ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2017, Volume 26, Number 1 [DOI: 10.13164/re.2017-1]

Show all Hide all

M. Stumpf [references] [full-text] [DOI: 10.13164/re.2017.0001] [Download Citations]
Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  1. PIKET-MAY, M., TAFLOVE, A., BARON, J. FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads. IEEE Transactions on Microwave Theory and Techniques, 1994, vol. 42, no. 8, p. 1514–1523. DOI: 10.1109/22.297814
  2. WEI, X. C., LI, E. P., LIU, E. X., et al. Efficient simulation of power distribution network by using integral-equation and modal-decoupling technology. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 10, p. 2277–2285. DOI: 10.1109/TMTT.2008.2004257
  3. RIMOLO-DONADIO, R., GU, X., KWARK, Y. H., et al. Physicsbased via and trace models for efficient link simulation on multilayer structures up to 40 GHz. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 8, p. 2072–2083. DOI: 10.1109/TMTT.2009.2025470
  4. OKOSHI, T. Planar Circuits for Microwaves and Lightwaves. Springer Series in Electrophysics. Berlin (Germany): SpringerVerlag, 1985. ISBN: 978-3642700859
  5. STUMPF, M., LEONE, M. Efficient 2-D integral equation approach for the analysis of power bus structures with arbitrary shape. IEEE Transactions on Electromagnetic Compatibility, 2009, vol. 51, no. 1, p. 38–45. DOI: 10.1109/TEMC.2008.2009223
  6. DUAN, X., RIMOLO-DONADIO, R., BRUNS, H.-D., et al. Extension of the contour integral method to anisotropic modes on circular ports. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 2, no. 2, p. 321–331. DOI: 10.1109/TCPMT.2011.2174823
  7. PREIBISCH, J. B., DUAN, X., SCHUSTER, C. An efficient analysis of power/ground planes with inhomogeneous substrates using the contour integral method. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 4, p. 980–989. DOI: 10.1109/TEMC.2013.2292095
  8. ZHAO, H., LIU, E. X., HU, J., et al. Fast contour integral equation method for wideband power integrity analysis. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, vol. 4, no. 8, p. 1317–1324. DOI: 10.1109/TCPMT.2014.2327242
  9. STUMPF, M. The time-domain contour integral method – an approach to the analysis of double-plane circuits. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 2, p. 367–374. DOI: 10.1109/TEMC.2013.2280297
  10. STUMPF, M. Analysis of dispersive power-ground structures using the time-domain contour integral method. IEEE Transactions on Electromagnetic Compatibility, 2015, vol. 57, no. 2, p. 224–231. DOI: 10.1109/TEMC.2014.2366491
  11. DE HOOP, A. T. Handbook of Radiation and Scattering of Waves. London (UK): Academic Press, 1995. ISBN: 978-0122086557
  12. STUMPF, M. Pulsed EM field radiation, mutual coupling, and reciprocity of thin planar antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 3943–3950. DOI: 10.1109/TAP.2014.2323079
  13. STUMPF, M. Time-domain mutual coupling between power-ground structures. InProceedings of the IEEE International Symposium on Electromagnetic Compatibility. Raleigh, NC (USA), Aug. 2014, p. 240–243. DOI: 10.1109/ISEMC.2014.6898977
  14. STUMPF, M. The pulsed EM plane-wave response of a thin planar antenna. Journal of Electromagnetic Waves and Applications, 2016, vol. 30, no. 9, p. 1133–1146. DOI: 10.1080/09205071.2016.1179132
  15. STUMPF, M. Time-domain analysis of rectangular power-ground structures with relaxation. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 5, p. 1095–1102. DOI: 10.1109/TEMC.2014.2305014
  16. ABRAMOWITZ, M., STEGUN, I. A. Handbook of Mathematical Functions. New York, NY (USA): Dover Publications, 1972. ISBN: 978-0486612720
  17. STUMPF, M. The equivalent Thevenin-network representation of a pulse-excited power-ground structure. IEEE Transactions on Electromagnetic Compatibility. Feb. 2017, vol. 59, no. 1, p. 249–255. DOI: 10.1109/TEMC.2016.2590565
  18. FELSEN, L. B. Propagation and diffraction of transient fields in non-dispersive and dispersive media. In Proceedings of the Transient Electromagnetic Fields. Berlin (Germany), 1976, p. 1–72. ISBN: 978-3662309070

Keywords: Contour integral method, integral equations, electromagnetic compatibility, electromagnetic interference, reciprocity theorem, numerical analysis

V. Prajzler, M. Neruda, P. Nekvindova, P. Mikulik [references] [full-text] [DOI: 10.13164/re.2017.0010] [Download Citations]
Properties of Multimode Optical Epoxy Polymer Waveguides Deposited on Silicon and TOPAS Substrate

The paper reports on the fabrication and characterization of multimode polymer optical waveguides. Epoxy polymer EpoCore was used as the waveguide core material and EpoClad was used as a cladding and cover protection layer. The design of the waveguides was schemed for geometric dimensions of core 50 μm and for 850 nm and 1310 nm wavelengths. Proposed shapes of the waveguides were fabricated by standard photolithography process. Optical losses of the planar waveguides were measured by the fibre probe technique at 632.8 nm and 964 nm. Propagation optical loss measurements for rectangular waveguides were done by using the cut-back method and the best samples had optical losses lower than 0.53 dB/cm at 650 nm, 850 nm and 1310 nm.

  1. BAMIEDAKIS, N., CHEN, J., PENTY, R.V., WHITE I. H. Bandwidth studies on multimode polymer waveguides for 25 Gb/s optical interconnects. IEEE Photonics Technology Letters, 2014, vol. 26, no. 20, p. 2004–2007. DOI 10.1109/LPT.2014.2342881
  2. BOSMAN, E., Van STEENBERGE, G., MILENKOV, I., PANAJOTOV, K., THIENPONT, H., BAUWELINCK, J., Van DAELE, P. Fully flexible optoelectronic foil. IEEE Journal on Selected Topics in Quantum Electronics, 2010, vol. 16, no. 5, p. 1355–1362. DOI 10.1109/JSTQE.2009.2039466
  3. DANGEL, R., BERGER, C., BEYELER, R., DELLMANN, L., GMUR, M., HAMELIN, R., HORST, F., LAMPRECHT, T., MORF, T., OGGIONI, S., SPREAFICO, M., OFFREIN, B.J. Polymer-waveguide-based board-level optical interconnect technology for datacom applications. IEEE Transactions on Advanced Packaging, 2008, vol. 31, no. 4, p. 759–767. DOI: 10.1109/TADVP.2008.2005996
  4. CHOI, C., LIN, L., LIU, Y., CHOI, J., WANG, L., HAAS, D., MAGERA, J., CHEN, R.T. Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. Journal of Lightwave Technology, 2004, vol. 22, no. 9, p. 2168–2176. DOI: 10.1109/JLT.2004.833815
  5. BRUCK, R., MUELLNER, P., KATAEVA, N., KOECK, A., TRASSL, S., RINNERBAUER, V., SCHMIDEGG, K., HAINBERGER, R. Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process. Applied Optics, 2013, vol. 52, no. 19, p. 4510–4514. DOI: 10.1364/AO.52.004510
  6. HWANG, S.H., LEE, W.J., KIM, M.J., JUNG, E.J., KIM, G.W., AN, J.B., JUNG, K.Y., CHA, K.S., RHO, B.S. Ultra-thin and lowpower optical interconnect module based on a flexible optical printed circuit board. Optical Engineering, 2012, vol. 51, no. 7, Article Number: 075402. DOI: 10.1117/1.OE.51.7.075402
  7. IMMONEM, M., WU, J., YAN, H.J., ZHU, L.X., CHEN, P., RAPALA-VIRTANEN, T. Long distance optical printed circuit board for 10 Gbps optical interconnection. Proceedings of SPIE, 2012, vol. 8555, Article Number: UNSP 85551M. DOI: 10.1117/12.999969
  8. BAMIEDAKIS, N., CHEN, J., WESTBERGH, P., GUSTAVSSON, J. S., LARSSON, A., PENTY, R. V., WHITE, I. H. 40 Gb/s data transmission over a 1-m-long multimode polymer spiral waveguide for board-level optical interconnects. Journal of Lightwave Technology, 2015, vol. 33, p. 882–888. DOI: 10.1109/JLT.2014.2371491
  9. KOBAYASHI, J., YAGI, S., HATAKEYAMA, Y., KAWAKAMI, N. Low loss polymer optical waveguide replicated from flexible film stamp made of polymeric material. Japanese Journal of Applied Physics, 2013, vol. 52, Article Number: UNSP 072501. DOI: 10.7567/JJAP.52.072501
  10. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., LYUTAKOV, O., JERABEK, V. Flexible polymer planar optical waveguides. Radioengineering, 2014, vol. 23, no. 3, p. 776–782. ISSN: 1210-2512
  11. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., JERABEK, V. Properties of the optical planar polymer waveguides deposited on printed circuit boards. Radioengineering, 2015, vol. 24, no. 2, p. 442-448. DOI: 10.13164/re.2015.0442
  12. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., JERABEK, V. Optical properties of polymer planar waveguides deposited on flexible foils. Journal of Optoelectronics and Advanced Materials, 2015, vol. 17, no. 11-12, p. 1597–1602.
  13. Micro resist technology GmbH: Datasheet. Available at: http://www.microresist.de
  14. TOPAS Advanced Polymers: Datasheet. Available at: http://www.topas.com/tech-center
  15. web Metricon Corporation. Available at: www.metricon.com
  16. ULRICH, R., TORGE, R. Measurement of thin film parameters with a prism coupler. Applied Optics, 1973, vol. 12, no. 12, p. 2901–2908. DOI: 10.1364/AO.12.002901
  17. NOURSHARGH, N., STARR, E. M., FOX, N. I., JONES, S. G. Simple technique for measuring attenuation of integrated optical waveguides. Electronics Letters, 1985, vol. 21, no. 18, p. 818–820. DOI: 10.1049/el:19850577
  18. ZIEMANN, O., KRAUSER, J., ZAMZOV, P. E., DAUM, W. POF Handbook, Optical Short Range Transmission Systems. 2nd ed. Berlin (Germany): Springer-Verlag Berlin Heidelberg, 2008. ISBN 978-3-540-76628-5

Keywords: Optical planar and rectangular waveguides, Multimode waveguides, Polymer

H. Saghaei [references] [full-text] [DOI: 10.13164/re.2017.0016] [Download Citations]
Supercontinuum Source for Dense Wavelength Division Multiplexing in Square Photonic Crystal Fiber via Fluidic Infiltration Approach

In this paper, a square-lattice photonic crystal fiber based on optofluidic infiltration technique is proposed for supercontinuum generation. Using this approach, without nano-scale variation in the geometry of the photonic crystal fiber, ultra-flattened near zero dispersion centered about 1500 nm will be achieved. By choosing the suitable refractive index of the liquid to infiltrate into the air-holes of the fiber, the supercontinuum will be generated for 50 fs input optical pulse of 1550 nm central wavelength with 20 kW peak power. We numerically demonstrate that this approach allows one to obtain more than two-octave spanning of supercontinuum from 800 to 2000 nm. The spectral slicing of this spectrum has also been proposed as a simple way to create multi-wavelength optical sources for dense wavelength division multiplexing.

  1. DUDLEY, J. M., COEN, S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Optics Letters, 2002, vol. 27, no. 13, p. 1180–1182. ISSN: 1539-4794. DOI: 10.1364/OL.27.001180
  2. DUDLEY, J. M., GENTY, G., COEN, S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, vol. 78, no. 4, p. 1135–1184. ISSN: 0034-6861. DOI: 10.1103/RevModPhys.78.1135
  3. DUDLEY, J. M., TAYLOR, J. R. Supercontinuum Generation in Optical Fibers. Cambridge University Press, 2010. ISBN: 1139486187
  4. AGRAWAL, G. P. Nonlinear Fiber Optics. Academic Press, 2007. ISBN: 0123695163
  5. BIRKS, T., BAHLOUL, D., MAN, T., et al. Supercontinuum generation in tapered fibres. In Proceedings of Lasers and ElectroOptics, CLEO'02. USA, 2002, p. 486–487. isbn: 1557527067. DOI: 10.1109/CLEO.2002.1034235
  6. RANKA, J. K., WINDELER, R. S., STENTZ, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, vol. 25, no. 1, p. 25–27. ISSN: 1539-4794. DOI: 10.1364/OL.25.000025
  7. WADSWORTH, W. J., ORTIGOSA-BLANCH, A., KNIGHT, J. C., et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source. Journal of the Optical Society of America B, 2002, vol. 19, no. 9, p. 2148–2155. ISSN: 1520-8540. DOI: 10.1364/JOSAB.19.002148
  8. REEVES, W., SKRYABIN, D. V., BIANCALANA, F., et al. Transformation and control of ultra-short pulses in dispersionengineered photonic crystal fibres. Nature, 2003, vol. 424, no. 6948, p. 511–515. ISSN: 0028-0836. DOI: 10.1038/nature01798
  9. MONAT, C., EBNALI-HEIDARI, M., GRILLET, C., et al. Fourwave mixing in slow light engineered silicon photonic crystal waveguides. Optics Express, 2010, vol. 18, no. 22, p. 22915 to 22927. ISSN: 1094-4087. DOI: 10.1364/OE.18.022915
  10. SHEN, L., HUANG, W.-P., CHEN, G., et al. Design and optimization of photonic crystal fibers for broad-band dispersion compensation. IEEE Photonics Technology Letters, 2003, vol. 15, no. 4, p. 540–542. ISSN: 1041-1135. DOI: 10.1109/LPT.2003.809322
  11. MORTENSEN, N. A. Effective area of photonic crystal fibers. Optics Express, 2002, vol. 10, no. 7, p. 341–348. ISSN: 1094- 4087. DOI: 10.1364/OE.10.000341
  12. UDEM, T., HOLZWARTH, R., HANSCH, T. W. Optical frequency metrology. Nature, 2002, vol. 416, no. 6877, p. 233 to 237. ISSN: 0028-0836. DOI: 10.1038/416233a
  13. MOON, S., KIM, D. Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Optics Express, 2006, vol. 14, no. 24, p. 11575–11584. ISSN: 1094-4087. DOI: 10.1364/OE.14.011575
  14. SCHENKEL, B., PASCHOTTA, R., KELLER, U. Pulse compression with supercontinuum generation in microstructure fibers. Journal of the Optical Society of America B, 2005, vol. 22, no. 3, p. 687–693. ISSN: 1520-8540. DOI: 10.1364/JOSAB.22.000687
  15. LIU, B., HU, M., FANG, X., et al. High-power wavelength-tunable photonic-crystal-fiber-based oscillator-amplifier-frequencyshifter femtosecond laser system and its applications for material microprocessing. Laser Physics Letters, 2008, vol. 6, no. 1, p. 44. ISSN: 1612-202X. DOI: 10.1002/lapl.200810084
  16. NAKASYOTANI, T., TODA, H., KURI, T., et al. Wavelengthdivision-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology, 2006, vol. 24, no. 1, p. 404–410. ISSN: 0733-8724. DOI: 10.1109/JLT.2005.859854
  17. SAGHAEI, H., SEYFE, B., BAKHSHI, H., et al. Novel approach to adjust the step size for closed-loop power control in wireless cellular code division multiple access systems under flat fading. IET Communications, 2011, vol. 5, no. 11, p. 1469–1483. ISSN: 1751-8636. DOI: 10.1049/iet-com.2010.0029
  18. HANSEN, K. P., FOLKENBERG, J. R., PEUCHERET, C., et al. Fully dispersion controlled triangular-core nonlinear photonic crystal fiber. In Proceedings of Optical Fiber Communication Conference. Atlanta (GA, USA), 2003, p. 505–509. ISBN: 1- 55752-731-8.
  19. WU, T.-L., CHAO, C.-H. A novel ultra flattened dispersion photonic crystal fiber. IEEE Photonics Technology Letters, 2005, vol. 17, no. 1, p. 67–69. ISSN: 1041-1135. DOI: 10.1109/LPT.2004.837475
  20. SAGHAEI, H., HEIDARI, V., EBNALI-HEIDARI, M., et al. A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik-International Journal for Light and Electron Optics, 2015, vol. 127, no. 24, p. 11938–11947. ISSN: 0030-4026. DOI: 10.1016/j.ijleo.2016.09.111
  21. MONAT, C., DOMACHUK, P., EGGLETON, B. Integrated optofluidics: A new river of light. Nature Photonics, 2007, vol. 1, no. 2, p. 106–114. ISSN: 1749-4885. DOI: 10.1038/nphoton.2006.96
  22. MONAT, C., DOMACHUK, P., GRILLET, C., et al. Optofluidics: a novel generation of reconfigurable and adaptive compact architectures. Microfluidics and Nanofluidics, 2008, vol. 4, no. 1- 2, p. 81–95. ISSN: 1613-4982. DOI: 10.1007/s10404-007-0222-z
  23. EBNALI-HEIDARI, M., DEHGHAN, F., SAGHAEI, H., et al. Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. Journal of Modern Optics, 2012, vol. 59, no. 16, p. 1384–1390. ISSN: 0950-0340. DOI: 10.1080/09500340.2012.715690
  24. EBNALI-HEIDARI, M., SAGHAEI, H., KOOHI-KAMALI, F., et al. Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, vol. 20, no. 5, p. 582–589. ISSN: 1077-260X. DOI: 10.1109/JSTQE.2014.2307313
  25. SAGHAEI, H., EBNALI-HEIDARI, M., MORAVVEJ-FARSHI, M. K. Midinfrared supercontinuum generation via As2Se3 chalcogenide photonic crystal fibers. Applied Optics, 2015, vol. 54, no. 8, p. 2072–2079. ISSN: 1539-4522. DOI: 10.1364/AO.54.002072
  26. SAITOH, K., KOSHIBA, M. Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides. Journal of Lightwave Technology, 2001, vol. 19, no. 3, p. 405. ISSN: 0733-8724. DOI: 10.1109/50.918895
  27. MALITSON, I. Interspecimen comparison of the refractive index of fused silica. Journal of the Optical Society of America, 1965, vol. 55, no. 10, p. 1205–1208. ISSN: 0030-3941. DOI: 10.1364/JOSA.55.001205
  28. DIOUF, M., SALEM. A., CHERIF, R., et al. Super-flat coherent supercontinuum source in As38.8 Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Applied Optics, 2017, vol. 56, no. 2, p. 163–169. ISSN: 1539-4522. DOI: 10.1364/AO.56.000163
  29. SAGHAEI, H., MORAVVEJ-FARSHI, M. K., EBNALIHEIDARI, M., et al. Ultra-wide mid-infrared supercontinuum generation in As40Se60 chalcogenide fibers: Solid core PCF versus SIF. IEEE Journal of Selected Topics in Quantum Electronics, 2016, vol. 22, no. 2, p. 1–8. ISSN: 1077-260X. DOI: 10.1109/JSTQE.2015.2477048
  30. MIRET, J., SILVESTRE, E., ANDRUS, P. Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal fibers. Optics Express, 2009, vol. 17, no. 11, p. 9197–9203. ISSN: 1094- 4087. DOI: 10.1364/OE.17.009197
  31. KASHYAP, R. Fiber Bragg Gratings. Academic Press, 1999. ISBN: 0080506275

Keywords: Supercontinuum generation, photonic crystal fiber, optofluidic, dispersion, dense wavelength division multiplexing

K. D. Xu, M. Z. Li, Y. H. Liu, J. Ai, Y. C. Bai [references] [full-text] [DOI: 10.13164/re.2017.0023] [Download Citations]
Compact Microstrip Triple-Mode Bandpass Filters Using Dual-Stub-Loaded Spiral Resonators

Two new microstrip triple-mode resonators loaded with T-shaped open stubs using axially and centrally symmetric spiral structures, respectively, are presented. Spiraled for circuit size reduction, these two half-wavelength resonators can both generate three resonant modes over a wide frequency band by loading two T-stubs with different lengths. Due to the structural symmetry, they can be analyzed by odd- and even-mode method. To validate the design concept, two compact bandpass filters (BPFs) using these two novel resonators with center frequencies of 1.76 GHz and 2.44 GHz for the GSM1800 and WLAN/Zigbee applications, respectively, have been designed, fabricated and tested. The center frequencies and bandwidths can be tunable through the analysis of resonant frequency responses, fractional bandwidths and external quality factor versus the resonator parameters. The final measured results have achieved good consistence with the simulations of these two BPFs.

  1. KIM, S., KIM, N. Y. Compact bandpass filter with wide stop band response based on meandered-line stepped-impedance resonator using IPD process. Microwave and Optical Technology Letters, 2015, vol. 57, no. 6, p. 1466–1470. DOI: 10.1002/mop.29111
  2. XU, K. D., ZHANG, Y. H., LI, J. L. W., et al. Compact ultrawideband bandpass filter using quad-T-stub-loaded ring structure. Microwave and Optical Technology Letters, 2014, vol. 56, no. 9, p. 1988–1991. DOI: 10.1002/mop.28508
  3. PAN, T., SONG, K., FAN, Y. Novel wide-stopband bandpass filter with good frequency selectivity based on composite right/left handed transmission line. Microwave and Optical Technology Letters, 2012, vol. 54, no. 11, p. 2494–2497. DOI: 10.1002/mop.27104
  4. WU, Y., HU, B., NAN, L., et al. Compact high-selectivity bandpass filter using a novel uniform coupled-line dual-mode resonator. Microwave and Optical Technology Letters, 2015, vol. 57, no. 10, p. 2355–2358. DOI: 10.1002/mop.29336
  5. ZHANG, X. Y., CHEN, J. X., XUE, Q., et al. Dual-band bandpass filters using stub-loaded resonators. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 8, p. 583–585. DOI: 10.1109/LMWC.2007.901768
  6. TORABI, A., FOROORAGHI, K. Miniature harmonic-suppressed microstrip bandpass filter using a triple-mode stub-loaded resonator and spur lines. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 5, p. 255–257. DOI: 10.1109/LMWC.2011.2122304
  7. LUGO, C., PAPAPOLYMEROU, J. Bandpass filter design using a microstrip triangular loop resonator with dual-mode operation. IEEE Microwave and Wireless Components Letters, 2005, vol. 15, no. 7, p. 475–477. DOI: 10.1109/LMWC.2005.851573
  8. XU, K. D., ZHANG, Y. H., ZHUGE, C. L., et al. Miniaturized dual-band bandpass filter using short stub-loaded dual-mode resonators. Journal of Electromagnetic Waves and Applications, 2011, vol. 25, no. 16, p. 2264–2273. DOI: 10.1163/156939311798147060
  9. DAI, G. L., ZHANG, X. Y., CHAN, C.-H., et al. An investigation of open-and short-ended resonators and their applications to bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2203–2210. DOI: 10.1109/TMTT.2009.2027173
  10. SERRANO, L., CORRETA, F. S. A triple-mode bandpass filter using a modified circular patch resonator. Microwave and Optical Technology Letters, 2009, vol. 51, no. 1, p. 178–182. DOI: 10.1002/mop.23950
  11. MA, X. B., JIANG, T. Compact wideband bandpass filter with controllable bandwidth and suppression of the second passband using a trimode resonator. Microwave and Optical Technology Letters, 2015, vol. 57, no. 12, p. 2939–2943. DOI: 10.1002/mop.29475
  12. LIU, H. W., SHEN, L., JIANG, Y., et al. Triple-mode bandpass filter using defected ground waveguide. Electronics Letters, 2011, vol. 47, no. 6, p. 388–389. DOI: 10.1049/el.2011.0006
  13. MO, S. G., YU, Z. Y., ZHANG, L. Design of triple-mode bandpass filter using improved hexagonal loop resonator. Progress in Electromagnetics Research, 2009, vol. 96, no. 4, p. 117–125. DOI: 10.2528/PIER09080304
  14. XU, H., XU, K., LIU, Y., LIU, Q. H. Compact triple-mode bandpass filter using short-and open-stub loaded spiral resonator. In 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electromagnetics (ACES). Honolulu (USA), 2016, 2 p. DOI: 10.1109/ROPACES.2016.7465476

Keywords: Spiral resonator, stub-loaded resonators, transmission zeros, triple-mode bandpass filter

M. Danaeian, K. Afrooz, A. Hakimi [references] [full-text] [DOI: 10.13164/re.2017.0030] [Download Citations]
Miniaturized Substrate Integrated Waveguide Diplexer Using Open Complementary Split Ring Resonators

In this paper, two miniaturized planar diplexers based on the substrate integrated waveguide (SIW) structure loaded by open complementary split-ring resonators (OCSRRs) are proposed. The working principle is based on the theory of evanescent mode propagation. The proposed SIW diplexers operate below the cutoff frequency of the waveguide. Both the complementary split-ring resonators (CSRRs) and the OCSRRs behave as electric dipoles however, the resonance frequency of the OCSRRs is approximately half of the resonance frequency of the CSRRs. Therefore, the electrical size of the OCSRRs is larger than the CSRRs. Accordingly, the OCSRRs are more appropriate for the SIW miniaturization. At first, the filtering response of the SIW structure loaded by OCSRR unit cells is investigated. Then, two miniaturized SIW diplexers which consist of two cascaded OCSRR unit cells with different orientations are designed. For the first diplexer (Type I), the fractional bandwidths of operation for the up and down channels are 9.52% and 2.59% at 4.2 GHz and 5.8 GHz, respectively. For the second diplexer (Type II), the fractional bandwidths of operation for the up and down channels are 5.95% and 2.51% at 4.7 GHz and 5.6 GHz, respectively. Finally, in order to validate the ability of the proposed OCSRR unit cells in the size reduction, two designed diplexers are fabricated and experimental verification are provided. A good agreement between the results of measurement and simulation is achieved. The proposed diplexers show significant advantages in terms of size reduction, low loss, high isolation, and integration with other planar circuits.

  1. BOZZI, M., GEORGIADIS, A., WU, K. Review of substrateintegrated waveguide circuits and antennas. IET Microwaves, Antennas & Propagation, 2011, vol. 5, no. 8, p. 909–920, DOI: 10.1049/iet-map.2010.0463
  2. MOSCATO, S., TOMASSONI, C., BOZZI, M., PERREGRINI, L. Quarter-mode cavity filters in substrate integrated waveguide technology. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2538–2547. DOI: 10.1109/TMTT.2016.2577690
  3. CHEN, X., WU, K. Substrate integrated waveguide filters: Design techniques and structure innovations. IEEE Microwave Magazine, 2014, vol. 15, no. 6, p. 121–133, DOI: 10.1109/MMM.2014.2332886
  4. GARG, R., BAHL, I., BOZZI, M. Microstrip Lines and Slotlines. 3rd ed. Artech House, 2013. ISBN: 9781608075355
  5. BONACHE, J., GIL, I., GARCA-GARCIA, J., MARTIN, F. Complementary split ring resonators for microstrip diplexer design. Electronics Letters, 2005, vol. 41, no. 14, p. 810–811. DOI: 10.1049/el: 20050895
  6. CHEN, C.-H., HUANG, T.Y., CHOU, C.P., WU, R.B., Microstrip diplexers design with common resonator sections for compact size but high isolation. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 1945–1952. DOI: 10.1109/TMTT.2006.873613
  7. DONG, Y., ITOH, T. Substrate integrated waveguide loaded by complementary split-ring resonators for miniaturized diplexer design. IEEE Microwave Wireless Component Letters, 2011, vol. 21, no. 1, p. 10–12. DOI: 10.1109/LMWC.2010.2091263
  8. SIRCI, S., MARTINEZ, J. D., VAGUE, J., BORIA, V. E. Substrate integrated waveguide diplexer based on circular triplet combline filters. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 7, p. 430–432. DOI: 10.1109/LMWC.2015.2427516
  9. GARCIA-LAMPEREZ, A., SALAZAR-PALMA, M., YEUNG, S.-H. SIW compact diplexer. In IEEE MTT-S International Microwave Symposium Digest. Tampa Bay (FL, USA), Jun. 2014, p. 1–4. DOI: 10.1109/MWSYM.2014.6848514
  10. ZHAO, C., Z., FUMEAUX, C., LIM, C‐C. Substrate‐integrated waveguide diplexers with improved Y‐junctions. Microwave and Optical Technology Letters, 2016, vol. 58, no. 6, p. 1384–1388. DOI: 10.1002/mop.29807
  11. CALOZ, C., ITOH, T. Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. New York (USA): John Wiley & Sons, 2006. DOI: 10.1002/0471754323
  12. MARQUES, R., MARTIN, F., SOROLLA, M. Metamaterials with Negative Parameters: Theory, Design and Microwave Applications. New York (USA): John Wiley & Sons, 2011. ISBN: 9781118211564
  13. FERRAN, M. Artificial Transmission Lines for RF and Microwave Applications. John Wiley, 2015. ISBN: 978-1-118-48760-0
  14. DONG, Y., YANG, T., ITOH, T. Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2211–2223. DOI: 10.1109/TMTT.2009.2027156
  15. DANAEIAN, M., AFROOZ, K., HAKIMI, A., MOZNEBI, A.-R., Compact bandpass filter based on SIW loaded by open complementary split-ring resonators (OCSRRs). International Journal of RF and Microwave Computer‐Aided Engineering, 2016, vol. 26, no. 8, p. 674–682. DOI: 10.1002/mmce.21017

Keywords: Open Complementary split ring resonators (OCSRRs), electric dipoles, substrate integrated waveguide (SIW), evanescent mode, planar waveguide diplexer, miniaturization.

Chen Zhang, Xiang-yu Cao, Jun Gao, Si-jia Li, Yue-jun Zheng [references] [full-text] [DOI: 10.13164/re.2017.0038] [Download Citations]
Low RCS and Broadband ME Dipole Antenna Loading Artificial Magnetic Conductor Structures

A design for low radar cross section (RCS) and broadband magnetic-electric (ME) dipole antenna is proposed. Minkowski-like fractal metal patches printed on the substrate form the electric dipoles, four metallic vias connected to the radiation patches and the metal ground form the magnetic dipoles. The whole antenna is connected with an L-shaped feeding structure which excites electric and magnetic dipoles simultaneously. Meanwhile, two different structure AMC cells with a 180° (±30°) phase difference in a broadband frequency region are designed as a chessboard and loaded around the ME antenna radiation patch. Numerical and experimental results incident the antenna bandwidth is 42.4% from 8.0GHz to 12.3GHz, covering the whole X band. Moreover, the RCS is reduced remarkable in a broad frequency range from 6.5GHz to 15.5GHz (81.8% relative bandwidth) when compared to conventional ME antenna. After loading AMC structures, the antenna still keeps advanced performances such as stable gain and almost consistent pattern in E and H plane.

  1. BAI, Y., XIAO, S., TANG, M., et al. Wide-angle scanning phased array with pattern reconfigurable elements. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 11, p. 4071–4076. DOI: 10.1109/TAP.2011.2164176
  2. FENG, B., AN, W., DENG, L., et al. Dual-wideband complementary antenna with a dual-layer cross-ME-dipole structure for 2G/3G/LTE/WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 626–629. DOI: 10.1109/LAWP.2014.2375338
  3. LUK, K., WU, B. The magneto-electric dipole, a wideband antenna for base stations in mobile communications. Proceedings of the IEEE, 2012, vol. 100, no. 7, p. 2297–2307. DOI: 10.1109/jproc.2012.2187039
  4. GOU, Y., YANG, S., LI, J., NIE, Z. A compact dual-polarized printed dipole antenna with high isolation for wideband base station applications. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 4392–4395. DOI: 10.1109/TAP.2014.2327653
  5. GE, L., LUK, K. M. Linearly polarized and dual-polarized magneto-electric dipole antennas with reconfigurable beam width in the H-plane. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 2, p. 423–431. DOI: 10.1109/TAP.2015.2505000
  6. LUK, K.M., WU, B.Q. A new wideband unidirectional antenna element. Microwave and Optical Technology Letters, 2006, vol. 1, no. 1, p. 35–44.
  7. WU, B.Q., LUK, K.M. A wideband dual-polarized magnetoelectric dipole antenna with simple feeds. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 60–63. DOI: 10.1109/LAWP.2008.2011656
  8. YAN, S., SOH, P. J., VANDENBOSCH, G. Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN application. IEEE Transactions on Antennas and Propagation, 2015, vol. 60, no. 9, p. 4165–4169. DOI: 10.1109/TAP.2015.2443863
  9. ESMAELI, S. H., SEDIGHY, S. H. Wideband radar cross-section reduction by AMC. Electronics Letters, 2016, vol. 52, no. 1, p. 70 to 71. DOI: 10.1049/el.2015.3515
  10. LI, S., GAO, J., CAO, X., et al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial . Optics Express, 2015, vol. 23, no. 3, p. 3523–3533. DOI: 10.1364/OE.23.003523
  11. LIU, Y., WANG, H., LI, K., GONG, S. RCS reduction of a patch array antenna based on microstrip resonators. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 4–7. DOI: 10.1109/LAWP.2014.2354341
  12. LI, S., GAO, J., CAO, X., et al. Wideband, thin, and polarizationinsensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. Journal of Applied Physics, 2014, vol. 116, p. 043710. DOI: 10.1063/1.4891716
  13. LI, S., CAO, X., XU, L., et al. Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm. Scientific Reports, 2016, vol. 6, p. 37409. DOI: 10.1038/srep37409
  14. EDALATI, A., SARABANDI, K. Wideband, wide angle, polarization independent RCS reduction using nonabsorptive miniaturized-element frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 747–753. DOI: 10.1109/TAP.2013.2291236
  15. COSTA, F., GENOVESI, S., MONORCHIO, A. A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays. Progress in Electromagnetics Research, 2012, vol. 126, p. 317–332. DOI: 10.2528/PIER12012904
  16. LIU, Y., LI, K., JIA, Y., et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 326–331. DOI: 10.1109/TAP.2015.2497352

Keywords: Broadband, RCS reduction ME dipole antenna AMC

M. A. Abdalla, A. A. Ibrahim [references] [full-text] [DOI: 10.13164/re.2017.0045] [Download Citations]
Simple Mu-Negative Half Mode CRLH Antenna Configuration for MIMO Applications

A design of compact size mu-negative half mode composite right left handed metamaterial antenna, using only series capacitive loading, for MIMO application is presented. The proposed configuration is simple as it is realized using via free configuration. The MIMO antenna is formed using two antenna elements designed to operate at 5.8 GHz for wireless applications. The overall MIMO antenna size is only 2.6 × 2.6 cm^2 with in-between separation = 1.8 mm (0.034 lambda_0). Moreover, the ports mutual coupling reduction between the two antenna elements, achieved without using extra structure, is lower than -20 dB. Compared to conventional two microstrip patch MIMO antennas, our proposed configuration has more than 50 % size reduction and 9 dB enhancement in the mutual coupling for the same separation. The antenna design principles, full wave simulations, experimental measurements are introduced with good agreement. Finally, the MIMO parameters are extracted and discussed.

