements: Design, characterization and experiment. Applied Physics A, 2014, vol. 117, no. 4, p. 1915–1921. DOI: 10.1007/s00339-014-8637-3
  4. HAN, Y., CHE, W. Q. Low-profile broadband absorbers based on capacitive surfaces. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 74–78. DOI: 10.1109/LAWP.2016.2556753
  5. LI, X. S. J., CAO, Y., GAO, J., et al. Analysis and design of three-layer perfect metamaterial-inspired absorber based on double split-serration-rings structure. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 5155–5160. DOI: 10.1109/TAP.2015.2475634
  6. LI, S. J., WU, P. X., XU, H. X., et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors and strong coupling effects. Nanoscale Research Letters, 2018, vol. 13, p. 1–13. DOI: 10.1186/s11671-018-2810-0
  7. ZUO, W. Q., YANG, Y., HE, X. X., et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 928–931. DOI: 10.1109/LAWP.2016.2614703
  8. LEE, J., LIM, S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 2011, vol. 47, no. 1, p. 8–9. DOI: 10.1049/el.2010.2770
  9. GU, S., SU, B., ZHAO, X. P. Planar isotropic broadband metamaterial absorber. Journal of Applied Physics, 2013, vol. 114, no. 16, p. 1–6. DOI: 10.1063/1.4826911
  10. SHANG, S., YANG, S. Z., TAO, L., et al. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber. AIP Advances, 2016, vol. 6, no. 7, p. 1–8. DOI: 10.1063/1.4958660
  11. ZHONG, H. T., YANG, X. X., TAN, C., et al. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Applied Physics Letters, 2016, vol. 109, no. 25, p. 1–4. DOI: 10.1063/1.4973282
  12. ZHU, J. F., MA, Z. F., SUN, W. J., et al. Ultra-broadband terahertz metamaterial absorber. Applied Physics Letters, 2014, vol. 105, no. 2, p. 1–4. DOI: 10.1063/1.4890521
  13. BANADAKI, M. D., HEIDARI, A. A., NAKHKASH, M. A metamaterial absorber with a new compact unit cell. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 2, p. 205–208. DOI: 10.1109/LAWP.2017.2780231
  14. ZUO, W. Q., YANG. Y., HE, X. X., et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 329–332. DOI: 10.1109/LAWP.2016.2574885
  15. XU, W. H., HE, Y., KONG, P., et al. An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications. Journal of Applied Physics, 2015, vol. 118, no. 18, p. 1–8. DOI: 10.1063/1.4934683
  16. AZAD, A. K., TAYLOR, A. J., SMIRNOVA, E., et al. Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators. Applied Physics Letters, 2008, vol. 92, no. 1, p. 1–3. DOI: 10.1063/1.2829791
  17. FU, L., SCHWEIZER, H., GUO, H., et al. Synthesis of transmission line models for metamaterial slabs at optical frequencies. Physical Review B, 2008, vol. 78, no. 11, p. 1–9. DOI: 10.1103/PhysRevB.78.115110

Keywords: low-frequency, wideband, ultra-thin, ST coefficients, tunability.

S. Sheng, H. X. Chen, J. Wen, H. R. Liu [references] [full-text] [DOI: 10.13164/re.2019.0585] [Download Citations]
Simulation and Fabrication of Broadband Tunable Phase Shifter Based on Transmission Line Metamaterial

This paper presents a kind of broadband, low-loss tunable phase shifter based on transmission line metamaterial. An inherent high-pass backward-wave response property of a left-handed metamaterial based on coplanar waveguide (CPW) transmission line was used to realize a microwave phase shifter. The commercial software Ansoft HFSS was used to design and analyze for the transmission line metamaterial phase shifter structure, and the resulting S-parameters were used to characterize its performance. A transmission line metamaterial phase shifter was fabricated on Copper-Clad Board. The designed four unit-cells phase shifter provides a 0-190o continuous phase shift at 7.2 GHz using varactors biased from 0 V to 6 V with relatively low insertion loss.