  1. CALOZ, C., ITOH, T. Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications. New Jersey: John Wiley, 2006. DOI: 10.1002/0471754323
  2. ELEFTHERIADES, G. V., BALMAIN, K. G. Negative Refraction Metamaterials. New Jersey: John Wiley, 2005. ISBN: 978-0-471- 60146-3
  3. CHENG-JUNG LEE, WEI HUANG, GUMMALLA, A., et al. Small antennas based on CRLH structures: Concept, design, and applications. IEEE Antennas and Propagation Magazine, 2011, vol. 53, no. 2, p. 10–25. DOI: 10.1109/MAP.2011.5949321
  4. ZIOLKOWSKI, R. W., JIN, P., LIN, C. Metamaterial-inspired engineering of antennas. Proceedings of the IEEE, 2011, vol. 99, no. 10, p. 1720–1731. DOI: 10.1109/JPROC.2010.2091610
  5. DONG, Y., ITOH, T. Metamaterial-based antennas. Proceedings of the IEEE, 2012, vol. 100, no. 7, p. 2271–2285. DOI: 10.1109/JPROC.2012.2187631
  6. ZHU, J., ANTONIADES, M. A., ELEFTHERIADES, G. V. A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 4, p. 1031–1038. DOI: 10.1109/TAP.2010.2041317
  7. BARBUTO, M., BILOTTI, F., TOSCANO, A. Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 4, p. 552–557. DOI: 10.1002/mmce.20645
  8. JIN, P., LIN, C. C., ZIOLKOWSKI, R. W. Multifunctional, electrically small, planar near-field resonant parasitic antennas. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 200–204. DOI: 10.1109/LAWP.2012.2187322
  9. BARBUTO, M., TROTTA, F., BILOTTI, F., TOSCANO, A. Design of a low-profile antenna by using orthogonal parasitic meandered monopoles. Progress In Electromagnetics Research Letters, 2015, vol. 55, p. 23–29. DOI: 10.2528/PIERL15061903
  10. LI XUE, JINWEN TIAN. Low-profile fully-printed multifrequency monopoles loaded with complementary metamaterial transmission line. Radioengineering, 2015, vol. 24, no. 1, p. 64–69. DOI: 10.13164/re.2015.0064
  11. VRBA, D., POLIVKA, M. Radiation efficiency improvement of zeroth-order resonator antenna. Radioengineering, 2009, vol. 18, no. 1, p. 1–8.
  12. UGARTE-MUNOZ, E., HERRAIZ-MARTINEZ, F. J., GONZALEZ-POSADAS, V., et al. Patch antenna based on metamaterials for a RFID transponder. Radioengineering, 2008, vol. 17, no. 2, p. 66–71.
  13. WAHBA, W., ABDALLA, M. A., ALLAM, A. M. Experimental verification of a compact zeroth order metamaterial substrate integrated waveguide antenna. Progress in Electromagnetic Research C, 2016, vol. 67, p. 193–201. DOI: 10.2528/PIERC16052906
  14. RENNINGS, A., OTTO, S., MOSIG, J., et al. Extended composite right/left-handed (E-CRLH) metamaterial and its application as quadband quarter-wavelength transmission line. In Asia-Pacific Microwave Conference (APMC). Yokohama (Japan), 2006, p. 1405–1408. DOI: 10.1109/APMC.2006.4429669
  15. RYAN, C. G. M., ELEFTHERIADES, G. V. Design of a printed dual-band coupled-line coupler with generalised negativerefractive index transmission lines. IET Microwaves, Antennas and Propagation, 2012, vol. 6, p. 705–712. DOI: 10.1049/ietmap.2011.0508
  16. FOUAD HAGAG, M. A., ABDALLA, M. A. Ultra compact CPW dual band filter based on Π-generalized metamaterial NRI transmission line. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 8, p. 1093–1103. DOI: 10.1080/09205071.2015.1044123
  17. ALÙ, A., ENGHETA, N. Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2558–2571. DOI: 10.1109/TAP.2003.817553
  18. ABDALLA, M. A., HU, Z. Nonreciprocal left handed coplanar waveguide over ferrite substrate with only shunt inductive load. Microwave and Optical Technology Letters, 2007, vol. 49, p. 2810–2814. DOI: 10.1002/mop.22848
  19. PARK, J.-H., RYU, Y.-H., LEE, J.-G., LEE, J.-H. Epsilon negative zeroth-order resonator antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3710–3712. DOI: 10.1109/TAP.2007.910505
  20. ABDALLA, M. A., FOUAD, M., A., AHMED, A., ZHIRUN HU. A new compact microstrip triple band antenna using half mode CRLH transmission line. In 2013 IEEE International Antennas and Propagation Society International Symposium Digest (APSURSI). Orlando (USA), Jul. 2013, p. 634–635. DOI: 10.1109/APS.2013.6710977
  21. KUNPENG WEI, ZHANG, Z., FENG, Z., et al. A wideband MNG-TL dipole antenna with stable radiation patterns. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 5, p. 2418–2424. DOI: 10.1109/TAP.2013.2241717
  22. SIMORANGKIR, R., LEE, Y. A planar dual-band periodic leakywave antenna based on a mu-negative (MNG) transmission line. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 2370–2374. DOI: 10.1109/TAP.2015.2410802
  23. PAULRAJ, A. J., GORE, D. A., NABAR, R. U., BOLCSKEI, H. An overview of MIMO communications - A key to gigabit wireless. Proceedings of the IEEE, 2004, vol. 92, no. 2, p. 198 to 217. DOI: 10.1109/JPROC.2003.821915
  24. DIOUM, I., CLEMENTE, M., DIALLO, A., LUXEY, C., et al. Meandered monopoles for 700MHz LTE handsets and improved MIMO channel capacity performance. Radioengineering, 2011, vol. 20, no. 4, 2011, p. 726–732.
  25. KIM, S.-H., LEE, J.-Y., NGUYEN, T. T., JANG, J.-H. High-performance MIMO antenna with 1-D EBG ground structures for handset application. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1468–1471. DOI: 10.1109/LAWP.2013.2288797
  26. IBRAHIM, A. A., ABDALLA, M. A., ABDEL-RAHMAN, A. B., et al. Compact MIMO antenna with optimized mutual coupling reduction using DGS. International Journal of Microwave and Wireless Technologies, 2014, vol. 6, no. 2, p 173–180. DOI: 10.1017/S1759078713001013
  27. ADDACI, R., DIALLO, A., LUXEY, C., et al. Design of multiantenna system for UMTS clamshell mobile phones with ground plane effects considerations. Radioengineering, 2014, vol. 23, no. 2, p. 724–732.
  28. SHARAWI, M. S., NUMAN, A. B., KHAN, M. U., et al. A dualelement dual-band MIMO antenna system with enhanced isolation for mobile terminals. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1006–1009. DOI: 10.1109/LAWP.2012.2214433
  29. ABDALLA, M. A., ABDELRAHEEM, A. Compact transmit receive hybrid electromagnetic isolation in antenna array transceiver system for full duplex applications. IET Microwaves, Antennas and Propagation, 2016. DOI: 10.1049/ietmap.2016.0215
  30. ABDALLA, M. A., IBRAHIM, A. A. Design of close, compact, and high isolation meta-material MIMO antennas. In 2013 IEEE International Antennas and Propagation Society International Symposium Digest (APSURSI). Orlando (USA), Jul. 2013, p. 186 to 187. DOI: 10.1109/APS.2013.6710754
  31. IBRAHIM, A. A., ABDALLA, M. A. CRLH MIMO antenna with reversal configuration. AEU-International Journal of Electronics and Communications, 2016, vol. 70, p. 1134–1141. DOI: 10.1016/j.aeue.2016.05.012
  32. ABDALLA, M. A., IBRAHIM, A. A. Design and performance evaluation of metamaterial inspired MIMO antennas for wireless applications. Wireless Personal Communications, 2016, p. 1–17. DOI: 10.1007/s11277-016-3809-4.
  33. RENNINGS, A., LIEBIG, T., CALOZ, C., WALDOW, P. MIM CRLH series mode zeroth order resonant antenna (ZORA) implemented in LTCC technology. In Asia-Pacific Microwave Conference (APMC 2007). 2007, p. 1–4. DOI: 10.1109/APMC.2007.4554577
  34. ABDALLA, M. A., ZHIRUN HU, MUVIANTO, C. Analysis and design of triple band metamaterial simplified CRLH cells loaded monopole antenna. International Journal of Microwave and Wireless Technologies, June 2016, p. 1–11. DOI: 10.1017/S1759078716000738
  35. TOKTAS, A., AKDAGLI, A. Compact multiple-input multipleoutput antenna with low correlation for ultra-wide-band applications. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 8, p. 822–829. DOI: 10.1049/iet-map.2014.0086

Keywords: Metamaterial, MIMO antenna, composite right left handed transmission line, isolation enhancement

Chao-ming Luo, Jing-song Hong, Muhammad Amin [references] [full-text] [DOI: 10.13164/re.2017.0051] [Download Citations]
Mutual Coupling Reduction for Dual-Band MIMO Antenna with Simple Structure

In this paper, a novel dual-band MIMO (multi¬ple input, multiple output) antenna for WLAN (wireless local area network) applications is presented. The MIMO antenna contains two dual-band antenna elements, each of which comprises a T-shaped monopole and a special ├-shaped stub resonator. Two operating bands with center frequencies of 5.5 GHz and 2.5 GHz are crested by the monopole of T shape and the stub resonator of ├ shape, accordingly. The ├-shaped stub also works as an isolation structure at the higher band, which can simplify the dual-band isolation design into a single-band problem. Moreo¬ver, the isolation is enhanced at the lower band by insert¬ing a metal strip which can cancel out original coupling. The inserted metal strip is the only additional decoupling structure in this design and has a simple texture with a compact size. The measured and simulated results reveal that the designed MIMO antenna can cover all the 2.4/5.2/5.8 GHz WLAN operating bands and within the recommended bands the isolations exceed by 20 dB.

  1. FOSCHINI, G. J., GANS, M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1988, vol. 6, no. 3, p. 311–335. DOI: 10.1023/A:1008889222784
  2. ZHENG, L., TSE, D.N.C. Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 2003, vol. 49, no. 5, p. 1073 to 1096. DOI: 10.1109/TIT.2003.810646
  3. ZHANG, S., YING, Z., XIONG, J., et al. Ultrawideband MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wireless and Propagation Letters, 2009, vol. 8, p. 1279–1282. DOI: 10.1109/LAWP.2009.2037027
  4. COULOMBE, M., KOODIANI, S. F., CALOZ, C. Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 4, p. 1076–1086. DOI: 10.1109/TAP.2010.2041152
  5. YANG, F., RAHMAT-SAMII, Y. Microstrip antennas integrated with electromagnetic band-gap EBG structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2936–2946. DOI: 10.1109/TAP.2003.817983
  6. GHOSH, S., TRAN, T., LE-NGOC, T. Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 3985–3997. DOI: 10.1109/TAP.2014.2323410
  7. SHARAWI, M. S., NUMAN, A. B., KHAN, M. U., et al. A dualelement dual-band MIMO antenna system with enhanced isolation for mobile terminals. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1006–1009. DOI: 10.1109/LAWP.2012.2214433
  8. LI, H., XIONG, J., HE, S. A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1107–1110. DOI: 10.1109/LAWP.2009.2034110
  9. PARK, J., CHOI, J., PARK, J. Y., et al. Study of a T-shaped slot with a capacitor for high isolation between MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1541–1544. DOI: 10.1109/LAWP.2012.2226695
  10. ANDUJAR, A., AUGUERA, J. MIMO multiband antenna system combining resonant and nonresonant elements. Microwave and Optical Technology Letters, 2014, vol. 56, no. 5, p. 1076–1084. DOI: 10.1002/mop.28282
  11. ANDUJAR, A., AUGUERA, J. MIMO multiband antenna system with nonresonant elements. Microwave and Optical Technology Letters, 2015. vol. 57, no. 1, p. 183–190. DOI: 10.1002/mop.28810
  12. HSU, C., LIN, K., SU, H. Implementation of broadband isolator using metamaterial-inspired resonators and a T-shaped branch for MIMO antennas. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 10, p. 3936–3939. DOI: 10.1109/TAP.2011.2163741
  13. SU, S., LEE, C., CHANG, F. Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 456–463. DOI: 10.1109/TAP.2011.2173450
  14. SU, H., HSU, C., LIN, K. Dual-band insulator design by stacking capacitively loaded loops for MIMO antennas. Electronics Letters, 2010, vol. 46, no. 20, p. 1364–1365. DOI: 10.1049/el.2010.1756
  15. LI, G., ZHAI, H., MA, Z., et al. Isolation-improved dual-band MIMO antenna array for LTE/WiMAX mobile terminals. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1128–1131. DOI: 10.1109/LAWP.2014.2330065
  16. LI, L., HUO, F., JIA, Z., et al. Dual zeroth-order resonance antennas with low mutual coupling for MIMO communications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1692–1695. DOI: 10.1109/LAWP.2013.2294686
  17. ZHAO, W., LIU, L., CHEUNG, S. W., et al. Dual-band MIMO antenna using double-T structure for WLAN applications. In 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT). Sydney (Australia), 2014, p. 232–235. DOI: 10.1109/IWAT.2014.6958646
  18. RISCO, S., ANGUERA, J., ANDUJAR, A., et al. Coupled monopole antenna design for multiband handset devices. Microwave and Optical Technology Letters, 2010, vol. 52, no. 2, p. 359–364. DOI: 10.1002/mop.24893
  19. YAN, S., SOH, P. J., VANDENBOSCH, G. A. E. Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 11, p. 4640–4647. DOI: 10.1109/TAP.2015.2477094

Keywords: Dual-band, high isolation, multiple-input multiple-output (MIMO) antenna, wireless local area network (WLAN).

W. Ali, A. A. Ibrahim, J. Machac [references] [full-text] [DOI: 10.13164/re.2017.0057] [Download Citations]
Compact Size UWB Monopole Antenna with Triple Band-Notches

This paper presents triple band notched ultra wide band (UWB) monopole antenna with overall size of 36 × 32 mm2 fed by microstrip transmission line. In order to achieve a good impedance matching from 2.7 GHz to 13.4 GHz, a tapered transition between the rectangular patch and the feeding line is utilized. The three notched frequency bands are accomplished by a defected microstrip structure (DMS) which is inserted in the microstrip feeding line and by an open loop slot etched in the radiating patch. The three band notches are 3.15-4 GHz, 5.7-6.3 GHz and 7.9-8.6 GHz. They prevent the receiving of the signals of IEEE 802.16 WiMAX band, WLAN band, and ITU applications respectively. The UWB antenna was designed and simulated then fabricated and tested in order to investigate its impedance and radiation characteristics. Good agreement between the simulated and measured data is achieved. The obtained results show that the proposed antenna is convenient for UWB applications.

  1. FEDERAL COMMUNICATIONS COMMISSION. First Report and order, Revision of part 15 of the commission's Rule Regarding Ultra-Wideband Transmission System FCC 02-48. 2002.
  2. ALLEN, B., DOHLER, M., OKON, E., et al. (eds.). Ultra Wideband Antennas and Propagation for Communications, Radar and Imaging. Wiley, 2006. ISBN: 978-0-470-03255-8
  3. FONTANA, R. J. Recent system applications of short-pulse ultrawideband (UWB) technology. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 9, p. 2087–2104. DOI: 10.1109/TMTT.2004.834186
  4. WILLIAM, J., NAKKEERAN, R. A compact CPW-fed UWB slot antenna with cross tuning stub. Progress In Electromagnetics Research C, 2010, vol. 13, p. 159–170. DOI: 10.2528/PIERC10022505
  5. ABDELRAHEEM, A. M., ABDALLA, M. A., ELREGILY, H. A., et al. Coplanar UWB antenna for high speed communication systems. In 2012 International Conference on Engineering and Technology (ICET). Cairo (Egypt), 10-11 Oct. 2012, 5 p. DOI: 10.1109/ICEngTechnol.2012.6396155
  6. ALIPOUR, A., HASSANI, H. R. A novel omni-directional UWB monopole antenna. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3854–3857. DOI: 10.1109/TAP.2008.2007398
  7. ABDELREHEEM, A., ABDALLA, M. Compact curved half circular disc-monopole UWB antenna. International Journal of Microwave and Wireless Technologies, 2016, vol. 8, no. 2, p. 283 to 290. DOI: 10.1017/S1759078714001524
  8. BOUTEJDAR, A., ABD ELLATIF, W. A novel compact UWB monopole antenna with enhanced bandwidth using triangular defected microstrip structure and stepped cut technique. Microwave and Optical Technology Letters, 2016, vol. 58, no. 6, p. 1514–1519. DOI: 10.1002/mop.29820
  9. ZHAN, K., GUO, Q., HUANG, K. A miniature planar antenna for Bluetooth and UWB applications. Journal of Electromagnetic Waves and Applications, 2010, vol. 24, no. 16, p. 2299–2308. DOI: 10.1163/156939310793699109
  10. BOUTEJDAR, A., IBRAHIM, A. A., BURTE, E. P. Novel Microstrip Antenna Aims at UWB Applications. [Online] Cited 2016-08-31. Available at: http://mwrf.com/passivecomponents/novel-microstrip-antenna-aims-uwb-applications
  11. ZHANG CHAOZHU, JING ZHANG, LIN LI. Triple bandnotched UWB antenna based on SIR-DGS and fork-shaped stubs. Electronics Letters, 2014, vol. 50, no. 2, p. 67–69. DOI: 10.1049/el.2013.2513
  12. MOHAMMED, H. J., ABDULLAH, A. S., ALI, R. S., et al. Design of a uniplanar printed triple band-rejected ultra-wideband antenna using particle swarm optimisation and the firefly algorithm. IET Microwaves, Antennas & Propagation, 2016, vol. 10, no. 1, p. 31–37. DOI: 10.1049/iet-map.2014.0736
  13. SUNG, Y. Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 953–957. DOI: 10.1109/TAP.2012.2223434
  14. WANG, J., YIN, Y., LIU, X. Triple band-notched ultra-wideband antenna using a pair of novel symmetrical resonators. IET Microwaves, Antennas & Propagation, 2014, vol. 8, no. 14, p. 1154–1160. DOI: 10.1049/iet-map.2014.0239
  15. ZHU, F., GAO, S., HO, A. T.S., et al. Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 3952–3960. DOI: 10.1109/TAP.2013.2260119
  16. SARKAR, D., SRIVASTAVA K. V., K. SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 396 to 399. DOI: 10.1109/LAWP.2014.2306812
  17. LOTFI, P., SOLTANI, S., AZARMANESH, M. Triple band notched UWB CPW and microstrip line fed monopole antenna using broken ∩-shaped slot. International Journal of Electronics and Communications. 2011, vol. 65, no. 9, p. 734–741. DOI: 10.1016/j.aeue.2010.11.001
  18. JAGLAN, N., KANAUJIA, B. K., GUPTA, S. D., et al. Triple band notched UWB antenna design using electromagnetic band gap structures. Progress In Electromagnetics Research C, 2016, vol. 66, p. 139–147. DOI: 10.2528/PIERC16052304
  19. KALTEH, A. A., DADASHZADEH, G. R., NASER-MOGHADASI, M., et al. Ultra-wideband circular slot antenna with reconfigurable notch band function. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 1, p. 108–112. DOI: 10.1049/ietmap.2011.0125

Keywords: UWB monopole antenna, open loop resonant slot, defected microstrip structure, notched characteristic.

M. Manohar, R. S. Kshetrimayum, A. K. Gogoi [references] [full-text] [DOI: 10.13164/re.2017.0064] [Download Citations]
A Compact Dual Band-Notched Circular Ring Printed Monopole Antenna for Super wideband Applications

In this article, a simple and compact dual band-notched (DBN) super wideband (SWB) printed monopole antenna (PMA) has been proposed. The proposed antenna composed of a circular PMA, which is connected through a 50-Ω triangular tapered microstrip fed line (TTMFL) and a round-cornered finite ground plane (RCFGP). It exhibits a very wide frequency band from 1.6–25 GHz (ratio band¬width of 15.63:1) with a voltage standing wave ratio (VSWR) ≤ 2. By employing a U-shaped parasitic element (USPE) near the RCFGP and a T-shaped protruded stub (TSPS) inside the radiating patch, a single band-notched (SBN) characteristic in the frequency band of 3.2–4.4 GHz (WiMAX/C-band) is generated. In order to realize the sec¬ond band-notched function for X-band satellite communication systems (7.2–8.4 GHz), a U-shaped slot (USS) has been inserted in the RCFGP. The overall dimension of the proposed antenna is 24x30x0.787 mm3 and occupies a relatively small space compared to the existing DBN an¬tennas. Good agreement has been attained between pre¬dicted and measured results.

  1. FCC, First report and order in the matter of revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems. Apr. 22 2002, p. 98–153. ISSN: 1937-8718.
  2. RUMSEY, V. Frequency Independent Antennas. New York: Academic Press, 1966. ISSN: 0018-926X
  3. CHEN, K. R., SIM, C., ROW, J. S. A compact monopole antenna for super wideband applications. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 488–491. ISSN: 1536-1225. DOI: 10.1109/LAWP.2011.2157071
  4. DONG, Y., HONG, W., LIU, L., ZHANG, Y., KUAI, Z. Performance analysis of a printed super-wideband antenna. Microwave and Optical Technology Letters, 2009, vol. 51, no. 4, p. 949–956. ISSN: 1098-2760. DOI: 10.1002/mop.24222
  5. DOROSTKAR, M. A., ISLAM, M. T., AZIM, R. Design of a novel super wide band circular-hexagonal fractal antenna. Progress In Electromagnetics Research, 2013, vol. 139, no. 4, p. 229–245. ISSN: 1070-4698. DOI: 10.2528/PIER13030505
  6. MANOHAR, M., KSHETRIMAYUM, R. S., GOGOI, A. K. Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications. IET Microwaves, Antennas and Propagation, 2014, vol. 8, no. 1, p. 39–45. ISSN: 1751-8725. DOI: 10.1049/iet-map.2013.0094
  7. WALADI, V., MOHAMMADI, N., ZEHFOROOSH, Y., HABASHI, A., NOURINIA, J. A novel modified star-triangular fractal (MSTF) monopole antenna for super-wideband applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 651 to 654. ISSN: 1536–1225. DOI: 10.1109/LAWP.2013.2262571
  8. LI, W. T., HEI, Y. Q., FENG, W., SHI, X. W. Planar antenna for 3G/Bluetooth/WiMAX and UWB applications with dual bandnotched characteristics. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 61–64. ISSN: 1536–1225. DOI: 10.1109/LAWP.2012.2183671
  9. JIANG, W., CHE, W. A novel UWB antenna with dual notched bands for WiMAX and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 293–296. ISSN: 1536-1225. DOI: 10.1109/LAWP.2012.2190490
  10. SHOKRI, M., SHIRZAD, H., MOVAGHARNIA, S., VIRDEE, B., AMIRI, Z., ASIABAN, S. Planar monopole antenna with dual interference suppression functionality. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1554–1557. ISSN: 1536-1225. DOI: 10.1109/LAWP.2013.2292921
  11. RYU, K., KISHK, A. UWB antenna with single or dual bandnotches for lower WLAN band and upper WLAN band. IEEE Transaction on Antennas and Propagation, 2009, vol. 57, no. 12, p. 3942–3950. DOI: 10.1109/TAP.2009.2027727
  12. OJAROUDI, M., OJAROUDI, N., GHADIMI, N. Dual bandnotched small monopole antenna with novel coupled inverted Uring strip and novel fork-shaped slit for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 182 to 185. ISSN: 1536-1225. DOI: 10.1109/LAWP.2013.2245296
  13. MEHRANPOUR, M., NOURINIA, J., GHOBADI, C., OJAROUDI, M. Dual band-notched square monopole antenna for ultrawideband applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 172–175. ISSN: 1536-1225. DIO: 10.1109/LAWP.2012.2186552
  14. POZAR, D. M. Microwave Engineering. John Wiley and Sons, 2005, p. 260. ISSN: 1931-7360. DOI: 10.1109/TAP.2003.816303
  15. MATHUR, S. P., SINHA, A. K. Design of microstrip exponentially tapered lines to match helical antennas to standard coaxial transmission lines. IEE Proceedings on Microwaves, Antennas and Propagation, 1988, vol. 135, no. 4, p. 272–274. ISSN: 0950-107X. DOI: 10.1049/ip-h-2.1988.0055.
  16. CHEN, Z. N., SEE, T. S., and QING, X. Small printed ultrawideband antenna with reduced ground plane effect. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, p. 383– 388. ISSN: 0018-926X. DOI: 10.1109/TAP.2006.889823
  17. DONG, Y., HONG, W., LIU, L., ZHANG, Y., KUAI, Z. Performance analysis of a printed super-wideband antenna. Microwave and Optical Technology Letters, 2009, vol. 51, no. 4, p. 949–956. ISSN: 1098–2760. DOI: 10.1002/mop.24222
  18. HUANG, Y., BOYLE, K. Antennas from Theory to Practice, Wiley, 2008, p. 64.
  19. KIM, H., PARK, D., JOO, Y. All-digital low-power CMOS pulse generator for UWB system. Electronics Letter, 2004, vol. 40, no. 24, p. 1534–1535. DOI: 10.1049/el.20046923
  20. GAO, G., HU, B., CONG, X., HE, L. Investigation of a novel dual band-notched UWB antenna by the equivalent circuit model and time domain characteristics. Microwave and Optical Technology Letters, 2013, vol. 55, no. 12, p. 2993–3000. ISSSN: 1096-4290. DOI: 10.1002/mop.27948.

Keywords: Dual band-notch, journal, super wideband (SWB) antenna, triangular tapered microstrip feed line.

M. Chakraborty, S. Chakraborty, P. S. Reddy, S. Samanta [references] [full-text] [DOI: 10.13164/re.2017.0071] [Download Citations]
High Performance DGS Integrated Compact Antenna for 2.4/5.2/5.8 GHz WLAN Band

An application specific tri-band hexagonal microstrip antenna with saw tooth shaped defected ground structure (DGS) is proposed. In this paper, a hexagonal microstrip antenna is designed for 5.2 GHz which is basically WLAN band (5.15–5.35 GHz). Now in this structure two defects are suitably incorporated and the positions are so optimized that two additional frequency bands 2.4 GHz, i.e. the Bluetooth band (2.4–2.48 GHz) and 5.8 GHz, i.e. the second WLAN band (5.725–5.825 GHz) are obtained. The fabricated prototype of the proposed antenna occupies an area 35 mm X 27.4 mm. Therefore, the structure has the characteristics of application specific multi band resonance. The variation of different parameters of the microstrip antenna is extensively studied. The proposed multiband microstrip antenna is functional simultaneously at three specific application band frequencies with approximately 84% surface area reduction for the largest patch dimension corresponding to 2.4 GHz.

  1. LI, Y., Z. ZHANG, J., ZHENG, J. F., et al. Compact heptaband reconfigurable loop antenna for mobile handset. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1162–1165. DOI: 10.1109/LAWP.2011.2171311
  2. ELSHEAKH, D. M., ABDALLAH, E. A. Compact multiband multifolded-slot antenna loaded with printed-IFA. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1478–1481. DOI: 10.1109/LAWP.2012.2232273
  3. ZHAI, H. Q., MA, Z. H., HAN, Y., et al. A compact printed antenna for triple-band WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 65–68. DOI: 10.1109/LAWP.2013.2238881
  4. MOOSAZADEH, M., KHARKOVSKY, S. Compact and small planar monopole antenna with symmetrical L- and U-shaped slots for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 388–391. DOI: 10.1109/LAWP.2014.2306962
  5. CHEN, S., FANG, M., DONG, D., et al. Compact multiband antenna for GPS/WiMAX/WLAN applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 8, p. 1769–1773. DOI: 10.1002/mop.28465
  6. LIU, W. X., YIN, Y. Z., XU, W. L. Compact self-similar tripleband antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letters, 2012, vol. 54, no. 4, p. 1048–1087. DOI: 10.1002/mop.26732
  7. LI, R., PAN, B., LASKAR, J., et al. A compact broadband planar antenna for GPS, DCS-1800, IMT-2000, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2007, vol. 6, p. 25–27. DOI: 10.1109/LAWP.2006.890754
  8. MA, S. L., ROW, J. S. Design of single-feed dual-frequency patch antenna for GPS and WLAN applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3433–3436. DOI: 10.1109/TAP.2011.2161453
  9. LIU, W. C., WU, C. M., DAI, Y. Design of triple-frequency microstrip-fed monopole antenna using defected ground structure. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 7, p. 2457–2463. DOI: 10.1109/TAP.2011.2152315
  10. ZHANG, T., LI, R., JIN, G., et al. A novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 11, p. 4209– 4214. DOI: 10.1109/TAP.2011.2164201
  11. MONDAL, T., SAMANTA, S., GHATAK, R., et al. A novel triband hexagonal microstrip patch antenna using modified Sierpinski fractal for vehicular communication. Progress In Electromagnetics Research C, 2015, vol. 57, p. 25–34. DOI: 10.2528/PIERC15021105
  12. REDDY, B. R. S., VAKULA, D. Compact zigzag-shaped-slit microstrip antenna with circular defected ground structure for wireless applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 678–681. DOI: 10.1109/LAWP.2014.2376984
  13. BALANIS, C. A. Antenna Theory: Analysis and Design. Hoboken, NJ (USA): John Wiley & Sons Inc., 2005.

Keywords: Microstrip antenna, hexagonal patch, defected ground structure, compact antenna, tri band antenna

W. Ali, E. Hamad, M. Bassiuny, M. Hamdallah [references] [full-text] [DOI: 10.13164/re.2017.0078] [Download Citations]
Complementary Split Ring Resonator Based Triple Band Microstrip Antenna for WLAN/WiMAX Applications

A new simple design of a triple-band microstrip antenna using metamaterial concept is presented in this paper. Multi-unit cell was the key of the multi resonance response that was obtained by etching two circular and one rectangular split ring resonator (SRR) unit cells in the ground plane of a conventional patch operating at 3.56 GHz .The circular unit cells are resonating at 5.6 GHz for the upper band of Wi-MAX, while the rectangular cell is designed to produce a resonance at 2.45 GHz for the lower band of WLAN. WiMAX's/WLAN's operating bands are covered by the triple resonances which are achieved by the proposed antenna with quite enhanced performance. A detailed parametric study of the placement for the metamaterial unit cells is introduced and the most suitable positions are chosen to be the place of the unit cells for enhanced performance. A good consistency between simulation and measurement confirms the ability of the proposed antenna to achieve an improved gain at the three different frequencies.

  1. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Wiley Interscience, 2005. (Fundamental parameters of antennas, p. 27–132.) ISBN 978-0471667827
  2. PETRARIU, A. I., POPA, V. Analysis and design of a long range PTFE substrate UHF RFID tag for cargo container identification. Journal of Electrical Engineering, 2016, vol. 67, no. 1, p. 42–47. DOI: 10.1515/jee-2016-006
  3. ESHTIAGHI, R., SHAYESTEH, M. G., ZAD-SHAKOOIAN, N. Multi circular monopole antenna for multiband applications. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1205–1207. DOI: 10.1109/LAWP.2011.217297
  4. CHAKRABORTY, U., KUNDU, A., CHOWDHURY, S. K., et al. Compact dual-band microstrip antenna for IEEE 802.11 a WLAN application. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 407–410. DOI: 10.1109/LAWP.2014.2307005
  5. DONG, Y., ITOH, T. Metamaterial-based antennas. Proceedings of the IEEE, 2012, vol. 100, no. 7, p. 2271–2285. DOI: 10.1109/JPROC.2012.2187631
  6. DONG, Y., TOYAO, H., ITOH, T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 11, p. 4329–4333. DOI: 10.1109/TAP.2011.2164223
  7. DONG, Y., TOYAO, H., ITOH, T. (2012). Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 772–785. DOI: 10.1109/TAP.2011.2173120
  8. SOLIMAN, A. M., ELSHEAKH, D. M., ABDALLAH, E. A., et al. Inspired metamaterial quad-band printed inverted-F (IFA) antenna for USB applications. Applied Computational Electromagnetics Society Journal, 2015, vol. 30, no. 5, p. 564–570.
  9. ANEESH, M., KUMAR, A., SINGH, A., et al. Design and analysis of microstrip line feed toppled T shaped microstrip patch antenna using radial basis function neural network. Journal of Electrical Engineering and Technology, 2015, vol. 10, no. 2, p. 634-640. DOI: 10.5370/JEET.2015.10.2.634
  10. WU, Z., LI, L., LI, Y., CHEN, X. Metasurface superstrate antenna with wideband circular polarization for satellite communication application. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 374–377. DOI: 10.1109/LAWP.2015.2446505
  11. KAHNG, S., JEON, J., PARK, T. An orthogonally polarized negative resonance CRLH patch antenna. Journal of Electrical Engineering and Technology, 2015, vol. 10, no. 1, p. 331–337. DOI: 10.5370/JEET.2015.10.1.331
  12. TAMANDANI, A., AHMADI-SHOKOUH, J., TAVAKOLI, S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, vol. 28, p. 115 to 128. DOI: 10.2528/PIERM12120318
  13. BAGE, A., DAS, S. Studies of some non conventional split ring and complementary split ring resonators for waveguide band stop and band pass filter application. In The IEEE International Conference on Microwave and Photonics (ICMAP). Dhanbad (India), 2013, p. 1–5. DOI: 10.1109/ICMAP.2013. 6733474
  14. ZIOLKOWSKI, R. W. Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, p. 1516–1529. DOI: 10.1109/TAP.2003.813622
  15. FALCONE, F., LOPETEGI, T., LASO, M. A. G., et al. Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters, 2004, vol. 93, no. 19, 197401. DOI: 10.1103/PhysRevLett.93.197401
  16. XIE, Y., LI, L., ZHU, C., LIANG, C. H. A novel dual-band patch antenna with complementary split ring resonators embedded in the ground plane. Progress In Electromagnetics Research Letters, 2011, vol. 25, p. 117–126. DOI: 10.2528/PIERL11062802
  17. GUPTA, A., SHARMA, S. K., CHAUDHARY, R. K. A compact CPW-fed metamaterial antenna for high efficiency and wideband applications. In The 21st National Conference on Communications (NCC). Bombay (India), 2015, p. 1–4. DOI: 10.1109/NCC.2015.7084825

Keywords: Metamaterial, metasurface, multi band antennas, CSRR, split ring resonators

P. Vasina, J. Lacik [references] [full-text] [DOI: 10.13164/re.2017.0085] [Download Citations]
Circularly Polarized Rectangular Ring-Slot Antenna with Chamfered Corners for Off-Body Communication at 5.8 GHz ISM Band

This paper deals with a substrate integrated waveguide (SIW) circularly polarized rectangular ring-slot antenna with chamfered corners designed for 5.8 GHz ISM frequency band for off-body communication. The antenna consists of a substrate integrated waveguide, which operates in the fundamental mode TE10, and the rectangular ring-slot radiator with chamfered corners etched in the top wall of the SIW. It radiates a right-handed circularly polarized (RHCP) wave in the boresight direction. Experimental results prove that the proposed antenna located in free space achieves the impedance bandwidth of 2.41 % (for the reflection coefficient less than -10 dB) and the RHCP gain of 6.57 dBi, and the impedance bandwidth of 2.6 % and the RHCP gain of 6.98 dBi for its location on the phantom. The axial ratio (AR) bandwidth (for the AR less than 3 dB) is 0.9 % for both configurations.

  1. BOZZI, M., GEORGIADIS, A., WU, K. Review of substrate integrated waveguide (SIW) circuits and antennas. IET Microwaves, Antennas & Propagation, 2011, vol. 5, no. 8, p. 909 to 920. DOI: 10.1049/iet-map.2010.0463
  2. WOLANSKY, D., HEBELKA, V., RAIDA, Z. Two-pole filtering antenna for body centric communications. In Proceedings of the Loughborough Antennas and Propagation Conference (LAPC). The Loughborough (United Kingdom), 2013, p. 221–224. DOI: 10.1109/LAPC.2013.6711887
  3. AGNEESSENS, S., LEMEY, S., VERVUST, T., ROGIER, H. Wearable, small, and robust: The circular quarter-mode textile antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1482–1485. DOI: 10.1109/LAWP.2015.2389630
  4. ZHU, X. Q., GUO, Y. X., WU, W. A compact dual-band antenna for wireless body-area network applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 98–101. DOI: 10.1109/LAWP.2015.2431822
  5. MORO, R., AGNEESSENS, S., ROGIER, H., et al. Textile microwave components in substrate integrated waveguide technology. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 2, p. 422–432. DOI: 10.1109/TMTT.2014.2387272
  6. HEBELKA, V., RAIDA Z. Koch slot loop antenna for wireless body-centric communication. Microwave and Optical Letters, 2014, vol. 56, p. 764–766. DOI: 10.1002/mop.28142
  7. MORSHEDI, A., TORLAK, M. Measured comparison of dualbranch signaling over space and polarization diversity. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 5, p. 1678–1687. DOI: 10.1109/TAP.2011.2122210
  8. ZHANG, Y., PANG, L., LIANG, X., et al. Propagation characteristics of circularly and linearly polarized electromagnetic waves in urban macrocell scenario. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 1, p. 209–222. DOI: 10.1109/TVT.2014.2318839
  9. LACIK, J., MIKULASEK, T. Substrate integrated waveguide rectangular ring slot antenna. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA). Torino (Italy), 2011, p. 1164–1167. DOI: 10.1109/ICEAA.2011.6046515
  10. KAZEMI, R., ALI SANDEGHZADEH, R., FATHY, A. A new compact wide band 8-way SIW power divider at X-band. In Proceedings of the Loughborough Antennas and Propagation Conference (LAPC). Loughborough (United Kingdom), 2011, p. 1–4. DOI: 10.1109/LAPC.2011.6114098
  11. GABRIEL, S., LAU, R. W., GABRIEL, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physic in Medicine and Biology, 1996, vol. 41, no. 11. P. 2271–2293.
  12. LACIK, J., MIKULASEK, T., RAIDA, Z., URBANEC, T. Substrate integrated waveguide monopolar ring-slot antenna. Microwave and Optical Technology Letters, 2014, vol. 56, no. 8, p. 1865–1869. DOI: 10.1002/mop.28465

Keywords: Substrate integrated waveguide, off-body communication, rectangular ring slot antenna, circular polarization

S. Lamultree, P. Akkaraekthalin, D. Torrungrueng [references] [full-text] [DOI: 10.13164/re.2017.0091] [Download Citations]
Theoretical Analysis of Moving Reference Planes Associated with Unit Cells of Nonreciprocal Lossy Periodic Transmission-Line Structures

This paper presents a theoretical analysis of moving reference planes associated with unit cells of nonreciprocal lossy periodic transmission-line structures (NRLSPTLSs) by the equivalent bi-characteristic-impedance transmission line (BCITL) model. Applying the BCITL theory, only the equivalent BCITL parameters (characteristic impedances for waves propagating in forward and reverse directions and associated complex propagation constants) are of interest. An infinite NRLSPTLS is considered first by shifting a reference position of unit cells along TLs of interest. Then, a semi-infinite terminated NRLSPTLS is investigated in terms of associated load reflection coefficients. It is found that the equivalent BCITL characteristic impedances of the original and shifted unit cells are mathematically related by the bilinear transformation. In addition, the associated load reflection coefficients of both unit cells are mathematically related by the bilinear transformation. However, the equivalent BCITL complex propagation constants remain unchanged. Numerical results are provided to show the validity of the proposed theoretical analysis.

  1. POZAR, D. M. Microwave Engineering. 2nd ed., John Wiley & Sons, 1998. ISBN:9780471170969
  2. CALOZ, C., ITOH, T. Electromagnetic Metamaterials Transmission Line and Theory and Microwave Applications. Wiley-IEEE Press, 2005. ISBN: 9780471669852
  3. LEE, M., KRAMER, B. A., CHEN, C., et al. Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 10, p. 1671 to 1678. ISSN: 0018-926X. DOI: 10.1109/TAP.2007.905823
  4. YANG, B., SKAFIDAS, E., EVANS, R. J. Slow-wave slot microstrip transmission line and bandpass filter for compact millimetre-wave integrated circuits on bulk complementary metal oxide semiconductor. IET Transaction on Microwaves, Antennas & Propagation, 2012, vol. 6, no. 14, p. 1548–1555. ISSN: 17518725. DOI: 10.1049/iet-map.2012.0336
  5. COLLIN, R. E. Foundations for Microwave Engineering. 2nd ed. Hoboken (NJ): Wiley/IEEE, 2001. ISBN: 0780360311
  6. SPAULDING, W. G. The application of periodic loading to a ferrite phase shifter design. IEEE Transactions on Microwave Theory and Techniques, 1971, vol. 19, no. 12, p. 922–928. DOI: 10.1109/TMTT.1971.6373342
  7. KHARADLY, M. M. Z. Periodically loaded nonreciprocal transmission lines for phase-shifter applications. IEEE Transactions on Microwave Theory and Techniques, 1974, vol. 22, no. 6, p. 635–640. DOI: 10.1109/TMTT.1974.1128305
  8. ENEGREN; T. A., KHARADLY, M. M. Z. An investigation of nonreciprocal periodic structures. IEEE Transactions on Microwave Theory and Techniques. 1980, vol. 28, no. 8, p. 905–914. DOI: 10.1109/TMTT.1980.1130190
  9. ENEGREN, T. A., KHARADLY, M. M. Z. Higher order mode interaction in nonreciprocal periodic structures. IEEE Transactions on Microwave Theory and Techniques, 1982, vol. 30, no. 5, p. 809–812. DOI: 10.1109/TMTT.1982.1131142
  10. THEOFANOPOULOS, P. C., LAVRANOS, C. S., ZOIROS, K., et al. FDFD eigenanalysis of non-reciprocal periodic structures. In Antennas & Propagation Conference (LAPC). Loughborough (UK), 2015, p. 1-5. DOI: 10.1109/LAPC.2015.7366019
  11. LAMULTREE, S., TORRUNGRUENG, D., AKKARAEKTHALIN, P. Analysis of reciprocal lossy periodic transmission-line structures using bi-characteristic-impedance transmission lines and Meta-Smith charts. In Proceedings of the 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology. Hua-Hin (Thailand), 2015. DOI: 10.1109/ECTICon.2015.7207026
  12. PISSOORT, D., OLYSLAGER, F. Study of eigenmodes in periodic waveguides using the Lorentz reciprocity theorem. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 2, p. 542–553. DOI: 10.1109/TMTT.2003.821906
  13. YAGHJIAN, A. D. Bidirectionality of reciprocal, lossy or lossless, uniform or periodic waveguides. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 7, p. 480–482. DOI: 10.1109/LMWC.2007.899294
  14. LERTSIRIMIT, C., TORRUNGRUENG, D. Analysis of active loaded transmission line using an equivalent BCITL model. In Proceeding of the 2007 Asian-Pacific Microwave Conference. Bangkok (Thailand). 2007, vol. 4, p. 2353–2356.
  15. ABLOWITZ, M. J., FOKAS, A. S. Complex Variables. New York: Cambridge University Press, 2003. ISBN: 9780521534291
  16. SILAPUNT, R., TORRUNGRUENG, D. Theoretical study of microwave transistor amplifier design in the conjugately characteristic-impedance transmission line (CCITL) system using a bilinear transformation approach. Progress in Electromagnetics Research, 2011, vol. 120, p. 309–326. DOI:10.2528/PIER11080504

Keywords: Unit cell, periodic transmission-line structure, bi-characteristic-impedance transmission line (BCITL), bilinear transformation

S. R. Lee, E. H. Lim, F. L. Lo [references] [full-text] [DOI: 10.13164/re.2017.0097] [Download Citations]
Broadband Single-layer E-Patch Reflectarray

E-shaped patch resonator is proposed for designing a novel broadband linearly polarized reflectarray for the first time. The element is made up of a shorted E-shaped patch with a polystyrene foam placed beneath it, and no dielectric substrate is needed in the reflectarray design. The unit element is simulated using Floquet method and it is found that a reflection phase range of ~360° is easily obtainable by varying the arm length of the shorted E-shaped patch. A full 11 × 11 reflectarray has been designed to achieve an antenna gain of ~23.7dBi and a -1dB gain bandwidth of 8.1%. The cross-polarization is found to be ~18dBi smaller than its co-polarization in the boresight direction. The proposed reflectarray is simple to design as it requires the use of only a single layer.

  1. BERRY, D., MALECH, R., KENNEDY, W. The reflectarray antenna. IEEE Transactions on Antennas and Propagation, 1963, vol. 11, no. 6, p. 645–651. DOI: 10.1109/TAP.1963.1138112
  2. POZAR, D. M., TARGONSKI, S. D., SYRIGOS, H. D. Design of millimeter wave microstrip reflectarrays. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 2, p. 287–296. DOI: 10.1109/8.560348
  3. ENCINAR, J. A. Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 10, p. 1403–1410. DOI: 10.1109/8.954929
  4. ARSHAD, M. K., TAHIR, F. A., RASHID, A. Design of a single layer reflectarray unit cells based on hexagonal ring for wideband operation. In Proceedings of IEEE International Symposium on Antennas and Propag. (APSURSI). Memphis (Tennessee), 2014, p. 815–816. DOI: 10.1109/APS.2014.6904735
  5. HASANI, H., KAMYAB, M., MIRKAMALI, A. Broadband re- flectarray antenna incorporating disk elements with attached phasedelay lines. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 156–158. DOI: 10.1109/LAWP.2010.2044473
  6. MALFAJANI, R. S., ATLASBAF, Z. Design and implementation of a broadband single-layer reflectarray antenna with large-range linear phase elements. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1442–1445. DOI: 10.1109/LAWP.2012.2228147
  7. VOSOOGH, A., KEYGHOBAD, K., KHALEGHI, A., el al. A high-efficiency ku-band reflectarray antenna using single-layer multiresonance elements. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 891–894. DOI: 10.1109/LAWP.2014.2321035
  8. ISMAIL, M. Y., SULAIMAN, N. H. Enhanced bandwidth reflectarray antenna using variable dual gap. In Proceedings of the 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). Bandung (Indonesia), 2011, p. 92–96. DOI: 10.1109/ICICI-BME.2011.6108601
  9. HAMZAVI-ZARGHANI, Z., ATLASBAF, Z. A new broadband single-layer dual-band reflectarray antenna in X- and Ku-bands. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 602–605. DOI: 10.1109/LAWP.2014.2374351
  10. ZAINUD-DEEN, S. H., GABER, S. M., AWADALLA, K. H. Beam steering reflectarray using varactor diodes. In Proceedings of Japan-Egypt Conference on Electronics, Communications and Computers (JEC-ECC). Alexandria (Egypt), 2012, p. 178–181. DOI: 10.1109/JEC-ECC.2012.6186979
  11. MAKDISSY, T., GILLARD, R., FOURN, E., et al. Phase-shifting cell for dual linearly polarized reflectarrays with reconfigurable potentialities. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 11–14. DOI: 10.1109/LAWP.2013.2294873
  12. KISHOR, K. K., HUM, S. V. An amplifying reconfigurable reflectarray antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 197–205. DOI: 10.1109/TAP.2011.2167939
  13. FLORENCIO, R., BOIX, R. R., ENCINAR, J. A. Design of a reflectarray antenna at 300 GHz based on cells with three coplanar dipoles. In Proceedings of IEEE International Symposium on Antennas and Propagation (APSURSI). Orlando (Florida), 2013, p. 1350–1351. DOI: 10.1109/APS.2013.6711335
  14. YOON, J. H., YOON, Y. J., LEE, W. S., et al. Broadband microstrip reflectarray with five parallel dipole elements. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1109–1112. DOI: 10.1109/LAWP.2015.2394810
  15. YANG, F., ZHANG, X. X., YE, X., et al. Wide-band E-shaped patch antennas for wireless communications. IEEE Transaction on Antennas and Propagation, 2001, vol. 49, no. 7, p. 1094–1100. DOI: 10.1109/8.933489
  16. ANG, B. K., CHUNG, B. K. A wideband E-shaped microstrip patch antenna for 5-6GHz wireless communications. Progress In Electromagnetics Research, 2007, vol. 75, p. 397–407. DOI: 10.2528/PIER07061909
  17. RAZZAQI, A. A., MUSTAQIM, M., KHAWAJA, B. A. Wideband E-shaped antenna design for WLAN applications. In Proceedings of IEEE 9th International Conference on Emerging Technologies (ICET). Islamabad (Pakistan), 2013, p. 1-6. DOI: 10.1109/ICET.2013.6743550
  18. LIU, S., WU, W., FANG, D. G. Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 468–471. DOI: 10.1109/LAWP.2015.2453329
  19. CHEN, Y., YANG, S., NIE, Z. Bandwidth enhancement method for low profile E-shaped microstrip patch antennas. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 7, p. 2442–2447. DOI: 10.1109/TAP.2010.2048850
  20. LUO, J., YANG, F., XU, S. E-shaped element design for linearly polarized transmitarray antennas. In Proceedings of IEEE International Symposium on Antennas and Propagation (APSURSI). Kaohsiung (Taiwan), 2014, p. 269–270. DOI: 10.1109/ISANP.2014.7026634
  21. POZAR, D. M., METZLER, T. A. Analysis of a reflectarray antenna using microstrip patches of variable size. Electronics Letters, 1993, vol. 29, no. 8, p. 657–658. DOI: 10.1049/el:19930440
  22. TARGONSKI, S. D., POZAR, D. M. Analysis and design of a microstrip reflectarray using patches of variable size. In Proceedings of International Symposium on Antennas and Propagation. Seattle (Washington, USA), 1994, p. 1820–1823. DOI: 10.1109/APS.1994.408184
  23. TARGONSKI, S. D., POZAR, D. M., SYRIGOS, H. D. Analysis and design of millimeter wave microstrip reflectarrays. In Proceedings of International Symposium on Antennas and Propagation. Newport Beach (California, USA), 1995, p. 578 to 581. DOI: 10.1109/APS.1995.530085
  24. GUO, L., TAN, P. K., CHIO, T. H. Design of an X-band reflectarray using double circular ring elements. In Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 2947–2950. ISBN: 978- 1-4673-2187-7
  25. ABD-ELHADY, M., HONG, W. Ka-band linear polarized air vias reflectarray. In Proceedings of IEEE Middle East Conference on Antennas and Propagation (MECAP). Cairo (Egypt), 2010, 3 p. DOI: 10.1109/MECAP.2010.5724213
  26. LI, L., CHEN, Q., YUAN, Q., et al. Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 881–885. DOI: 10.1109/LAWP.2009.2028298

Keywords: Reflectarray, shorted E-shaped patch, linearly polarized reflectarray

K. Wei, J. Y. Li, L. Wang, R. Xu [references] [full-text] [DOI: 10.13164/re.2017.0107] [Download Citations]
Study of Horizontally Polarized Omnidirectional Microstrip Antenna Arrays

This paper presents two microstrip antenna arrays for horizontally polarized (HP) omnidirectional application, namely rectangular patch antenna array and H-shaped patch antenna array. There are eight patch elements placed with back-to-back structure, four patch elements on each side. Antenna arrays are fed by a split eight power divider. The H-shaped patch antenna array has better omnidirectional performance than rectangular patch antenna array. The H-shaped antenna array is fabricated and measured. Both simulated and measured results show that the bandwidth of the designed H-shaped antenna array is 36 MHz with a center frequency 2.35 GHz. Horizontally polarized gains are greater than 7 dBi over the resonant band (S11<−10 dB), while the cross-polarization level is less than −25 dB. The proposed H-shaped antenna array has high directivity (half-power beam-width is only 20 deg) and good omnidirectional performance (gain variation less than 1.5 dBi) at the center frequency.

  1. QING, X. M., CHEN, Z. N. A compact metamaterial-based horizontally polarized omnidirectional antenna array. In IEEE Antennas and Propagation Society International Symposium (APSURSI). Orlando (FL, USA), 2013, p. 1792–1793. DOI: 10.1109/APS.2013.6711555
  2. QING, X. M., CHEN, Z. N. Metamaterial-based wideband horizontally polarized omnidirectional 5-GHz WLCN antenna array. In 8th European Conference on Antennas and Propagation (EuCAP). The Hague (The Netherlands), 2014, p. 605–608. DOI: 10.1109/EuCAP.2014.6901831
  3. HSIAO, F. R., WONG, K. L., CHIOU, T. W. Omnidirectional planar dipole array antenna for WLCN access point. In IEEE Antennas and Propagation Society International Symposium. Columbus (USA), 2003, vol. 2, p. 2–5. DOI: 10.1109/APS.2003.1219165
  4. WEI, K. P., ZHANG, Z. J., CHEN, W. H., et al. A triband shuntfed omnidirectional planar dipole array. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 850–853. DOI: 10.1109/LAWP.2010.2069077
  5. OSKLANG, P., LUADANG, B., PHONGCHAROENPANICH, C., et al. Horizontally polarized omnidirectional antenna using octagonal dipole array for digital television reception. In AsiaPacific Conference on Communications (APCC). Pattaya (Thailand), 2014, p. 135–138. DOI: 10.1109/APCC.2014.7091619
  6. SANGSTER, A. J., WANG, H. Moment method analysis of a horizontally polarized omnidirectional slot array antenna. IEE Proceedings Microwaves, Antennas and Propagation, 1995, vol. 142, no. 1, p. 1–6. DOI: 10.1049/ip-map: 19951641
  7. SANGSTER, A. J., WANG, H. Y. An entire domain analysis of a horizontally polarized omnidirectional antenna array. In Second International Conference on Computation in Electromagnetics. 1994, p. 343–346. DOI: 10.1049/cp: 19940087
  8. QING, X. M., CHEN, Z. N., GOH, C. K. A horizontally polarized omnidirectional slot antenna array. IEEE Antennas and Propagation Society International Symposium (APSURSI). Chicago (USA), 2012, p. 1–2. DOI: 10.1109/APS.2012.6348580
  9. PHONGCHAROENPANICH, C., WOUNCHOURN, P., KOSULVIT, S., et al. A horizontally polarized omnidirectional beam antenna using array of axial slot on cylindrical surface. In 3rd International Conference on Proceedings Microwave and Millimeter Wave Technology (ICMMT). Bejing (China), 2002, p. 576–579. DOI: 10.1109/ICMMT.2002.1187765
  10. IIGUSA, K., TANAKA, M. A horizontally polarized slot-array antenna on a coaxial cylinder. In Asia-Pacific Microwave Conference. Sydney (Australia), 2000, p. 1444–1447. DOI: 10.1109/APMC.2000.926108
  11. WEI, K. P., ZHANG, Z. J., FENG, Z. H., et al. A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2702–2710. DOI: 10.1109/TAP.2012.2194643
  12. WEI, K. P., ZHANG, Z. J., FENG, Z. H., et al. Periodic leakywave antenna array with horizontally polarized omnidirectional pattern. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3165–3173. DOI: 10.1109/TAP.2012.2196930
  13. WANG, L., WEI, K. P., FENG, J. F., et al. A wideband omnidirectional planar microstrip antenna for WLCN applications. In IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS). Hanzhou (China), 2011, p. 1–4. DOI: 10.1109/EDAPS.2011.6213811
  14. BANCROFT, R., BATEMAN, B. An omnidirectional planar microstrip antenna. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 11, p. 3151–3154. DOI: 10.1109/TAP.2004.832338
  15. BRAS, L., BORGES CARVALHO, N., PINHO, P. Planar omnidirectional microstrip antenna array for 5 GHz ISM and UNII band. In IEEE Antennas and Propagation Society International Symposium. (APSURSI). Orlando (FL, USA), 2012, p. 1590–1591. DOI: 10.1109/APS.2013.6711454
  16. WEI, K., LI, J. Y., WANG, L., et al. Study on horizontally polarized omnidirectional microstrip antenna. International Journal of Antenna and Propagation, 2016, vol. 2016, p. 1–8. DOI: 10.1155/2016/8214153
  17. PALANISAMY, V., GARG, R. Rectangular ring and H-shaped microstrip antennas—alternatives to rectangular patch antenna. Electronics Letters, 1985, vol. 21, no. 19, p. 874–876. DOI: 10.1049/el: 19850617
  18. ZHONG, S. S. Slot antenna and microstrip antenna. Antenna Theory and Techniques. Beijing (China), 2011, sec. 1, p. 272–274. ISBN: 978-7-121-14286-4 (In Chinese)

Keywords: Antenna array, horizontal polarization, omnidirectional radiation pattern, microstrip antenna.

S. Veisee, Sh. Asadi [references] [full-text] [DOI: 10.13164/re.2017.0114] [Download Citations]
A Modified Unequally Spaced Array Antenna Synthesis Method for Side Lobe Reduction

The aim of this paper is to demonstrate the application of Unequally Spaced Arrays (USAs) in decreasing side lobe level (SLL) in linear arrays. As well known, solving of a nonlinear equation is needed in USA antenna pattern synthesis. In this paper, an improved algorithm for USA antenna pattern synthesis is presented. This method is based on converting the array factor into a triangular system of equations capable to be solved using a recursive algorithm. This method has more accuracy and speed than reported similar analytical methods based on simulation results, which leads to lower SLL and simulation time. In addition, an improvement of 3dB beamwidth in comparison with uniform spaced array can be observed.

  1. ELLIOT, R. S. Antenna Theory and Design. Englewood Cliffs (NJ): Prentice-Hall, 1981.
  2. BALANIS, C. A. Antenna Theory. New York: Wiley, 1997.
  3. UNZ, H. Linear arrays with arbitrarily distributed elements. IRE Transactions on Antennas and Propagation, 1960, vol. AP-8, no. 2, p. 222–223. DOI: 10.1109/TAP.1960.1144829
  4. HARRINGTON, R. F. Sidelobe reduction by nonuniform element spacing. IRE Transactions on Antennas and Propagation, 1961, vol. 9, no. 2, p. 187–192. DOI: 10.1109/TAP.1961.1144961
  5. ISHIMARU, A. Theory of unequally-spaced arrays. IRE Transactions on Antennas and Propagation, 1962, vol. AP-11, no. 6, p. 691–702. DOI: 10.1109/TAP.1962.1137952
  6. KUMAR, B. P., BRANNER, G. R. Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 2, p. 621–634. DOI: 10.1109/TAP.2004.841324
  7. KUMAR, B. P., BRANNER, G. R. Design of unequally spaced arrays for performance improvement. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 3, p. 511–523. DOI: 10.1109/8.768787
  8. JIN, N., RAHMAT-SAMII, Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multi-objective implementations. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 556–567. DOI: 10.1109/TAP.2007.891552
  9. KURUP, D. G., HIMDI, M., RYDBERG, A. Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 9, p. 2210–2217. DOI: 10.1109/TAP.2003.816361
  10. CHEN, K., HE, Z., HAN, C. A modified real GA for the sparse linear array synthesis with multiple constraints. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 7, p. 2169–2173. DOI: 10.1109/TAP.2006.877211
  11. DE LUCCIA, C. S., WERNER, D. H. Nature-based design of aperiodic linear arrays with broadband elements using a combination of rapid neural-network estimation techniques and genetic algorithms. IEEE Antennas and Propagation Magazine, 2007, vol. 49, no. 5, p. 13–23. DOI: 10.1109/MAP.2007.4395292
  12. DONELLI, M., CAORSI, S., DE NATALE, F., et al. Linear antenna synthesis with a hybrid genetic algorithm. Progress in Electromagnetic Research PIER, 2004, vol. 49, p. 1–22. DOI: 10.2528/PIER03121301
  13. MURINO, V., TRUCCO, A., REGAZZONI, C. S. Synthesis of unequally spaced arrays by simulated annealing. IEEE Transactions on Signal Processing, 2006, vol. 44, no. 1, p. 119–122. DOI: 10.1109/78.482017
  14. CAORSI, S., LOMMI, A., MASSA, A., et al. Peak side lobe level reduction with a hybrid approach based on GAs and difference sets. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 4, p. 1116–1121. DOI: 10.1109/TAP.2004.825689
  15. OLIVERI, G., MASSA, A. Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 2, p. 467–481. DOI: 10.1109/TAP.2010.2096400
  16. WANG, W. B., FENG, Q., LIU, D. Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays. Progress in Electromagnetic Research PIER, 2011, vol. 115, p. 173–189. DOI: 10.2528/PIER11012305
  17. RUPCIC, S., MANDRIC, V., ZAGAR, D. Reduction of side lobes by non-uniform elements spacing of a spherical antenna array. Radioengineering, 2011, vol. 20, no. 1, p. 299–306.
  18. LIU, Y., NIE, Z. P., LIU, Q. H. A new method for the synthesis of non-uniform linear arrays with shaped power patterns. Progress in Electromagnetic Research PIER, 2010, vol. 107, p. 349–363. DOI: 10.2528/PIER10060912
  19. YANG, K., ZHAO, Z., LIU, Q. H. Fast pencil beam pattern synthesis of large unequally spaced antenna arrays. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 627–634. DOI: 10.1109/TAP.2012.2220319
  20. GOUDOS, S. K., MOYSIADOU, V., SAMARAS, T., et al. Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 125–129. DOI: 10.1109/LAWP.2010.2044552

Keywords: Antenna arrays, unequal spacing, pattern synthesis, side lobe level

H. Ozturk, K. Yegin [references] [full-text] [DOI: 10.13164/re.2017.0120] [Download Citations]
Electromagnetic Scattering from a PEC Wedge Capped with Cylindrical Layers with Dielectric and Conductive Properties

Electromagnetic scattering from a layered capped wedge is studied. The wedge is assumed infinite in z-direction (longitudinal) and capped with arbitrary layers of dielectric with varying thicknesses and dielectric properties including conductive loss. Scalar Helmholtz equation in two dimensions is formulated for each solution region and a matrix of unknown coefficients are arrived at for electric field representation. Closed form expressions are derived for 2- and 3-layer geometries. Numerical simulations are performed for different wedge shapes and dielectric layer properties and compared to PEC-only case. It has been shown that significant reduction in scattered electric field can be obtained with 2- and 3-layered cap geometries. Total electric field in the far field normalized to incident field is also computed as a precursor to RCS analysis. Analytical results can be useful in radar cross section analysis for aerial vehicles.

  1. MENTZER, J. R. Scattering and Diffraction of Radio Waves. 1st ed. New York, NY (USA): Pergamon Press, 1955.
  2. FELSEN, L. B., MARCUVITZ, N. Radiation and Scattering of Waves. Piscataway, NJ (USA): IEEE Press, 1994. ISBN: 978-0780310889
  3. HARRINGTON, R. F. Time-Harmonic Electromagnetics Field. 1st ed. New York, NY (USA): McGraw & Hill, 1961.
  4. BOWMAN, J. J., SENIOR, T. B. A., USLENGHI, P. L. E. Electromagnetic and Acoustic Scattering by Simple Shapes. New York, NY (USA): Hemisphere Publishing, 1987.
  5. REDADAA, S., BOUALLEG, A., MERABTINE, N., et al. Radar cross section study from wave scattering structures. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2006, vol. 9, no. 4, p. 71–76.
  6. LEWIN, L., SREENIVASIAH, I. Diffraction by a Dielectric Wedge, Technology Report. 191 pages.
  7. MALIUZHINETS, G. D. Excitation, reflection, and emission of surface waves from a wedge with given face impedances. Soviet Physics Doklady, 1958, vol. 3, p. 752–755.
  8. FELSEN, L. B. Electromagnetic properties of wedge and cone surfaces with a linearly varying surface impedance. IRE Transactions on Antennas and Propagation, Dec. 1959, vol. 7, p. 231–243. DOI: 10.1109/TAP.1959.1144752
  9. ISENLIK, T., YEGIN, K. Paraxial fields of a wedge with anisotropic impedance and perfect electric conductor faces excited by a dipole. Electromagnetics, 2010, vol. p. 30, no. 7, 589-608. DOI: 10.1080/02726343.2010.513932
  10. ISENLIK, T., YEGIN, K. Derivations of Green’s functions for paraxial fields of a wedge with particular anisotropic impedance faces. Electromagnetics, 2013, vol. 33, no. 5, p. 392–412. DOI: 10.1080/02726343.2013.792722
  11. ENGHETA, N., MURPHY, W. D., ROKHLIN, V., et al. The fast multipole method (FMM) for electromagnetic scattering problems. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 6, p. 634–641. DOI: 10.1109/8.144597
  12. ERGUL, O., GUREL, L. The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems. Piscateway, NJ (USA): Wiley-IEEE Press, 2014. ISBN: 978-1-119-97741-4

Keywords: PEC wedge, dielectric capped wedge, electromagnetic wedge scattering, radar cross section

Yifei Ji, Qilei Zhang, Yongsheng Zhang, Zhen Dong [references] [full-text] [DOI: 10.13164/re.2017.0130] [Download Citations]
Analysis of Background Ionospheric Effects on Geosynchronous SAR Imaging

Background ionospheric propagation effects are adverse to the performance of Geosynchronous Synthetic Aperture Radar (GEO SAR) system. This paper focuses on the background ionospheric phase advance, which can be modelled as a function of Slant Total Electron Content (STEC). The dispersive feature of the phase advance caused by the background ionosphere could be able to distort the GEO SAR range-imaging. Furthermore, for GEO SAR, the integration time is ultra-long and the coverage is ultra-large, thus temporal and spatial distributions of the background ionosphere have to be taken into account. The resultant ionospheric phase variations might decorrelate the azimuth signal and then lead to azimuth-imaging deteriorations. In this paper, the theoretical model of the background ionospheric effects on GEO SAR imaging is established and in-depth analyses are presented. Finally, theoretical analyses are validated by the signal-level simulation.

  1. TOMIYASU, K. Synthetic aperture radar in geosynchronous orbit. In Symposium Digest of the Antennas and Propagation Society International Symposium. Washington (USA), 1978, vol. 16, p. 42–45. DOI: 10.1109/APS.1978.1147948
  2. NASA, JPL. 2003, Global Earthquake Satellite System: a 20-year plan to enable earthquake prediction [EB/OL]. Available: http:// solidearth.jpl.nasa.gov/GESS/3123_GESS_Rep_ 2003.pdf.
  3. HU, C., LIU, Z. P., LONG, T. An improved CS algorithm based on the curved trajectory in geosynchronous SAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, vol. 5, no. 3, p. 795–808. DOI: 10.1109/JSTARS.2012.2188096
  4. ISHIMARU, A., KUGA, Y., LIU, J., KIM, Y., FREEMAN, T. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz. Radio Science, 1999, vol. 34, no. 1, p. 257–268. DOI: 10.1029/1998RS900021
  5. XU, Z. W., WU, J., WU, Z. S. A survey of ionosphere effects on space-based radar. Waves in Random Media, 2004, vol. 14, no. 2, p. 189–273. DOI: 10.1088/0959-7174/14/2/008
  6. MEYER, F., BAMLER, R., JAKOWSKI, N., FRITZ, T. The potential of low-frequency SAR systems for mapping ionospheric TEC distributions. IEEE Geoscience and Remote Sensing Letters, 2006, vol. 3, no. 4, p. 560–564. DOI: 10.1109/LGRS.2006.882148
  7. BELCHER, D. P. Theoretical limits on SAR imposed by the ionosphere. IET Radar, Sonar and Navigation, 2008, vol. 2, no. 6, p. 435–448. DOI: 10.1049/IET-RSN:20070188
  8. BRUNO, D., HOBBS, S. E. Radar imaging from geosynchronous orbit: Temporal decorrelation aspects. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 7, p. 2924 to 2929. DOI: 10.1109/TGRS.2010.2042062
  9. TIAN, Y., HU, C., DONG, X. C., et al. Theoretical analysis and verification of time variation of background ionosphere on geosynchronous SAR imaging. IEEE Geoscience and Remote Sensing Letters, 2015, vol. 12, no. 4, p. 721–725. DOI: 10.1109/LGRS.2014.2360235
  10. DONG, X. C., HU, C., TIAN, W. M., et al. Design of validation experiment for analysing impacts of background ionosphere on geosynchronous SAR using GPS signals. Electronics Letters, 2015, vol. 51, no. 20, p. 1604–1606. DOI: 10.1049/EL.2015.1545
  11. LI, L., HONG, J., MING, F. Study about ionospheric effects on medium-Earth-orbit SAR imaging. In Proceedings of the IEEE Radar Conference. Cincinnati (OH, USA), 2014, p. 27–31. DOI: 10.1109/RADAR.2014.6875549
  12. JI, Y. F., ZHANG, Q. L., ZHANG, Y. S., YU, A.X., DONG, Z. Analysis of background ionospheric effects on geosynchronous SAR azimuth imaging. In Proceedings of the 11th European Conference on Synthetic Aperture Radar (EUSAR). Hamburg (Germany), 2016, p. 1207–1210. ISBN: 978-3-8007-4228-8 /ISSN: 2197-4403
  13. HU, C., TIAN, Y., YANG, X. P., et al. Background ionosphere effects on geosynchronous SAR focusing: Theoretical analysis and verification based on the BeiDou Navigation Satellite System (BDS). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, vol. 9, no. 3, p. 1143–1162. DOI: 10.1109/JSTARS.2015.2475283
  14. LI, D. X., SUN, Z. Y, HE, F., et al. Phase error analysis in GEO SAR imaging based on MSR. In Proceedings of the IET International Radar Conference. Xian (China), 2013, p. 291–295. DOI: 10.1049/cp.2013.0171
  15. LI, D. X., WU, M. Q., SUN, Z. Y, et al. Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, vol. 8, no. 8, p. 3999–4009. DOI: 10.1109/JSTARS.2015.2418814
  16. BILITZA, D. The international reference ionosphere – Climatological standard for the ionosphere. In Characterising the Ionosphere, Meeting Proceedings RTO-MP-IST-056. Neuilly-surSeine (France), 2006, p. 32-1–32-12. Available from: http://www.rto.nato/abstracts.asp

Keywords: Geosynchronous Synthetic Aperture Radar (GEO SAR), imaging, background ionosphere, Total Electron Content (TEC), Slant Total Electron Content (STEC)

H. Anam, A. Habib, S. I. Jafri, Y. Amin, H. Tenhunen [references] [full-text] [DOI: 10.13164/re.2017.0139] [Download Citations]
Directly Printable Frequency Signature Chipless RFID Tag for IoT Applications

This Paper proposes a low-cost, compact, flexible passive chipless RFID tag that has been designed and analyzed. The tag is a bowtie-shaped resonator based structure with 36 slots; where each patch is loaded with 18 slots. The tag is set in a way that each slot in a patch corresponds to a metal gap in the other patch. Hence there is no mutual interference, and high data capacity of 36 bits is achieved in such compact size. Each slot corresponds to a resonance frequency in the RCS curve, and each resonance corresponds to a bit. The tag has been realized for Taconic TLX-0, PET, and Kapton®HN (DuPontTM) substrates with copper, aluminum, and silver nanoparticle-based ink (Cabot CCI-300) as conducting materials. The tag exhibits flexibility and well optimized while remaining in a compact size. The proposed tag yields 36 bits in a tag dimension of 24.5 x 25.5 mm^2. These 36 bits can tag 2^36 number of objects/items. The ultimate high capacity, compact size, flexible passive chipless RFID tag can be arrayed in various industrial and IoT-based applications.

  1. KHAN, U. H., ASLAM, B., AZAM, M. A., et al. Compact RFID enabled moisture sensor. Radioengineering, Sept. 2016, vol. 25, no. 3, p. 449–456. DOI: 10.13164/re.2016.0449
  2. GUBBI, J., BUYYA, R., MARUSIC, S., et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, vol. 29, no. 7, p. 1645–1660. DOI: 10.1016/j.future.2013.01.010
  3. WANT, R., SCHILIT, B. N., JENSON, S. Enabling the internet of things. Computer, 2015, vol. 48, no. 1, p. 28–35. DOI: 10.1109/MC.2015.12
  4. TRUONG, H. L., DUSTDAR, S. Principles for engineering IoT cloud systems. IEEE Cloud Computing, 2015, vol. 2, no. 2, p. 68 to 76. DOI: 10.1109/MCC.2015.23
  5. KHAN, M. S., ISLAM, M. S., DENG, H. Design of a reconfigurable RFID sensing tag as a generic sensing platform towards the future internet of things. IEEE Internet of Things Journal, 2014, vol. 1, no. 4, p. 300–310. DOI: 10.1109/JIOT.2014.2329189
  6. FUQAHA, A. A., GUIZANI, M., MOHAMMADI, M., et al. Internet of Things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 2015, vol. 17, no. 4, p. 2347–2376. DOI: 10.1109/COMST.2015.2444095
  7. JAVED, N., HABIB, A., AMIN, Y., et al. Directly printable moisture sensor tag for intelligent packaging. IEEE Sensors Journal, 2016, vol. 16, no. 16, p. 6147–6148. DOI: 10.1109/JSEN.2016.2582847
  8. IDTechEx, Printed and Chipless RFID Forecasts, Technologies & Players 2009–2019. [Online] Available at: www.IdtechEx.com
  9. RAZZAQUE, M. A., JEVRIC, M. M., PALADE, A. Middleware for Internet of Things: A survey. IEEE Internet of Things Journal, 2016, vol. 3, no. 1, p. 70–95. DOI: 10.1109/JIOT.2015.2498900
  10. RODRIGUES, R. A. A., GURJAO, E. C., de ASSIS, F. M. Radar cross-section and electric field analysis of backscattering elements of chipless RFID tag. In IEEE RFID Technology and Applications Conference (RFID-TA). Tampere (Finland), 2014, p. 103–108. DOI: 10.1109/RFID-TA.2014.6934209
  11. KARMAKAR, N. C. Tag, You're it radar cross section of chipless RFID tags. IEEE Microwave Magazine, 2016, vol. 17, no. 7, p. 64 to 74. DOI: 10.1109/MMM.2016.2549160
  12. KHAN, M. M., TAHIR, F. A., CHEEMA, H. M. High capacity polarization sensitive chipless RFID tag. In IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver (Canada), 2015, p. 1770–1771. DOI: 10.1109/APS.2015.7305274
  13. VENA, A., PERRET, E., TEDJINI, S. High-capacity chipless RFID tag insensitive to the polarization. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 10, p. 4509–4515. DOI: 10.1109/TAP.2012.2207347
  14. SHAO, B., AMIN, Y., CHEN, Q., et al. Directly printed packaging-paper-based chipless RFID tag with coplanar LC resonator. IEEE Antennas and Wireless Propagation Letters, Feb. 2013, vol. 12, p. 325–328. DOI: 10.1109/LAWP.2013.2247556
  15. VENA, A., PERRET, E., TEDJINI, S. Design of compact and auto-compensated single-layer chipless RFID tag. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 9, p. 2913–2924. DOI: 10.1109/TMTT.2012.2203927
  16. AMIN, Y., CHEN, Q., ZHENG, L. R., et al. Development and analysis of flexible UHF RFID antennas for ‘green’ electronics. Progress In Electromagnetics Research, 2012, vol. 130, p. 1–15. DOI: 10.2528/PIER12060609
  17. FENG, Y., XIE, L., CHEN, Q., et al. Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sensors Journal, June 2015, vol. 15, no. 6, p. 3201–3208. DOI: 10.1109/JSEN.2014.2385154
  18. BHUIYAN, M. S., AZAD, A., KARMAKAR, N. Dual-band modified complementary split ring resonator (MCSRR) based multi-resonator circuit for chipless RFID tag. In 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Melbourne (VIC), 2013, p. 277–281. DOI: 10.1109/ISSNIP.2013.6529802
  19. AMIN, E. M., BHUIYAN, M. S., KARMAKAR, N. C., et al. Development of a low cost printable chipless RFID humidity sensor. IEEE Sensors Journal, 2014, vol. 14, no. 1, p. 140–149. DOI: 10.1109/JSEN.2013.2278560
  20. VENA, A., PERRET, E., TEDJINI, S., et al. Design of chipless RFID tags printed on paper by flexography. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 5868–5877. DOI: 10.1109/TAP.2013.2281742
  21. AMIN, E. M., KARMAKAR, N., PRERADOVIC, S. Towards an intelligent EM barcode. In 7th International Conference on Electrical and Computer Engineering (ICECE). Dhaka (Bangladesh), 2012, p. 826–829. DOI: 10.1109/ICECE.2012.6471678
  22. MARTINEZ-IRANZO, U., MORADI, B., GARCIA-GARCIA, J. Open ring resonator structure for compact chipless RFID tags. In IEEE MTT-S International Microwave Symposium. Phoenix (AZ, USA), 2015, p. 1–3. DOI: 10.1109/MWSYM.2015.7166790
  23. PRERADOVIC, S., KARMAKAR, N. Design of fully printable planar chipless RFID transponder with 35-bit data capacity. In The European Microwave Conference EuMC. Rome (Italy), 2009, p. 013-016. ISBN: 978-1-4244-4748-0
  24. ISLAM, M. A., KARMAKAR, N. C. Real-world implementation challenges of a novel dual-polarized compact printable chipless RFID tag. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 12, p. 4581–4591. DOI: 10.1109/TMTT.2015.2495285
  25. HERROJO, C., NAQUI, J., PAREDES, F., et al. Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags. In IEEE MTT-S International Microwave Symposium (IMS). San Francisco (CA, USA), 2016, p. 1–4. DOI: 10.1109/MWSYM.2016.7539981
  26. HARAZ, O. M., ASHRAF, M., ALSHEBILI, S., et al. Design of UWB chipless RFID tags using 8-bit open circuit stub resonators. In 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). Montreal (QC, Canada), 2016, p. 1–2. DOI: 10.1109/ANTEM.2016.7550145
  27. REZAIESARLAK, R., MANTEGHI, M. Complex-naturalresonance-based design of chipless RFID tag for high-density data. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 898–904. DOI: 10.1109/TAP.2013.2290998
  28. HABIB, A., AZAM, M. A., AMIN, Y., et al. Chipless slot resonators for IoT system identification. In IEEE International Conference on Electro Information Technology (EIT). Grand Forks (ND), 2016, p. 0341–0344. DOI: 10.1109/EIT.2016.7535262
  29. VENA, A., PERRET, E., TEDJINI, S. Chipless RFID tag using hybrid coding technique. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3356–3364. DOI: 10.1109/TMTT.2011.2171001
  30. SUMI, M., DINESH, R., NIJAS, C. M., et al. Frequency coded chipless RFID tag using spurline resonators. Radioengineering, 2014, vol. 23, no. 1, p. 203–208. ISSN: 1805-9600
  31. ZUO, Y. Survivable RFID systems: Issues, challenges, and techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2010, vol. 40, no. 4, p. 406 to 418. DOI: 10.1109/TSMCC.2010.2043949
  32. YANG, C., SHEN, W., WANG, X. Applications of internet of things in manufacturing. In IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD). Nanchang (China), 2016, p. 670–675. DOI: 10.1109/CSCWD.2016.7566069
  33. Wikimedia Foundation, Inc. Near and Far Field. 6 pages. [Online] Cited 2016-09-25. Available at: https://en.wikipedia.org /wiki/Near_and_far_field
  34. MARTINEZ, M., WEIDE, D. V. D. Circular polarization on depolarizing chipless RFID tags. In IEEE Radio and Wireless Symposium (RWS). Austin (TX, USA), 2016, p. 145–147. DOI: 10.1109/RWS.2016.7444388
  35. DOBKIN, D. M. The RF in RFID: Passive UHF RFID in Practice. Elsevier Inc, 2008. ISBN: 978-0-7506-8209-1
  36. BALANIS, C. A. Antenna Theory, Analysis and Design. Wiley, 2005. ISBN: 0-471-66782-X
  37. JANKOWSKI-MIHUŁOWICZ, P., WĘGLARSKI, M. Determination of passive and semi-passive chip parameters required for synthesis of interrogation zone in UHF RFID systems. Elektronika Ir Elektrotechnika, 2014, vol. 20, no. 9, p. 65–73. DOI: 10.5755/j01.eee.20.9.5007
  38. XU, L., HUANG, K. Design of compact trapezoidal bow-tie chipless RFID tag. International Journal of Antennas and Propagation, 2015, 7 p. DOI: 10.1155/2015/502938
  39. JAVED, N., HABIB, A., AKRAM, A., et al. 16-bit frequency signatured directly printable tag for organic electronics. IEICE Electronics Express, 2016, vol. 13, no. 11, p. 1–6. DOI: 10.1587/elex.13.20160406

Keywords: Chipless, Radio Frequency Identification (RFID), Radar Cross-section (RCS), backscattering

U. H. Khan, H. Rasheed, B. Aslam, A. Fatima, L. Shahid, Y. Amin, H. Tenhunen [references] [full-text] [DOI: 10.13164/re.2017.0147] [Download Citations]
Localization of Compact Circularly Polarized RFID Tag Using ToA Technique

A compact, flexible crossed-dipole circular polarized antenna using commercially available paper substrate is presented which caters North American frequency band. The crossed-dipoles have meandered lines for reduction of size as well as increased inductivity in the antenna. Dipoles have asymmetric T-shaped rectangular endings to provide the required compactness. Two semicircles are induced between the orthogonal dipoles and meandering matching structure to accomplish circular polarization excitation. Good impedance matching with the chip is achieved through a modified meander line matching structure. The proposed design dimensions are 32 × 32 × 0.4 mm3. Systematic analysis revealed the results comprising circular polarization 3dB-AR bandwidth of 11MHz (909–920 MHz) and power transmission coefficient bandwidth of 36MHz (900–936 MHz). Time delay between interrogating signal and backscattered signal is measured and relative distance is calculated. Linear Least Square (LLS) method is applied to approximate the position of tag in interrogation area. The proposed tag is placed at known locations and its position is measured to analyze accuracy of the method by simulating the positioning algorithm code in MATLAB. Six valid tag positions 0.5–2 m read range and 0°–150° angular resolution has been investigated.