  1. VESELAGO, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics-Uspekhi, 1968, vol. 10, no. 4, p. 509–514. DOI: 10.1070/PU1968v010n04ABEH003699
  2. SMITH, D. R., PADILLA, W. J., VIER, D. C., et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, vol. 84, no. 18, p. 4184–4187. DOI: 10.1103/physrevlett.84.4184
  3. CHEN, H. S., RAN, L. X., HUANGFU, J. T., et al. Left-handed materials composed of only S-shaped resonators. Physical Review E, 2004, vol. 70, no. 5, p. 1–4. DOI: 10.1103/PhysRevE.70. 057605
  4. SANADA, A., CALOZ, C., ITOH, T. Characteristics of the composite right/left-handed transmission lines. IEEE Microwaves and Wireless Components Letters, 2004, vol. 14, no. 2, p. 68–70. DOI: 10.1109/lmwc.2003.822563
  5. MAO, S. G., CHEN, S. L., HUANG, C. W. Effective electromagnetic parameters of novel distributed left-handed microstrip lines. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1515–1521. DOI: 10.1109/tmtt.2005.845192
  6. LI, N., YU, H., YANG, C., et al. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS. Solid-State Electronics, 2015, vol. 113, p. 54–60. DOI: 10.1016/j.sse.2015.05.006
  7. MARTIN, F., FALCONE, F., BONACHE, J., et al. Split ring resonator based left handed coplanar waveguide. Applied Physics Letters, 2003, vol. 83, p. 4652–4654. DOI: 10.1063/1.1631392
  8. FALCONE, F., LOPETEGI, T., BAENA, J. D., et al. Effective negative-epsilon stop-band microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, p. 280–282. DOI: 10.1109/lmwc.2004.828029
  9. GIL, I., GARCIA-GARCIA, J., BONACHE, J., et al. Varactorloaded split rings resonators for tuneable notch filters at microwave frequencies, Electronics Letters, 2004, vol. 40, p. 1347–1348. DOI: 10.1049 /el:20046389
  10. VELEZ, A., BONACHE, J., MARTIN, F. Varactor-Loaded Complementary Split Ring Resonators (VLCSRR) and their application to tunable metamaterial transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 1, p. 28–30. DOI: 10.1109/lmwc.2007.911983
  11. IYER, A. K., ELEFTHERIADES, G. V. Negative refractive index metamaterials supporting 2-D waves. In IEEE MTT-S International Microwave Symposium Digest. Seattle (WA, USA), 2002, p. 1067–1070. DOI: 10.1109/mwsym.2002.1011823
  12. CALOZ, C., ITOH, T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line. In IEEE Antennas and Propagation Society International Symposium. San Antonio (TX, USA), 2002, vol. 2, p. 412–415. DOI: 10.1109/APS.2002.1016111
  13. OLINER, A. A. A periodic-structure negative-refractive-index medium without resonant elements. In IEEE Antennas and Propagation Society International Symposium. San Antonio (TX, USA), 2002, p. 41.
  14. GIERE, A., DAMM, C., SCHEELE, P., JAKOBY, R. LH phase shifter using ferroelectric varactors. In Proceeding of the IEEE Radio and Wireless Symposium. San Diego (CA, USA), 2006, p. 403–406. DOI: 10.1109 /RWS.2006.1615180
  15. CALOZ, C., SANADA, A., ITOH, T. A novel composite right- /left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 3, p. 980–992. DOI: 10.1109/tmtt.2004.823579
  16. KHOLODNYAK, D., ZAMESHAEVA, E., TURGALIEV, V., et al. Tunable dual-frequency immittance inverters on dual-composite right/left handed transmission lines (D-CRLH TL) with variable capacitors. IEICE Transactions on Electronics, 2016, vol. E99-C, no. 10, p. 1113–1121. DOI: 10.1587/transele.e99.c.1113
  17. JACKSON, D., CALOZ, C., ITOH, T. Leaky-wave antennas. Proceedings IEEE, 2012, vol. 100, no. 7, p. 2194–2206. DOI: 10.1109/JPROC. 2012.2187410
  18. CHOI, J., SEO, C. Broadband VCO using electronically controlled metamaterial transmission line based on varactor-loaded split-ring resonator. Microwave and Optical Technology Letters, 2008, vol. 50, no. 4, p. 1078–1082. DOI: 10.1002/mop.23305
  19. OURIR, A., ABDEDDAIM, R., DE ROSNY, J. Tunable trapped mode in symmetric resonator designed for metamaterials. Progress In Electromagnetics Research, 2010, vol. 101, p. 115–123. DOI: 10.2528/pier09120709
  20. POWELL, D. A., SHADRIVOV, I. V., KIVSHAR, Y. S. Asymmetric parametric amplification in nonlinear left-handed transmission lines. Applied Physics Letters, 2009, vol. 94, p. 1–3. DOI: 10.1063/1.3089842
  21. WANG, Z. B., FENG, Y. J., ZHU, B., et al. Dark Schrodinger solitons and harmonic generation in left-handed nonlinear transmission line. Journal of Applied Physics, 2010, vol. 107, p. 1–5. DOI: 10.1063/1.3418556
  22. CHOI, S., SU, W., TENTZERIS, M. M., et al. A novel fluidreconfigurable advanced and delayed phase line using inkjetprinted microfluidic composite right/left-handed transmission line. IEEE Microwaves and Wireless Components Letters, 2015, vol. 25, no. 2, p. 142–144. DOI: 10.1109/lmwc.2014.2382685
  23. MICHISHITA, N., KITAHARA, H., YAMADA, Y., et al. Tunable phase shifter using composite right/left-handed transmission line with mechanically variable MIM capacitors. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1579–1581. DOI: 10.1109/lawp.2011.2181147
  24. ABDALLA, M. A. Y., PHANG, K, ELEFTHERIADES, G. V. Printed and integrated CMOS positive/negative refractive-index phase shifters using tunable active inductors. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 8, p. 1611–1623. DOI: 10.1109/tmtt.2007.901076
  25. DURAN-SINDREU, M., DAMM, C., SAZEGAR, M., et al. Electrically tunable composite right/left handed transmission-line based on open resonators and barium-stronium-titanate thick films. In IEEE MTT-S International Microwave Symposium. Baltimore (MD, USA), 2011, p. 1–4. DOI: 10.1109/mwsym.2011.5973393
  26. KIM, H., KOZYREV, A. B., KARBASSI, A., et al. Compact lefthanded transmission line as a linear phase-voltage modulator and efficient harmonic generator. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 3, p. 571–578. DOI: 10.1109/tmtt.2007.891692
  27. DAMM, C., SCHUSSLER, M., OERTEL, M., et al. Compact tunable periodically LC loaded microstrip line for phase shifting applications. In IEEE MTT-S International Microwave Symposium. Long Beach (CA, USA), 2005, p. 2003–2006. DOI: 10.1109/mwsym.2005.1517137
  28. KUYLENSTIERNA, D., VOROBIEV, A., LINNER, P., et al. Composite right/left handed transmission line phase shifter using ferroelectric varactors. IEEE Microwaves and Wireless Components Letters, 2006, vol. 16, no. 4, p. 167–169. DOI: 10.1109/ lmwc.2006.872145
  29. PERRUISSEAU-CARRIER, J., TOPALLI, K., AKIN, T. Low-loss Ku-band artificial transmission line with MEMS tuning capability. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 6, p. 377–379. DOI: 10.1109/lmwc.2009.2020022
  30. ABBASI, M. A. B., ANTONIADES, M. A., NIKOLAOU, S. A compact reconfigurable NRI-TL metamaterial phase shifter for antenna applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 1025–1030. DOI: 10.1109/TAP.2017.2777520
  31. ELLINGER, F., JACKEL, H., BACHTOLD, W. Varactor-loaded transmission-line phase shifter at C-band using lumped elements. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1135–1140. DOI: 10.1109/TMTT. 2003.809670
  32. CALOZ, C., ITOH, T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 5, p. 1159–1166. DOI: 10.1109/TAP.2004.827249
  33. SALEH, B. A., TEICH, M. C. Fundamentals of Photonics. New York: Wiley, 1991. DOI:10.1002/0471213748

Keywords: Transmission line metamaterial, tunable phase shifter, varactor, broadband

M. Gupta, D. K. Upadhyay [references] [full-text] [DOI: 10.13164/re.2019.0591] [Download Citations]
Design and Implementation of Fractional-Order Microwave Integrator

A novel design of fractional-order microwave integrator using shunt connected open-stubs with transmission line sections in cascade is proposed. Design is obtained by optimizing the L1-norm based error function in Z-domain having not more than absolute magnitude error value of 0.01. Optimization is done using nature inspired cuckoo search algorithm. Superiority of the design in terms of magnitude error performance is identified by comparing it with the results obtained from some widely used benchmark optimization algorithms. The obtained design is implemented on a RT/Duroid 5880 substrate having 20 mil thickness, and results for the measured magnitude response are found to be in good agreement with ideal one over the frequency range of 1.0 GHz to 6.8 GHz.

  1. WEST, B. J., BOLOGNA, M., GRIGOLINI, P. Physics of Fractal Operators. New York: Springer, 2003. DOI: 10.1007/978-0-387- 21746-8
  2. DEBNATH, L. Recent applications of fractional calculus to science and engineering. International Journal of Mathematics and Mathematical Sciences, 2003, vol. 54, p. 3413–3442. DOI: 10.1155/S0161171203301486
  3. CHEN, Y. Q., MOORE, K. L. Discretization schemes for fractional-order differentiators and integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, vol. 49, no. 3, p. 363–367. DOI: 10.1109/81.989172
  4. BARBOSA, R. S., MACHADO, J. A. T., SILVA, M. F. Time domain design of fractional differintegrators using least-squares. Signal Processing, 2006, vol. 86, no. 10, p. 2567–2581. DOI: 10.1016/j.sigpro.2006.02.005
  5. TSENG, C. C. Design of FIR and IIR fractional order Simpson digital integrators. Signal Processing, 2007, vol. 87, no. 5, p. 1045–1057. DOI: 10.1016/j.sigpro.2006.09.006
  6. KRISHNA, B. T. Studies of fractional order differentiators and integrators: A survey. Signal Processing, 2011, vol. 91, no. 3, p. 386–426. DOI: 10.1016/j.sigpro.2010.06.022
  7. ROMERO, M., DE MADRID, A. P., MANOSO, C., et al. IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory. ISA Transactions, 2013, vol. 52, no. 4, p. 461–468. DOI: 10.1016/j.isatra.2013.02.002
  8. YADAV, R., GUPTA, M. New improved fractional order integrators using PSO optimization. International Journal of Electronics, 2015, vol. 102, no. 3, p. 490–499. DOI: 10.1080/00207217.2014.901424
  9. MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm. IET Signal Processing, 2016, vol. 10, no. 9, p. 1135–1156. DOI: 10.1049/iet-spr.2016.0298
  10. MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Infinite impulse response approximations to the non-integer order integrator using Cuckoo Search Algorithm. In: Saeed, K., Homenda, W., Chaki, R. (eds.) Computer Information Systems and Industrial Management CISIM 2017. 2017, p. 548–556. DOI: 10.1007/978-3-319-59105-6_47
  11. LE BIHAN, J. Novel class of digital integrators and differentiators. Electronics Letters, 1993, vol. 29, no. 11, p. 971–973. DOI: 10.1049/el:19930647
  12. AL-ALAOUI, M. A. A class of second order integrators and lowpass differentiators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995, vol. 42, no. 4, p. 220–223. DOI: 10.1109/81.382477
  13. PAPAMARKOS, N., CHAMZAS, C. A new approach for the design of digital integrators. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1996, vol. 43, no. 9, p. 785–791. DOI: 10.1109/81.536749
  14. NGO, N. Q. A new approach for the design of wideband digital integrator and differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, vol. 53, no. 9, p. 936–940. DOI: 10.1109/TCSII.2006.881806
  15. TSENG, C.C., LEE, S. L. Digital IIR integrator design using Richardson extrapolation and fractional delay. IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, vol. 55, no. 8, p. 2300–2309. DOI: 10.1109/TCSI.2008.920099
  16. AL-ALAOUI, M. A. Class of digital integrators and differentiators. IET Signal Processing, 2011, vol. 5, no. 2, p. 251–260. DOI: 10.1049/iet-spr.2010.0107
  17. UPADHYAY, D. K., SINGH, R. K. Recursive wideband digital differentiator and integrator. Electronics Letters, 2011, vol. 47, no. 11, p. 647–648. DOI: 10.1049/el.2011.0420
  18. UPADHYAY, D. K. Class of recursive wideband digital differentiators and integrators. Radio Engineering, 2012, vol. 21, no. 3, p. 904–910. ISSN: 1210-2512
  19. KARABOGA, N. A new design method based on artificial bee colony algorithm for digital IIR filters. Journal of the Franklin Institute, 2009, vol. 346, no. 4, p. 328–348. DOI: 10.1016/j.jfranklin.2008.11.003
  20. JALLOUL, M. K., AL-ALAOUI, M. A. Design of recursive digital integrators and differentiators using particle swarm optimization. International Journal of Circuit Theory and Applications, 2016, vol. 44, no. 5, p. 948–967. DOI: 10.1002/cta.2115
  21. AGGARWAL, A., RAWAT, T. K., UPADHYAY, D. K. Optimal design of L1-norm based IIR digital differentiators and integrators using the bat algorithm. IET Signal Processing, 2017, vol. 11, no. 1, p. 26–35. DOI: 10.1049/iet-spr.2016.0010
  22. MAHATA, S., SAHA, S. K., KAR, R., MANDAL, D. Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft Computing, 2018, vol. 22, no. 11, p. 3757–3783. DOI: 10.1007/s00500-017-2595-6
  23. HSUE, C. W., TSAI, L. C., KAN, S. T. Implementation of a trapezoidal rule microwave integrator. Microwave and Optical Technology Letters, 2005, vol. 48, no. 4, p. 822–825. DOI: 10.1002/mop.21485
  24. HSUE, C. W., TSAI, L. C., TSAI, Y. H. Time constant control of microwave integrators using transmission lines. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 3, p. 1043–1047. DOI: 10.1109/TMTT.2006.869722
  25. TSAI, L. C., FANG, H. S. Design and implementation of secondorder microwave integrators. Microwave and Optical Technology Letters, 2011, vol. 53, no. 9, p. 1983–1986. DOI: 10.1002/mop.26210
  26. GUPTA, M., UPADHYAY, D. K. Comments on: Design and implementation of second-order microwave integrators. Microwave and Optical Technology Letters, 2018, vol. 60, no. 2, p. 526–528. DOI: 10.1002/mop.30996
  27. TSAI, L. C. Application of microwave integrators for interference suppression. Progress In Electromagnetics Research C, 2017, vol. 72, p. 123–132. DOI: 10.2528/PIERC16112505
  28. AGGARWAL, A., KUMAR, M., RAWAT, T. K., et al. Optimal design of 2-D FIR digital differentiator using L1-norm based cuckoo-search algorithm. Multidimensional Systems and Signal Processing, 2017, vol. 28, no. 4, p. 1569–1567. DOI: 10.1007/s11045-016-0433-0
  29. YANG, X. S., DEB, S. Cuckoo search via Levy flights. In Proceeding of World Congress on Nature and Biologically Inspired Computing. Coimbatore (India), 2009, p. 210–214. DOI: 10.1109/NABIC.2009.5393690
  30. RASHEDI, E., NEZAMABADI-POUR, H., SARYAZDI, S. GSA: A gravitational search algorithm. Information Sciences, 2009, vol. 179, no. 13, p. 2232–2248. DOI: 10.1016/j.ins.2009.03.004
  31. MARINI, F., WALCZAK, B. Particle swarm optimization (PSO): A tutorial. Chemometrics and Intelligent Laboratory Systems, 2015, vol. 149, Part B, p. 153–165. DOI: 10.1016/j.chemolab.2015.08.020
  32. CHUANG, Y. C., CHEN, C. T., HWANG, C. A simple and efficient real-coded genetic algorithm for constrained optimization. Applied Soft Computing, 2015, vol. 38, p. 87–105. DOI: 10.1016/j.asoc.2015.09.036

Keywords: Fractional-order, integrator, line elements, microwave, optimization

P. Vacula,V. Kote, D. Barri, M. Vacula, M. Husak, J. Jakovenko, S. Privitera [references] [full-text] [DOI: 10.13164/re.2019.0598] [Download Citations]
Comparison of MOSFET Gate Waffle Patterns Based on Specific On-Resistance

This article describes waffle power MOSFET segmentation and defines its analytic models. Although waffle gate pattern is well-known architecture for effective channel scaling without requirements on process modification, no until today precise model considering segmentation of MOSFETs with waffle gate patterns, due to bulk connections, has been there proposed. Two different MOSFET topologies with gate waffle patterns have been investigated and compared with the same on-resistance of a standard MOSFET with finger gate pattern. The first one with diagonal metal interconnections allows reaching more than 40 % area reduction. The second MOSFET with the more simple orthogonal metal interconnections allows saving more than 20 % area. Moreover, new models defining conditions where segmented power MOSFETs with waffle gate patterns occupy less area than the standard MOSFET with finger gate pattern, have been introduced.