  1. HE, Y., WANG, G., YANG, C. UHF RFID tag with slot antenna integrated into blister medicine package. IEEE Antenna and Wireless Propagation Letters, 2016, vol. 15, p. 956–959. DOI: 10.1109/LAWP.2015.2484964
  2. CHEN, H. D., SIM, C. Y., KOU, S. H. Compact broadband dual couping feed circularly polarized RFID microstrip tag antenna mountable on metallic surface. IEEE Transactions on Antenna and Propagation, 2012, vol. 60, no. 12, p. 3753–3759. DOI: 10.1109/TAP.2012.2210273
  3. LOU, Y., CHU, Q. X., ZHU, L. A miniaturized wide-beamwidth circulary polarized planar antenna via two pairs of folded dipoles in a square contour. IEEE Transactions on Antenna and Propagation, 2015, vol. 63, no. 8, p. 3753–3759. DOI: 10.1109/TAP.2015.2438334
  4. LU, J. H., CHANG, B. S. Planar circularly polarized tag antenna with compact operation for UHF RFID application. Journal of Electromagnetic Waves and Applications, 2013, vol. 27, no. 15, p. 1882–1891. DOI: 10.1080/09205071.2013.827592
  5. CHEN, H. D., TSAI, C. H., SIM, C. Y., et al. Circularly polarized loop tag antenna for long reading range RFID applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1460–1463. DOI: 10.1109/LAWP.2013.2288138
  6. HONG, S. K., DAVIS, W. A. Use of tumor-specific resonances for more efficent microwave hyperthermia of breast cancer. Microwave and Optical Technology Letters, 2013, vol. 55, no. 11, p. 1645–1660. DOI: 10.1002/mop.27840
  7. VENA, A., SYDANHEIMO, L., TENTZERIS, M. M., et al. A novel inkjet printed carbon nanotube-based chipless RFID sensor for gas detection. In Proceedings of the 2013 Microwave Conference (EuMC). Nuremberg (Germany), 2013, p. 9–12.
  8. NAIR, R. S., PERRET, E., TEDJINI, S., et al. A group-delay-based chipless RFID humidity tag sensor using silicon nanowires. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 729–732. DOI: 10.1109/LAWP.2013.2270929
  9. CHOI, J. S., LEE, H., ENGELS, D. W., et al. Passive UHF RFIDbased localization using detection of tag interference on smart shelf. IEEE Transactions on Systems, Man and Cybernetics, 2012, vol. 42, no. 2, p. 268–275. DOI: 10.1109/TSMCC.2011.2119312
  10. PARK, S., LEE, H. Self-recognition of vehicle position using UHF passive RFID tags. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 1, p. 226–234. DOI: 10.1109/TIE.2012.2185018
  11. YANG, P., WU, W., MONIRI, M., et al. Efficient object localization using sparsely distributed passive RFID tags. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 12, p. 5914–5924. DOI: 10.1109/TIE.2012.2230596
  12. DIGIAMPAOLO, E., MARTINELLI, F. Mobile robot localization using the phase of passive UHF RFID signals. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 1, p. 365–376. DOI: 10.1109/TIE.2013.2248333
  13. AHMAD, M. Y., MOHAN, A. S. Novel bridge-loop reader for positioning with HF RFID under sparse tag grid. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 1, p. 555–566. DOI: 10.1109/TIE.2013.2245617
  14. SAAB, S. S., NAKAD, Z. S. A standalone RFID indoor positioning system using passive tags. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 5, p. 1961–1970. DOI: 10.1109/TIE.2010.2055774
  15. ANEE, R. A., KARMAKAR, N. C. Chipless RFID tag localization. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 11, p. 4008–4017. DOI: 10.1109/TMTT.2013.2282280
  16. REZAIESARLAK, R., MANTEGHI, M. A space-frequency technique for chipless RFID tag localization. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 11, p. 5790–5795. DOI: 10.1109/TAP.2014.2350523
  17. JAVED, N., HABIB, A., AKRAM, A., et al. 16-bit frequency signatured directly printable tag for organic electronics. IEICE Electronics Express, 2016, vol. 13, no. 11, p. 1–6. DOI: 10.1587/elex.13.20160406
  18. AMIN Y., CHEN Q., ZHENG, L.R., et al. ’Green’ wideband logspiral antenna for RFID sensing and wireless applications. Journal of Electromagnetic Waves and Applications, 2012, vol. 26, no. 14, p. 2043–2050. DOI: 10.1080/09205071.2012.724767
  19. JANKOWSKI, P. M., PITERA G., WEGLARSKI M. The impedance measurement problem in antennas for RFID technique. Metrology and Measurement Systems, 2014, vol. 21, no. 3, p. 509–520. DOI: 10.2478/mms-2014-0043
  20. LU, J., CHANG, B. Planar compact square-ring tag antenna with circular polarization for UHF RFID applications. IEEE Transactions on Antennas and Propagation, 2016, vol. 65, no. 2, p. 432–441. DOI: 10.1109/TAP.2016.2633162
  21. JANKOWSKI, P. M., WEGLARSKI, M. A method for measuring the radiation pattern of UHF RFID transponders. Metrology and Measurement Systems, 2016, vol. 23, no. 2, p. 163–172. DOI: 10.1515/mms-2016-0018
  22. TRAN, H. H., TA, X. S., PARK, I. A compact circularly polarized crossed-dipole antenna for an RFID tag. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, no. 5, p. 674–677. DOI: 10.1109/LAWP.2014.2376945.
  23. KHAN, U. H., ASLAM, B., KHAN, J., et al. A novel asterisk-shaped circularly polarized RFID tag for on-metal applications.Applied Computational Electromagnetic Society Journal, 2016, vol. 31, no. 9, p. 1035–1042.
  24. CHEN, H. D., KUO, S. H., JHENG, J. L. Design of compact circularly polarized radio frequency identification tag antenna for metallic object application. Applied Computational Electromagnetic Society Journal, 2013, vol. 55, no. 7, p. 1481–1485. DOI: 10.1002/mop.27607
  25. KAMPFRATH, T., TANAKA, K., NELSON, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, vol. 29, no. 7, p. 680–690. DOI: 10.1038/nphoton.2013.184

Keywords: Circular polarized antenna, paper substrate, impedance matching, RFID, RFIC, time of arrival

S. Sakouhi, H. Raggad, A. Gharsallam, M. Latrach [references] [full-text] [DOI: 10.13164/re.2017.0154] [Download Citations]
A Novel RFID EMSICC-based Chipless Tag

A new Radio Frequency Identification (RFID) chipless tag based on the Substrate Integrated Waveguide (SIW) technology is proposed in this paper. The tag highlights the importance of using such technologies allowing a surface miniaturization, a high Q-factor and an original shape. Thus, the novel design consists of an Eight-Mode Substrate Integrated Circular Cavity (EMSICC) associated to an Ultra Wideband (UWB) bowtie-shaped antenna. The EMSICC is realized by bisecting the Quarter Mode Substrate Integrated Circular Cavity (QMSICC) into two parts, while preserving the same resonant frequency and the original electric field distribution. Further, the operating frequency band is from 5 GHz to 8 GHz within a compact area of 4.97 × 1.05 cm2. The proposed design is experimentally validated in the frequency domain.

  1. FINKENZELLER, K. RFID Handbook. 2nd and 3rd ed. West Sussex (U.K.): John Wiley & sons, 2003.
  2. DAS, R., HARROP, P. RFID Forecasts, Players and Opportunities 2011-2021. [Online]. Available: www.IdtechEx.com
  3. WENG, Y. F., CHEUNG, S. W., YUK, T. I., LIU, L. Design of chipless UWB RFID system using a CPW multi-resonator. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 1, p. 13 to 31. DOI: 10.1109/MAP.2013.6474480
  4. TEDJINI, S., KARMAKAR, N., PERRET, E., et al. Hold the chips: Chipless technology, an alternative technique for RFID. IEEE Microwave Magazine, 2013, vol. 14, no. 5, p. 56–65. DOI: 10.1109/MMM.2013.2259393
  5. PRERADOVIC, S., BALBIN, I., KARMAKAR, N., et al. A novel chipless RFID system based on planar multiresonators for barcode replacement. In 2008 IEEE International Conference on RFID. New York (USA), 2008, p. 289–296. DOI: 10.1109/RFID.2008.4519383.
  6. GIRBAU, D., RAMOS, A., LAZARO, A., et al. Passive wireless temperature sensor based on time-coded UWB chipless RFID tags. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 11, p. 3623–3632. DOI: 10.1109/TMTT.2012.2213838
  7. VENA, A., PERRET, E., TEDJINI, S. Chipless RFID tag using hybrid coding technique. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3356–3364. DOI: 10.1109/TMTT.2011.2171001
  8. ZOMORRODI, M., KARMAKAR, N. C. Novel MIMO-based technique for EM-imaging of chipless RFID. In 2015 IEEE MTT-S International Microwave Symposium (IMS). DOI: 10.1109/MWSYM.2015.7166720
  9. HARTMANN, C. S. A global SAW ID tag with large data capacity. In Proceedings of the IEEE Ultrasonics Symposium. Munich (Germany), Oct. 2002, p. 65–69. DOI: 10.1109/ULTSYM.2002.1193354
  10. HARTMANN, C., HARTMANN, P., BROWN, P., et al. Anticollision methods for global SAW RFID tag systems. In Proceedings of the IEEE Ultrasonics Symposium. Montreal (Canada), Aug. 2004, p. 805–808. DOI: 10.1109/ULTSYM.2004.1417859
  11. JALALY, I., ROBERTSON, I. D. RF barcodes using multiple frequency bands. In IEEE MTT-S Microwave Symposium Digest. Long Beach (CA, USA), June 2005, p. 139–141. DOI: 10.1109/MWSYM.2005.1516542
  12. JALALY, I., ROBERTSON, I. D. Capacitively tuned split microstrip resonator for RFID barcodes. In Proceedings of the 35th European Microwave Conference. Paris (France), October 4-6, 2005, vol. III. DOI: 10.1109/EUMC.2005.1610138
  13. PRERADOVIC, S., BALBIN, I., KARMAKAR, N.C. Multiresonator based chipless RFID system for low-cost item tracking. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, p. 1411–1419. DOI: 10.1109/TMTT.2009.2017323
  14. PERRET, E., HAMDI, M., VENA, A., et al. RF and THz identification using a new generation of chipless RFID tags. Radioengineering, 2011, vol. 20, no. 2, p. 380–386.
  15. VENA, A., PERRET, E., TEDJINI, S. High-capacity chipless RFID tag insensitive to the polarization. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 60, no. 10, p. 4509 to 4515. DOI: 10.1109/TAP.2012.2207347
  16. ATTARAN, A., RASHIDZADEH, R., MUSCEDERE, R. Chipless RFID tag using RF MEMS switch. Electronics Letters, 2014, vol. 50, no. 23, p. 1720–1722. DOI: 10.1049/el.2014.3075
  17. NAIR, R., BARAHONA, M., BETANCOURT, D., et al. A fully printed passive chipless RFID tag for low-cost mass production. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014). The Hague (The Netherlands), 2014. DOI: 10.1109/EUCAP.2014.6902446
  18. VENA, A., PERRET, E., TEDJINI, S., et al. Design of chipless RFID tags printed on paper by flexography. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 5868–5877. DOI: 10.1109/TAP.2013.2281742
  19. VENA, A., PERRET, E., TEDJINI, S. A fully printable chipless RFID tag with detuning correction technique. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 4, p. 209 to 211. DOI: 10.1109/LMWC.2012.2188785
  20. EL MATBOULY, H., BOUBEKEUR, N. DOMINGUE, F. A novel chipless identification tag based on a Substrate Integrated Cavity Resonator. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 1, p. 52–54. DOI: 10.1109/LMWC.2012.2236081
  21. MOSCATO, S., MORO, R., BOZZI, M., et al. ‘Chipless RFID for space applications. In Proceedings of the IEEE International Conference on Wireless for Space and Extreme Environments WISEE 2014. Noordwijk (The Neterlands), October 2014. DOI: 10.1109/WiSEE.2014.6973075
  22. BOZZI, M., GEORGIADIS, A., WU, K. Review of substrateintegrated waveguide circuits and antennas. IET Microwaves, Antennas and Propagation, 2011, vol. 5, no. 8, p. 909–920. DOI: 10.1049/iet-map.2010.0463
  23. BOZZI, M., PERREGRINI, L., WU, K., et al. Current and future research trends in substrate integrated waveguide technology. Radioengineering, 2009, vol. 18, no. 2, p. 201–2019.
  24. DESLANDES, D., WU, K. Single-substrate integration technique of planar circuits and waveguide filters. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 2, p. 593 to 596. DOI: 10.1109/TMTT.2002.807820
  25. MAJEDI, M. S., ATTARI, A. R. Resonance antennas based on substrate integrated waveguide. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 10, p. 1021–1027. DOI: 10.1049/iet-map.2014.0662
  26. JIN, C., LI, R., ALPHONES, A., et al. Quarter-mode substrate integrated waveguide and its application to antennas design. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 6, p. 2921–2928. DOI: 10.1109/TAP.2013.2250238
  27. CHEN, J.-X.., HONG, W., HAO, Z.-C., et al. Development of a low cost microwave mixer using a broadband substrate integrated waveguide (SIW) coupler. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 2, p. 84–86. DOI: 10.1109/LMWC.2005.863199
  28. CASSIVI Y., WU, K. Low cost microwave oscillator using substrate integrated waveguide cavity. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 2, p. 48–50. DOI: 10.1109/LMWC.2003.808720
  29. ECCLESTON, K. W. Corrugated substrate integrated waveguide distributed amplifier. In Proceedings of Asia-Pacific Microwave Conference APMC 2012. Kaohsiung (Taiwan), Dec. 4-7, 2012. DOI: 10.1109/APMC.2012.6421604
  30. XU, F., WU, K., ZHANG, X. Periodic leaky-wave antenna for millimeter wave applications based on substrate integrated waveguide. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 340–347. DOI: 10.1109/TAP.2009.2026593.
  31. D’ORAZIO, W., KE WU, K. Substrate-integrated-Waveguide circulators suitable for millimeter-wave integration. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 10, p. 3675–3680. DOI: 10.1109/TMTT.2006.882897
  32. BALANIS, C. A. Antenna Theory Analysis and Design. 3rd ed. New York (USA): Wiley, 2005.
  33. P. JANKOWSKI-MIHUŁOWICZ, P., LICHOŃ, W., PITERA, G., et al. Determination of the material relative permittivity in the UHF band by using T and modified ring resonators. International Journal of Electronics and Telecommunications, 2016, vol. 62, no. 2, p. 129–134. DOI: 10.1515/eletel-2016-0017

Keywords: RFID, chipless tag, Substrate Integrated Waveguide (SIW), Substrate Integrated Circular Cavity (SICC), Half Mode SICC, Quarter Mode SICC, Eight-Mode Substrate Integrated Circular Cavity (EMSICC), EMS (Electromagnetic Signal)

L. Safari, G. Baghersalimi, A. Karami, A. Kiani [references] [full-text] [DOI: 10.13164/re.2017.0162] [Download Citations]
On the Equalization of an OFDM-Based Radio-over-Fiber System Using Neural Networks

In this study the impact of a Radio-over-Fiber (RoF) subsystem on the performance of Orthogonal Frequency Division Multiplexing (OFDM) system is evaluated. The study investigates the use of Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF) neural networks to compensate for the optical subsystem nonlinearities in terms of bit error rate, error vector magnitude, and computational complexity. The Bit Error Rate (BER) and Error Vector Magnitude (EVM) results show that the performance of MLP neural network is superior to that of RBF neural network and time-multiplexed pilot-based equalizer especially in the case of highly nonlinear behavior of the RoF subsystem.

  1. AL-RAWESHIDY, H., KOMAKI, S. Radio-over-Fibre Technologies for Mobile Communications Networks. Artech House, 2002. ISBN: 978-1580531481
  2. FERNANDO, X. N. Radio over Fiber for Wireless Communications: From Fundamentals to Advanced Topics. John Wiley and Sons, 2014. ISBN: 978-1-118-79706-8
  3. FERNANDO, X. N., SEASAY, A. B. Characteristics of directly modulated RoF link for wireless access. In Proceeding of Canadian Conference on Electrical and Computer Engineering CCECE 2004. Niagara Falls (Canada), 2004, vol. 4, p. 2167–2170. DOI: 10.1109/CCECE.2004.1347673
  4. SHEIKH BAHAI, A. R., SALTZBERG, B. R., ERGEN, M. Multicarrier Digital Communications. Kluwer/Plenum, 2002. ISBN: 978-0387225753
  5. GOLDSMITH, A. Wireless Communications. Artech House, 2005. ISBN: 978-0521837163
  6. CHETTAT, H., SIMOHAMED, L. M., ALGANI, C., et al. Cosimulation-based modeling and performance analysis of hybrid fiber-wireless links. International Journal of Communication Systems, 2013, vol. 26, no. 5, p. 583–596. DOI: 10.1002/dac.1361
  7. HOSSAIN, MD. A., TARIQUE, M. Effect of multipath fading and multiple access interference on broadband code division multiple access systems. International Journal of Communication Systems, 2012, vol. 25, no. 7, p. 874–886. DOI: 10.1002/dac.1293
  8. BAGHERSALIMI, G. Performance assessment of a wideband code-division multiple access-based radio-over-fibre system with near–far effect: downlink scenario. IET COM, 2014, vol. 8, no. 7, p. 1056–1064. DOI: 10.1049/iet-com.2013.0805
  9. PATRA, J. C., MEHER, P. K., CHAKRABORTY, G. Nonlinear channel equalization for wireless communication systems using Legendre neural networks. Signal Processing, 2009, vol. 89, no. 5, p. 2251–2262. DOI: 10.1016/j.sigpro.2009.05.004
  10. CHANDRA KUMAR, P., SARATCHANDRAN, P., SUNDARAJAN, N. Minimal radial basis function neural networks for nonlinear channel equalization, IEEE Proceedings - Vision, Image and Signal Processing, vol. 147, no. 5, Oct. 2000, p. 428–435. DOI: 10.1049/ip-vis:20000459
  11. NAWAZ, S. J., MOHSIN, S., IKRAM, A. A. Neural network based MIMO-OFDM channel equalizer using comb-type pilot arrangement. In International Conference on Future Computer and Communication. Kuala Lumpur (Malaysia), 2009, p. 36–48. DOI: 10.1109/ICFCC.2009.136
  12. PATRA, J. C., POH, W. B., CHAUDHARI, N. S., DAS, A. Nonlinear channel equalization with QAM signal using Chebyshev artificial neural network. In Proceedings of International Joint Conference on Neural Networks. Montreal (Canada), 2005, p. 3214–3219. DOI: 10.1109/IJCNN.2005.1556442
  13. RAHMAN, Q. M., IBNKAHLA, M., BAYOUMI, M. Neural network based channel estimation and performance evaluation of a time varying multipath satellite channel. In Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSRC’05). Halifax (Canada), May 2005, p. 74–79. DOI: 10.1109/CNSR.2005.44
  14. DENG JIANPING, SUNDARAJAN, N., SARATCHANDRAN, P. Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Transactions on Neural Networks, 2002, vol. 13, p. 687–696. DOI: 10.1109/TNN.2002.1000133
  15. PATRA, J. C., CHIN, W. C., MEHER, P. K., CHAKRABORTY, G. Legendre-FLANN-based nonlinear channel equalization in wireless communication system. In IEEE International Conference on Systems, Man and Cybernetic. Singapore, 2008, p. 1820–1831. DOI: 10.1109/ICSMC.2008.4811554
  16. DEVELI, I. Application of multilayer perceptron networks to laser diode nonlinearity determination for radio-over-fibre mobile communications. Microwave and Optical Technology Letters, 2004, vol. 42, no. 5, p. 425–427. DOI: 10.1002/mop.20325
  17. BAGHERSALIMI, G. A comparative performance study of optical subsystem equalization in OFDM-based and OWDM-based radio-over-fiber systems. In Proceedings of the 11th International Conference on Telecommunications ConTEL2011. Graz (Austria), 2011, p. 315–320. ISBN: 978-3-85125-161-6
  18. IEEE std 802.11g; Supplement to IEEE standard for information technology telecommunications and information exchange between systems-local and metropolitan area networks specific requirements-part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications; amendment 4: Further higher data rate extension in the 2.4 GHz band. Tech. rep., IEEE, 2003. ISBN : 978-0-7381-6324-6
  19. BOSCH, W., GATTI, G. Measurement and simulation of memory effects in pre-distortion linearizers. IEEE Transactions on Microwave Theory and Techniques, 1989, vol. 37, no. 12, p. 1885 to 1890. DOI: 10.1109/22.44098
  20. WAY, W. I., AFRASHTEH, A. Linearity characterization of connectorized laser diodes under microwave intensity modulation by am/am and am/pm measurements. In IEEE MTT-S International Microwave Symposium Digest. Baltimore (USA), 1986, vol. 86, no. 1, p. 659–662. DOI: 10.1109/MWSYM.1986.1132274
  21. DEMUTH, H., BEALE, M., HAGAN, M. Neural networks toolbox user’s guide for use with matlab 7. The Mathworks Inc, 2006. Available at: http://www.mathworks.com

Keywords: Radio-over-Fiber, OFDM, equalization, neural network, RBF, MLP, BER, EVM

H. H. Kha, H. Q. Ta [references] [full-text] [DOI: 10.13164/re.2017.0170] [Download Citations]
Min-Max MSE-based Interference Alignment for Transceiver Designs in Cognitive Radio Networks

This paper is concerned with an optimal design of the precoders and receive filters for cognitive radio (CR) networks in which multiple secondary users (SUs) share the same frequency band with multiple primary users (PUs). To cope with interference and to achieve fairness among users, we develop an interference alignment (IA) scheme by minimizing the maximum mean squared error (Min-Max MSE) of the received signals. Since the Min-Max MSE design problems are nonconvex in the design matrix variables of the precoders and receive filters, we develop an alternating optimization algorithm with provable convergence to iteratively find the optimal solutions. In each iteration, the precoder design problems can be recast as second order cone program (SOCP) while the optimal receive filters can be derived in closed-form solutions. Finally, numerical results are provided to demonstrate the superiority of the proposed method as compared to previous work in terms of the information rate and bit error rate.

  1. WANG, B., LIU, K. R. Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 2011, vol. 5, no. 1, p. 5–23. DOI: 10.1109/JSTSP.2010.2093210
  2. LIU, Y., DONG, L. Spectrum sharing in MIMO cognitive radio networks based on cooperative game theory. IEEE Transaction on Wireless Communications, 2014, vol. 13, no. 9, p. 4807–4820. DOI: 10.1109/TWC.2014.2331287
  3. GOLDSMITH, A., JAFAR, S. A., MARIC, I., et al. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 2009, vol. 97, no. 5, p. 894–914. DOI: 10.1109/JPROC.2009.2015717
  4. HOSSEINI, S. A., ABOLHASSANI, B., SADOUGH, S. M. S. A new protocal for cooperative spectrum sharing in mobile cognitive radio networks. Radioengineering, 2015, vol. 24, no. 3, p. 757–764. DOI: 10.13164/re.2015.0757
  5. DU, H., RATNARAJAH, T. Robust transceiver beamforming in MIMO cognitive radio via second-order cone programming. IEEE Transactions on Signal Processing, 2011, vol. 60, no. 2, p. 781–792. DOI: 10.1109/TSP.2011.2174790
  6. KIM, S. J., GIANNAKIS, G. B. Optimal resource allocation for MIMO ad hoc cognitive radio networks. IEEE Transactions on Information Theory, 2011, vol. 57, no. 5, p. 3117–3131. DOI: 10.1109/TIT.2011.2120270
  7. GUI, X., KANG, G. X., ZHANG, P. Sum-rate maximising in cognitive MIMO ad-hoc networks using weighted MMSE approach. Electronics Letters, 2012, vol. 48, no. 19, p. 1240–1242. DOI:10.1049/el.2012.1472
  8. ZHANG, Y., ANESE, E., GIANNAKIS, G. B. Distributed optimal beamformers for cognitive radios bobust to channel uncertainties. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 12, p. 6495–6508. DOI: 10.1109/TSP.2012.2218240
  9. YAO, Y., LI, G., XU, J., et al. Space alignment based on regulaized inversion precoding in cognitive transmission. Radioengineering, 2015, vol. 24, no. 3, p. 824–829. DOI: 10.13164/re.2015.0824
  10. GOMADAM, K., CADAMBE, V. R., JAFAR, S. A. A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 2011, vol. 57, no. 6, p. 3309–3322. DOI: 10.1109/TIT.2011.2142270
  11. CADAMBE, V. R., JAFAR, S. A. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 2008, vol. 54, no. 8, p. 3425–3441. DOI: 10.1109/TIT.2008.926344
  12. PAPAILIOPOULOS, D., DIMAKIS, A. Interference alignment as a rank constrained rank minimization. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 8, p. 4278–4288. DOI: 10.1109/TSP.2012.2197393
  13. ALEXANDROPOULOS, G. C., PAPADIAS, C. B. A reconfigurable iterative algorithm for the K-user MIMO interference channel. Signal Processing, 2013, vol. 93, no. 12, p. 353–3362. DOI: 10.1016/j.sigpro.2013.05.027
  14. MADDAH-ALI, M. A., MOTAHARI, A. S., KHANDANI, A. K. Communication over MIMO X channels: Interference alignment, decomposition and performance analysis. IEEE Transactions on Information Theory, 2008, vol. 54, no. 8, p. 3457–3470. DOI: 10.1109/TIT.2008.926460
  15. CASTANHEIRA, D., SILVA, A., GAMEIRO, A. Set optimization for efficient interference alignment in heterogeneous networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 10, p. 5648–5660. DOI: 10.1109/TWC.2014.2322855
  16. MEN, H., ZHAO, N., JIN, M., et al. Optimal transceiver design for interference alignment based cognitive radio networks. IEEE Communications Letters, 2015, vol. 19, no. 8, p. 1442–1445. DOI: 10.1109/LCOMM.2015.2442243
  17. REZAEI, F., TADAION, A. Interference alignment in cognitive radio networks. IET Communications, 2014, vol. 8, no. 10, p. 1769–1777. DOI: 10.1049/iet-com.2013.0731
  18. PERLAZA, S. M., FAWAZ, N., LASAULCE, S., et al. From spectrum pooling to space pooling: Opportunistic interference alignment in MIMO cognitive networks. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 7, p. 3728–3741. DOI: 10.1109/TSP.2010.2046084
  19. SHARMA, S. K., CHARZINOTAS, S., OTTERSTEN, B. Interference alignment for spectral coexistence of heterogeneous networks. EURASIP Journal on Wireless Communications and Networking, 2013, vol. 2013, no. 1, p. 1–14. DOI: 10.1186/1687-1499-2013-46
  20. ALI, S. S., CASTANHEIRA, D., SILVA, A., et al. Transmission cooperative strategies for MIMO-OFDM heterogeneous networks. Radioengineering , 2015, vol. 24, no. 2, p. 431–441. DOI: 10.13164/re.2015.0431
  21. ZHANG, R., LIANG, Y. C. Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2008, vol. 2, no. 1, p. 88–102. DOI: 10.1109/JSTSP.2007.914894
  22. MOSLEH, S., ABOUEI, J., AGHABOZORGI, M. R. Distributed opportunistic interference alignment using threshold-based beamforming in MIMO overlay cognitive radio. IEEE Transactions on Vehicular Technology, 2014, vol. 63, no. 8, p. 3783–3793. DOI: 10.1109/TVT.2014.2305849
  23. KRIKIDIS, I. Space alignment for cognitive transmission in MIMO uplink channels. EURASIP Journal on Wireless Communications and Networking, 2010, vol. 2010, no. 1, p. 1–6. DOI: 10.1155/2010/465157
  24. LU, E., MA, T., LU, I. T. Interference alignment-like behaviors of MMSE designs for general multiuser MIMO systems. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM 2011). 2011, p. 1–5. DOI: 10.1109/GLOCOM.2011.6134284
  25. SHEN, H., LI, B., TAO, M., et al. MSE-based transceiver designs for the MIMO interference channel. IEEE Transaction on Wireless Communications, 2010, vol. 9, no. 11, p. 3480–3489. DOI: 10.1109/TWC.2010.091510.091836
  26. HORN, R. A., JOHNSON, C. R. Matrix Analysis. Cambridge University Press: 1986. ISBN: 0-521-30586-1
  27. GRANT, M., BOYD, S. CVX: MATLAB software for disciplined convex programming, version 2.1. Available at: http://cvxr.com/cvx
  28. PEAUCELLE, D., HENRION, D., LABIT, Y., et al. Users guide for seumi interface 1.04, 2002. Available at: http://homepages.laas.fr/peaucell/software/sdmguide.pdf
  29. ISLAM, H., LIANG, Y. C., HOANG, A. T. Joint power control and beamforming for cognitive radio networks. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 7, p. 2415–2419. DOI: 10.1109/TWC.2008.061003
  30. KHANDAKER, M. R. A., RONG, Y. Transceiver optimization for multihop MIMO relay multicasting from multiple sources. IEEE Transaction on Wireless Communications, 2014, vol. 13, no. 9, p. 5162–5172. DOI: 10.1109/TWC.2014.2322361

Keywords: Multiuser MIMO, cognitive radio, interference alignment, Min-Max MSE, transceiver design

M. T. Kawser, M. R. Islam, M.R. Rahim, M. A. Masud [references] [full-text] [DOI: 10.13164/re.2017.0179] [Download Citations]
Versatile Controllability over Cell Switching for Speedy Users in LTE HetNets

The heterogeneous networks (HetNets) are regarded as a promising solution in LTE-Advanced for ubiquitous and cost effective broadband user experience. But there are challenges to support seamless mobility in HetNets, especially, when the user speed is high. In this paper, we investigate these challenges and study the scopes to address them for the improvement of cell edge performance. The study indicates the requirement of enhanced and versatile controllability over adaptation of cell switching parameters that simultaneously depends on variation in user speeds, traffic loads, street patterns, types of cells involved in switching, and so forth. We propose a scheme to scale cell switching parameters that incorporates Doppler spread estimation and adapts smoothly to various changes. Both the eNodeB and the UE participate in a versatile control over the scaling. Limited simulations have been performed to partially reflect the outcome of the proposed scheme.

  1. KAWSER, M. T. LTE Air Interface Protocols. Boston (USA): Artech House, 2011. ISBN: 978-1-60807-201-9
  2. Fujitsu Network Communications Inc. Enhancing LTE Cell-Edge Performance via PDCCH ICIC. 16 pages. [Online] Cited 2011. Available at: http://www.fujitsu.com/us/Images/Enhancing-LTECell-Edge.pdf
  3. WILEY-GREEN, M. P., SVENSSON, T. Throughput, capacity, handover and latency performance in a 3GPP LTE FDD field trial. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM 2010). Florida (USA), December 2010, p. 1–6. DOI: 10.1109/GLOCOM.2010.5683398
  4. 3GPP TR 36.839. Evolved Universal Terrestrial Radio Access (EUTRA); Mobility Enhancements in Heterogeneous Networks. Release 11, 2012.
  5. 3GPP TS 36.331. Evolved Universal Terrestrial Radio Access (EUTRA); Radio Resource Control (RRC); Protocol specification. Release 11, 2014.
  6. LOPEZ-PEREZ, D., GUVENC, I., CHU, X. Mobility enhancements for heterogeneous wireless networks through interference coordination. In Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW). Paris (France), April 2012, p. 69–74. DOI: 10.1109/WCNCW.2012.6215543
  7. SIMSEK, M., BENNIS, M., GUVENC, I. Mobility management in HetNets: a learning-based perspective. EURASIP Journal on Wireless Communications and Networking, February 2015, vol. 14. DOI 10.1186/s13638-015-0244-2
  8. PENG, Y., YANG, Y.Z.W., ZHU, Y. Mobility Performance enhancements for LTE-Advanced heterogeneous networks. In Proceedings of IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Sydney (Australia), September 2012, p. 413–418. DOI: 10.1109/PIMRC.2012.6362820
  9. BARBERA, S., MICHAELSEN, P., SAILY, M., PEDERSEN, K. Mobility performance of LTE co-channel deployment of macro and pico cells. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Paris (France), April 2012, p. 2863–2868. DOI: 10.1109/WCNC.2012.6214290
  10. BARBERA, S., MICHAELSEN, P., SAILY, M., PEDERSEN, K. Improved mobility performance in LTE co-channel HetNets through speed differentiated enhancements. In Proceedings of IEEE Globecom Workshops (GC Wkshps). Anaheim (CA, USA), Dec. 2012, p. 426–430. DOI: 10.1109/GLOCOMW.2012.6477610
  11. ZHANG, H., WEN, X., WANG, B., ZHENG, W., SUN, Y. A novel handover mechanism between femtocell and macrocell for LTE based networks. In Proceedings of IEEE Second International Conference on Communication Software and Networks (ICCSN). February 2010, p. 228–231. DOI: 10.1109/ICCSN.2010.91
  12. PEDERSEN, K.I., MICHAELSEN, P.H., ROSA, C., BARBERA, S. Mobility enhancements for LTE-advanced multilayer networks with inter-site carrier aggregation. IEEE Communications Magazine, May 2013, vol. 51, no. 5, p. 64–71. DOI: 10.1109/MCOM.2013.6515048
  13. PENG, Y., YANG, W., ZHANG, Y., ZHU, Y. Mobility performance enhancements for LTE-advanced heterogeneous networks. In Proceedings of IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Sydney (Australia), September 2012, p. 413–418. DOI: 10.1109/PIMRC.2012.6362820
  14. LEE, Y., SHIN, B., LIM, J., HONG, D. Effects of time-to-trigger parameter on handover performance in SON-based LTE systems. In Proceedings of IEEE 16th Asia-Pacific Conference on Communications (APCC). Auckland (New Zealand), OctoberNovember 2010, p. 492–496. DOI: 10.1109/APCC.2010.5680001
  15. JANSEN, T., BALAN, I., TURK, J., MOERMAN, I., KURNER, T. Handover parameter optimization in LTE self-organizing networks. In Proceedings of IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall). Ottawa (Canada), September 2010, p. 1–5. DOI: 10.1109/VETECF.2010.5594245
  16. ZHENG, W., ZHANG, H., CHU, X., WEN, X. Mobility robustness optimization in self-organizing LTE femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2013, 10 p. DOI: 10.1186/1687-1499-2013-27
  17. EMRAH TUNÇEL. Tuning of Handover Parameters in LTE-A Heterogeneous Networks. 94 pages. [Online] Cited 2014-09. Available at: http://etd.lib.metu.edu.tr/upload/12617911/index.pdf
  18. KIM, Y., LEE, K., CHIN, Y. Analysis of multi-level threshold handoff algorithm. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM 96). London (UK), November 1996, p. 1141–1145. DOI: 10.1109/GLOCOM.1996.587613
  19. KAWSER, M. T., ISLAM, M. R., AHMED, K. I., et al. Efficient resource allocation and sectorization for fractional frequency reuse (FFR) in LTE femtocell systems. Radioengineering, December 2015, vol. 24, no. 4, p. 940–947. DOI: 10.13164/re.2015.0940
  20. AAMOD KHANDEKAR, NAGA BHUSHAN, JI TINGFANG, et al. LTE Advanced: Heterogeneous networks. In Proceedings of IEEE European Wireless Conference (EW). Lucca (Italy), April 2010, p. 978–982. DOI: 10.1109/EW.2010.5483516
  21. SCHOBER, H., JONDRAL, F. Velocity estimation for OFDM based communication systems. In Proceedings of IEEE 56th Vehicular Technology Conference (VTC 2002-Fall). Vancouver, (BC, Canada), September 2002, vol. 2, p. 715–718. DOI: 10.1109/VETECF.2002.1040692
  22. YUCEK, T., TANNIOUS, R. M. A., ARSLAN, H. Doppler spread estimation for wireless OFDM systems. In Proceedings of IEEE/Sarnoff Symposium on Advances in Wired and Wireless Communication. Princeton (NJ, USA), April 2005, p. 233–236. DOI: 10.1109/SARNOF.2005.1426552
  23. TEPEDELENLIOGLU, C., ABDI, A., GIANNAKIS, G. B., et al. Estimation of Doppler spread and signal strength in mobile communications with applications to handoff and adaptive transmission. Wireless Communications and Mobile Computing, April 2001, vol. 1, no. 2, p. 221–242. DOI: 10.1002/wcm.1
  24. BHATTACHARYA, P. P. A new environment dependent handoff technique for next generation mobile systems. International Journal of Computer and Communications, March 2011, vol. 1, no. 1, p. 15–24.
  25. 3GPP TS 36.133 V11.4.0. Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for Support of Radio Resource Management. Release 12, 2014.