  1. MILNES, A. G. Semiconductor Devices and Integrated Electronics. Dordrecht (The Netherlands): Springer, 1980. ISBN: 978-94-011-7021-5
  2. MALIK, S. Q., GEIGER, R. L., Minimization of area in low-resistance MOS switches. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems. Lansing (MI, USA), 2000, vol. 3, p. 1392–1395. DOI: 10.1109/MWSCAS.2000.951473
  3. WU, W., LAM, S., KO, P. K., et al. Comparative analysis and parameter extraction of enhanced waffle MOSFET. In IEEE Conference on Electron Devices and Solid-State Circuits. Hong Kong (China), 2003, p. 193–196. DOI: 10.1109/EDSSC.2003.1283512
  4. VEMURU, S. R. Layout comparison of MOSFETs with large W/L ratios. Electronics Letters, 1992, vol. 28, no. 25, p. 2327–2329. DOI: 10.1049/el:19921498
  5. MADHYASTHA, S. Design of Circuit Breakers for Large Area CMOS VLSI Circuits. Dept. of Electrical Engineering McGill University, 1989. Theses. [Online] Available at: http://digitool.Library.McGill.CA:80/R/-?func=dbin-jumpfull&object_id=59551&silo_library=GEN01
  6. ZHOU, X., LUO, P., HE, L., et al. A radiation-hard waffle layout for BCD power MOSFET. In IEEE 12th International Conference on ASIC (ASICON). Guiyang (China), 2017, p. 773–775. DOI: 10.1109/ASICON.2017.8252590
  7. CHEN, S., LIN, C., CHANG, S., et al. ESD reliability comparison of different layout topologies in the 0.25-μm 60-V nLDMOS power devices. In International Symposium on Next-Generation Electronics (ISNE). Taipei (Taiwan), 2015, p. 1–4. DOI: 10.1109/ISNE.2015.7132028
  8. S. Inc, Silvaco, Inc. TCAD simulation Tool, DeckBuild Deck Editor Version 4.4.3.R:, Synopsys Inc, 2018.
  9. VACULA, P, HUSAK, M. Comparison of waffle and standard gate pattern base on specific on-resistance. ElectroScope, 2014, vol. 2014, no. VIII. ISSN: 1802-4564. [Online] Available at: http://147.228.94.30/images/PDF/Rocnik2014/Cislo3_2014/r8c3c7 .pdf, http://hdl.handle.net/11025/11823
  10. KARBAN, P., MACH, F., KUS, P., et al. Numerical solution of coupled problems using code Agros2D. Computing, 2013, vol. 95, no. 1 Supplement, p. 341–408. DOI: 10.1007/s00607-013-0294-4
  11. TEKCAN, T., KIRISKEN, B. Reliability test procedures for achieving highly robust electronic products. In 2010 Proceedings - Annual Reliability and Maintainability Symposium (RAMS). San Jose (CA, USA), 2010, p. 1–6. DOI: 10.1109/RAMS.2010.5447982
  12. ZHOU, Y., CONNERNEY, D., CARROLL, R., et al. Modeling MOS snapback for circuit-level ESD simulation using BSIM3 and VBIC models. In The 6th International Symposium on Quality Electronic Design (ISQED'05). San Jose (CA, USA), 2005, p. 476–481. DOI: 10.1109/ISQED.2005.81

Keywords: Power MOSFET, waffle MOSFET, specific on-resistance, integrated circuits

J. A. Jahanshahi, H. Danyali, M. S. Helfroush [references] [full-text] [DOI: 10.13164/re.2019.0610] [Download Citations]
A Modified Compressed Sensing-Based Recovery Algorithm for Wireless Sensor Networks

In this paper, a novel compressed sensing (CS) acquisition and joint recovery of spatiotemporal correlated signals algorithm is presented for effective data collection and precise sensors data streams reconstruction in wireless sensor networks. The CS-based proposed method utilizes~an iterative re-weighted l1-minimization and a l2 regularization to increase the reconstruction accuracy with a small number of required data transmission. Moreover, we develop~an alternating direction method of multipliers based algorithm to efficiently solve the resulting optimization problem. Numerical experiments are conducted on several test signals with~a variety of sampling ratios. The experimental results verify the effectiveness of the proposed scheme in terms of reconstruction accuracy and consumption time compared with the state of the art algorithms.

  1. DONOHO, D. L. Compressed sensing. IEEE Transaction on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  2. JAHANSHAHI, J. A., ESLAMI, M., GHORASHI, S. A. PSD map construction scheme based on compressive sensing in cognitive radio networks. IEICE Transaction on Communications, 2012, vol. 95, no. 4, p. 1056–1065. DOI: 10.1587/transcom.E95.B.1056
  3. JAHANSHAHI, J. A., ESLAMI, M., GHORASHI, S. A. Compressed sensing based dynamic PSD map construction in cognitive radio networks. Radioengineering, 2013, vol. 22, no. 2, p. 526–535. ISSN: 1805-9600
  4. GUI, G., MEHBODNIYA, A., ADACHI, F. Sparse LMS/F algorithms with application to adaptive system identification. Wireless Communications and Mobile Computing, 2015, vol. 15, no. 12, p. 1649–1658. DOI: 10.1002/wcm.2453
  5. GU, Y., JIN, J., MEI, S. l0 norm constraint LMS algorithm for sparse system identification. IEEE Signal Processing Letters, 2009, vol. 16, no. 9, p. 774–777. DOI: 10.1109/LSP.2009.2024736
  6. HONG, X., JUBIN, G., CHEN, S. Zero-attracting recursive least squares algorithms. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 1, p. 213–221. DOI: 10.1109/TVT.2016.2533664
  7. LI, Y., WANG, Y., ALBU, F. Sparse channel estimation based on a reweighted least-mean mixed-norm adaptive filter algorithm. In Proceedings of the 24th European Signal Processing Conference (EUSIPCO). Budapest (Hungary), 2016, p. 2380–2384. DOI: 10.1109/EUSIPCO.2016.7760675
  8. LI, Y., JIANG, Z., MOHAMMED, O., et al. Mixed norm constrained sparse APA algorithm for satellite and network echo channel estimation. IEEE Access, 2018, vol. 6, p. 65901–65908. DOI: 10.1109/ACCESS.2018.2878310
  9. LI, Y., JIANG, Z., SHI, W., HAN, X., CHEN, B. Blocked maximum correntropy criterion algorithm for cluster-sparse system identifications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, p. 1–5. DOI: 10.1109/TCSII.2019.2891654
  10. CHENG, J., JIANG, H., MA, X., et al. Efficient data collection with sampling in WSNs: Making use of matrix completion techniques. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). Miami (USA), 2010, p. 1–5. DOI: 10.1109/GLOCOM.2010.5684139
  11. STANKOVIC, L., DAKOVIC, M., VUJOVIC, S. Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Processing, 2014, vol. 8, no. 3, p. 246–256. DOI: 10.1049/iet-spr.2013.0385
  12. STANKOVIC, S., OROVIC, I. An approach to 2D signals recovering in compressive sensing context. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 4, p. 1700–1713. DOI: 10.1007/s00034-016-0366-8
  13. JIANG, T., ZHANG, X.W., LI, Y. Bayesian compressive sensing using reweighted laplace priors. AEU-International Journal of Electronics and Communications, 2018, vol. 97, p. 178–184. DOI: 0.1016/j.aeue.2018.10.005
  14. AKYILDIZ, I. F., VURAN, M. C., AKAN, O. B. On exploiting spatial and temporal correlation in Wireless Sensor Networks. In Proceedings of the Conference on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). Cambridge (UK), 2004, p. 71–80. DOI: 10.1016/j.procs.2013.09.025
  15. BARON, D., WAKIN, M. B., DUARTE, M., et al. Distributed compressed sensing. Preprint, arXiv:0901.3403v1, 2006, p. 1–42. Available at: http://arxiv.org/pdf/0901.3403v1.pdf
  16. DURATE, M. F., WAKIN, M. B., BARON, D., et al. Measurement bounds for sparse signal ensembles via graphical models.IEEE Transactions on Information Theory, 2013, vol. 59, no. 7, p. 4280–4289. DOI: 10.1109/TIT.2013.2252051
  17. MASOUM, A., MERATNIA, N., HAVINGA, P. A distributed compressive sensing technique for data gathering in wireless sensor networks. Procedia Computer Science, 2013, vol. 21, p. 207–216. DOI: 10.1016/j.procs.2013.09.028
  18. QUER, G., MASIERO, R., PILLONETTO, G., et al. Sensing, compression, and recovery for WSNs: Sparse signal modeling and monitoring framework. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 10, p. 3447–3461. DOI: 10.1109/TWC.2012.081612.110612
  19. ASIF, M. S., ROMBERG, J. Sparse recovery of streaming signals using `1-homotopy. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 16, p. 4209–4223. DOI: 10.1109/TSP.2014.2328981
  20. LEINONEN, M., CODREANU, M., JUNTTI, M. Sequential compressed sensing with progressive signal reconstruction in wireless sensor networks. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 3, p. 1622–1635. DOI: 10.1109/TWC.2014.2371017
  21. CANDES, E. J., WAKIN, M. B., BOYD, S. P. Enhancing sparsity by reweighted `1 minimization. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5, p. 877–905. DOI: 10.1007/s00041-008-9045-x
  22. JAHANSHAHI, J. A., DANYALI, H., HELFROUSH, M. S. A distributed compressed sensing-based algorithm for the joint recovery of signal ensemble. Radioengineering, 2018, vol. 27, no. 2, p. 587–594. DOI: 10.13164/re.2018.0587
  23. PARIKH, N., BOYD, S. Proximal algorithms. Foundations and Trends in Optimization, 2014, vol. 1, no. 3, p. 127–239. DOI:10.1561/2400000003
  24. CHENG, J., YE, Q., JIANG, H., et al. STCDG: An efficient data gathering algorithm based on matrix completion for wireless sensor networks. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 2, p. 850–861. DOI: 10.1109/TWC.2012.121412.120148
  25. BLUMENSATH, T., DAVIES, M. E. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5, p. 629–654. DOI: 10.1007/s00041-008-9035-z
  26. ESLAHI, N., AGHAGOLZADEH, A., ANDARGOLI, S.M.H. Image/video compressive sensing recovery using joint adaptive sparsity measure. Neurocomputing, 2016, vol. 200, p. 88–109. DOI: 10.1016/j.neucom.2016.03.013
  27. DAUBECHIES, I., DEFRISE, M., DE MOL, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 2004, vol. 57, no. 11, p. 1413–1457. DOI: 10.1002/cpa.20042
  28. INTEL BERKELEY RESEARCH LAB. Intel Lab Data. Real sensors’ readings from intel berkeley research lab. Available at: http://db.csail.mit.edu/labdata/labdata.html
  29. VASWANI, N., LU, W. Modified-CS: Modifying compressive sensing for problems with partially known support. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 9, p. 4595–4607. DOI: 10.1109/TSP.2010.2051150
  30. LU, W., VASWANI, N. Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 1, p. 182–196. DOI: 10.1109/TSP.2011.2170981

Keywords: Distributed compressive sensing (DCS), regularization, iterative re-weighted l1-minimization, wireless sensor networks

G. Liu, Y. Kang, H. Quan, H. Sun, P. Cui, C. Guo [references] [full-text] [DOI: 10.13164/re.2019.0618] [Download Citations]
The Detection Performance of the Dual-Sequence-Frequency-Hopping Signal via Stochastic Resonance Processing under Color Noise

Can the Dual-Sequence-Frequency-Hopping (DSFH) as a military emergency communication mode work under strong color noise? And is there any detection improvement of the DSFH signal via stochastic resonance (SR) processing under color noise? To deal with this problem, we analyze the physical feature of the DSFH signal. Firstly, the signal models of transmission, reception and the intermediate frequency (IF) are constructed. And the scale transaction is used to adjust the IF signal to fit the SR. Secondly, the non-markovian Langevin Equation (LE) is transformed into a markovian one by expand the 1-D LE to~a 2-D one. Thirdly, the non-autonomous Fokker-Plank Equation (FPE) is transformed into an autonomous one by assuming that the SR transition of magnetic particles is instantaneous and introducing the decision time. Therefore, the analytical periodic steady solution of the probability density function (PDF) with the parameter of the correlation time of the color noise is obtained. Finally, the detection probability, false alarm probability and Receiver Operating Characteristics (ROC) curve are obtained, under the criterion of the maximum~a posterior probability (MAP). Theoretical and simulation results show as below: 1) whether the DSFH can work under strong color noise is decided by the correlation time of the color noise; 2) when the power intensity of the color noise is constant, the smaller the correlation time with the bigger local SNR, the greater PDF difference of the SR output under two hypothesis, leading to better detection performance.

  1. FITZEK, F. H. P. The medium is the message. In Proceedings of the IEEE International Conference on Communications (ICC). Istanbul (Turkey), 2006, p. 5016–5021. DOI: 10.1109/ICC.2006.255461
  2. ZHOU, X., KYRITSI, P., EGGERS, P. C. F. The medium is the message: Secure communication via waveform coding in MIMO systems. In Proceedings of the IEEE Vehicular Technology Conference (VTC). Dublin (Ireland), 2007, p. 491–495. DOI: 10.1109/VETECS.2007.112
  3. QUAN, H., ZHAO, H., CUI, P. Anti-jamming frequency hopping system using multiple hopping patterns. Wireless Personal Communications, 2015, vol. 81, no. 3, p. 1159–1176. ISSN: 0929-6212. DOI: 10.1007/s11277-014-2177-1
  4. ZHAO, H., QUAN, H.-D., CUI, P.-Z. Follower-jamming resistible multi-sequence frequency hopping wireless communication. Systems Engineering and Electronics, 2015, vol. 66, no. 3, p. 671–678. ISSN: 1001-506X. DOI: 10.3969/j.issn.1001-506X.2015.03.31 (in Chinese)
  5. DU, C., QUAN, H., CUI, P., et al. Carrier sense random packet CDMA protocol in dual-channel networks. Radioengineering, 2015, vol. 24, no. 2, p. 507–517. ISSN: 1210-2512. DOI: 10.13164/re.2015.0507
  6. BENZI, R., SUTERA, A., VULPIANI, A. The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 1981, vol. 14, no. 11, p. 453–457. ISSN: 1751-8113. DOI: 10.1088/0305-4470/14/11/006
  7. ZHANG, G., SONG, Y., ZHANG, T.-G. Characteristic analysis of exponential type mono-stable stochastic resonance under Levy noise. Journal of Electronics & Information Technology, 2017, no. 4, p. 893–900. ISSN: 1009-5896. DOI: 10.11999/JEIT160579 (in Chinese)
  8. WANG, S., WANG, F.-Z. Adaptive stochastic resonance system in terahertz radar signal detection. Acta Physica Sinica, 2018, vol. 67, no. 16, p. 1–7. ISSN: 1000-3290. DOI: 10.7498/aps.67.20172367 (in Chinese)
  9. KRAUSS, P., METZNER, C., SCHILLING, A. Adaptive stochastic resonance for unknown and variable input signals. Scientific Reports, 2017, vol. 7, no. 1, p. 1–8. ISSN: 2045-2322. DOI: 10.1038/s41598-017-02644-w
  10. HANGGI, P., JUNG, P., ZERBE, C., et al. Can colored noise improve stochastic resonance? Journal of Statistical Physics, 1993, vol. 7, no. 1, p. 25–47. ISSN: 0022-4715. DOI: 10.1007/bf01053952
  11. FUENTES, M. A., TORAL, R., WIO, H. S. Enhancement of stochastic resonance: The role of non Gaussian noises. Physica A, 2001, vol. 295, no. 1, p. 114–122. ISSN: 0378-4371. DOI: 10.1016/s0378-4371(01)00062-0
  12. FUENTES, M. A., WIO, H. S., TORAL, R. Effective Markovian approximation for non-Gaussian noises: A path integral approach. Physica A, 2002, vol. 303, no. 1, p. 91–104. ISSN: 0378-4371. DOI: 10.1016/s0378-4371(01)00435-6
  13. JIA, Y. , YU, S. N. , LI, J. R. Stochastic resonance in a bistable system subject to multiplicative and additive noise. Physical Review E, 2000, vol. 62, no. 2, p. 1869–1878. ISSN: 1539-3755. DOI: 10.1103/PhysRevE.62.1869
  14. XU, B. , LI, J., DUAN, F., et al. Effects of colored noise on multifrequency signal processing via stochastic resonance with tuning system parameters. Chaos, Solitons and Fractals, 2003, vol. 16, no. 1, p. 93–106. ISSN: 0960-0779. DOI: 10.1016/s0960-0779(02)00201-1
  15. HU, N.-G. Theory and Method of Detecting Weak Characteristic Signals of Stochastic Resonance. Beijing (China): National Defense Industry Press, 2012. p. 85–86. ISBN: 9787118081558 (in Chiness)
  16. HU, G. Stochastic Forces and Nonlinear Systems. Shanghai (China): Shanghai Scientific and Technological Education Publishing House, 1994. p. 184–208, 222–232. ISBN: 7542808931/O.53 (in Chiness)