Keywords: LTE, HetNets, cell reselection, handover, speedy users

S. Japertas, V. Grimaila [references] [full-text] [DOI: 10.13164/re.2017.0191] [Download Citations]
Mobile Signal Path Losses in Microcells behind Buildings

The paper presents measurement results of the GSM (900 MHz band), UMTS (2100 MHz band), and LTE (1800 MHz band) propagation path loss (PL) in the urban area behind the buildings of ten different heights. The results were compared with the 7 most popular models. It was found that the existing models approximate the experimental results with relatively large errors. The new model, which evaluates the path loss variation nature behind the buildings, is proposed. This new model shows good agreement with measurements for all three mobile technologies. The average relative error is less than 6.5 %.

  1. NOKIA NETWORKS. Nokia Networks Deployment for Coverage (white paper). 20 pages. [Online] Cited 2016-03-09. Available at: http://networks.nokia.com/sites/default/files/document/nokia_depl oyment_for_coverage_white_paper_0.pdf
  2. CISCO SYSTEMS, INC. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 (white paper). 39 pages. [Online] Cited 2016-03-17. Available at: http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/mobile-white-paper-c11- 520862.html
  3. 4G AMERICAS. 5G Spectrum Recommendations (white paper). 28 pages. [Online] Cited 2016-03-18. Available at: http://www.4gamericas.org/files/6514/3930/9262/4G_Americas_5 G_Spectrum_Recommendations_White_Paper.pdf
  4. JAPERTAS, S., PILIPAVICIUS, K., JANARTHANAN, D. Signal propagation model for microcells at 900 MHz frequency range. Elekronika ir Elektrotechnika, 2015, vol. 21, no. 4, p. 65–68. DOI: 10.5755/j01.eee.21.4.12786
  5. OKOROGU, V. N., ONYISHI, D. U., NWALOZIE, G. C., et al. Empirical characterization of propagation path loss and performance evaluation for co-site urban environment. International Journal of Computer Applications, 2013, vol. 70, no. 10, p. 34–41. DOI: 10.5120/12001-7888
  6. HAMID, M., KOSTANIC, I. Path loss models for LTE and LTE-A relay stations. Universal Journal of Communications and Network, 2013, vol. 1, no. 4, p. 119–126. DOI: 10.13189/ujcn.2013.010401
  7. CHEBIL, J., LAWAS, A. K., RAFIQUL ISLAM, M. D. Comparison between measured and predicted path loss for mobile communications in Malaysia. World Applied Sciences Journal, 2013, no. 21, p. 123–128. DOI: 10.5829/idosi.wasj.2013.21.mae.99936
  8. RATURI, P., GUPTA, V., ERAM, S. Proposed propagation model for Dehradun region. International Journal of Soft Computing and Engineering, 2014, vol. 3, no. 6, p. 236–240. ISSN: 2231-230
  9. OSENI, F. O., POPOOLA, S. I., ABOLADE R. O., et al. Comparative analysis of received signal strength prediction models for radio network planning of GSM 900 MHz in Ilorin, Nigeria. International Journal of Innovative Technology and Exploring Engineering, 2014, vol. 4, no. 3, p. 45–50. ISSN: 2278-3075
  10. MAWJOUD, S. A. Path loss propagation model prediction for GSM network planning. International Journal of Computer Applications, 2013, vol. 84, no. 7, p. 30–33. DOI: 10.5120/14592- 2830
  11. ISABONA, J., KONYEHA C. C. Urban area path loss propagation prediction and optimization using Hata model at 800 MHz. IOSR Journal of Applied Physic, 2013, vol. 3, no. 4, p. 08–18.
  12. TURKKA, J., RENFORS, M. Path loss measurements for a nonline-of-sight mobile-to mobile environment. In Proceedings of 8th International Conference on ITS Telecommunications (ITST-2008). Hilton Phuket (Thailand), 2008, p. 274–278. DOI: 10.1109/ITST.2008.4740270
  13. ZHAO, X., RAUTIAINEN, T., KALLIOLA, K., et al. Path loss models for urban microcells at 5.3 GHz. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, no. 1, p. 152–154. DOI: 10.1109/LAWP.2006.873950
  14. BARBIROLI, M., CARCIOFI, C., ESPOSTI, V. D., et al. Characterization of WIMAX propagation in microcellular and picocellular environments. In Proceedings of the Fourth European Conference on Antennas and Propagation. Barcelona (Spain), 2010, p. 1–5. ISBN: 978-1-4244-6431-9
  15. KLOZAR, L., PROKOPEC, J. Propagation path loss models for mobile communication. In Proceedings of the 21st International Conference Radioelektronika 2011. Brno (Czech Republic), 2011, p. 1–5. DOI: 10.1109/RADIOELEK.2011.5936478
  16. POLAK, L., KLOZAR, L., KALLER, O., et al. Study of coexistence between indoor LTE femtocell and outdoor-to-indoor DVB-T2-Lite reception in a shared frequency band. EURASIP Journal on Wireless Communications and Networking, 2015, vol. 114, p. 1–14. DOI: 10.1186/s13638-015-0338-x
  17. SAMIMI, M. K., RAPPAPORT, T. S., MACCARTNEY, G. R. Probabilistic omnidirectional path loss model for millimeter-wave outdoor communications. IEEE Wireless Communications Letters, 2015, vol. 4, no. 4, p. 357–360. DOI: 10.1109/LWC.2015.2417559
  18. MACCARTNEY, G. R., ZHANG, J., NIE, S., et al. Path loss models for 5G millimeter wave propagation channels in urban microcells. In Proceedings of IEEE Global Communications Conference, Exhibition & Industry Forum (GLOBECOM). Atlanta (USA), 2013, p. 3948–3953. DOI: 10.1109/GLOCOM.2013.6831690
  19. NISSIRAT, L. A., ISMAIL, M., NISIRAT, M., et al. Lee's path loss model calibration and prediction for Jiza Town, South of Amman City, Jordan at 900 MHz. In Proceedings of 4th IEEE International RF and Microwave Conference (RFM). Seremban (Malaysia), 2011, p. 412–415. DOI: 10.1109/RFM.2011.6168779
  20. MARDENI, R., PEY, L. Y. Path loss model development for urban outdoor coverage of Code Division Multiple Access (CDMA) system in Malaysia. In Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT). Chengdu (China), 2010, p. 441–444. DOI: 10.1109/ICMMT.2010.5525001
  21. NISIRAT, M. A., ISMAIL, M., NISSIRAT, L., et al. A Hata based model utilizing terrain roughness correction formula. In Proceedings of 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA). Bali (Indonesia), 2011, p. 284–287. DOI: 10.1109/TSSA.2011.6095451

Keywords: Cellular networks, radio wave propagation, mobile communications

J. Milos, L. Polak, S. Hanus, T. Kratochvil [references] [full-text] [DOI: 10.13164/re.2017.0201] [Download Citations]
Wi-Fi Influence on LTE-U Downlink Data and Control Channel Performance in Shared Frequency Bands

Nowadays, providers of wireless services try to find appropriate ways to increase user data throughput mainly for future 5G cellular networks. Utilizing the unlicensed spectrum (ISM bands) for such purpose is a promising solution: unlicensed frequency bands can be used as a complementary data pipeline for UMTS LTE (Universal Mobile Telecommunication System - Long Term Evolution) and its advanced version LTE-Advanced, especially in pico- or femtocells. However, coexisting LTE and WLAN services in shared ISM bands at the same time can suffer unwanted performance degradation. This paper focuses predominantly on co-channel coexistence issues (worst case) between LTE and WLAN (IEEE 802.11n) services in the ISM band. From the viewpoint of novelty, the main outcomes of this article are follows. Firstly, an appropriate signal processing approach for coexisting signals with different features in the baseband is proposed. It is applied in advanced link-layer simulators and its correctness is verified by various simulations. Secondly, the influence of IEEE 802.11n on LTE data and control channel performance is explored. Performance evaluation is based on error rate curves, depending on Signal-to-Interference ratio (SIR). Presented results allow for better understanding the influence of IEEE 802.11n on the LTE downlink physical control channels (PCCH) and are valuable for mobile infrastructure vendors and operators to optimize system parameters.

  1. FUENTES, M., GARCIA-PARDO, C., GARRO, E., et al. Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band. IEEE Wireless Communications, 2014, vol. 21, no. 6, p. 63–69. DOI: 10.1109/MWC.2014.7000973
  2. POLAK, L., KALLER, O., KLOZAR, L., et al. Coexistence between DVB-T/T2 and LTE standards in common frequency bands. Wireless Personal Communications, 2016, vol. 88, no. 3, p. 669–684. DOI: 10.1007/s11277-016-3191-2
  3. POLAK, L., KLOZAR, L., KALLER, O., et al. Study of coexistence between indoor LTE femtocell and outdoor-to-indoor DVBT2-Lite reception in a shared frequency band. EURASIP Journal on Wireless Communications and Networking, 2015, no. 114, p. 1–14. DOI: 10.1186/s13638-015-0338-x
  4. HUAWEI TECHNOLOGIES CO., LTD., CHINA. The Unlicensed Spectrum Usage for Future IMT Technologies (white paper). 18 pages. [Online] Cited 2015-05-15. Available at: http://www.huawei.com/
  5. QUALCOMM TECHNOLOGIES, INC., USA. Extending the benefits of LTE Advanced to unlicensed spectrum (white paper). 19 pages. [Online] Cited 2015-05-15. Available at: http://www.qualcomm.com/
  6. QUALCOMM TECHNOLOGIES, INC., USA. LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi (white paper). 19 pages. [Online] Cited 2015-05-15. Available at: http://www.qualcomm.com/
  7. FUJITSU NETWORK COMMUNICATIONS INC., TEXAS, USA. High-Capacity Indoor Wireless Solutions: Picocell or Femtocell (white paper). 10 pages. [Online] Cited 2015-05-15. Available at: http://www.us.fujitsu.com/telecom/
  8. 3rd GENERATION PARTNERSHIP PROJECT, TECHNICAL SPECIFICATION GROUP SERVICES AND SYSTEM ASPECTS, FRANCE Architecture enhancements for non-3GPP accesses (technical specification). 131 pages. [Online] Cited 2015-05-16. Available at: http://www.3gpp.org/DynaReport/23402.htm
  9. JOENGHO, J., HUANING, N., LI, Q. C., et al. LTE in the unlicensed spectrum: Evaluating coexistence mechanisms. In Proceedings of the Globecom Workshops. 2014, p. 740–745. DOI: 10.1109/GLOCOMW.2014.7063521
  10. ABINADER, F. M., ALMEIDA, E. P. L., CHAVES, F. S., et al. Enabling the coexistence of LTE and Wi-Fi in unlicensed bands. IEEE Communications Magazine, 2014, vol. 52, no. 11, p. 54–61. DOI: 10.1109/MCOM.2014.6957143
  11. CAVALCANTE, A. M., ALMEIDA, E., VIEIRA, R. D., et al. Performance evaluation of LTE and Wi-Fi coexistence in unlicensed bands. In Proceedings of the 77th IEEE Vehicular Technology Conference (VTC Spring). Jun. 2013, p. 1–6. DOI: 10.1109/VTCSpring.2013.6692702
  12. RONGRONG, S., XINGLIN, W. Analysis and test for co-site of LTE and WiFi system. In Proceedings of the IEEE International RF and Microwave Conference (RFM). Dec. 2011, p. 315–319. DOI: 10.1109/RFM.2011.6168757
  13. BHORKAR, A., IBARS, C., PINGPING, Z. On the throughput analysis of LTE and WiFi in unlicensed band. In Proceedings of the 48th Asilomar Conference on Signals, Systems and Computers. Nov. 2014, p. 1309–1313. DOI: 10.1109/ACSSC.2014.7094671
  14. AL-DULAIMI, A., AL-RUBAYE, S., QIANG, N., et al. 5G communications race: Pursuit of more capacity triggers LTE in unlicensed band. IEEE Vehicular Technology Magazine, Mar. 2015, vol. 10, no. 1, p. 43–51. DOI: 10.1109/MVT.2014.2380631
  15. JOENGHO, J., LI, Q. C., HUANING, N., et al. LTE in the unlicensed spectrum: A novel coexistence analysis with WLAN systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). Dec. 2014, p. 3489–3464. DOI: 10.1109/GLOBCOM.2014.7037343
  16. MA, Y., KUESTER, D. G., CODER, J., et al. A simulation study of the LTE interference onWiFi signal detection. In Proceedings of the URSI National Radio Science Meeting (URSI NRSM). Boulder (USA), 2016, p. 1–2. DOI: 10.1109/USNC-URSI-NRSM.2016.7436233
  17. MUKHERJEE, A., CHENG, J. F., FALAHATI, S., et al. System architecture and coexistence evaluation of licensed-assisted access LTE with IEEE 802.11. In Proceedings of the IEEE International Conference on Communications Workshop (ICCW). London (United Kingdom), 2015, p. 2350–2355. DOI: 10.1109/ICCW.2015.7247532
  18. GIUPPONI, L., HENDERSON, T., BOJOVIC, B., et al. Simulating LTE and Wi-Fi Coexistence in Unlicensed Spectrum with ns-3. 12 pages. [Online] Cited 2016-07-25. Available at: www.arxiv.org/abs/1604.06826
  19. HUAWEI TECHNOLOGIES CO., LTD., CHINA. U-LTE: Unlicensed Spectrum Utilization of LTE (white paper). 20 pages. [Online] Cited 2015-05-15. Available at: http://www.huawei.com/
  20. IEEE COMPUTER SOCIETY STD., USA. 802.11n, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer Specifications. 536 pages. [Online] Cited 2015-05-30. Available at: http://standards.ieee.org/getieee802/download/802.11n-2009.pdf
  21. CABAN, S., RUPP, M., MEHLFUHRER, C., et al. ¨ Evaluation of HSDPA and LTE: From Testbed Measurements to System Level Performance. 1st ed. Wiley, 2011. ISBN: 9780470711927
  22. BRUENINGHAUS, K., ASTELY, D., SALZER, T., et al. Link performance models for system level simulations of broadband radio access systems. In Proceedings of the 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Sep. 2005, p. 2306–2311. DOI: 10.1109/PIMRC.2005.1651855
  23. IEEE TGm. IEEE 802.16m Evaluation Methodology Document (EMD): Evaluation Methodology for P802.16m-Advanced Air Interface. 162 pages. [Online] Cited 2016-09-26. Available at: http://ieee802.org/16/tgm/docs/80216m-08_004r2.pdf
  24. IKUNO, J. C., WRULICH, M., RUPP, M. System level simulation of LTE networks. In Proceedings of the 71st IEEE Vehicular Technology Conference (VTC 2010-Spring). May 2010, p. 1–5. DOI: 10.1109/VETECS.2010.5494007
  25. GLEISSNER, F., HANUS, S. Co-channel and adjacent channel interference measurement of UMTS and GSM/EDGE systems in 900 MHz radio band. Radioengineering, 2008, vol. 17, no. 3, p. 74–80. ISSN: 1805-9600
  26. MEHLFUHRER, C., WRULICH, M., IKUNO, J. C., et al. Simulating ¨ the Long Term Evolution physical layer. In Proceedings of the 17th European Signal Processing Conference (EUSIPCO 2009). Glasgow, 2009, p. 1471-1478. ISBN: 978-161-7388-76-7
  27. VIENNA UNIVERSITY OF TECHNOLOGY, AUSTRIA. LTE Downlink Link Level Simulator. [Online] Cited 2015-05- 29. Available at: http://www.nt.tuwien.ac.at/research/mobilecommunications/vienna-lte-a-simulators/
  28. MILOS, J., HANUS, S. Performance analysis of PCFICH and PDCCH LTE control channels. Radioengineering, 2014, vol. 23, no. 1, p. 445–451. ISSN: 1805-9600
  29. MILOS, J., HANUS, S. Analysis of LTE physical Hybrid-ARQ control channel. Advances in Electrical and Computer Engineering, 2014, vol. 14, no. 2, p. 97–100. DOI: 10.4316/AECE.2014.02016
  30. MILOS, J., POLAK, L., SLANINA, M., et al. Link-level simulator for WLAN networks. In Proceedings of the 1st International Workshop on Link- and System Level Simulations (IWSLS2 ). Vienna (Austria), 2016, p. 1–4.
  31. TRANTER, W. H. Principles of Communication Systems Simulation with Wireless Applications. Upper Saddle River (USA): Prentice Hall, 2004. ISBN: 0-13-494790-8
  32. MILOS, J., POLAK, L., SLANINA, M., et al. Measurement setup for evaluation the coexistence between LTE downlink and WLAN networks. In Proceedings of the 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Prague (Czech Republic), 2016, p. 1–4.
  33. 3rd GENERATION PARTNERSHIP PROJECT. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2. Ver. 8.12.0 TS 36.300. 147 pages. [Online] Cited 2015-06-01. Available at: www.3gpp.org/ftp/Specs/archive/36_series/36.300/36300- 8c0.zip
  34. LTE-U Forum. LTE-U Forum: Coexistence Study for LTE-U SDL (technical paper V1.0). 52 pages. [Online] Cited 2016-07-26. Available at: www.lteuforum.org/documents.html
  35. KUDER, Z., MILOS, J., HANUS, S. Radio coexistence of major and upcoming wireless standards in the ISM bands. In Proceedings of the 26th IEEE International Conference Radioelektronika. Kosice (Slovakia), 2016, p. 1–4. DOI: 10.1109/RADIOELEK.2016.7477426
  36. GOLDSMITH, A. Wireless Communications. 1st ed. London (UK): Cambridge University Press, 2005. ISBN: 0521837162

Keywords: LTE, WLAN, LTE physical channels, coexistence, interference, ISM band, 5G

A.Tekovic, D.Bonefacic, G.Sisul, R.Nad [references] [full-text] [DOI: 10.13164/re.2017.0211] [Download Citations]
Interference Analysis between Mobile Radio and Digital Terrestrial Television in the Digital Dividend Spectrum

This paper is concerned with the analysis of adjacent channel interference of the Long Term Evolution (LTE) mobile system operating in the Digital Dividend into Digital Video Broadcasting – Terrestrial (DVB–T) system. Field measurements in the real LTE network have been conducted in order to define the most significant scenarios and for each of these, Protection Ratios have been quantified. Variable load on the LTE base station has been taken into consideration. Therefore, Protection Ratios for the LTE base station in idle state, and fully dedicated mode have been calculated. Interference mitigation techniques have been reviewed, and an effective deployment method has been proposed.

  1. ITU. Final Acts of the World Radiocommunication Conference (WRC-07). World Radiocommunication Conference, Geneva (Switzerland), 2007, p. 478–479. ISBN: 9261122019
  2. EUROPEAN COMMISSION - INFORMATION SOCIETY AND MEDIA DIRECTORATE-GENERAL, RADIO SPECTRUM COMMITTEE. Opinion of the RSC Pursuant to Article 4.2 of Radio Spectrum Decision 676/2002/EC. 6 pages. [Online] Cited 2015-06-04. Available at: http://ec.europa.eu/information_society /newsroom/image/3_april_2008_5769_draft_7481.pdf
  3. TEKOVIC, A., SIMAC, G., SAKIC, K. LTE downlink system performance measurement with intersystem interference caused by DVB-T signal. In Proceedings of the 54th International Symposium ELMAR. Zadar (Croatia), 2012, p. 255–258. ISSN 1334-2630
  4. SAKIC, K., GOSTA, M., GRGIC, S. Cross-border interference between broadcasting and mobile services. In Proceedings of the 51st International Symposium ELMAR. Zadar (Croatia), 2009, p. 229–232. ISBN 978-953-7044-10-7
  5. TEKOVIĆ, A. LTE in Digital Dividend deployment challengesDVB-C2 case. In Proceedings of the 54th International Symposium ELMAR, Zadar (Croatia), 2012, p. 251–254.
  6. KANG, D. H., ZHIDKOV, S. V., CHOI, H. J. An adaptive detection and suppression of co-channel interference in DVB-T/H system. IEEE Transactions on Consumer Electronics, 2010, vol. 56, no. 3, p. 1320–1327. DOI: 10.1109/TCE.2010.5606265
  7. GUIDOTTI, A., GUIDUCCI, D., BARBIROLI, M., et al. Coexistence and mutual interference between mobile and broadcasting systems. In Proceedings of the IEEE 73rd Vehicular Technology, Budapest (Hungary), 2011, p. 1–5. DOI: 10.1109/VETECS.2011.5956540
  8. SAKIC, K., GRGIC, S. The influence of the LTE system on DVBT reception. In Proceedings of the 52nd International Symposium ELMAR. Zadar (Croatia), 2010, p. 235–238.
  9. SETIAWAN, D., GUNAWAN, D., SIRAT, D. Interference analysis of guard band and geographical separation between DVB-T and E-UTRA in Digital Dividend UHF band. In Proceedings of the International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICIBME). 2009, p. 1–6. DOI: 10.1109/ICICI-BME.2009.5417258
  10. CHEN, Y. X., XIAO, L., SUN, Y. Interference simulation from LTE to digital terrestrial television. In Proceedings of the 7th Wireless Communications, Networking and Mobile Computing Conference (WiCOM). Wuhan (China), 2011, p. 1–4. DOI: 10.1109/wicom.2011.6040068
  11. DAE-HEE KIM, SEONG-JUN OH, JUNGSOO WOO. Coexistence analysis between IMT system and DTV system in the 700MHz band. In Proceedings of the International Conference ICT Convergence (ICTC). Jeju (South Korea), 2012, p. 284–288. DOI: 10.1109/ICTC.2012.6386840
  12. ALOISI, A., CELIDONIO, M., PULCINI, L., et al. Experimental study on protection distances between LTE and DVB-T stations operating in adjacent UHF frequency bands. In Proceedings of the Wireless Telecommunications Symposium (WTS). New York City (USA), 2011, p. 1–7. DOI: 10.1109/WTS.2011.5960859
  13. CELIDONIO, M., PULCINI, L., RUFINI, A. LTE and DVB-T coexistence: A simulation study in the UHF frequency band. Journal of Communication and Computer, 2012, vol. 9, no. 4, p. 444–455.
  14. BARUFFA, G., FEMMINELLA, M., MARIANI, F., et al. Protection ratio and antenna separation for DVB—T/LTE coexistence issues. IEEE Communications Letters, 2013, vol. 17, no. 8, p. 1588 to 1591. DOI: 10.1109/LCOMM.2013.070113.130887
  15. MEHLFUHRER, C., WRULICH, M., IKUNO, J. C., et al. Simulating the Long Term Evolution physical layer. In Proceedings of the 17th European Signal Processing Conference ( EUSIPCO), 2009, p. 1471–1478.
  16. FUENTES, M., GARCIA-PARDO, C., GARRO, E., et al. Coexistence of digital terrestrial television and next generation cellular networks in the 700 MHz band. IEEE Wireless Communications, 2014, vol. 21, no. 6, p. 63–69. DOI: 10.1109/MWC.2014.7000973
  17. RIBADENEIRA-RAMIREZ, J., MARTINEZ, G., GOMEZBARQUERO, D., et al. Interference analysis between Digital Terrestrial Television (DTT) and 4G LTE mobile networks in the digital dividend bands. IEEE Transactions on Broadcasting, 2016, vol. 62, no. 1, p. 24–34. DOI: 10.1109/TBC.2015.2492465
  18. POLAK, L., KALLER, O., KLOZAR, L., et al. Mobile communication networks and digital television broadcasting systems in the same frequency bands: Advanced co-existence scenarios. Radioengineering, 2014, vol. 23, no. 1, p. 375–386.
  19. POLAK, L., KALLER, O., KLOZAR, L., et al. Influence of mobile network interfering products on DVB-T/H broadcasting services. In Proceedings of the Wireless Days (IFIP). 2012, p. 1–5. DOI: 10.1109/WD.2012.6402860
  20. KRISTEL, J., POLAK, L., KRATOCHVIL, T. Co-channel coexistence between DVB-T/H and LTE standards in a shared frequency band. In Proceedings of the 25th International Conference RADIOELEKTRONIKA. Pardubice (Czech Rep.), 2015, p. 184–190. DOI: 10.1109/RADIOELEK.2015.7129004
  21. De VITA, A., MILANESIO, D., SACCO, B., et al. Assessment of interference to the DTT service generated by LTE signals on existing head amplifiers of collective distribution systems: A real case study. IEEE Transactions on Broadcasting, 2014, vol. 60, no. 2, p. 420–429. DOI: 10.1109/TBC.2014.2321677
  22. POLAK, L., KALLER, O., KLOZAR, L., et al. Coexistence between DVB-T/T2 and LTE standards in common frequency bands. Wireless Personal Communication, 2016, vol. 88, no. 3, p. 669–684. DOI: 10.1007/s11277-016-3191-2
  23. POLAK, L., KALLER, O., KLOZAR, L., et al. Study of coexistence between indoor LTE femtocell and outdoor-to-indoor DVB-T2-Lite reception in a shared frequency band. EURASIP Journal of Wireless Communication and Networking, 2015, no. 114, 14 p. DOI: 10.1186/s13638-015-0338-x
  24. ELECTRONIC COMMUNICATIONS COMMITTEE (ECC). Measurements on the Performance of DVB–T Receivers in the Presence of Interference from the Mobile Service- Especially from LTE (ECC Report 148). 32 pages. [Online] Cited 2015-06-04. Available at: http://www.erodocdb.dk/Docs/doc98/official/pdf/ ECCREP148.pdf
  25. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI). Digital Video Broadcasting (DVB); Framing Structure, Channel Coding and Modulation for Digital Terrestrial Television (DVB-T) (Recommendation ETSI EN 300 744 V1.6.1). 66 pages. [Online] Cited 2015-06-04. Available at: http://www.etsi.org/deliver/etsi_en/300700_300799/300744/01.06. 01_60/en_300744v010601p.pdf
  26. RADIO FREQUENCY SYSTEMS (RFS). APXV9R20B-C Antenna Model (datasheet). 2 pages [Online] Cited 2015-06-04. Available at: http://www.rfsworld.com/websearch/Datasheets/pdf/ ?q=APXV9R20B-C
  27. HOLMA, H., TOSKALA, A. LTE for UMTS OFDMA and SCFDMA Based Radio Access. 1st ed. John Wiley & Sons Ltd., 2009. ISBN: 9780470994016
  28. PARKER, I., MUNDY, S. Assessment of LTE 800 MHz Base Station Interference into DTT Receivers (ERA Technology for OFCOM, Report 2011-0351). 41 pages. [Online] Cited 2015-06- 04. Available at: http://stakeholders.ofcom.org.uk/binaries/ consultations/dtt/annexes/Ite-800-mhz.pdf
  29. FTE MAXIMAL LG 222 Reception Masthead Amplifier (datasheet). 2 pages [Online] Cited 2015-07-17. Available at: http: //ftemaximal.com/images/files/soporte-servicios/Documentaciontecnica/MALG227.pdf
  30. BALANIS, A. C., Antenna Theory: Analysis and Design. 3rd ed. New Jersey (USA): John Wiley & Sons Ltd., 2005. ISBN 978-0- 471-66782-7
  31. EUROPEAN CONFERENCE OF POSTAL AND TELECOMMUNICATIONS ADMINISTRATIONS (CEPT). Technical Considerations Regarding Harmonization Options for the Digital Dividend (CEPT Report 22). 52 pages. [Online] Cited 2015-06-04. Available at: http://www.erodocdb.dk/docs/doc98/ official/pdf/CEPTRep022.pdf
  32. BONEFACIĆ, D., SISUL, G. Mobile Communications System (LTE) in the Frequency Range of the Digital Dividend with the Digital Television System (DVB-T) Interference Analysis (Report 2012-4500243244). Faculty of Electrical Engineering and Computing for VIPnet Ltd., 97 pages. (in Croatian)
  33. BONEFACIĆ, D. Testing of Filters for Interference Suppression from LTE System into DVB-T System. (Report 2013- 4500267607). Faculty of Electrical Engineering and Computing for VIPnet Ltd., 44 pages. (in Croatian)
  34. ISKRA. DTM-27 F Antenna Model (datasheet). 1 page. [Online] Cited 2015-06-04. Available at: http: http://www.iskra.eu/

Keywords: Adjacent-channel interference, LTE FDD, DVB-T, Digital Dividend, Protection Ratio, Protection Distance, mitigation technique

J. Ahmed [references] [full-text] [DOI: 10.13164/re.2017.0221] [Download Citations]
Spectral Efficiency Comparison of OFDM and MC-CDMA with Carrier Frequency Offset

Inter-carrier interference and multiple access interference due to carrier frequency offset (CFO) are two major factors that deteriorate the performance of orthogonal frequency division multiple access (OFDMA) and multicarrier code division multiple access (MC-CDMA) in wireless communication. This paper presents a new mathematical analysis for spectral efficiency of OFDMA communication systems over a frequency selective Rayleigh fading environment in the presence of multiple users. It also compares the spectral efficiency performance of OFDMA and MC-CDMA at different load, signal-to-noise ratio, CFO and delay spread conditions. MC-CDMA is found to be more resilient to CFO in general, however, OFDMA performs better at high load.

  1. YEE, N., LINNARTZ, J., FETTWEIS, G. Multicarrier CDMA in indoor wireless radio networks. In Proceedings of the 4th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Yokohama (Japan), 1993, p. 109–113.
  2. YEE, N., LINNARTZ, J. P., FETTWEIS, G. Multi-Carrier CDMA in indoor wireless radio networks. IEICE Transactions on Communications, 1994, vol. 77, no. 7, p. 900–904.
  3. DASILVA, V., SOUSA, E. Performance of orthogonal CDMA codes for quasi-synchronous communication systems. In Proceedings of the 2nd IEEE International Conference on Universal Personal Communications. Ottawa (Canada), 1993, vol. 2, p. 995–999. DOI: 10.1109/ICUPC.1993.528528
  4. VANDENDORPE, L. Multitone direct sequence CDMA system in an indoor wireless environment. In Proceedings of the IEEE First Symposium of Communications and Vehicular Technology in the Benelux. Delft (Nederland), 1993, p. 1–8.
  5. CAO, Z., TURELI, U., YAO, Y.-D. Deterministic multiuser carrierfrequency offset estimation for interleaved OFDMA uplink. IEEE Transactions on Communications, 2004, vol. 52, no. 9, p. 1585–1594. DOI: 10.1109/TCOMM.2004.833183
  6. TOMBA, L., KRZYMIEN, W., et al. Sensitivity of the MCCDMA access scheme to carrier phase noise and frequency offset. IEEE Transactions on Vehicular Technology, 1999, vol. 48, no. 5, p. 1657–1665. DOI: 10.1109/25.790546
  7. LIU, Y., TAN, Z. Carrier frequency offset estimation for OFDM systems using repetitive patterns. Radioengineering, 2012, vol. 21, p. 823–830. ISSN: 1210-2512
  8. KALWAR, S., UMRANI, F. A., MAGARINI, M. Feedback method for estimation and compensation of carrier frequency offset in LTE uplink. In Proceedings of the IEEE International Conference on Computer, Information and Telecommunication Systems (CITS). Kunming (China), 2016, p. 1-4. DOI: 10.1109/CITS.2016.7546402
  9. STANKOVIC, V. Iterative frequency domain maximum likelihood OFDM carrier frequency offset estimation. Wireless Personal Communications, 2016, vol. 91, no. 2, p. 1–13. DOI: 10.1007/s11277- 016-3508-1
  10. AHMED, J., HAMDI, K. Spectral efficiency of asynchronous MCCDMA with frequency offset over correlated fading. IEEE Transactions on Vehicular Technology, 2013, vol. 62, p. 3423–3429. DOI: 10.1109/TVT.2013.2253339
  11. AHMED, J., HAMDI, K. Spectral efficiency degradation of multicarrier CDMA due to carrier frequency offset. In Proceedings of the 2011 IEEE International Conference on Communications (ICC). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5963490
  12. TONELLO, A., LAURENTI, N., PUPOLIN, S. Analysis of the uplink of an asynchronous multi-user DMT OFDMA system impaired by time offsets, frequency offsets, and multi-path fading. In Proceedings of the Vehicular Technology Conference. 2000, vol. 3, p. 1094–1099. DOI: 10.1109/VETECF.2000.886275
  13. PARK, M., KO, K., PARK, B., et al. Effects of asynchronous MAI on average SEP performance of OFDMA uplink systems over frequencyselective rayleigh fading channels. IEEE Transactions on Communications, 2010, vol. 58, p. 586–599. DOI: 10.1109/TCOMM.2010.02.050324
  14. WANG, X., TJHUNG, T., WU, Y., et al. SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization. IEEE Transactions on Broadcasting, 2003, vol. 49, no. 2, p. 170–177. DOI: 10.1109/TGRS.2003.810271
  15. RUGINI, L., BANELLI, P. BER of OFDM systems impaired by carrier frequency offset in multipath fading channels. IEEE Transactions on Wireless Communications, 2005, vol. 4, p. 2279–2288. DOI: 10.1109/TWC.2005.853884
  16. DU, Z., CHENG, J., BEAULIEU, N. Accurate error-rate performance analysis of OFDM on frequency-selective Nakagami-m fading channels. IEEE Transactions on Communications, 2006, vol. 54, no. 2, p. 319–328. DOI: 10.1109/TCOMM.2005.863729
  17. KELLER, T., HANZO, L. Adaptive multicarrier modulation: A convenient framework for timefrequency processing in wireless communications. Proceedings of the IEEE, 2000, vol. 88, no. 5, p. 611–640. DOI: 10.1109/5.849157
  18. ALMRADI, A., HAMDI, K. Spectral efficiency of OFDM systems with random residual CFO. IEEE Transactions on Communications, 2015, vol. 63, no. 7, p. 2580–2590. DOI: 10.1109/TCOMM.2015.2443103
  19. HAMDI, K. Average capacity analysis of OFDM with frequency offset in Rician fading. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM). 2007, p. 1678–1682. DOI: 10.1109/GLOCOM.2007.323
  20. MATHECKEN, P., RIIHONEN, T., WERNER, S., et al. Average capacity of rayleigh-fading OFDM link with Wiener phase noise and frequency offset. In Proceedings of the IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). 2012, p. 2353–2358. DOI: 10.1109/PIMRC.2012.6362750
  21. W. C. JAKES. Microwave Mobile Communications. 1st ed. IEEE Press, 1974. ISBN: 97804705452
  22. HAMDI, K. A useful lemma for capacity analysis of fading interference channels. IEEE Transactions on Communications, 2010, vol. 58, no. 2, p. 411–416. DOI: 10.1109/TCOMM.2010.02.080117
  23. TURIN, G. L. The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 1960, p. 199–201. DOI: 10.1093/biomet/47.1-2.199

Keywords: OFDM, MC-CDMA, spectral efficiency, carrier frequency offset, inter-carrier interference, multiple access interference

G. S. Satapathi, S. Pathipati [references] [full-text] [DOI: 10.13164/re.2017.0227] [Download Citations]
Waveform Agile Sensing Approach for Tracking Benchmark in the Presence of ECM using IMMPDAF

This paper presents an efficient approach based on waveform agile sensing, to enhance the performance of benchmark target tracking in the presence of strong interference. The waveform agile sensing library consists of different waveforms such as linear frequency modulation (LFM), Gaussian frequency modulation (GFM) and stepped frequency modulation (SFM) waveforms. Improved performance is accomplished through a waveform agile sensing technique. In this method, the selection of waveform to be transmitted at each scan is determined, by jointly computing ambiguity function of waveform and Cramer-Rao Lower Bound (CRLB) matrix of measurement errors. Electronic counter measures (ECM) comprises of stand-off jammer (SOJ) and self-screening jammer (SSJ). Interacting multiple model probability data association filter (IMMPDAF) is employed for tracking benchmark trajectories. Experimental results demonstrate that, waveform agile sensing approach require only 39.98 percent lower mean average power compared to earlier studies. Further, it is observed that the position and velocity root mean square error values are decreasing as the number of waveforms are increasing from 5 to 50.