Keywords: Dual-Sequence Frequency Hopping, stochastic resonance, detection performance, color noise

W. K. Zhang, Q. P. Wang, J. J. Huang, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2019.0627] [Download Citations]
Two-dimensional Underdetermined DOA Estimation of Quasi-stationary Signals via Sparse Bayesian Learning

In order to improve the direction-of-arrival (DOA) estimation performance of quasi-stationary signals (QSS) using a uniform circular array (UCA), this paper addresses novel method in the context of sparse representation framework. Based on the Khatri-Rao transform, UCA can achieve a higher number of degrees of freedom to resolve more signals than the number of sensors. Then, by exploiting the two-dimensional (2-D) joint grid of UCA, the estimations of elevation and azimuth angles can be obtained from the sparse representation perspective. Finally, an expectation-maximization iteration method is developed to estimate DOAs of QSS from a Bayesian perspective. Since SBL makes full use of the sparse structure of QSS, thus the proposed algorithm possesses higher angular resolution and better DOA estimation precision compared with existing methods. Numerical simulation demonstrate the validity of the proposed method.

  1. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/tap.1986.1143830
  2. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  3. RANKINE, L., STEVENSON, N., MESBAH, M., et al. A nonstationary model of newborn EEG. IEEE Transactions on Biomedical Engineering, 2007, vol. 54, no. 1, p. 19–28. DOI: 10.1109/TBME. 2006.886667
  4. ASANO, F., HAYAMIZU, S., YAMADA, T., et al. Speech enhancement based on the subspace method. IEEE Transactions on Speech and Audio Processing, 2000, vol. 8, no. 5, p. 497–507. DOI: 10.1109/89.861364
  5. KWAN, C., HO, K. C., MEI, G., et al. An automated acoustic system to monitor and classify birds. EURASIP Journal on Applied Signal Processing, 2006, vol. 2006, p. 1–19. DOI: 10.1155/ASP/2006/96706
  6. MA, W. K., HSIEH, T. H., CHI, C. Y. Underdetermined DOA estimation of quasi-stationary signals with unknown spatial noise covariance: A Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 4, p. 2168–2180. DOI: 10.1109/TSP.2009.2034935
  7. WANG, Y. X., HASHEMI-SAKHTSARI, A., TRINKLE, M., et al. Sparsity-aware DOA estimation of quasi-stationary signals using nested arrays. Signal Processing, 2018, vol. 144, p. 87–98. DOI: 10.1016/j.sigpro.2017.09.029
  8. CAO, M. Y., HUANG, L., QIAN, C., et al. Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array. Signal Processing, 2015, vol. 106, p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012
  9. PALANISAMY, P., KISHORE, C. 2-D DOA estimation of quasistationary signals based on Khatri-Rao subspace approach. In Proceeding of IEEE International Conference on Recent Trends in Information Technology. Chennai (India), 2011, p. 798–803. DOI: 10.1109/ICRTIT.2011.5972295
  10. MALIOUTOV, D., ÇETIN, M., WILLSKY, A. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  11. YIN, J. H., CHEN, T. Q. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 9, p. 4489–4493. DOI: 10.1109/TSP.2011.2158425
  12. STOICA, P., BABU, P., LI, J. SPICE: A sparse covariance-based estimation method for array processing. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 2, p. 629–638. DOI: 10.1109/TSP.2010.2090525
  13. TIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, vol. 1, p. 211–244. DOI: 10.1162/15324430152748236
  14. DAI, J., BAO, X., XU, W., et al. Root sparse Bayesian learning for off-grid DOA estimation. IEEE Signal Processing Letter, 2017, vol. 24, no. 1, p. 46–50. DOI: 10.1109/lsp.2016.2636319
  15. JI, S., XUE, Y., CARIN, L. Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 6, p. 2346–2356. DOI: 10.1109/TSP.2007.914345
  16. YANG, Z., XIE, L., ZHANG, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 10.1109/TSP.2012.2222378
  17. WIPF, D. P., RAO, B. D. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 8, p. 2153–2164. DOI: 10.1109/TSP.2004.831016
  18. CHEVALIER, P., ALBERA, L., FERREOL, A., et al. On the virtual array concept for higher order array processing, IEEE Transactions on Signal Processing, 2005, vol. 53, no. 4, p. 1254–1271. DOI: 10.1109/TSP.2005.843703
  19. PORAT, B., FRIEDLANDER, B. Direction finding algorithms based on high-order statistics. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 9, p. 2016–2024. DOI: 10.1109/78.134434
  20. CHAMBERS, C., TOZER, T. C., SHARMAN, K. C., et al. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 12, p. 3085–3098. DOI: 10.1109/78.553482
  21. BABAROSSA, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 6, p. 1511–1515. DOI: 10.1109/78.388866

Keywords: Quasi-stationary signals, Underdetermined DOA estimation, Uniform circular array, Khatri-Rao transform, Sparse Bayesian learning

S. Tunc, H. A. Ilgin [references] [full-text] [DOI: 10.13164/re.2019.0635] [Download Citations]
Dim Target Detection in Infrared Images Using Saliency Algorithms

Infrared (IR) target detection and tracking are commonly used in modern defense systems. Target detection is the first and very important step for several surveillance applications. Long distance between imager and targets or bad weather conditions mostly cause dim target appearance with low signal-to-noise ratio (SNR) in IR images. In this study, dim targets in IR images are enhanced and detected using saliency detection algorithms, which have not been used in IR wavelength before. Performances of the algorithms are evaluated on common IR datasets. Algorithms are compared in terms of SNR, receiver operating characteristic (ROC) and area under curve (AUC) score. Effects of parameter selection are also considered for automatic target detection. Furthermore, feasibility of the methods for real-time applications are discussed.