  1. KIRUBARAJAN,T., BAR-SHALOM, Y., BLAIR, W., et al. IMMPDAF for radar management and tracking benchmark with ECM. IEEE Transactions on Aerospace and Electronic Systems, 1998, vol. 34, no. 4, p. 1115–1134. DOI: 10.1109/7.722696
  2. BLAIR, W., WATSON, G., HOFFMAN, S. Benchmark problem for beam pointing control of phased array radar against maneuvering targets. In Proceedings of the IEEE American Control Conference. 1994, vol. 2, p. 2071–2075. DOI: 10.1109/ACC.1994.752441
  3. DAEIPOUR, E., BAR-SHALOM, Y., LI, X. Adaptive beam pointing control of a phased array radar using an imm estimator. In Proceedings of the IEEE American Control Conference. 1994, vol. 2, p. 2093–2097. DOI: 10.1109/ACC.1994.752445
  4. BLAIR, W., WATSON, G., GENTRY, G., et al. Benchmark problem for beam pointing control of phased array radar against maneuvering targets in the presence of ECM and false alarms. In Proceedings of the IEEE American Control Conference. 1995, vol. 4, p. 2601–2605. DOI: 10.1109/ACC.1995.532318
  5. KIRUBARAJAN, T., BAR-SHALOM, Y., DAEIPOUR, E. Adaptive beam pointing control of a phased array radar in the presence of ECM and false alarms using IMMPDAF. In Proceedings of the IEEE American Control Conference. 1995, vol. 4, p. 2616–2620. DOI: 10.1109/ACC.1995.532321
  6. SLOCUMB, B., WEST, P., SHIREY, T., et al. Tracking a maneuvering target in the presence of false returns and ECM using a variable state dimension Kalman filter. In Proceedings of the IEEE American Control Conference. 1995, vol. 4, p. 2611–2615. DOI: 10.1109/ACC.1995.532320
  7. RAGO, C., MAHRA, R. Target tracking in the presence of ECM: A filter design tool. In Proceedings of the IEEE Twenty-Ninth Southeastern Symposium on System Theory. 1997, p. 514–518. DOI: 10.1109/SSST.1997.581720
  8. BLAIR, W., WATSON, G., KIRUBARAJAN, T., et al. Benchmark for radar allocation and tracking in ECM. IEEE Transactions on Aerospace and Electronic Systems, 1998, vol. 34, no. 4, p. 1097–1114. DOI: 10.1109/7.722694
  9. BLACKMAN, S., DEMPSTER, R., BUSCH, M., et al. IMM/MHT solution to radar benchmark tracking problem. IEEE Transactions on Aerospace and Electronic Systems, 1999, vol. 35, no. 2, p. 730–738. DOI: 10.1109/7.766953
  10. ANGELOVA, D., SEMERDJIEV, E., MIHAYLOVA, L., et al. An IMMPDAF solution to benchmark problem for tracking in clutter and standoff jammer. In Proceedings of the International Conference on EuroFusion. 1999, p. 123–128.
  11. BEHAR, V., ANGELOVA, D., VASSILEVA, B., et al. A set of algorithms for radar management and target tracking in the presence of SOJ. Comptes Rendus de l’Academie Bulgare des Sciences, 2001, vol. 54, no. 7, p. 17.
  12. BEHAR, V., KABAKCHIEV, C. Radar waveform allocation by using post detection integration. Comptes Rendus de l’Academie Bulgare des Sciences, 2002, vol. 55, no. 1, p. 63.
  13. KERSHAW, D. J., EVANS, R. J. Optimal waveform selection for tracking systems. IEEE Transactions on Information Theory, 1994, vol. 40, no. 5, p. 1536–1550. DOI: 10.1109/18.333866
  14. KERSHAW, D. J., EVANS, R. Waveform selective probabilistic data association. IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 4, p. 1180–1188. DOI: 10.1109/7.625110
  15. RAGO, C., WILLETT, P., BAR-SHALOM, Y. Detection-tracking performance with combined waveforms. IEEE Transactions on Aerospace and Electronic Systems, 1998, vol. 34, no. 2, p. 612–624. DOI: 10.1109/7.670395
  16. NIU, R., WILLETT, P., BAR-SHALOM, Y. Tracking considerations in selection of radar waveform for range and range-rate measurements. IEEE Transactions on Aerospace and Electronic Systems, 2002, vol. 38, no. 2, p. 467–487. DOI: 10.1109/TAES.2002.1008980
  17. HONG, S. M., EVANS, R. J., SHIN, H. S. Optimization of waveform and detection threshold for range and range-rate tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, no. 1, p. 17–33. DOI: 10.1109/TAES.2005.1413743
  18. SIRA, S. P., PAPANDREOU-SUPPAPPOLA, A., MORRELL, D. Characterization of waveform performance in clutter for dynamically configured sensor systems. In Proceedings of the Waveform Diversity and Design Conference. 2006.
  19. SIRA S. P., MORRELL, D. Dynamic configuration of time-varying waveforms for agile sensing and tracking in clutter. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 7, p. 3207–3217. DOI: 10.1109/TSP.2007.894418
  20. SIRA S. P., LI, Y., PAPANDREOU-SUPPAPPOLA, A., et al. Waveform-agile sensing for tracking. IEEE Signal Processing Magazine, 2009, vol. 26, no. 1, p. 53–64. DOI: 10.1109/MSP.2008.930418
  21. NGUYEN, N., DOGANCAY, K., DAVIS, L. Adaptive waveform selection for multistatic target tracking. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 1, p. 688–701. DOI: 10.1109/TAES.2014.130723
  22. MAHAFZA, B. R. Radar Signal Analysis and Processing Using MATLAB. 1st ed. CRC Press, 2008. ISBN: 9781420066432
  23. GORJI, A. A., THARMARASA, R., KIRUBARAJAN, T. Performance measures for multiple target tracking problems. In Proceedings of the 14th IEEE International Conference on Information Fusion (FUSION). 2011, p. 1–8. ISBN: 978-1-4577-0267-9
  24. BAR-SHALOM, Y., LI, X. R., KIRUBARAJAN, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software. John Wiley & Sons, 2004. ISBN: 978-0-471-41655-5
  25. SAVAGE, C. O., MORAN, B. Waveform selection for maneuvering targets within an IMM framework. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 3, p. 1205–1214. DOI: 10.1109/TAES.2007.4383612
  26. MIAO, L., ZHANG, J. J., CHAKRABARTI, C. et al. Algorithm and parallel implementation of particle filtering and its use in waveformagile sensing. Journal of Signal Processing Systems, 2011, vol. 65, no. 2, p. 211–227. DOI: 10.1007/s11265-011-0601-2
  27. BLAIR, W., WATSON, G., et al. Benchmark for Radar Resource Allocation and Tracking Targets in the Presence of ECM. Sep. 1996, 67 pages. [Online] Cited 2016-07-28. Available at: http://www.dtic.mil/dtic/tr/fulltext/u2/a286909.pdf

Keywords: Clutter, electronic countermeasures, root mean square error, target tracking

T. N. Nguyen, T. T. Duy, G.-T. Luu, P. T. Tran, M. Voznak [references] [full-text] [DOI: 10.13164/re.2017.0240] [Download Citations]
Energy Harvesting-based Spectrum Access with Incremental Cooperation, Relay Selection and Hardware Noises

In this paper, we propose an energy harvesting (EH)-based spectrum access model in cognitive radio (CR) network. In the proposed scheme, one of available secondary transmitters (STs) helps a primary transmitter (PT) forward primary signals to a primary receiver (PR). Via the cooperation, the selected ST finds opportunities to access licensed bands to transmit secondary signals to its intended secondary receiver (SR). Secondary users are assumed to be mobile, hence, optimization of energy consumption for these users is interested. The EH STs have to harvest energy from the PT's radio-frequency (RF) signals to serve the PT-PR communication as well as to transmit their signals. The proposed scheme employs incremental relaying technique in which the PR only requires the assistance from the STs when the transmission between PT and PR is not successful. Moreover, we also investigate impact of hardware impairments on performance of the primary and secondary networks. For performance evaluation, we derive exact and lower-bound expressions of outage probability (OP) over Rayleigh fading channel. Monte-Carlo simulations are performed to verify the theoretical results. The results present that the outage performance of both networks can be enhanced by increasing the number of the ST-SR pairs. In addition, it is also shown that fraction of time used for EH, positions of the secondary users and the hardware-impairment level significantly impact on the system performance.

  1. ZHOU, X.,ZHANG, R., HO, C. K. Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, Nov. 2013, vol. 61, no. 11, p. 4754–4767. DOI: 10.1109/TCOMM.2013.13.120855
  2. LANEMAN, J. N., TSE, D. N. C, WORNELL, G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, Dec. 2004, vol. 50, no. 12, p. 3062–3080. DOI: 10.1109/TIT.2004.838089
  3. KRIKIDIS, I., TIMOTHEOU, S., SASAKI, S. RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letter, Nov. 2012, vol. 16, no. 11, p. 1772–1775. DOI: 10.1109/LCOMM.2012.091712.121395
  4. NASIR, A., DURRANI, S., KENNEDY, R. Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, Jul. 2013, vol. 12, no. 7, p. 3622–3636. DOI: 10.1109/TWC.2013.062413.122042
  5. KRIKIDIS, I., ZHENG, G., OTTERSTEN, B. Harvest-use cooperative networks with half/full-duplex relaying. In Proceedings of the 2013 IEEE Wireless Communications and Networking Conference (WCNC2013). Shanghai (China), 2013, p. 4256–4260. DOI: 10.1109/WCNC.2013.6555261
  6. NASIR, A., DURRANI, S., KENNEDY, R. Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In Proceedings of the 2014 IEEE International Conference on Communications (ICC2014). Sydney (Australia), June 2014, p. 4066–4071. DOI: 10.1109/ICC.2014.6883957
  7. DING, Z., PERLAZA, S., ESNAOLA, I., et al. Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Transactions on Wireless Communications, Feb. 2014, vol. 13, no. 2, p. 846–860. DOI: 10.1109/TWC.2013.010213.130484
  8. MITOLA, J., MAQUIRE, G. Q. J. Cognitive radio: Making software radios more personal. IEEE Personal Communications, Aug. 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  9. HAYKIN, S. Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, Feb. 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  10. HUANG, X. L., HU, F., WU, J., et al. Intelligent cooperative spectrum sensing via hierarchical Dirichlet process in cognitive radio networks. IEEE Journal on Selected Areas in Communications, Oct. 2014, vol. 33, no. 5, p. 771–787. DOI: 10.1109/JSAC.2014.2361075
  11. DUY, T. T., KONG, H. Y. Performance analysis of incremental amplify-and-forward relaying protocols with nth best partial relay selection under interference constraint. Wireless Personal Communications, Aug. 2013, vol. 71, no. 4, p. 2741–2757. DOI: 10.1007/s11277- 012-0968-9
  12. DUY, T. T., KONG, H. Y. Adaptive cooperative decode-and-forward transmission with power allocation under interference constraint. Wireless Personal Communications, Jan. 2014, vol. 74, no. 2, p. 401–414. DOI: 10.1007/s11277-013-1292-8
  13. SIMEONE, O., STANOJEV, I., SAVAZZI, et al. Spectrum leasing to cooperating secondary ad hoc networks. IEEE Journal on Selected Areas in Communications, Jan. 2008, vol. 26, no. 1, p. 203–213. DOI: 10.1109/JSAC.2008.080118
  14. HAN, Y., PANDHARIPANDE, A., TING, S. H. Cooperative decodeand-forward relaying for secondary spectrum access. IEEE Transactions on Wireless Communications, Oct. 2009, vol. 8, no. 10, p. 4945-4950. DOI: 10.1109/TWC.2009.081484
  15. DUY, T. T., KONG, H. Y. Performance analysis of two-way hybrid decode-and-amplify relaying scheme with relay selection for secondary spectrum access. Wireless Personal Communications, Mar. 2013, vol. 69, no. 2, p. 857-878. DOI: 10.1007/s11277-012- 0616-4
  16. BJORNSON, E., MATTHAIOU, M., DEBBAH, M. A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Transactions on Communications, Nov. 2013, vol. 61, no. 11, p. 4512–4525. DOI: 10.1109/TCOMM.2013.100913.130282
  17. MATTHAIOU, M., PAPADOGIANNIS, A. Two-way relaying under the presence of relay transceiver hardware impairments. IEEE Communications Letters, Jun. 2013, vol. 17, no. 6, p. 1136–1139. DOI: 10.1109/LCOMM.2013.042313.130191
  18. DUY, T. T., DUONG, T. Q., DA COSTA, D., et al. Proactive relay selection with joint impact of hardware impairment and co-channel interference. IEEE Transactions on Communications, May 2015, vol. 63, no. 5, p. 1594–1606. DOI: 10.1109/TCOMM.2015.2396517
  19. NGUYEN, D. K., MATTHAIOU, M., DUONG, T. Q., et al. RF energy harvesting two-way cognitive DF relaying with transceiver impairments. In Proceedings of the 2015 IEEE Conference on Communication Workshop (ICCW2015). London (England), Jun. 2015, p. 1970–1975. DOI: 10.1109/ICCW.2015.7247469
  20. GAO, X., XU, W., LI, S., et al. An online energy allocation strategy for energy harvesting cognitive radio systems. In Proceedings of the 8th International Conference on Wireless Communications and Signal Processing (WCSP2013). Hangzhou (China), Oct. 2013, p. 1–5. DOI: 10.1109/WCSP.2013.6677085
  21. PARK, S., HONG, D. Optimal spectrum access for energy harvesting cognitive radio networks. IEEE Transactions on Wireless Communications, Dec. 2013, vol. 12, no. 12, p. 6166–6179. DOI: 10.1109/TWC.2013.103113.130018
  22. MOUSAVIFAR, S., LIU, Y., LEUNG, C., et al. Wireless energy harvesting and spectrum sharing in cognitive radio. In Proceedings of the 80th IEEE Vehicular Technology Conference (VTC Fall). Vancouver (Canada), Sep. 2014, p. 1–5. DOI: 10.1109/VTCFall.2014.6966232
  23. SON, P. N., KONG, H. Y. Exact outage analysis of energy harvesting underlay cooperative cognitive networks. IEICE Transactions on Communications, 2015, vol. E98-B, no. 4, p. 661–672. DOI: 10.1587/transcom.E98.B.661
  24. WANG, Z., CHEN, Z., LUO, L., et al. Outage analysis of cognitive relay networks with energy harvesting and information transfer. In Proceedings of the 2014 IEEE International Conference on Communications (ICC2014). Sydney (Australia), Jun. 2014, p. 4348–4353. DOI: 10.1109/ICC.2014.6884004
  25. SON, P. N., HAR, D., KONG, H. Y. Joint power allocation for energy harvesting and power superposition coding in cooperative spectrum sharing. Computing Research Repository. [Online] Cited 2015. Available at: arxiv.org/abs/1510.02460
  26. ZHAI, C., LIU, J., ZHENG, L. Relay based spectrum sharing with secondary users powered by wireless energy harvesting. IEEE Transactions on Communications, May 2016, vol. 64, no. 5, p. 1875–1887. DOI: 10.1109/TCOMM.2016.2542822
  27. LI, Y. B., YANG, R., LIN, Y., et al. The spectrum sharing in cognitive radio networks based on competitive price game. Radioengineering, Sep. 2012, vol. 21, no. 3, p. 802–808. ISSN: 1805-9600
  28. DUY, T. T., KONG, H. Secrecy performance analysis of multihop transmission protocols in cluster networks. Wireless Personal Communications, Jun. 2015, vol. 82, no. 4, p. 2505–2518. DOI: 10.1007/s11277-015-2361-y
  29. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series, and Products. 6th ed. San Diego, CA (USA): Academic Press, 2000. ISBN: 978-0-12-294757-5

Keywords: Cognitive radio, relay selection, energy harvesting, hardware impairments, outage probability

M. H. Mohd Salleh, N. Seman, D. N. Abang Zaidel, A. A. Eteng [references] [full-text] [DOI: 10.13164/re.2017.0251] [Download Citations]
Investigation of Unequal Planar Wireless Electricity Device for Efficient Wireless Power Transfer

This article focuses on the design and investigation of a pair of unequally sized wireless electricity (Witricity) devices that are equipped with integrated planar coil strips. The proposed pair of devices consists of two different square-shaped resonator sizes of 120 mm × 120 mm and 80 mm × 80 mm, acting as a transmitter and receiver, respectively. The devices are designed, simulated and optimized using the CST Microwave Studio software prior to being fabricated and verified using a vector network analyzer (VNA). The surface current results of the coupled devices indicate a good current density at 10 mm to 30 mm distance range. This good current density demonstrates that the coupled devices’ surface has more electric current per unit area, which leads to a good performance up to 30 mm range. Hence, the results also reveal good coupling efficiency between the coupled devices, which is approximately 54.5% at up to a 30 mm distance, with both devices axially aligned. In addition, a coupling efficiency of 50% is achieved when a maximum lateral misalignment (LM) of 10 mm, and a varied angular misalignment (AM) from 0° to 40° are implemented to the proposed device.

  1. TESLA, N. System of Transmission of Electrical Energy. US Patent 645576, 1900.
  2. POON, A. S. Y. A general solution to wireless power transfer between two circular loops. Progress in Electromagnetics Research, 2014, vol. 148, p. 171–182. ISSN: 1070-4698. DOI: 10.2528/PIER14071201
  3. BANGERTER, B., TALWAR, S., AREFI, R., STEWART, K. Networks and devices for the 5G era. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 90–96. ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6736748
  4. JANG, B.-J., LEE, S., YOON, H. HF-band wireless power transfer system: concept, issues, and design. Progress in Electromagnetics Research, 2012, vol. 124, p. 211–231. ISSN: 1070-4698. DOI: 10.2528/PIER11120511
  5. KURS, A., KARALIS, A., MOFFATT, R., et al. Wireless power transfer via strongly coupled magnetic resonances. Science Journal, 2007, vol. 31, no. 5834, p. 83–86. ISSN: 1095-9203. DOI: 10.1126/science.1143254
  6. LIU, C., HU, A. P., NAIR, N. K. C. Modelling and analysis of a capacitively coupled contactless power transfer system. IET Power Electronics, 2011, vol. 4, no. 7, p. 808–815. ISSN: 1755- 4535. DOI: 10.1049/iet-pel.2010.0243
  7. SON, H. W., PYO, C. S. Design of RFID tag antennas using an inductively coupled feed. Electronics Letters, 2005, vol. 41, no. 18, p. 994–996. ISSN: 0013-5194. DOI: 10.1049/el:20051536
  8. CHA, H. K., PARK, W. T., JE, M. A CMOS rectifier with a crosscoupled latched comparator for wireless power transfer in biomedical applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, vol. 59, no. 7, p. 409–413. ISSN: 1549-7747. DOI: 10.1109/TCSII.2012.2198977
  9. KRACEK, J., MAZANEK, M. Possibilities of wireless power supply. International Journal of Microwave and Wireless Technologies, 2010, vol. 2, no. 2, p. 153–157. ISSN: 1759-0787. DOI: 10.1017/S1759078710000255
  10. WANG, J., HO, S. L., FU, W. N., SUN, M. Analytical design study of a novel Witricity charger with lateral and angular misalignments for efficient wireless energy transmission. IEEE Transactions on Magnetics, 2011, vol. 47, no. 10, p. 2616–2619. ISSN: 0018-9464. DOI: 10.1109/TMAG.2011.2151253
  11. MOHD SALLEH, M. H., SEMAN, N., DEWAN, R. Reduced-size Witricity charger design and its parametric study. In Proceedings of the 2013 IEEE International RF and Microwave Conference. Penang (Malaysia), 2013, p. 387–390. DOI: 10.1109/RFM.2013.6757290
  12. MOHD SALLEH, M. H., SEMAN, N., ABANG ZAIDEL, D. N. Design of a compact planar Witricity device with good efficiency for wireless applications. In Proceedings of the 2014 Asia-Pacific Microwave Conference (APMC). Sendai (Japan), 2014, p. 1369 to 1371. ISBN: 978-4-9023-3931-4
  13. KIM, J. W., SON, H. C., KIM, K. H., PARK, Y. J. Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 389–392. ISSN: 1536-1225. DOI: 10.1109/LAWP.2011.2150192
  14. MORIWAKI, Y., IMURA, T., HORI, Y. Basic study on reduction of reflected power using DC/DC converters in wireless power transfer system via magnetic resonant coupling. In IEEE 33rd International Telecommunications Energy Conference (INTELEC). Amsterdam (Netherlands), 2011, p. 1-5. ISSN: 2158- 5210. DOI: 10.1109/INTLEC.2011.6099737

Keywords: Coupling Efficiency, Magnetic Resonance Coupling, Misalignment, Wireless Power Transfer, Witricity

H. Zhivomirov, N. Kostov [references] [full-text] [DOI: 10.13164/re.2017.0258] [Download Citations]
Power Parameters and Efficiency of Class B Audio Amplifiers in Real-World Scenario

Consumer audio amplifiers are intended to op¬erate with various loudspeaker loads, i.e. the load imped¬ance profile of the audio amplifier is a priori unknown. We propose the power parameters analysis of the class B audio amplifiers to be carried out in the realistic worst-case (RWC) scenario of operation with the minimal value of the impedance and a RWC type of signal, instead of the nominal impedance of the loudspeaker and a sine-wave signal. Experimental validation, carried out for different types of signals and loudspeaker loads, demonstrate the advantages of the proposed RWC-based power parameters estimation. Furthermore, we provide a way of assessing the safe-operating area (SOA) boundaries, based on the output I-V loci of the amplifier and by means of an equi¬valent load line (ELL).

  1. SELF, D. Audio Power Amplifier Design. Abingdon (UK): Focal Press, 2013. (Chapter 16). ISBN: 978-0-240-52614-0
  2. RAAB, F. Average efficiency of class-G power amplifiers. IEEE Transactions on Consumer Electronics, 1986, vol. CE-32, no. 2, p. 145–150. DOI: 10.1109/TCE.1986.290146
  3. ZEE, R. High Efficiency Audio Power Amplifiers; Design and Practical Use. Enschede (Netherlands), PhD Thesis in Dept. Elect. Eng. in University of Twente, 1999. ISBN: 90-36512875
  4. BENJAMIN, E. Audio power amplifiers for loudspeaker loads. Journal of Audio Engineering Society, 1994, vol. 42, no. 9, p. 670 to 683. ISSN: 0004-7554
  5. ZHIVOMIROV, H., VASILEV, R. Power parameters and efficiency of class B amplifier operating with complex load and random signal. In Proceedings of the UNITECH’2014. Gabrovo (Bulgaria), Nov. 2014, vol. 2, p. 53–58. ISSN: 1313-230X
  6. ZHIVOMIROV, H. Power parameters and efficiency of class B amplifier operating with resistive load and random signal. TEM Journal, 2015, vol. 4, no. 1, p. 16–21. ISSN: 2217-8309
  7. SEDRA, A., SMITH, K. Microelectronic Circuits. Oxford (UK): Oxford University Press, 2015. ISBN: 978-0-19-933913-6
  8. HANSLER, E., SCHMIDT, G. Acoustic Echo and Noise Control: A Practical Approach. Hoboken (NJ, USA): John Wiley & Sons Inc., 2004. ISBN: 0-471-45346-3
  9. ZHIVOMIROV, H. Power Analysis of Class B Power Amplifier with Matlab Implementation, version 1.1. [Online] Cited 2016-06- 30. Available at: http://www.mathworks.com /matlabcentral/fileexchange/47438-power-analysis-of-class-bpower-amplifier-with-matlab-implementation
  10. KEELE, D., Jr. Development of test signals for the EIA-426-B loudspeaker power rating compact disk. In 111th Audio Engineering Society Convention. New York, 21–24 September, 2001
  11. BOYCE, T. Introduction to Live Sound Reinforcement: The Science, the Art, and the Practice. Victoria (BC, Canada): FriesenPress, 2014. ISBN: 978-1-4602-3890-5
  12. TEXAS INSTRUMENTS. LM3886 High-Performance 68 W Audio Power Amplifier (datasheet). 31 pages. [Online] Cited 2016- 06-30. Available at: http://www.ti.com/product/LM3886
  13. SCAN-SPEAK. 18W/8424G00 Midwoofer (datasheet). 2 pages. [Online] Cited 2016-06-30. Available at: http://www.scanspeak.dk/datasheet/pdf/18w-8424g00.pdf
  14. LEACH, W. M., Jr. Impedance compensation networks for the lossy voice-coil inductance of loudspeaker drivers. Journal of Audio Engineering Society, April 2004, vol. 52, no. 4, p. 358–365. ISSN: 0004-7554
  15. ZOBEL, O. Theory and design of uniform and composite electric wave filters. Bell System Technical Journal, January 1923, vol. 2, p. 1–46. DOI: 10.1002/j.1538-7305.1923.tb00001.x
  16. HAJEK, K. Efficiency of the class B-CE and class B-CC highvoltage wideband amplifiers with a capacitive load. In Proceedings of 21st International Conference Radioelektronika 2011. Brno (Czech Rep.) 2011, p. 137–140. DOI: 10.1109/RADIOELEK.2011.5936430
  17. SIRAKOV, E. Band-pass loudspeaker systems with single vent. In Proceedings of Papers of International Scientific Conference on Information, Communication and Energy Systems and Technologies ICEST 2009. Sofia (Bulgaria), 2009, vol. 1, p. 235–238.
  18. BERKHOFF, A. Impedance analysis of subwoofer systems. Journal of Audio Engineering Society, 1994 Jan./Feb., vol. 42, no. 1/2, p. 4–14. ISSN: 0004-7554
  19. THIELE, A. Loudspeakers in vented boxes. Parts I and II. Journal of Audio Engineering Society, 1971 May/Jun., vol. 19, no. 5, p. 382–392, p. 471–483. ISSN: 0004-7554
  20. SMALL, R. Closed-box loudspeaker systems. Part I: Analysis. Journal of Audio Engineering Society, 1972 Dec., vol. 20, no. 10, p. 798–808. ISSN: 0004-7554
  21. SMALL, R. Vented-box loudspeaker systems. Part I: Small-signal analysis. Journal of Audio Engineering Society, 1973 Jun., vol. 21, no. 5, p. 363–372. ISSN: 0004-7554

Keywords: Audio, class B amplifier, power parameters, estimation, realistic worst-case scenario

A. I. Bautista-Castillo, J. M. Rocha-Perez, A. Diaz-Sanchez, J. Lemus-Lopez, L. A. Sanchez-Gaspariano [references] [full-text] [DOI: 10.13164/re.2017.0263] [Download Citations]
A CMOS Morlet Wavelet Generator

The design and characterization of a CMOS circuit for Morlet wavelet generation is introduced. With the proposed Morlet wavelet circuit, it is possible to reach a~low power consumption, improve standard deviation (σ) control and also have a small form factor. A prototype in a double poly, three metal layers, 0.5 µm CMOS process from MOSIS foundry was carried out in order to verify the functionality of the proposal. However, the design methodology can be extended to different CMOS processes. According to the performance exhibited by the circuit, may be useful in many different signal processing tasks such as nonlinear time-variant systems.

  1. BAYRAM, I., SELESNICK, I. W. A dual-tree rationaldilation complex wavelet transform. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 12, p. 6251–6256. DOI: 10.1109/TSP.2011.2166389
  2. YE, L., HOU, Z. Memory efficient multilevel discrete wavelet transform schemes for jpeg2000. IEEE Transactions on Circuits and Systems for Video Technology, 2015, vol. 25, no. 11, p. 1773–1785. DOI: 10.1109/TCSVT.2015.2400776
  3. MALEKI, A., RAJAEI, B., POURREZA, H. R. Rate-distortion analysis of directional wavelets. IEEE Transactions on Image Processing, 2012, vol. 21, no. 2, p. 588–600. DOI: 10.1109/TIP.2011.2165551
  4. BHATNAGAR, G., WU, Q. M. J., RAMAN, B. A new fractional random wavelet transform for fingerprint security. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2012, vol. 42, no. 1, p. 262–275. DOI: 10.1109/TSMCA.2011.2147307
  5. TAN, M., QIU, A. Spectral Laplace-Beltrami wavelets with applications in medical images. IEEE Transactions on Medical Imaging, 2015, vol. 34, no. 5, p. 1005–1017. DOI: 10.1109/TMI.2014.2363884
  6. HOWLADER, T., CHAUBEY, Y. P. Noise reduction of CDNA microarray images using complex wavelets. IEEE Transactions on Image Processing, 2010, vol. 19, no. 8, p. 1953–1967. DOI: 10.1109/TIP.2010.2045691
  7. YANG, L., TANG, Y. Y. , LU, Y., et al. A fractal dimension and wavelet transform based method for protein sequence similarity analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, vol. 12, no. 2, p. 348–359. DOI: 10.1109/TCBB.2014.2363480
  8. AHMAD, S., BOLIC, M., DAJANI, H., et al. Measurement of heart rate variability using an oscillometric blood pressure monitor. IEEE Transactions on Instrumentation and Measurement, 2010, vol. 59, no. 10, p. 2575–2590. DOI: 10.1109/TIM.2010.2057571
  9. BANERJEE, S., MITRA, M. Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Transactions on Instrumentation and Measurement, 2014, vol. 63, no. 2, p. 326–333. DOI: 10.1109/TIM.2013.2279001
  10. BREGNI, S. Compared accuracy evaluation of estimators of traffic long-range dependence. IEEE Latin America Transactions, 2015, vol. 13, no. 11, p. 3649–3654. DOI: 10.1109/TLA.2015.7387944
  11. LEE, T. Y., SHEN, H. W. Efficient local statistical analysis via integral histograms with discrete wavelet transform. IEEE Transactions on Visualization and Computer Graphics, 2013, vol. 19, no. 12, p. 2693–2702. DOI: 10.1109/TVCG.2013.152
  12. JI, H., YANG, X., LING, H., et al. Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Transactions on Image Processing, 2013, vol. 22, no. 1, p. 286–299. DOI: 10.1109/TIP.2012.2214040
  13. KYRIAKOPOULOS, K., PARISH, D. Applying wavelets for the controlled compression of communication network measurements. IET Communications, 2010, vol. 4, no. 5, p. 507–520. DOI: 10.1049/ietcom.2009.0050
  14. WANG, L., CHEN, T. Multistability of neural networks with mexicanhat-type activation functions. IEEE Transactions on Neural Networks and Learning Systems, 2012, vol. 23, no. 11, p. 1816–1826. DOI: 10.1109/TNNLS.2012.2210732
  15. MINCICA, M., PEPE, D., ZITO, D. CMOS UWB multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, vol. 58, no. 9, p. 570–574. DOI: 10.1109/TCSII.2011.2161175
  16. HWANG, Y.-S., LIU, W.-H., TU, S.-H., et al. New building block: Multiplication-mode current conveyor.IET Circuits, Devices Systems, 2009, vol. 3, no. 1, p. 41–48. DOI: 10.1049/iet-cds:20080156
  17. KUMNGERN, M., JUNNAPIYA, S. A sinusoidal oscillator using translinear current conveyors. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). 2010, p. 740–743. DOI: 10.1109/APCCAS.2010.5774754
  18. PITTALA, C., SRINIVASULU, A. Two simple sinusoidal oscillators using single operational transresistance amplifier. In Proceedings of the 3rd International Conference on Signal Processing, Communication and Networking (ICSCN). 2015, p. 1–5. DOI: 10.1109/ICSCN.2015.7219906
  19. QINCHUN, H. Analog implementation of Morlet wavelet using switched current circuits. In Proceedings of the IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC). 2013, p. 1–4. DOI: 10.1109/ICSPCC.2013.6664016
  20. SANCHEZ-LOPEZ, C., DIAZ-SANCHEZ, A., TLELOCUAUTLE, E. MOS-translinear Morlet wavelets. In Proceedings of the 45th Midwest Symposium on Circuits and Systems (MWSCAS). 2002, vol. 1, p. 1–8. DOI: 10.1109/MWSCAS.2002.1187205
  21. MADRENAS, J., VERLEYSEN, M., THISSEN, P., et al. A CMOS analog circuit for Gaussian functions. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1996, vol. 43, no. 1, p. 70–74. DOI: 10.1109/82.481479
  22. SRIVASTAVA, R., SINGH, U., GUPTA, M. Analog circuits for Gaussian function with improved performance. In Proceedings of the World Congress on Information and Communication Technologies (WICT). 2011, p. 934–938. DOI: 10.1109/WICT.2011.6141373
  23. RODRIGUEZ-VILLEGAS, E. Low Power and Low Voltage Circuit Design with the FGMOS Transistor. 1st ed. IET, 2006. ISBN: 978-0- 86341-617-0
  24. ENZ, C. C., VITTOZ, E. A. Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design. 1st ed. Wiley, 2006. ISBN: 978-0-470-85541-6
  25. WANG, A., CALHOUN, B. H., CHANDRAKASAN, A. P. Subthreshold Design for Ultra Low-Power Systems. 1st ed. Springer, 2006. ISBN: 978-0-387-33515-5
  26. HAN, G., SANCHEZ-SINENCIO, E. CMOS transconductance multipliers: A tutorial. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1998, vol. 45, no. 12, p. 1550– 1563. DOI: 10.1109/82.746667
  27. LI, H., GANG, H., ZHANG, G., et al. Log-domain implementation of analog wavelet filters. In Proceedings of the International Conference on Intelligent Control and Information Processing. 2010, p. 187–190. DOI: 10.1109/ICICIP.2010.5565318
  28. CHOI, J., SHEU, B. J., CHANG, J. C. F. A Gaussian synapse circuit for analog VLSI neural networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 1994, vol. 2, no. 1, p. 129–133. DOI: 10.1109/92.273156
  29. CHURCHER, S., MURRAY, A. F., REECKIE, H. M. Programmable analogue VLSI for radial basis function networks. Electronics Letters, 1993, vol. 29, no. 18, p. 1603–1605. DOI: 10.1049/el:19931068
  30. SAATLO, A. N., OZOGUZ, S. CMOS implementation of scalable Morlet wavelet for application in signal processing. In Proceedings of the 38th International Conference on Telecommunications and Signal Processing (TSP). 2015, p. 1–4. DOI: 10.1109/TSP.2015.7296375

Keywords: CMOS, wavelet, Morlet, analog multiplier, weak-inversion

M. Hayati, F. Shama [references] [full-text] [DOI: 10.13164/re.2017.0000] [Download Citations]
A Compact Lowpass Filter with Ultra Wide Stopband using Stepped Impedance Resonator

In this paper, a compact asymmetric-shaped microstrip lowpass filter (LPF) using a stepped impedance resonator is presented. An ultra wide stopband with high attenuation in the stopband region, within very small circuit area is achieved for the proposed filter using novel asymmetric structures for resonator and suppressor. The transmission zeros of the resonators can be adjusted as a function of high impedance and low impedance microstrip lines, and due to the asymmetric structure, the proposed suppressing cell can be located within the resonator structure without occupying a large area. For verification, a 2.92 GHz LPF is designed and fabricated. The experimental results, in comparison with the other LPFs, show that the proposed LPF has significant advantages in the stopband characteristics with acceptable sharp roll off. The measured passband insertion loss is below 0.1 dB, and the rejection band over -20 dB is obtained from 3.42 GHz to 36.2 GHz. The size of filter corresponds to compact electrical size of 0.156 λg × 0.128 λg, where λg is the guided wavelength at 2.92 GHz. Also, the maximum variation of the group delay in 80 percent of the passband region is only about 0.2 ns.

  1. YANG, J., WU, W. Compact elliptic-function low-pass filter using defected ground structure. Microwave and Wireless Components Letters, 2008, vol. 18, no. 9, p. 578–580. DOI: 10.1109/LMWC.2008.2002447
  2. LI, L., LI, Z. F., MAO, J. F. Compact lowpass filters with sharp and expanded stopband using stepped impedance hairpin units. Microwave and Wireless Components Letters, 2010, vol. 20, no. 6, p. 310–312. DOI: 10.1109/LMWC.2010.2047457
  3. HAYATI, M., SHAMA, F. Compact microstrip low-pass filter with wide stopband using symmetrical U-shaped resonator. IEICE Electronics Express, 2012, vol. 9, no. 3, p. 127–132. DOI: 10.1587/elex.9.127
  4. REZAEI KHEZELI, M., HAYATI, M., LOTFI, A. Compact wide stopband lowpass filter using spiral loaded tapered compact micro-strip resonator cell. International Journal of Electronics, 2014, vol. 101, no. 3, p. 375–382. DOI: 10.1080/00207217.2013.780304
  5. ZHANG, C. F. Compact and wide stopband lowpass filter with novel comb CMRC. International Journal of Electronics, 2009, vol. 96, no. 7, p. 749–754. DOI: 10.1080/00207210902838610
  6. CAO, H., YING, W., LI, H., YANG, S. Compact lowpass filter with wide stopband using novel windmill resonator. Journal of Electromagnetic Waves and Applications, 2012, vol. 26, no. 17-18, p. 2234–2241. DOI: 10.1080/09205071.2012.732024
  7. HSIEH, L. H., CHANG, K. Compact elliptic-function low-pass filters using microstrip stepped-impedance hairpin resonators. Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 1, p. 193–199. DOI: 10.1109/TMTT.2002.806901
  8. TU, W. H., CHANG, K. Compact microstrip low-pass filter with sharp rejection. Microwave and Wireless Components Letters, 2005, vol. 15, no. 6, p. 404–406. DOI: 10.1109/LMWC.2005.850479
  9. HE, Q., LIU, C. A novel low-pass filter with an embedded bandstop structure for improved stop-band characteristics. Microwave and Wireless Components Letters, 2009, vol. 19, no. 10, p. 629 to 631. DOI: 10.1109/LMWC.2009.2029738
  10. LI, J. L., QU, S. W., XUE, Q. Compact microstrip lowpass filter with sharp roll-off and wide stop-band. Electronics Letters, 2009, vol. 45, no. 2, p.110–111. DOI: 10.1049/el:20093246
  11. HAYATI, M., LOTFI, A. Elliptic-function lowpass filter with sharp cutoff frequency using slit-loaded tapered compact microstrip resonator cell. Electronics Letters, 2010, vol. 46, no. 2, p. 143–144. DOI: 10.1049/el.2010.3136
  12. YANG, M., XU, J., ZHAO, Q., PENG, L., et al. Compact broadstopband lowpass filters using sirs-loaded circular hairpin resonators. Progress In Electromagnetics Research, 2010, vol. 102, p. 95–106. DOI: 10.2528/PIER09120901
  13. VELIDI, V. K., SANYAL, S. Sharp roll-off lowpass filter with wide stopband using stub-loaded coupled-line hairpin unit. Microwave and Wireless Components Letters, 2011, vol. 21, no. 6, p. 301–303. DOI: 10.1109/LMWC.2011.2132120
  14. WANG, J., CUI, H., ZHANG, G. Design of compact microstrip lowpass filter with ultra-wide stopband. Electronics Letters, 2012, vol. 48, no. 14, p. 854–856. DOI: 10.1049/el.2012.1362
  15. WANG, J., XU, L. J., ZHAO, S., GUO, Y. X., et al. Compact quasi-elliptic microstrip lowpass filter with wide stopband. Electronics Letters, 2010, vol. 46, no. 20, p. 1384–1385. DOI: 10.1049/el.2010.1569
  16. WANG, J. P., GE, L., GUO, Y. X., WU, W. Miniaturised microstrip lowpass filter with broad stopband and sharp roll-off. Electronics Letters, 2010, vol. 46, no. 8, p. 573–575. DOI: 10.1049/el.2010.0329
  17. HAYATI, M., SHAMA, F., ABBASI, H. Compact microstrip lowpass filter with wide stopband and sharp roll-off using tapered resonator. International Journal of Electronics, 2013, vol. 100, no. 12, p. 1751–1759. DOI: 10.1080/00207217.2013.769180
  18. FOOKS, E. H., JAKAREVICIUS, R. A. Microwave Engineering using Microstrip Circuits. Prentice Hall of Australia, 1990. ISBN- 13: 978-0136916505
  19. DU, Z., GONG, K., FU, J. S., GAO, B., et al. Influence of a metallic enclosure on the S-parameters of microstrip photonic bandgap structures. IEEE Transactions on Electromagnetic Compatibility, 2002, vol. 44, no. 2, p. 324–328. DOI: 10.1109/TEMC.2002.1003397
  20. HAYATI, M., MEMARI, H., ABBASI, H. Compact microstrip lowpass filter with wide stopband and sharp roll-off using triple radial stubs resonator. Applied Computational Electromagnetics Society Journal (ACES), 2013, vol. 28, no. 6, p. 513–520.
  21. HAYATI, M., VAZIRI, H. S. Wide stop-band microstrip lowpass filter with sharp roll-off using hairpin resonators. Applied Computational Electromagnetics Society Journal (ACES), 2013, vol. 28, no. 10, p. 968–975.
  22. SHUAI, L., XU, J., XU, Z. Compact lowpass filter with wide stopband using stepped impedance hairpin units. Electronics Letters, 2014, vol. 51, no. 1, p. 67–69. DOI: 10.1049/el.2014.3673
  23. CHEN, X., ZHANG, L., PENG, Y., LENG, Y., et al. Compact lowpass filter with wide stopband bandwidth. Microwave and Optical Technology Letters, 2015, vol. 57, no. 2, p. 367–371. DOI: 10.1002/mop.28853

Keywords: Lowpass filter, microstrip, stepped impedance resonator, ultra wide stopband

H.S. Lu, W.W. Wu, J.J. Huang, X.F. Zhang, N.C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.0275] [Download Citations]
Compact Dual-mode Microstrip Bandpass Filter Based on Greek-cross Fractal Resonator

A geometrically symmetrical fractal structure is presented in this paper to provide an alternative approach for the miniaturization design of microstrip bandpass filters (BPFs). The generation process of the geometric geometry is described in detail, and a new fractal resonator called Greek-cross fractal resonator (GCFR) is produced by etching the proposed fractal configuration on the surface of the conventional dual-mode meandered loop resonator. Four microstrip BPFs based on the first four iterations GCFR are modeled and simulated. The simulation results show that with the increase of the number of iterations, the central frequency of the BPF is gradually moving towards the low frequency, which indicates that the proposed fractal resonator has the characteristic of miniaturization. In addition, the parameter optimization and surface current density distribution are also analyzed in order to better understand the performance of the BPF. Finally, a compact dual-mode BPF based on the third iteration GCFR is designed, fabricated and measured. The measurement results are in good agreement with the simulation ones.

  1. NAGHAR, A., AGHZOUT, O., ALEJOS, A.V., et al. Design of compact multiband bandpass filter with suppression of second harmonic spurious by coupling gap reduction. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 14, p. 1813–1828. DOI: 10.1080/09205071.2015.1043029
  2. WOLFF, I. Microstrip bandpass filter using degenerate modes of a microstrip ring resonator. Electronic Letters, 1972, vol. 8, no. 12, p. 302–303. DOI: 10.1049/el:19720223
  3. WANG, J.-P., WANG, L., GUO, Y.-X., et al. Miniaturized dual mode bandpass filter with controllable harmonic response for dual band applications. Journal of Electromagnetic Waves and Applications, 2009, vol. 23, no. p. 1525–1533. DOI: 10.1163/156939309789476482
  4. ZHU, L., WECOWSKI, P.-M., WU, K. New planar dual-mode filter using cross-slotted patch resonator for simultaneous size and loss reduction. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 5, p. 650–654. DOI: 10.1109/22.763171
  5. WU, S., WENG, M.-H., JHONG, S.-B., et al. A novel crossed slotted patch dual-mode bandpass filter with two transmission zeros. Microwave and Optical Technology Letters, 2008, vol. 50, no. 3, p. 741–744. DOI: 10.1002/mop.23219
  6. ZHANG, R., ZHU, L., LUO, S. Dual-mode dual-band bandpass filter using a single slotted circular patch resonator. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 5, p. 233–235. DOI: 10.1109/lmwc.2012.2192419
  7. SU, Y.-K., CHEN, J.-R., WENG, M.-H., et al. Design of a miniature and harmonic control patch dual-mode bandpass filter with transmission zeros. Microwave and Optical Technology Letters, 2008, vol. 50, no. 8, p. 2161–2163. DOI: 10.1002/mop.23604
  8. FU, S., WU, B., CHEN, J., et al. Novel second-order dual-mode dual-band filters using capacitance loaded square loop resonator. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 3, p. 477–483. DOI: 10.1109/tmtt.2011.2181859
  9. KARPUZ, C., GORUR, A.K., SAHIN, E. Dual-mode dual-band microstrip bandpass filter with controllable center frequency. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 639–642. DOI: 10.1002/mop.28914
  10. MANDELBROT, B. B. The Fractal Geometry of Nature. 1st ed., New York (USA): W. H. Freeman and Company, 1983. ISBN: 0716711869
  11. SONG, C.T.P., HALL, P.S., GHAFOURI-SHIRAZ, H., WAKE, D. Sierpinski monopole antenna with controlled band spacing and input impedance. Electronic Letters, 1999, vol. 36, no. 13, p. 1036 to 1037. DOI: 10.1049/el:19990748
  12. PUENTE, C., ANGUERA, J., BORJA, C., et al. Fractal-shaped antennas and their application to GSM 900/1800. The Journal of the Institution of British Telecommunication Engineers, 2001, vol. 2, no. 3, p. 92–95.
  13. ANGUERA, J., PUENTE, C., BORJA, C., et al. Fractal-shaped antennas: A review. Encyclopedia of RF and Microwave Engineering, 2005, vol. 2, p. 1620–1635. DOI: 10.1002/0471654507.eme128
  14. ANGUERA, J., DANIEL, J. P., BORJA, C., et al. Metallized foams for antenna design: application to fractal-shaped Sierpinskicarpet monopole. Progress in Electromagnetics Research, 2010, vol. 104, p. 239–251. DOI: 10.2528/pier10032003
  15. WERNER, D. H., LEE, D. Design of dual-polarized multiband frequency selective surfaces using fractal elements. Electronic Letters, 2000, vol. 36, no. 6, p. 487–488. DOI: 10.1049/el:20000457
  16. NEETHU, S., SANTHOSH KUMAR, S. Microstrip bandpass filter using fractal based hexagonal loop resonator. In 2014 Fourth International Conference on Advances in Computing and Communications (ICACC 2014). Kochi (India), 2014, p. 319–322. DOI: 10.1109/ICACC.2014.81
  17. ORIZI, H. SOLEIMANI, H. Miniaturisation of the triangular patch antenna by the novel dual-reverse-arrow fractal. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 7, p. 627–633. DOI: 10.1049/iet-map.2014.0462
  18. YORDANOV, O. I., ANGELOV, I., KONOTOP, V. V., et al. Prospects of fractal filters and reflectors. In 1991 Seventh International Conference on (IEE) Antennas and Propagation (ICAP 91). New York (USA), 1991, p. 698–700.
  19. AHMED, E. S. Dual-mode dual-band microstrip bandpass filter based on fourth iteration T-square fractal and shorting pin. Radioengineering, 2012, vol. 21, no. 2, p. 617–623.
  20. LIU, J.-C., CHANG, C. C., KUEI, C.-P., et al. Dual-mode wideband and dual-band resonators with Minkowski-island-based fractal patch for WLAN systems. In Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC 2011). Harbin (Heilongjiang, China), 2011, p. 583–585. DOI: 10.1109/CSQRWC.2011.6037017
  21. ESA, M., THAYAPARAN, D., ABDULLAH, M. S., et al. Miniaturized microwave modufied Koch fractal hairpin filter with harmonic suppression. In 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE 2010). Port Dickson (Negeri Sembilan, Malaysia), Malaysia, 2010, p. 1-4. DOI: 10.1109/APACE.2010.5719750
  22. de DIOS-RUIZ, J., MARTINEZ-VIVIENTE, F. L., HINOJOSA, J. Optimisation of chirped and tapered microstrip Koch fractal electromagnetic bandgap structures for improved low-pass filter design. IET Microwaves, Antennas and Propagation, 2015, vol. 9, no. 9, p. 889–897. DOI: 10.1049/iet-map.2014.0453
  23. de DIOS-RUIZ, J., MARTINEZ-VIVIENTE, F. L., ALVAREZMELCON, A., et al. Substrate integrated waveguide (SIW) with Koch fractal electromagnetic bandgap structures (KFEBG) for bandpass filter design. IEEE Microwave and Wireless Components Letters, 2016, vol. 25, no. 3, p. 160–162. DOI: 10.1109/LMWC.2015.2390537
  24. GHATAK, R., PAL, M., GOSWAMI, C., et al. Moore curve fractal-shaped miniaturized complementary spiral resonator. Microwave and Optical Technology Letters, 2013, vol. 55, no. 8, p. 1950–1954. DOI: 10.1002/mop.27682
  25. MEZAAL, Y. S., ALI, J. K., EYYUBOGLU, H. T. Miniaturised microstrip bandpass filters based on Moore fractal geometry. International Journal of Electronics, 2015, vol. 102, no. 8, p. 1306–1319. DOI: 10.1080/00207217.2014.971351
  26. JANKOVIC, N., GESCHKE, R., CRNOJEVIC-BENGIN, V. Compact tri-band bandpass and bandstop filters based on HilbertFork resonators. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 6, p. 282–284. DOI: 10.1109/LMWC.2013.2258005
  27. SONI, V., KUMAR, M. New kinds of fractal iterated and miniaturized narrowband bandpass filters for wireless applications. In 2014 International Conference on Advances in Computing Communications and Informatics (ICACCI 2014). Delhi (India), 2014, p. 2786–2792. DOI: 10.1109/ICACCI.2014.6968632
  28. CRNOJEVIC-BENGIN, V. Advances in Multi-Band Microstrip Filters. 1st ed. United Kingdom: Cambridge University Press, 2015. ISBN: 978-1-107-08197-0
  29. FALCONER, K. Fractal Geometry: Mathematical Foundations and Applications. 1st ed. Chichester (UK): John Wiley and Sons Ltd., ISBN: 2003. 0-470-84861-8
  30. PEITGEN, H.-O., JURGENS, H., SAUPE, D. Chaos and Fractals. 1st ed. New York (USA): Springer-Verlag, 2004. ISBN: 978-1- 4684-9396-2
  31. YE, C.S., SU, Y.K., WENG, M.H., et al. Resonant properties of the Sierpinski-based fractal resonator and its application on lowloss miniaturized dual-mode bandpass filter. Microwave and Optical Technology Letters, 2009, vol. 51, no. 5, p. 1358–1361. DOI: 10.1002/mop.24321
  32. HSIEH, L.-H., CHANG, K. Dual-mode quasi-elliptic-function bandpass filters using ring resonators with enhanced-coupling tuning stubs. IEEE Transaction on Microwave Theory and Techniques, 2002, vol. 50, no. 5, p. 1340–1345. DOI: 10.1109/22.999148
  33. GORUR, A. Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 2, p. 671–677. DOI: 10.1109/TMTT.2003.822033
  34. MANSOUR, R. R. Design of superconductive multiplexers using single-mode and dual-mode filters. IEEE Transactions on Microwave Theory and Techniques, 1994, vol. 42, no. 7, p. 1411 to 1418. DOI: 10.1109/22.299738
  35. HONG, J.-S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. 1st ed. New York (USA): John Wiley and Sons Ltd., 2001. ISBN: 0-471-38877-7

Keywords: Dual-mode, miniaturization, bandpass filter (BPF), fractal geometry, Greek-cross

P. Montezuma, R. Dinis, S. Ribeiro, M. Beko [references] [full-text] [DOI: 10.13164/re.2017.0285] [Download Citations]
Two Methods for Estimation of Amplifier Imbalances in Multi-Amplifier Transmission Structures

Energy efficient power amplification of multilevel constellations can be achieved by an amplification structure based on the constellation's as a sum of polar components, such as $M$ BPSK (Bi-Phase Shift Keying), that are separately amplified. By doing this one can define highly efficient transmitters based on multiple amplifiers. However, amplifiers' imbalances might lead to substantial constellation distortion since phase and gain imbalances cause rotations and translations of the symbols associated to each branch that are combined to generate the resulting constellation. Therefore, it becomes crucial the knowledge of the amplifiers' imbalances to overcome this problem at the receiver side. For that we propose and evaluate efficient two new methods for estimating amplifier imbalances. Simulation results demonstrate that the good performance attainable by the proposed estimate algorithms can be assured without significant increase in system and computational complexity.

  1. FOSCHINI, G., GITLIN, R., WEINSTEIN, S. Optimization of two dimensional signal constellations in the presence of Gaussian noise. IEEE Transactions on Communications, 1974, vol. 22, no. 1, p. 28–38. DOI: 10.1109/TCOM.1974.1092061
  2. BEKO, M., DINIS, R. Designing good multi-dimensional constellations. IEEE Wireless Communications Letters, 2012, vol. 1, no. 3. DOI: 10.1109/WCL.2012.032312.120203
  3. KEE, S., AOKI, I., HAJIMIRI, A., et al. The class-E/F family of ZVS switching amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 6, p. 1677–1690. DOI: 10.1109/TMTT.2003.812564
  4. ASTUCIA, V., MONTEZUMA, P., DINIS, R., et al. On the use of multiple grossly nonlinear amplifiers for higly efficient linear ampli- fication of multilevel constellations. In Proceedings of the IEEE 78th Vehicular Technology Conference (VTC Fall). Las Vegas, NV (USA), 2013, p. 1–5. DOI: 10.1109/VTCFall.2013.6692320
  5. DINIS, R., MONTEZUMA, P., SOUTO, N., et al. Iterative frequencydomain equalization for general constellations. In Proceedings of the 33rd IEEE Sarnoff Symposium. Princeton, NJ (USA), 2010, p. 1–5. DOI: 10.1109/SARNOF.2010.5469792
  6. AMOROSO, F., KIVETT, J. Simplified msk signalling technique. IEEE Transactions on Communications, 1977, vol. 25, no. 4. DOI: 10.1109/TCOM.1977.1093835
  7. SVEDEK, T., HERCEG, M., MATIC, T. A simple signal shaper for GMSK/GFSK and MSK modulator based on sigma-delta look-up table. Radioengineering, 2009, vol. 18, no. 2. ISSN: 1805-9600
  8. MONTEZUMA, P., MARQUES, D., ASTUCIA, V., et al. Robust frequency-domain receivers for a transmission technique with directivity at the constellation level. In Proceedings of the IEEE 80th Vehicular Technology Conference (VTC Fall). Vabcouver (Canada), 2014, p. 1–7. DOI: 10.1109/VTCFall.2014.6966163
  9. SOULIOTIS, G., LAOUDIAS, C., TERZOPOULOS, N. An offset cancelation technique for latch type sense amplifiers. Radioengineering, 2014, vol. 23, no. 4. ISSN: 1805-9600
  10. WONG, K.-L. J., YANG, C.-K. K. Offset compensation in comparators with minimum input-referred supply noise. IEEE Journal of Solid-State Circuits, 2004, vol. 39, no. 5, p. 837–840. DOI: 10.1109/JSSC.2004.826317
  11. KHANGHAH, M. M., SADEGHIPOUR, K. D. A 0.5 V offset cancelled latch comparator in standard 0.18 µm CMOS process. Analog Integrated Circuits and Signal Processing, 2014, vol. 79, no. 1, p. 161–169. DOI: 10.1007/s10470-013-0239-z
  12. CHEN, J., LI, G., CHENG, Y. Low-power offset-cancellation switched-capacitor correlated double sampling bandgap. Electronics Letters, 2012, vol. 48, no. 14, p. 821–822. DOI: 10.1049/el.2012.0857
  13. KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ (USA): Prentice-Hall, 1993.

Keywords: Multilevel constellations, multi-amplifier transmitters, estimation

E.Klejmova, J. Pomenkova [references] [full-text] [DOI: 10.13164/re.2017.0291] [Download Citations]
Identification of a Time-Varying Curve in Spectrogram

In this study a process of acquiring a trend of significant spectral coefficients of Photonic Doppler Velocimetry (PDV) data is proposed. The novelty of the paper is the design of a methodology which will allow to find a specific curve describing data of aluminium metal plate acceleration by detonation products of brisant high explosive obtained using PDV in time on the basis of frequency response. The paper combine short time Fourier Transform (STFT), time-frequency varying autoregressive process (TFAR) to specify the description of detonation products from both time and frequency perspectives. We also investigate the identification of a curve describing such behavior of frequency response on time in processed spectrogram.

  1. GUPTA, B. R., KUMAR V. Time-frequency analysis of asymmetric triaxial galaxy model including effect of spherical dark halo component. International Journal of Astronomy and Astrophysics, 2015, vol. 5, no. 2, p. 106–115. DOI: 10.4236/ijaa.2015.52014
  2. VIDA, K., OLAH, K., SZABO, R. Looking for activity cycles in latetype Kepler stars using time-frequency analysis. Monthly Notices of the Royal Astronomical Society, 2014, vol. 441, no. 3, p. 2744–2753. DOI: 10.1093/mnras/stu760
  3. DING, H., CHAO, B. F. Detecting harmonic signals in a noisy time-series: The z-domain autoregressive (AR-z) spectrum. Geophysical Journal International, 2015, vol. 201, no. 3, p. 1287–1296. DOI: 10.1093/gji/ggv077
  4. OROVIĆ, I., STANKOVIĆ, S. A class of highly concentrated timefrequency distributions based on the ambiguity domain representation and complex-lag moment. EURASIP Journal on Advances in Signal Processing, 2009, vol. 2009, p. 1–9. DOI: 10.1155/2009/935314
  5. LIU, S., WANG, D., LI, T., et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform. Review of Scientific Instruments, 2011, vol. 82, no. 2, p. 1–4. DOI: 10.1063/1.3534011
  6. CANAL, M. R. Comparison of wavelet and short time Fourier transform methods in the analysis of EMG signals. Journal of Medical Systems, 2010, vol. 34, no. 1, p. 91–94. DOI: 10.1007/s10916-008- 9219-8
  7. XU, A., HAYKIN, S., RACINE, R. J. Multiple window timefrequency distribution and coherence of EEG using Slepian sequences and Hermite function. IEEE Transactions of Biomedical Engineering, 1999, vol. 46, no. 7, p. 861–866. DOI: 10.1109/10.771197
  8. STANKOVIĆ, S., STANKOVIĆ, L. An architecture for the realization of a system for time-frequency signal analysis. IEEE Transactions on Circuits and Systems, 1997, vol. 44, no. 7, p. 600–604. DOI:10.1109/82.598433
  9. PROAKIS, J. G., RADER, C. M., LING, F. L., et al. Algorithms for Statistical Signal Processing. Prentice Hall, 2002. ISBN: 0-13- 062219-2
  10. WALNUT, D. F. An Introduction to Wavelet Analysis. Springer Science & Business Media, 2013. ISBN: 978-1-4612-0001-7
  11. SEBESTA, V., MARSALEK, R., POMENKOVA, J. The modified empirical mode decomposition method for analysing the cyclical behavior of time series. In Proceedings of the 27th European Conference on Modelling and Simulation (ECMS). Aalesund (Norway), 2013, p. 288–292. DOI: 10.7148/2013-0288
  12. HUANG, L., KEMAO, Q., PAN, B., et al. Comparison of Fourier transform, windowed Fourier transform, and wavelet transform methods for phase extraction from a single fringe pattern in fringe projection profilometry. Optics and Lasers in Engineering, 2010, vol. 48, no. 2, p. 141–148. DOI: 10.1016/j.optlaseng.2009.04.003
  13. ZHONG, J., HUANG, Y. Time-frequency representation based on an adaptive short-time Fourier transform. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 10, p. 5118–5128. DOI: 10.1109/TSP.2010.2053028
  14. JIANG, W., MAHADEVAN, S. Wavelet spectrum analysis approach to model validation of dynamic systems. Mechanical Systems and Signal Processing, 2011, vol. 25, no. 2, p. 575–590. DOI: 10.1016/j.ymssp.2010.05.012
  15. WEAR, K. A., WAGNER, R. F., GARRA, B. S. A comparison of autoregressive spectral estimation algorithms and order determination methods in ultrasonic tissue characterization. IEEE Transactions on Ultrasonic, Ferroelectrics and Frequency Control, 1995, vol. 42, no. 4, p. 709–716. DOI: 10.1109/58.393113
  16. BOASHASH, B., RISTIC, B. Polynomial time-frequency distributions and timevarying higher order spectra: Applications to analysis of multicomponent FM signals and to treatment of multiplicative noise. Signal Processing, 1998, vol. 67, no. 1, p. 1–23. DOI: 10.1016/S0165-1684(98)00018-8
  17. CHOI, H., WILLIAMS, W. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics and Speech, 1989, vol. 37, no. 6, p. 862–871. DOI: 10.1109/ASSP.1989.28057
  18. ABRAMOVICH, F., BENJAMINI, Y., DONOHO, D. L., et al. Special invited lecture: Adapting to unknown sparsity by controlling the false discovery rate. The Annals of Statistics, 2006, vol. 34, no. 2, p. 584–653. DOI: 10.1214/009053606000000074
  19. KLEJMOVA, E. Comparison of parametric and non parametric methods for signal time-frequency description. In Proceedings of the 25th International Conference Radioelektronika 2015. Pardubice (Czech Republic), 2015, p. 272–275. DOI: 10.1109/RADIOELEK.2015.7129030
  20. LI, H. Z., MARCHANT, B. P., WEBSTER, R. Modelling the electrical conductivity of soil in the Yangtze delta in three dimensions. Geoderma, 2016, vol. 269, p. 119–125. DOI: 10.1016/j.geoderma.2016.01.028
  21. FREDETTE, L., DREYER, J. T., ROOK, T. E., et al. Harmonic amplitude dependent dynamic stiffness of hydraulic bushings: Alternate nonlinear models and experimental validation. Mechanical Systems and Signal Processing, 2016, vol. 75, p. 589–606. DOI: 10.1016/j.ymssp.2015.11.017
  22. HARDING, L. W., et al. Long-term trends of nutrients and phytoplankton in Chesapeake Bay. Estuaries and Coasts, 2016, vol. 39, no. 3, p. 664-681. DOI: 10.1007/s12237-015-0023-7
  23. MORLEY, J. C. The two interpretations of the Beveridge-Nelson decomposition. Macroeconomic Dynamics, 2011, vol. 15, no. 3, p. 419–439. DOI: 10.1017/S1365100510000118
  24. LIMA, R. N., et al. Trend modelling with artificial neural networks. Case study: Operating zones identification for higher SO 3 incorporation in cement clinker. Engineering Applications of Artificial Intelligence, 2016, vol. 54, p. 17–25. DOI: 10.1016/j.engappai.2016.05.002
  25. POMENKOVA, J., KLEJMOVA, E. Optimization of time-frequency curve description via kernel smoothing. In Proceedings of the 23rd International Conference on Systems, Signals and Image Processing (IWSSIP). Bratislava (Slovakia), 2016, p. 1–4. DOI: 10.1109/IWSSIP.2016.7502757
  26. PACHMAN, J., KUNZEL, M., NEMEC, O., et al. Characterization of Al plate acceleration by low power Photonic Doppler Velocimetry (PDV). In Proceedings of the 40th International Pyrotechnics Society Seminar 2014. Colorado Springs (USA), 2014, p. 456–460. ISBN: 978-0-9851037-3-6
  27. KUNZEL, M., NEMEC, O., PACHMAN, J. Optimization of wall velocity measurement using Photonic Doppler Velocimetry. Central European Journal of Energetic Materials, 2015, vol. 12, no. 1, p. 89– 97. ISSN: 2353-1843
  28. DOLAN, D. H. Accuracy and precision in photonic Doppler velocimetry. Review of Scientific Instruments, 2010, vol. 81, no. 5, p. 1–7. DOI: 10.1063/1.3429257
  29. HOLTKAMP, D. B. Survey of optical velocimetry experimentsapplications of PDV, a heterodyne velocimeter. In Proceedings of the International conference on megagauss magnetic field generation and related topics. Santa Fe (USA), 2006, p. 119–128. DOI: 10.1109/MEGAGUSS.2006.4530668
  30. WAND, M. P., JONES, M. S. Kernel Smoothing. 1st ed. London (UK): Chapman & Hall, 1995. ISBN: 9781482216127
  31. POMENKOVA, J. Remarks to optimum kernels and boundary optimum kernels. Applications of Mathematics, 2008, vol. 53, no. 4, p. 305–317. DOI: 10.1007/s10492-008-0028-7
  32. DRODGE, B. Some Comments on Cross-Validation. Physica-Verlag HD, 1996. ISBN: 978-3-7908-0930-5
  33. BROERSEN, P. M. The quality of lagged products and autoregressive Yule-Walker models as autocorrelation estimates. IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 11, p. 3867– 3873. DOI: 10.1109/TIM.2009.2021206
  34. PORAT, B., FRIEDLANDER, B. Asymptotic analysis of the bias of the modified Yule-Walker estimator. Automatic Control, IEEE Transactions on, 1985, vol. 30, no. 8, p. 765-767. DOI:10.1109/TAC.1985.1104047
  35. JANSEN, M. Generalized Cross Validation in variable selection with and without shrinkage. Journal of statistical planning and inference, 2015, vol. 159, p. 90–104. DOI: 10.1016/j.jspi.2014.10.007

Keywords: Short time Fourier transform, AR process, kernel analysis, photonic Doppler velocimetry, trend estimation

K. B. Cui, W. W. Wu, X. Chen, J. J. Huang, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2017.0299] [Download Citations]
2-D DOA Estimation of LFM Signals Based on Dechirping Algorithm and Uniform Circle Array

Based on Dechirping algorithm and uniform circle array(UCA), a new 2-D direction of arrival (DOA) estimation algorithm of linear frequency modulation (LFM) signals is proposed in this paper. The algorithm uses the thought of Dechirping and regards the signal to be estimated which is received by the reference sensor as the reference signal and proceeds the difference frequency treatment with the signal received by each sensor. So the signal to be estimated becomes a single-frequency signal in each sensor. Then we transform the single-frequency signal to an isolated impulse through Fourier transform (FFT) and construct a new array data model based on the prominent parts of the impulse. Finally, we respectively use multiple signal classification (MUSIC) algorithm and rotational invariance technique (ESPRIT) algorithm to realize 2-D DOA estimation of LFM signals. The simulation results verify the effectiveness of the algorithm proposed.

  1. XIAO, W., XIAO, X. C., TAI, H. M. Rank-1 ambiguity DOA estimation of circular array with fewer sensors. In Proceedings of the 45th IEEE Midwest Symposium on Circuits and Systems (MWSCAS-2002). Tulsa (USA), 2002, p. III-29 – III-32. DOI: 10.1109/MWSCAS.2002.1186962. ISBN: 0-7803-7523-8
  2. DU, W., SU, D. L., XIE, S. G., et al. A fast calculation method for the receiving mutual impedances of uniform circular arrays. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 893–896. DOI: 10.1109/LAWP.2012.2211329
  3. WANG, P., LI, Y. H., VUCETIC, B. Millimeter wave communications with symmetric uniform circular antenna arrays. IEEE Communications Letters, 2014, vol. 18, no. 8, p. 1307–1310. DOI: 10.1109/LCOMM.2014.2332334
  4. DORSEY, W. M., COLEMAN, J. O., PICKLES, W. R. Uniform circular array pattern synthesis using second-order cone programming. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 8, p. 723–727. DOI: 10.1049/iet-map.2014.0418
  5. JACKSON, B. R., RAJAN, S., LIAO, B. J., et al. Direction of arrival estimation using directive antennas in uniform circular arrays. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 736–747. DOI: 10.1109/TAP.2014.2384044
  6. WANG, M., MA, X. C., YAN, S. F., et al. An auto calibration algorithm for uniform circular array with unknown mutual coupling. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 12–15. DOI: 10.1109/LAWP.2015.2425423
  7. PAN, Y. J., ZHANG, X. F., XIE, S. Y., et al. An ultra-fast DOA estimator with circular array interferometer using lookup table method. Radioengineering, 2015, vol. 24, no. 8, p. 850–856. DOI: 10.13164/re.2015.0850
  8. JAIN, V., BLAIR, W. D. Filter design for steady-state tracking of maneuvering targets with LFM waveforms. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 2, p. 765–773. DOI: 10.1109/TAES.2009.5089558
  9. WANG, P., LI, H. B., DJUROVIC, P., et al. Integrated cubic phase function for linear FM signal analysis. IEEE Transactions on Aerospace and Electronic Systems, 2010, vol. 46, no. 3, p. 963–977. DOI: 10.1109/TAES.2010.5545167
  10. TAO, R., ZHANG, N., WANG, Y. Analyzing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar. IET Radar, Sonar and Navigation, 2011, vol. 5, no. 1, p. 12–22. DOI: 10.1049/ietrsn.2009.0265
  11. NGUYEN, V. K., TURLEY, M. D. E. Bandwidth extrapolation of LFM signals for narrowband radar systems. In International Conference on Radar. Adelaide (SA), 2013, vol. 51 no. 1, p. 702–712. DOI: 10.1109/RADAR.2013.6651975
  12. SU, J., TAO, H. H., RAO, X., et al. Coherently integrated cubic phase function for multiple LFM signals analysis. Electronics Letters, 2015, vol. 51 no. 5, p. 411–413. DOI: 10.1049/el.2014.4164
  13. YUAN, X. Direction-finding wideband linear FM sources with triangular arrays. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 3, p. 2416–2425. DOI: 10.1109/TAES.2012.6237600
  14. LAGHMARDI, N., HARABI, F., MEKNESSI, H., et al. A spacetime extended music estimation algorithm for wide band signals. Arabian Journal for Science and Engineering, 2013, vol. 38, no. 3, p. 661–667. DOI: 10.1007/s13369-012-0328-9
  15. SHA, Z. C., LIU, Z. M., HUANG, Z. T., et al. Covariance-based direction-of-arrival estimation of wideband coherent chirp signals via sparse representation. Sensors, 2013, vol. 13, no. 9, p. 11490–11497. DOI: 10.3390/s130911490
  16. HE, Z. Q., SHI, Z. P., HUANG, L., et al. Underdetermined DOA estimation for wideband signals using robust sparse covariance fitting. IEEE Signal Processing Letters, 2015, vol. 22, no. 4, p. 435–439. DOI: 10.1109/LSP.2014.2358084
  17. PAN, Y. J., TAI, N., YUAN, N. C. Wideband DOA estimation via sparse Bayesian learning over a Khatri-Rao dictionary. Radioengineering, 2015, vol. 24, no. 2, p. 552–557. DOI: 10.13164/re.2015.0552
  18. CHEN, H., WAN, Q., FAN, R., et al. Direction-of-arrival estimation based on sparse recovery with second-order statistics. Radioengineering, 2015, vol. 24, no. 1, p. 208–213. DOI: 10.13164/re.2015.0208
  19. WANG, L., ZHAO, L. F., BI, G. A., et al. Novel wideband DOA estimation based on sparse Bayesian learning with Dirichlet process priors. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 2, p. 275–289. DOI: 10.1109/TSP.2015.2481790
  20. AMIN, M. G. Spatial time frequency distributions for direction finding and blind source separation. In The International Society for Optical Engineering (Proc Spie). Orlando (USA), 1999, vol. 3723, p. 62–70. DOI: 10.1117/12.342958
  21. BELOUCHRANI, A., AMIN, M. G. Time frequency MUSIC. IEEE Signal Processing Letters, 1999, vol. 6, no. 5, p. 109–110. DOI: 10.1109/97.755429
  22. ZHANG, Y. M. D., AMIN, M. G., HIMED, B. Joint DOD/DOA estimation in MIMO radar exploiting time-frequency signal representations. EURASIP Journal on Advances in Signal Processing, 2012, vol. 2012, no. 1, p. 1–10. DOI: 10.1186/1687- 6180-2012-102
  23. KHODJA, M., BELOUCHRANI, A., ABED-MERAIM, K. Performance analysis for time-frequency MUSIC algorithm in presence of both additive noise and array calibration errors. EURASIP Journal on Advances in Signal Processing, 2012, vol. 2012, no. 1, p. 1–11. DOI: 10.1186/1687-6180-2012-94
  24. LIN, J. C., MA, X. C., YAN, S. F., et al. Time-frequency multiinvariance esprit for DOA estimation. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 770–773. DOI: 10.1109/LAWP.2015.2473664
  25. LI, L. P., HUANG, K. J., CHEN, T. Q. 2-D DOA estimation of coherent wideband FM signals based on STFT. Journal of Electronics and Information Technology, 2005, vol. 27, no. 11, p. 1760–1764. (in Chinese)
  26. ZHANG, H. J., BI, G. A., CAI, Y. L., et al. DOA estimation of closely-spaced and spectrally-overlapped sources using a STFTbased MUSIC algorithm. Digital Signal Processing, 2016, vol. 52, p. 25–34. DOI: 10.1016/j.dsp.2016.01.015
  27. YANG, X. M., TAO, R. 2D DOA estimation of LFM signals based on fractional Fourier transform and ESPRIT algorithm. Acta Armamentarii, 2007, vol. 28, no. 12, p. 1438–1442. (in Chinese)
  28. YANG, X. M., TAO, R. 2-D DOA estimation of LFM signals based on fractional Fourier transform. Acta Electronica Sinica, 2008, vol. 36, no. 9, p. 1737–1740. (in Chinese)
  29. YANG, W., SHI, Y. W. FRFT based method to estimate DOA for wideband signal. Advanced Materials Research, 2013, vol. 712-715, p. 2716–2720.
  30. CUI, Y., WANG, J., F. Wideband LFM interference suppression based on fractional Fourier transform and projection techniques. Circuits Systems and Signal Process, 2014, vol. 33, no. 2, p. 613–627. DOI: 10.1007/s00034-013-9642-z
  31. YU, J. X., ZHANG, L., LIU, K. H., et al. Separation and localization of multiple distributed wideband chirps using the fractional Fourier transform. EURASIP Journal on Wireless Communications and Networking, 2015, vol. 266, p. 1–8. DOI: 10.1186/s13638-015-0497-9
  32. YU, J. X., ZHANG, L., LIU, K. H. Coherently distributed wideband LFM source localization. IEEE Signal Processing Letters, 2015, vol. 22, no. 4, p. 504–508. DOI: 10.1109/LSP.2014.2363843
  33. TANG, X. H., LI, Q. L. Time Frequency Analysis and Wavelet Transform. Beijing (China): Science Press, 2016. ISBN: 978-7-03- 047542-8. (in Chinese)
  34. BAO, Z., XING, M. D., WANG, T. Radar Imaging Technology. Beijing (China): Publishing of Electronics Industry, 2014. ISBN: 978-7-121-01072-9. (in Chinese)
  35. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP. 1986.1143830
  36. ROY, R., PAULRAJ, A., KAILATH, T. ESPRIT-a subspace rotation approach to estimation of parameters of cissoids in noise. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, vol. 34, no. 5, p. 1340–1342. DOI: 10.1109/TASSP.1986.1164935
  37. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  38. GRIFFITHS, H. D., EIGES, R. Sectoral phase modes from circular antenna arrays. Electronics Letters, 1992, vol. 28, no. 17, p. 1581–1582. DOI: 10.1049/el:19921006
  39. MATHEWS, C. P., ZOLTOWSKI, M. D. Eigenstructrure techniques for 2-D angle estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 9, p. 2395–2407. DOI: 10.1109/78.317861
  40. TOMIC, S., BEKO, M., DINIS, R. RSS-based localization in wireless sensor networks using convex relaxation: noncooperative and cooperative schemes. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 5, p. 2037–2050. DOI: 10.1109/TVT.2014.2334397
  41. TOMIC, S., BEKO, M., DINIS, R. Distributed RSS-AoA based localization with unknown transmit powers. IEEE Wireless Communications Letters, 2016, vol. 5, no. 4, p. 392–395. DOI: 10.1109/LWC.2016.2567394
  42. TOMIC, S., BEKO, M., DINIS, R., et al. A closed-form solution for RSS/AoA target localization by spherical coordinates conversion. IEEE Wireless Communications Letters, 2016, vol. 5, no. 6, p. 680–683. DOI: 10.1109/LWC.2016.2615614
  43. TOMIC, S., BEKO, M., DINIS, R., et al. Distributed algorithm for target localization in wireless sensor networks using RSS and AoA measurements. Pervasive and Mobile Computing, 2016. DOI: 10.1016/j.pmcj.2016.09.013
  44. WANG, Y. L., CHEN, H., PENG, Y. N., et al. Spatial Spectrum Estimation. Beijing (China): Tsinghua University Press, 2004. ISBN: 7-302-09209-5. (in Chinese)

Keywords: 2-D DOA estimation, Dechirping algorithm, LFM signal, FFT, MUSIC algorithm, mode-space, ESPRIT algorithm

B. Lutovac, M. Dakovic, S. Stankovic, I. Orovic [references] [full-text] [DOI: 10.13164/re.2017.0309] [Download Citations]
Watermark Detection in Impulsive Noise Environment Based on the Compressive Sensing Reconstruction

The watermark detection procedure for images corrupted by impulsive noise is proposed. The procedure is based on the compressive sensing (CS) method for the reconstruction of corrupted pixels. It is shown that the proposed procedure can extract watermark with a moderate impulsive noise level. It is well known that most of the images are approximately sparse in the 2D DCT domain. Moreover, we can force sparsity in the watermarking procedure and obtain almost strictly sparse image as a desirable input to the CS based reconstruction algorithms. Compared to the state-of-the-art methods for impulse noise removal, the proposed solution provides much better performance in watermark extraction.