  1. ACHANTA, R., HEMAMI, S., ESTRADA, F., et al. Frequency tuned salient region detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami Beach (FL, USA), 2009, p. 1594–1604. DOI: 10.1109/CVPR.2009.5206596
  2. HOU, X., ZHANG, L. Saliency detection: A spectral residual approach. In IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis (USA), 2007, p. 1–8. DOI: 10.1109/CVPR.2007.383267
  3. HOU, X., HAREL, J., KOCH, C. Image signature: Highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, vol. 34, no. 1, p. 194–201. DOI: 10.1109/TPAMI.2011.146
  4. BULLING, A., ALT, F., SCHMIDT, A. Increasing the security of gaze-based cued-recall graphical passwords using saliency masks. In SIGCHI International Conference on Human Factors in Computing Systems. Austin (TX, USA), 2012, p. 3011–3020. DOI: 10.1145/2207676.2208712
  5. ITTI, L., KOCH, C., NIEBUR, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, vol. 20, no. 11, p. 1254–1259. DOI: 10.1109/34.730558
  6. CHENG, M., ZHANG, G., MITRA, N., et al. Global contrast based salient region detection. In IEEE International Conference on Computer Vision and Pattern Recognition. Colorado Springs (USA), 2011, p. 409–416. DOI: 10.1109/CVPR.2011.5995344
  7. GOFERMAN, S., ZELNIK-MANOR, L., TAL, A. Context-aware saliency detection. In IEEE Conference on Computer Vision and Pattern Recognition. San Francisco (CA, USA), 2010, p. 2376–2383. DOI: 10.1109/CVPR.2010.5539929
  8. HAREL, J., KOCH, C., PERONA, P. Graph-based visual saliency. In Proceedings of Neural Information Processing Systems (NIPS). Canada, 2006, p. 545–552.
  9. BORJI, A., SIHITE, D., ITTI, L. Salient object detection: A benchmark. In European Conference on Computer Vision. Florence (Italy), 2012, part 2, p. 414–429. DOI: 10.1007/978-3-642-33709-3_30
  10. WANG, X., PENG, Z., KONG, D., et al. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 10, p. 5481–5493. DOI: 10.1109/TGRS.2017.2709250
  11. MA, R., YU, Y., YUE, X. Survey on image saliency detection methods. In IEEE International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). Xian (China), 2015, p. 329–338. DOI: 10.1109/CyberC.2015.98
  12. GARG, A., NEGI, A. A survey on visual saliency detection and computational methods. International Journal of Engineering and Technology, 2017, vol. 9, p. 2742–2753. DOI: 10.21817/ijet/2017/v9i4/170904406
  13. AMCOM-database [Online] Available at: http:://www.cs.ucf.edu/~vision/projects/meanshift/means hift.html
  14. SENSIAC-database [Online] Available at: https://www.dsiac.org/resources/research-materials/cds-dvdsdatabases/atr-algorithm-development-image-database

Keywords: Infrared images, target detection, dim target, saliency

Z. Saavedra, J. N. Argota, M. A. Cabrera, A. G. Elias [references] [full-text] [DOI: 10.13164/re.2019.0643] [Download Citations]
A New Approach to OTH Main Parameters Determination

In this work, we propose a method based on a simulation that incorporates several models to provide the set of parameters needed on Over-The-Horizon radars (OTHR) performance evaluation, which consists in a versatile software tool. Obtaining the signals involved during transmission and reception is a complex and challenging task. Among them, the received signal is fundamental to design methods and algorithms in the target detection strategy. The parameters in the transmission and reception processes that define the radio link main features are determined in terms of target type, ionospheric conditions, radio link characteristics, and other environmental properties. The determination is done combining models to work assembled in a software tool that simulates the OTHR radio link. The tool gives the possibility of step away from the linear model, which uses mainly constant parameters and it is used commonly. A large number of set up parameters and also interconnections among several models enable to simulate nearer to actual search sceneries.

  1. HEADRICK, J. M., SKOLNIK, M. I. Over-the-horizon radar in the HF band. Proceedings of the IEEE, 1974, vol. 62, no. 6, p. 664–673. DOI: 10.1109/PROC.1974.9506
  2. FABRIZIO, G. A. High Frequency Over-the-Horizon Radar. Fundamental Principles, Signal Processing, and Practical Applications. 1st ed. New York (United States): McGraw Hill, 2013. ISBN: 978-0387231907
  3. HEADRICK, J. M., THOMASON, J. F. Applications of high‐frequency radar. Radio Science, 1998, vol. 33, no. 4, p. 1045–1054. DOI: 10.1029/98RS01013
  4. KUSCHEL H., HECKENBACH J., MULLER S., et al. On the potentials of passive, multistatic, low frequency radars to counter stealth and detect low flying targets. In 2008 IEEE Radar Conference. Rome (Italy), 2008. DOI: 10.1109/RADAR.2008.4720984
  5. AZZARONE, A., BIANCHI, C., PEZZOPANE, M., et al. IONORT: A Windows software tool to calculate the HF ray tracing in the ionosphere. Computers and Geosciences, 2012, vol. 42, p. 57–63. DOI: 10.1016/j.cageo.2012.02.008
  6. NAGARAJOO, K. Ray tracing in realistic 3D ionospheric model. In Proceeding of the 2015 International Conference on Space Science and Communication (IconSpace). Langkawi (Malaysia), 2015, p. 267–272. DOI: 10.1109/IconSpace.2015.7283764
  7. DAVIS, K. Ionospheric Radio Propagation. Washington (USA): Dept. of Commerce, National Bureau of Standards, 1965. ISBN: 1124067051
  8. ZOLESI, B., CANDER, L. R. Ionospheric Prediction and Forecasting. Berlin (Germany): Springer, 2014. ISBN: 978-3-642- 38429-5
  9. BILITZA, D., ALTADILL, D., ZHANG, Y., et al. The International Reference Ionosphere 2012 - a model of international collaboration. Journal of Space Weather and Space Climate (SWSC), 2014, vol. 4, p. 1–12. DOI: 10.1051/swsc/2014004
  10. JONES, R. M., STEPHENSON, J. J. A versatile three-dimensional ray tracing computer program for radio waves in the ionosphere. OT Report, 75–76. Department of Commerce, Office of Telecommunication. Washington (USA): U.S. Government Printing Office, 1975.
  11. ITU (International Telecommunication Union), Radiocommunication vocabulary, Recommendation ITU-R V.573-5. Geneva (Switzerland), 2007.
  12. ITU (International Telecommunication Union), Radio Noise, Recommendation ITU-R P.372-12. Geneva (Switzerland), 2015.
  13. SKOLNIK, M. I. Radar Handbook. 3rd ed. (USA): McGraw-Hill, 2008. ISBN: 978-0-07158942-0
  14. BARTON, D. K., LEONOV, S. A. (eds.) Radar Technology Encyclopedia. (USA): Artech House, 1998. ISBN 0-89006-893-3
  15. BILLINGSLEY, J. B. Low-Angle Radar Land Clutter. Measurements and Empirical Models. New York (USA): William Andrew Publishing, 2002. ISBN: 1-891121-16-2
  16. DIAZ CHARRIS, V., GOMEZ TORRES, J. M. Analysis of radar cross section assessment methods and parameters affecting it for surface ships. Ship Science & Technology, 2012, vol. 6, p. 91–106. DOI: 10.25043/19098642.72
  17. EL-DARYMLI, K., GILL, E. W., MCGUIRE, P., et al. Automatic target recognition in synthetic aperture radar imagery: A state-ofthe-art review. IEEE Access, 2016, vol. 4, p. 6014–6058. DOI: 10.1109/ACCESS.2016.2611492
  18. DAVIES, K. Ionospheric Radio. London (UK): The Institution of Engineering and Technology, 1990. ISBN: 0 86341 186 X
  19. FRIIS, H. T. A note on a simple transmission formula. Proceedings of the I.R.E., 1946, vol. 34, no. 5, p. 254–256. DOI: 10.1109/JRPROC.1946.234568
  20. ITU (International Telecommunication Union), Method for the Prediction of the Performance of HF Circuits ITU-R P.533-13. Geneva (Switzerland), 2015.
  21. FRANCIS, D. B., CERVERA, M. A., FRAZER, G. J. Performance prediction for design of a network of skywave over-the-horizon radars. IEEE Aerospace and Electronic Systems Magazine, 2017, vol. 32, p. 18–28. DOI: 10.1109/MAES.2017.170056
  22. PEDERICK, L. H., CERVERA, M. A. A directional HF noise model: Calibration and validation in the Australian region. Radio Science, 2016, vol. 51, p. 25–39. DOI: 10.1002/2015RS005842
  23. GEORGE, P. L., BRADLEY, P. A. A new method of predicting the ionospheric absorption of high frequency waves at oblique incidence. Telecommunication Journal, 1974, vol. 41, p. 307–311.

Keywords: OTH radar, clutter, ground range, MUF, radar cross section, ray tracing

S. R. Hou, Y. J. Zhou, H. M. Liu [references] [full-text] [DOI: 10.13164/re.2019.0651] [Download Citations]
Convolutional Neural Networks for Profiled Side-channel Analysis

Recent studies have shown that deep learning algorithms are very effective for evaluating the security of embedded systems. The deep learning technique represented by Convolutional Neural Networks (CNNs) has proven to be a promising paradigm in the profiled side-channel analysis attacks. In this paper, we first proposed a novel CNNs architecture called DeepSCA. Considering that this work may be reproduced by other researchers, we conduct all experiments on the public ASCAD dataset, which provides electromagnetic traces of a masked 128-bit AES implementation. Our work confirms that DeepSCA significantly reduces the number of side-channel traces required to perform successful attacks on highly desynchronized datasets, which even outperforms the published optimized CNNs model. Additionally, we find that DeepSCA pre-trained from the synchronous traces works well in presence of desynchronization or jittering after a slight fine-tuning.

  1. KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis. In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology. London (UK), 1999, p. 388–397. DOI: 10.1007/3-540-48405-1_25
  2. MARTINASEK, Z., HAJNY, J., MALINA, L. Optimization of power analysis using neural network. In Proceedings of the 12th International Conference Smart Card Research and Advanced Applications (CARDIS). Berlin (Germany), 2013, p. 94–107. DOI: 10.1007/978- 3-319-08302-5_7
  3. WHITNALL, C., OSWALD, E. Robust profiling for DPA-style attacks. In Proceedings of the 17th International Workshop Cryptographic Hardware and Embedded Systems (CHES). Saint-Malo (France), 2015, p. 3–21. DOI: 10.1007/978-3-662-48324-4_1
  4. MARTINASEK, Z., ZEMAN, V., MALINA, L., et al. k-Nearest neighbors algorithm in profiling power analysis attack. Radioengineering, 2016, vol. 25, no. 2, p. 365–382. DOI: 10.13164/re.2016.0365
  5. HOSPODAR, G., GIERLICHS, B., MULDER, D. E., et al. Machine learning in side-channel analysis: A first study. Journal of Cryptographic Engineering, 2011, vol. 1, no. 4, p. 293–302. DOI: 10.1007/s13389-011-0023
  6. HEUSER, A., ZOHNER, M. Intelligent machine homicide - breaking cryptographic devices using support vector machines. In Proceedings of the Constructive Side-Channel Analysis and Secure Design: Third International Workshop (COSADE). Darmstadt (Germany), 2012, p. 249–264. DOI: 10.1007/978-3-642-29912-4_18
  7. BARTKEWITZ, T., LEMKE-RUST, K. Efficient template attacks based on probabilistic multi-class support vector machines. In Proceedings of Smart Card Research and Advanced Applications. Graz (Austria), 2013, p. 263–276. DOI: 10.1007/978-3-642-37288-9_18
  8. HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Wavelet support vector machine algorithm in power analysis attacks. Radioengineering. 2017, vol. 26, no. 3, p. 890–902. DOI: 10.13164/re.2017.0890
  9. HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Exploiting support vector machine algorithm to break the secret key. Radioengineering, 2018, vol. 27, no. 1, p. 289–298. DOI: 10.13164/re.2018.0289
  10. MAGHREBI, H., PORTIGLIATTI, T., PROUFF, E. Breaking cryptographic implementations using deep learning techniques. Cryptology ePrint Archive, Report 2016/921, 2016, p. 1–25. Available at: https://eprint.iacr.org/2016/921
  11. CAGLI, E., DUMAS, C., PROUFF, E. Convolutional neural networks with data augmentation against jitterbased countermeasures - profiling attacks without pre-processing. In Proceedings of the 19th International Conference on Cryptographic Hardware and Embedded Systems (CHES). Taipei (Taiwan), 2017, p. 45–68. DOI: 10.1007/978-3-319-66787-4
  12. PROUFF, E., STRULLU, R., BENADJILA, R., et al. Study of deep learning techniques for side-channel analysis and introduction to ASCAD database. Cryptology ePrint Archive, Report 2018/053, 2018, p. 1–45. Available at: https://eprint.iacr.org/2018/053.
  13. GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep Learning. Cambridge (USA): MIT Press, 2016. Available at: http://www.deeplearningbook.org. ISBN: 0262035618
  14. BENGIO, Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2009, vol. 2, no. 1, p. 1–127. DOI: 10.1561/2200000006
  15. IOFFE, S., SZEGEDY, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning (ICML). Lille (France), 2015, p. 448–456.
  16. SANTURKAR, S., TSIPRAS, D., ILYAS, A., et al. How does batch normalization help optimization? arXiv, 2018, p. 1–26. Available at: https://arxiv.org/abs/1805.11604
  17. SIMONYAN, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv, 2014, p. 1–14. Available at: https://arxiv.org/abs/1409.1556
  18. JARRETT, K., KAVUKCOUOGLU, K., RANZATO, M., et al. What is the best multistage architecture for object recognition? In Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV). Kyoto (Japan), 2009, p. 2146–2153. DOI: 10.1109/ICCV.2009.5459469
  19. CHOLLET, F., et al. Keras: Deep Learning for Humans. Available at: https://github.com/fchollet/keras
  20. ABADI, M., AGARWAL, A., BARHAM, P., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems. arXiv, 2015, p. 1–19. Available at: https://arxiv.org/abs/1603.04467. Software available at: https://tensorflow.org
  21. RAWAT, W., WANG, Z., Deep convolutional neural networks for image classification: A comprehensive review. Neural computation, 2017, vol. 29, no. 9, p. 2352–2449. DOI: 10.1162/neco_a_00990
  22. VAN DYK, D. A., MENG, X.-L. The art of data augmentation. Journal of Computational and Graphical Statistics, 2001, vol. 10, no. 1, p. 1–50. DOI: 10.1198/10618600152418584
  23. IANDOLA, F. N., HAN, S., MOSKEWICZ, M. W., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. arXiv, 2016, p. 1–13. Available at: https://arxiv.org/abs/1602.07360
  24. HOWARD, A. G., ZHU, M., CHEN, B., et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv, 2017, p. 1–9. Available at: https://arxiv.org/abs/1704.04861
  25. ZHANG, X., ZHOU, X., LIN, M., et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City (USA), 2018, p. 1–9. DOI: 10.1109/CVPR.2018.00716

Keywords: Side-channel analysis, deep learning, convolutional neural networks, DeepSCA