  1. BARNI, M., BARTOLINI, F. Watermarking Systems Engineering. New York, NY (USA): Marcel Dekker, Inc., 2004. ISBN: 978-0824748067
  2. STANKOVIĆ, S., OROVIĆ, I., SEJDIĆ, E. Multimedia Signals and Systems: Basic and Advance Algorithms for Signal Processing. 1st ed. New York, NY (USA): Springer-Verlag, 2015. ISBN: 978-3-319-23948-4
  3. FURHT, B., KIROVSKI, D.. Multimedia Watermarking Techniques and Applications. Boca Raton, FL (USA): Auerbach Publication, 2006. (Chapter 3: MUHAREMAGIĆ, E., FUHRT, B. Survey of Watermarking Techniques and Applications) ISBN: 9780849372131
  4. LIU, J., SHE, K., WU, H. Blind image watermarking using dual embedding scheme in the wavelet transform domain. Journal of Computational Information Systems, 2010, vol. 6, no. 6, p. 1887–1896. ISSN: 1553-9105
  5. STANKOVIĆ, S., OROVIĆ, I., CHABERT, M., et al. Image watermarking based on the space/spatial-frequency analysis and Hermite functions expansion. Journal of Electronic Imaging, 2013, vol. 22, no. 1. DOI: 10.1117/1.JEI.22.1.013014
  6. RAMADAN, Z. M. Efficient restoration method for images corrupted with impulse noise. Circuits, Systems, and Signal Processing, 2012, vol. 31, no. 4, p. 1397-–1406. DOI: 10.1007/s00034-011-9380-z
  7. DJUROVIĆ, I. BM3D filter in salt-and-pepper noise removal. EURASIP Journal on Image and Video Processing, 2016, vol. 2016, no. 13, p. 1–11. DOI: 10.1186/s13640-016-0113-x
  8. CANDÈS, E. J., ROMBERG, J., TAO, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information.IEEE Transactions on Information Theory, 2006, vol. 52, no. 2, p. 489–509. DOI: 10.1109/TIT.2005.862083
  9. BARANIUK, R. Compressive sensing. IEEE Signal Processing Magazine, 2007, vol. 24, no. 4, p. 118–121. DOI: 10.1109/MSP.2007.4286571
  10. STANKOVIĆ, L., DAKOVIĆ, M., VUJOVIĆ, S. Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Processing, 2014, vol. 8, no. 3, p. 246–256. DOI: 10.1049/iet-spr.2013.0385
  11. STANKOVIĆ, L., DAKOVIĆ, M. On a gradient-based algorithm for sparse signal reconstruction in the signal/measurements domain. Mathematical Problems in Engineering, 2016, vol. 2016, p. 1–11. DOI: 10.1155/2016/6212674
  12. YAROSLAVSKY, L. P. Theoretical Foundations of Digital Imaging Using MATLAB. CRC Press, 2012. ISBN: 978-1439861400
  13. STANKOVIĆ, I., OROVIĆ, I., STANKOVIĆ, S., et al. Iterative denoising of sparse images. In Proceedings of the 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). May 2016, p. 503–507. DOI: 10.1109/MIPRO.2016.7522196
  14. TROPP, J. A., GILBERT, A. C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, vol. 53, no. 12, p. 4655–4666. DOI: 10.1109/TIT.2007.909108
  15. NEEDELL, D., TROPP, J. A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM, 2010, vol. 53, no. 12, p. 93–100. DOI: 10.1145/1859204.1859229
  16. WANG, Z., BOVIK, A. C., SHEIKH, H. R., et al. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, p. 600–612. DOI: 10.1109/TIP.2003.819861

Keywords: Image watermarking, impulsive noise, compressive sensing, sparse reconstruction, gradient algorithm

M. Kayani, M. M. Riaz, A. Ghafoor, N. Iltaf [references] [full-text] [DOI: 10.13164/re.2017.0316] [Download Citations]
An Efficient Eulerian Video Magnification Technique for Micro-biology Applications

The micro-biology videos often contain motions of particles which are not visible to naked eye. Therefore an efficient motion magnification technique is required to magnify these motions. A time efficient eulerian video magnification technique for micro-biological applications is proposed. The proposed technique utilizes the concept of time and spatial uniformity to reduce the computational complexity. Simulation results reveal that the proposed scheme is almost four times efficient and more accurate as compared to state of art video magnification technique.

  1. BHARADWAJ, S., DHAMECHA, T. I., VATSA, M., et al. Computationally efficient face spoofing detection with motion magnification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2013, p. 105–110. DOI: 10.1109/CVPRW.2013.23
  2. GOUESBET, G., BERLEMONT, A. Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Progress in Energy and Combustion Science, 1999, vol. 25, no. 2, p. 133–159. DOI: 10.1016/S0360-1285(98)00018-5
  3. HENNING, S., COTRELL, P., TEODERESCU, M., et al. Assistive living robot: A remotely controlled robot for older persons living alone. In Proceedings of the International Conference on Pervasive Technologies Related to Assistive Environments. 2013, p. 1–10. DOI: 10.1145/2504335.2504345
  4. IRANI, R., NASROLLAHI, K., MOESLUND, T. B. Improved pulse detection from head motions using DCT. In Proceedings of the International Conference on Computer Vision Theory and Applications. 2014, p. 1–5. ISBN: 978-9-8975-8133-5
  5. KRELL, G., GLODEK, M., PANNING, A., et al. Fusion of fragmentary classifier decisions for affective state recognition. In Proceedings of the International Conference on Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction. 2012, p. 116–130. DOI: 10.1007/978-3-642-37081-6_13
  6. LAKENS, D. Using a smartphone to measure heart rate changes during relived happiness and anger. IEEE Transactions on Affective Computing, 2013, vol. 4, no. 2, p. 238–241. DOI: 10.1109/T-AFFC.2013.3
  7. LIU, C., TORALBA, A., FREEMAN, W. T., et al. Motion magnification. ACM Transactions on Graphics, 2005, vol. 24, no. 3, p. 519–526. DOI: 10.1145/344779.344865
  8. MALLAT, S. G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, vol. 11, no. 7, p. 674–693. DOI: 10.1109/34.192463
  9. AKANSU, A. N., HADDAD, R. A., CAGLAR, H. Perfect reconstruction binomial QMF-wavelet transform. SPIE Visual Communications and Image Processing, 1990, vol. 1360, no. 7, p. 609-618. DOI: 10.1117/12.24246
  10. RASTOGI, G., SANI, R. K. Molecular techniques to assess microbial community structure, function and dynamics in the environment. Microbes and Microbial Technology, 2011, p. 29–57. DOI: 10.1007/978- 1-4419-7931-5_2
  11. SIMONCELLI, E., FREEMAN, W. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proceedings of the International Conference on Image Processing. 1995, p. 444–447. DOI: 10.1.1.80.4175
  12. VINCENT, T., NIGAY, L., KURATA, T. Classifying handheld augmented reality: Three categories linked by spatial mappings. In Proceedings of the Workshop on Classifying the AR Presentation Space at ISMAR. 2012, p. 1–6. DOI: 10.1007/978-3540-87393-8_12
  13. WADHWA, N., RUBINSTEIN, M., DURAND, F., et al. Phase-based video motion processing. ACM Transactions on Graphics, 2013, vol. 32, no. 4, p. 1–10. DOI: 10.1145/2461912.2461966
  14. WADHWA, N., RUBINSTEIN, M., DURAND, F., et al. Riesz pyramids for fast phase-based video magnification. In Proceedings of the IEEE International Conference on Computational Photography. 2014, p. 1–10. DOI: 10.1109/ICCPHOT.2014.6831820
  15. WANG, J., DRUCKER, S. M., AGARWAL, M., et al. The cartoon animation filter. ACM Transactions on Graphics, 2006, vol. 25, no. 3, p. 1169–1173. DOI: 10.1145/1141911.1142010
  16. WU, H., RUBINSTEIN, M., SHIH, E. et al. Eulerian magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 2013, vol. 31, no. 4, p. 1–8. DOI: 10.1145/2185520.2185561
  17. WANG, Z., BOVIK, A. C., SHEIKH, H. R., et al. Image quality assessment: From error measurement to structural similarity. IEEE Transactios on Image Processing, 2004, vol. 13, no. 1, p. 600–612. DOI: 10.1109/TIP.2003.819861

Keywords: Eulerian video magnification, micro-biological applications, spatial-temporal processing

D. Kala, V. Krajca, H. Schaabova, L. Lhotska, V. Gerla [references] [full-text] [DOI: 10.13164/re.2017.0323] [Download Citations]
Optimal Parameters of Adaptive Segmentation for Epileptic Graphoelements Recognition

Manual review of EEG records, as it is per¬formed in common medical practice, is very time-consuming. There is an effort to make this analysis easier and faster for neurologists by using systems for automatic EEG graphoelements recognition. Such a system is composed of three steps: (1) segmentation, which is a subject of this article, (2) features extraction and (3) classification. Precision of classification, and thereby the whole recognition, is strongly affected by the quality of preceding segmentation procedure, which depends on the method of segmentation and its parameters. In this paper, Varri’s method for segmentation of real epileptic EEG signals is used. Effect of input parameters on segmentation outcome is discussed and parameters values are proposed to achieve optimal outcome suitable for the following classification and graphoelements recognition. Only the results of segmentation are presented in this paper.

  1. KRAJCA, V., PETRANEK, S., PATAKOVA, I., VARRI, A. Automatic identification of significant graphoelements in multichannel EEG recordings by adaptive segmentation and fuzzy clustering. International Journal of Bio-Medical Computing, 1991, vol. 28, no. 1-2, p. 71–89. DOI: 10.1016/0020-7101(91)90028-D
  2. AGARWAL, R., GOTMAN, J., FLANAGAN, D., et al. Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalography and Clinical Neurophysiology, 1998, vol. 107, no. 1, p. 44–58. DOI: 10.1016/s0013-4694(98)00009-1
  3. KALA, D. The application of adaptive segmentation for EEG epileptic graphoelements detection. In Instruments and Methods for Biology and Medicine. Prague (Czech Republic), May 2015, p. 24–27. ISBN 978-80-01-05851-0.
  4. PRAETORIUS, H. M., BODENSTEIN, G. Adaptive segmentation of EEG records: a new approach to automatic EEG analysis. Electroencephalography and Clinical Neurophysiology, 1977, vol. 42, no. 1, p. 84–94. DOI: 10.1016/0013-4694(77)90153-5
  5. Lopes DA SILVA, F. H., VAN HULTEN, K., LOMMEN, J. G., et al. Automatic detection and localization of epileptic foci. Electroencephalography and Clinical Neurophysiology, 1977, vol. 43, no.1, p. 1–13.. DOI: 10.1016/0013-4694(77)90189-4
  6. MICHAEL, D., HOUCHIN, J. Automatic EEG analysis: A segmentation procedure based on the autocorrelation function. Electroencephalography and Clinical Neurophysiology, 1979, vol. 46, no. 2, p. 232–235. DOI: 10.1016/0013-4694(79)90075-0
  7. APPEL, U., BRANDT, A. V. Adaptive sequential segmentation of piecewise stationary time series. Information Sciences, 1983, vol. 29 no. 1, p. 27–56. DOI: 10.1016/0020-0255(83)90008-7
  8. APPEL, U., BRANDT, A. V. A comparative study of three sequential time series segmentation algorithms. Signal Processing, 1984, vol. 6, no. 1, p. 45-60. DOI: 10.1016/0165-1684(84)90050-1
  9. SKRYLEV, K. M. A method of analysis of abrupt changes in the EEG rhythm (In Russian). Fisiologia Cheloveka (Human Physiology), 1984, vol. 10, p. 333–336.
  10. NIEMINEN, A., NEUVO, Y., JANTTI, V., et al. An approach to adaptive segmentation of EEG. Uppsala Journal of Medical Sciences, 1986, vol. 43, p. 50–50. ISSN: 0300-9734.
  11. PLOTKIN, E. I., SWAMY, M. N. S. Nonlinear signal processing based on parameter invariant moving average modeling. In Proceedings of Canadian Conference on Electrical and Computer Engineering (CCECE 21). Toronto (Canada), September 1992, p. TM3.11.1.-TM3.11.4.
  12. HASSANPOUR, H., SHAHIRI, M. Adaptive segmentation using wavelet transform. In International Conference on Electrical Engineering. Lahore (Pakistan), April 2007, p. 1–5.
  13. ANISHEH, S. M., HASSANPOUR, H. Adaptive segmentation with optimal window length scheme using fractal dimension and wavelet transform. International Journal of Engineering, 2009, vol. 22, no. 3, p. 257–268.
  14. KATZ, M. J. Fractals and the analysis of waveforms. Computers in Biology and Medicine, 1988, vol. 18, no. 3, p. 145–156. DOI: 10.1016/0010-4825(88)90041-8
  15. ANISHEH, S. M., HASSANPOUR, H. Designing an adaptive approach for segmenting non-stationary signals. International Journal of Electronics, 2011, vol. 98, no. 8, p. 1091–1102 DOI: 10.1080/00207217.2011.560559
  16. AZAMI, H., SANEI, S., MOHAMMADI, K., et al. A hybrid evolutionary approach to segmentation of non-stationary signals. Digital Signal Processing, 2013, vol. 23, no. 4, p. 1103–1114. DOI: 10.1016/j.dsp.2013.02.019
  17. AZAMI, H., HASSANPOUR, H., ESCUDERO, J., et al. An intelligent approach for variable size segmentation of nonstationary signals. Journal of Advanced Research, 2014, vol. 6, no. 5, p. 687–698. DOI: 10.1016/j.jare.2014.03.004
  18. KALA, D. Digital EEG signal analysis and display of results. Bachelor Thesis, 2014. Kladno. Faculty of Biomedical Engineering, Czech Technical University in Prague.

Keywords: EEG, adaptive segmentation, epilepsy, two connected windows method

Y. Zhu, Y Wei, P. Tong [references] [full-text] [DOI: 10.13164/re.2017.0330] [Download Citations]
Wavefront Correction of Ionospherically Propagated HF Radio Waves Using Covariance Matching Techniques

High Frequency (HF) radio waves propagating in the ionospheric random inhomogeneous media exhibit a spatial nonlinearity wavefront which may limit the performance of conventional high-resolution methods for HF sky wave radar systems. In this paper, the spatial correlation function of wavefront is theoretically derived on condition that the radio waves propagate through the ionospheric structure containing irregularities. With this function, the influence of wavefront distortions on the array covariance matrix can be quantitatively described with the spatial coherence matrix, which is characterized with the coherence loss parameter. Therefore, the problem of wavefront correction is recast as the determination of coherence loss parameter and this is solved by the covariance matching (CM) technique. The effectiveness of the proposed method is evaluated both by the simulated and real radar data. It is shown numerically that an improved direction of arrival (DOA) estimation performance can be achieved with the corrected array covariance matrix.

  1. LUO, Z. T., HE, Z. S., CHEN, X. Y., et al. Target location and height estimation via multipath signal and 2D array for sky-wave over-the-horizon radar. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 2, p. 617–631. DOI: 10.1109/taes.2015.140046
  2. SHI, S. Z., ZHAO, Z. Y., LIU, Y., et al. Experimental demonstration for ionospheric sensing and aircraft detection with a HF skywave multistatic radar.IEEE Geoscience and Remote Sensing Letters, 2014, vol. 11, no. 7, p. 1270–1274. DOI: 10.1109/lgrs.2013.2291831
  3. CUI, X., GONG, W. L., YE, X. Q., et al. Application of Wuhan ionospheric oblique backscattering sounding system (WIOBSS) for sea-state detection. IEEE Geoscience and Remote Sensing Letters, 2016, vol. 13, no. 3, p. 389–393. DOI: 10.1109/lgrs.2016.2515639
  4. HU, J. F., AI, H., XUE, C. P., et al. Ionospheric decontamination based on sparse reconstruction for skywave radar. EURASIP Journal on Advances in Signal Processing, 2016, vol. 2016, no. 93, p. 1–10. DOI: 10.1186/s13634-016-0388-1
  5. ANDERSON, S. Remote sensing applications of HF skywave radar: The Australian experience. Turkish Journal of Electrical Engineering and Computer Sciences, 2010, vol. 18, no. 3, p. 339–372. DOI: 10.3906/elk-0912-5
  6. SU, H. T., LIU, H. W., SHUI, P. L., et al. Estimation of the Doppler frequency and direction of arrival of the ionospherically propagated HF signals. Radio Science, 2009, vol. 44, p. 1–10. DOI: 10.1029/2008rs003990
  7. PAULRAJ, A., KAILATH, T. Direction of arrival estimation by eigenstructure methods with imperfect spatial coherence of wave fronts. Journal of the Acoustical Society of America, 1988, vol. 83, no. 3, p. 1024–1040. DOI: 10.1121/1.396048
  8. GOLUB, G. H., VAN LOAN, C. F. Matrix computations. 2nd ed. Baltimore, MD (USA): Johns Hopkins University Press, 1996. ISBN: 080185413X
  9. GUERCI, J. R., BERGIN, J. S. Principle components, covariance matrix tapers, and the subspace leakage problem. IEEE Transactions on Aerospace and Electronic systems, 2002, vol. 38, no. 1, p. 152–162. DOI: 10.1109/7.993236
  10. GERSHMAN, A. B., MECKLENBRAUKER, C. F., BOHME, J. F. Matrix fitting approach to direction of arrival estimation with imperfect spatial coherence of wavefronts. IEEE Transactions on Signal Processing, 1997, vol. 45, no. 7, p. 1894–1899. DOI: 10.1109/78.599968
  11. OTTERSTEN, B., STOICA, P., ROY, R. Covariance matching estimation techniques for array signal processing applications. Digital Signal Processing, 1998, vol. 8, no. 3, p. 185–210. DOI: 10.1006/dspr.1998.0316
  12. ERDEM, E., ARIKAN, F. Ray tracing on stratified plane ionosphere model. In Proceedings of the 2014 IEEE International Conference on Signal Processing and Communications Applications. Trabzon (Turkey), 2014, p. 1391–1394. DOI: 10.1109/SIU.2014.6830498
  13. BILITZA, D. IRI - International Reference Ionosphere. [Online] Cited 2016-05-13. Available at: http://iri.gsfc.nasa.gov/
  14. PONOMARENKO, P. V., ST-MAURICE, J. P., WATERS, C. L., et al. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes. Annales Geophysicae, 2009, vol. 27, no. 11, p. 4207–4219. ISSN: 0992-7689
  15. RAVAN, M., RIDDOLLS, R. J., ADVE, R. S. Ionospheric and auroral clutter models for HF surface wave and over-thehorizon radar systems. Radio Science, 2012, vol. 47, p. 1–12. DOI: 10.1029/2011rs004944
  16. RAVAN, M., ADVE, R. S. Modeling the received signal for the Canadian over-the-horizon-radar. In Proceedings of the 2013 IEEE Radar Conference. Ottawa, Ontario (Canada), 2013, p. 1–6. DOI: 10.1109/RADAR.2013.6586093
  17. KENNEDY, J., EBERHART, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks. Perth (Australia), 1995, p. 1942–1948. DOI: 10.1109/ICNN.1995.488968

Keywords: Ionospheric irregularities, wavefront distortion, covariance matching technique, particle swarm optimization (PSO)

T. Wang, Y. Zhao, S. Chen, K, Zhang [references] [full-text] [DOI: 10.13164/re.2017.0337] [Download Citations]
A Cascaded Reduced-Dimension STAP Method for Airborne MIMO Radar in the Presence of Jammers

A cascaded reduced-dimension (RD) space-time adaptive processing (STAP) method for airborne multiple-input multiple-output (MIMO) radar in the presence of jammers is proposed in this paper. The proposed MIMO-STAP method for clutter plus jamming suppression proceeds in two steps. Firstly, the jamming is suppressed by its orthogonal complementary subspace obtained in the passive radar mode, while the receive dimension is reduced. Secondly, the tri-iterative algorithm (TRIA) is utilized to suppress the clutter combining the remaining receive degree of freedom (DOF) with the transmit DOF and the Doppler DOF, and further dimension reduction is implemented. The proposed method can effectively realize the separate jamming and clutter elimination. Moreover, the training sample number and the computational complexity are significantly decreased. Simulation results verify the validity of the proposed cascaded RD MIMO-STAP method under jamming condition.

  1. FISHLER, E., HAIMOVICH, A., BLUM, R., et al. MIMO radar: an idea whose time has come. In Proceedings of the IEEE Radar Conference. Philadelphia (USA), 2004, p. 71–78. DOI: 10.1109/NRC.2004.1316398
  2. FISHLER, E., HAIMOVICH, A. M., BLUM, R. S., et al. Spatial diversity in radars—models and detection performance. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 823 to 838. DOI: 10.1109/TSP.2005.862813
  3. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  4. LI, J., STOICA, P. MIMO radar with collocated antennas. IEEE Signal Processing Magazine, 2007, vol. 24, no. 5, p. 106–114. DOI: 10.1109/MSP.2007.904812
  5. BLISS, D.W., FORSYTHE, K.W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. In Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 2003, p. 54–59. DOI: 10.1109/ACSSC.2003.1291865
  6. BLISS, D.W., FORSYTHE, K.W., DAVIS, S.K., et al. GMTI MIMO radar. In Proceedings of International Waveform Diversity and Design Conference. Kissimmee (USA), 2009, p. 118–122. DOI: 10.1109/WDDC.2009.4800327
  7. ZATMAN, M. The applicability of GMTI MIMO radar. In Proceedings of Asilomar Conference on Signals, System, and Computers. Pacific Grove (USA), 2010, p. 2138–2142. DOI: 10.1109/ACSSC.2010.5757928
  8. WARD, J. Space-Time Adaptive Processing for Airborne Radar. Technical Report 1015, Lexington (USA): MIT Lincoln Laboratory, 1994
  9. GUERCI, J. R. Space-Time Adaptive Processing for Radar. Norwood (USA): Artech House, 2003. ISBN: 1580533779
  10. KLEMM, R. Principles of Space-Time Adaptive Processing. London (UK): IEE, 2002. ISBN: 0863415660
  11. WU, Y., TANG, J., PENG, Y.N. Models and performance evaluation for multiple-input multiple-output space-time adaptive processing radar. IET Radar, Sonar and Navigation, 2009, vol. 3, no. 6, p. 569–582. DOI: 10.1049/iet-rsn.2008.0025
  12. CHEN, C. Y., VAIDYANATHAN, P.P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 2, p. 623 to 635. DOI: 10.1109/TSP.2007.907917
  13. ZHANG, W., HE, Z.S., LI, J., et al. Multistage multiple-beam beamspace reduced-dimension space-time adaptive processing for multiple-input-multiple-output radar based on maximum crosscorrelation energy. IET Radar, Sonar and Navigation, 2015, vol. 9, no. 7, p. 772–777. DOI: 10.1049/iet-rsn.2014.0226
  14. XIANG, C., FENG, D.Z., LV, H. Three-dimensional reduceddimension transformation for MIMO radar space-time adaptive processing. Signal Processing, 2011, vol. 91, no. 8, p. 2121–2126. DOI: 10.1016/j.sigpro.2011.01.017
  15. HE, J., FENG, D.Z., MA, L. Reduced-dimension clutter suppression method for airborne multiple-input multiple-output radar based on three iterations. IET Radar, Sonar & Navigation, 2015, vol. 9, no. 3, p. 249–254. DOI: 10.1049/iet-rsn.2014.0149
  16. REED, I., MALLETT, J., BRENNAN, L. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 1974, vol. 10, no. 6, p. 853–863. DOI: 10.1109/TAES.1974.307893
  17. KLEMM, R. Adaptive air- and spaceborne MTI under jamming conditions. In Proceedings of IEEE National Radar Conference. Boston (USA), 1993, p. 167–172. DOI: 10.1109/NRC.1993.270472
  18. RICHARDSON, P.G. STAP covariance matrix structure and its impact on clutter plus jamming suppression solutions. Electronics Letters, 2001, vol. 37, no. 2, p. 118–119. DOI: 10.1049/el:20010090
  19. HORN, R. A., JOHNSON, C. R. Matrix Analysis. New York (USA): Cambridge University Press, 1990. ISBN: 0-521-30586-1

Keywords: Multiple-input multiple-output (MIMO) radar, space-time adaptive processing (STAP), dimension reduction, jammer, tri-iterative algorithm (TRIA)

T. Wang, Y. Zhao, J. Wang [references] [full-text] [DOI: 10.13164/re.2017.0345] [Download Citations]
Knowledge-Aided Non-Homogeneity Detector for Airborne MIMO Radar STAP

The target detection performance decreases in airborne multiple-input multiple-output (MIMO) radar space-time adaptive processing (STAP) when the training samples contaminated by interference-targets (outliers) signals are used to estimate the covariance matrix. To address this problem, a knowledge-aided (KA) generalized inner product non-homogeneity detector (GIP NHD) is proposed for MIMO-STAP. Firstly, the clutter subspace knowledge is constructed by the system parameters of MIMO radar STAP. Secondly, the clutter basis vectors are utilized to compose the clutter covariance matrix offline. Then, the GIP NHD is integrated to realize the effective training samples selection, which eliminates the effect of the outliers in training samples on target detection. Simulation results demonstrate that in non-homogeneous clutter environment, the proposed KA-GIP NHD can eliminate the outliers more effectively and improve the target detection performance of MIMO radar STAP compared with the conventional GIP NHD, which is more valuable for practical engineering application.

  1. FISHLER, E., HAIMOVICH, A., BLUM, R., et al. MIMO radar: an idea whose time has come. In Proceedings of the IEEE Radar Conference. Philadelphia (USA), 2004, p. 71–78. DOI: 10.1109/NRC.2004.1316398
  2. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  3. LI, J., STOICA, P. MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 2007, vol. 24, no. 5, p. 106–114. DOI: 10.1109/MSP.2007.904812
  4. FRANKFORD, M. T., STEWART, K. B., MAJUREC, N., et al. Numerical and experimental studies of target detection with MIMO radar. IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 2, p. 1569–1575. DOI: 10.1109/TAES.2014.120180
  5. LI, N., CUI, G., KONG, L., et al. MIMO radar moving target detection against compound-Gaussian clutter. Circuits, Systems, and Signal Processing, 2014, vol. 33, no. 6, p. 1819–1839. DOI: 10.1007/s00034-013-9718-9
  6. BLISS, D. W., FORSYTHE, K. W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. In Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (USA), 2003, p. 54–59. DOI: 10.1109/ACSSC.2003.1291865
  7. BLISS, D. W., FORSYTHE, K. W., DAVIS, S. K., et al. GMTI MIMO radar. In Proceedings of International Waveform Diversity and Design Conference. Kissimmee (USA), 2009, p. 118–122. DOI: 10.1109/WDDC.2009.4800327
  8. CHEN, C. Y., VAIDYANATHAN, P. P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 2, p. 623–635. DOI: 10.1109/TSP.2007.907917
  9. WU, Y., TANG, J., PENG, Y. N. Models and performance evaluation for multiple-input multiple-output space-time adaptive processing radar. IET Radar, Sonar & Navigation, 2009, vol. 3, no. 6, p. 569–582. DOI: 10.1049/iet-rsn.2008.0025
  10. ZHANG, W., HE, Z.S., LI, J., et al. Beamspace reduced-dimension space-time adaptive processing for multiple-input-multiple-output radar based on maximum cross-correlation energy. IET Radar, Sonar & Navigation, 2015, vol. 9, no. 7, p. 772–777. DOI: 10.1049/iet-rsn.2014.0226
  11. AHMADI, M., MOHAMED-POUR, K. Space-time adaptive processing for phased-multiple-input-multiple-output radar in the non-homogeneous clutter environment. IET Radar, Sonar & Navigation, 2014, vol. 8, no. 6, p. 585–596. DOI: 10.1049/ietrsn.2013.0246
  12. XIANG, C., FENG, D. Z., LV, H. Three-dimensional reduceddimension transformation for MIMO radar space-time adaptive processing. Signal Processing, 2011, vol. 91, no. 8, p. 2121–2126. DOI: 10.1016/j.sigpro.2011.01.017
  13. WARD, J. Space-Time Adaptive Processing for Airborne Radar. Technical Report 1015, Lexington (USA): MIT Lincoln Laboratory, 1994.
  14. GUERCI, J. R. Space-Time Adaptive Processing for Radar. Norwood (USA): Artech House, 2003. ISBN: 1580533779
  15. KLEMM, R. Principles of Space-Time Adaptive Processing. London (UK): IEE, 2002. ISBN: 0863415660
  16. REED, I., MALLETT, J., BRENNAN, L. Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 1974, vol. 10, no. 6, p. 853–863. DOI: 10.1109/TAES.1974.307893
  17. MELVIN, W. L. Space-time adaptive radar performance in heterogeneous clutter. IEEE Transactions on Aerospace and Electronic Systems, 2000, vol. 36, no. 2, p. 621–633. DOI: 10.1109/7.845251
  18. MELVIN, W. L., GUERCI, J.R. Adaptive detection in dense target environments. In Proceedings of IEEE Radar Conference, Atlanta (USA), 2001, p. 187–192. DOI: 10.1109/NRC.2001.922975
  19. SCHOENING, G. N., PICCIOLO, M. L., MILI, L. Improved detection of strong non-homogeneities for STAP via projection statisics. In Proceedings of IEEE International Radar Conference. Arlington (USA), 2005, p. 720–725. DOI: 10.1109/RADAR.2005.1435920
  20. TANG, B., TANG, J., PENG, Y. N. Detection of heterogeneous samples based on loaded generalized inner product method. Digital Signal Processing, 2012, vol. 22, no. 4, p. 605–613. DOI: 10.1016/j.dsp.2012.03.001
  21. RANGASWAMY, M., MICHELS, J. H., HIMED, B. Statistical analysis of the non-homogeneity detector for STAP applications. Digital Signal Processing, 2004, vol. 14, no. 3, p. 253–267. DOI: 10.1016/S1051-2004(03)00021-6
  22. YANG, X. P., LIU, Y. X., LONG, T. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing. IET Radar, Sonar & Navigation, 2013, vol. 7, no. 1, p. 47–54. DOI: 10.1049/iet-rsn.2011.0404
  23. STOICA, P., LI, J., ZHU, X. M., et al. On using a priori knowledge in space-time adaptive processing. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 6, p. 437–444. DOI: 10.1109/TSP.2007.914347
  24. ZHU, X. M., LI, J., STOICA, P. Knowledge-aided space-time adaptive processing. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 2, p. 1325–1336. DOI: 10.1109/TAES.2011.5751261
  25. TANG, B., TANG, J., PENG, Y.N. Performance of knowledge aided space time adaptive processing. IET Radar, Sonar & Navigation, 2011, vol. 5, no. 3, p. 331–340. DOI: 10.1049/ietrsn.2010.0131
  26. WU, Y., TANG, J., PENG, Y. N. On the essence of knowledge-aid clutter covariance estimate and its convergence. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 1, p. 569–585. DOI: 10.1109/TAES.2011.5705692
  27. YANG, Z., DE LAMARE, R. C., LI, X., et al. Knowledge-aided STAP using low rank and geometry properties. International Journal of Antennas and Propagation, 2014, vol. 2014, no. 2, p. 341–346. DOI: 10.1155/2014/196507
  28. ZHANG, S., HE, Z., LI, J., et al. A robust colored-loading factor optimization approach for knowledge-aided STAP. In Proceedings of IEEE Radar Conference. Philadelphia (USA), 2016, p. 1–5. DOI: 10.1109/RADAR.2016.7485266

Keywords: Airborne multiple-input multiple-output (MIMO) radar, space-time adaptive processing (STAP), knowledge-aid (KA), general inner product nonhomogeneity detector (GIP NHD), outliers

H. Wang, X. Yu, W. Xu, B. Wen [references] [full-text] [DOI: 10.13164/re.2017.0353] [Download Citations]
Optimal Energy-Efficient Power Allocation Scheme with Low Complexity for Distributed Antenna System

In this paper, by maximizing the energy efficiency (EE), an optimal power allocation scheme is developed for downlink distributed antenna system (DAS). Different from conventional optimal power allocation schemes that need iterative calculation, the developed scheme can provide closed-form power allocation and no iteration is required. Based on the definition of EE, the optimized objective function is firstly formulated, and then a computationally efficient algorithm is proposed to obtain the optimal number of active remote antennas and the corresponding power allocation. Using the optimal number, the multidimensional solution for the optimized function is transformed into searching one-dimensional solution. As a result, closed-form expression of power allocation coefficients is attained. Numerical results verify the effectiveness of the proposed scheme. The scheme can obtain the same EE as the conventional optimal scheme but with lower complexity, and it has more accuracy than the existing low-complexity scheme.

  1. LI, G. Y., XU, Z., XIONG, C., et al. Energy-efficient wireless communications: tutorial, survey, and open issues. IEEE Transactions on Wireless Communications, 2011, vol. 18, no. 6, p. 28–35. DOI: 10.1109/MWC.2011.6108331
  2. FENG, D., JIANG, C., LIM, G., et al. A survey of energy-efficient wireless communications. IEEE Communication Surveys and Tutorials, 2013, vol. 15, no. 1, p. 167–178. DOI: 10.1109/SURV.2012.020212.00049
  3. HELIOT, F., IMRAN, M. A., TAFAZOLLI, R. On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading channel. IEEE Transactions on Communications, 2012, vol. 60, no. 5, p. 1345–1356. DOI: 10.1109/TCOMM.2012.031712.110215
  4. HEATH, R., PETERS, S., WANG, Y., ZHANG, J. A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 2013, vol. 51, no. 4, p. 161–167. DOI: 10.1109/MCOM.2013.6495775
  5. PARK, E., LEE, S. R., LEE, I. Antenna placement optimization for distributed antenna systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 6, p. 2468–2477. DOI: 10.1109/TWC.2012.051712.110670
  6. KIM, H., LEE, S. R., LEE, K. J., LEE, I. Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 3, p. 1201–1209. DOI: 10.1109/TWC.2012.011812.111008
  7. CHEN, X., XU, X., TAO, X. Energy efficient power allocation in generalized distributed antenna system. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 1022–1025. DOI: 10.1109/LCOMM.2012.051512.120241
  8. HE, C., SHENG, B., ZHU, P. C., YOU, X. H. Energy efficiency and spectral efficiency trade-off in downlink distributed antenna systems. IEEE Wireless Communications Letters, vol. 1, no. 3, p. 153–156. DOI: 10.1109/WCL.2012.022812.120048
  9. WANG, Y., YU, X. B., LI, Y., WU, B. B. Energy efficient power allocation for distributed antenna system over shadowed Nakagami fading channel. Radio Engineering, 2015, vol. 24, no. 4, p. 1077 to 1083. DOI: 10.13164/re.2015.1077
  10. KIM, H., LEE, S. R., SONG, C., LEE, K. J., LEE, I. Optimal power allocation scheme for energy efficiency maximization in distributed antenna systems. IEEE Transactions on Communications, 2015, vol. 63, no. 2, p. 431–440. DOI: 10.1109/TCOMM.2014.2385772
  11. WU, J., LIU, W. J., YOU, X. Low-complexity power allocation for energy efficiency maximization in DAS. IEEE Communications Letters, 2015, vol. 19, no. 6, p. 925–928. DOI: 10.1109/LCOMM.2015.2415781
  12. CORLESS, R. M., GONNET, G. H., HARE, D. E., JEFFREY, D. J., KNUTH, D. E. On the Lambert W function. Advances in Computational Mathematics, 1996, vol. 5, p. 329–359. DOI: 10.1007/BF02124750

Keywords: Energy efficiency, distributed antenna system, power allocation, low complexity, Rayleigh channel.

S. Gajewski [references] [full-text] [DOI: 10.13164/re.2017.0359] [Download Citations]
Soft – Partial Frequency Reuse Method for LTE-A

In the paper a novel SPFR frequency reuse method is proposed which can be used for improvement of physical resources utilization efficiency in LTE-A. The proposed method combines both SFR and PFR giving the possibility of more flexible use of frequency band in different regions of a cell. First, a short study on the problem of frequency reuse in cells is discussed including bibliography overview. In next section the principle of the proposed SPFR method is described. Then the simulation model is discussed and simulation parameters are expected. In the last part, results of simulation of SPFR efficiency in comparison to known frequency reuse methods are presented. Presented results include both capacity and throughput for single connection. The proposed method eliminates main disadvantages of both SFR and PFR methods and gives significantly greater capacity of radio interface in boundary region of cells.

  1. SCHOENEN, R., ZIRWAS, W., WALKE, B. W. Capacity and coverage analysis of 3GPP-LTE multihop deployment scenario. In Proceedings of IEEE International Conference on Communications, ICC Workshops. Beijing (China), 2008, p. 31–36. DOI: 10.1109/ICCW.2008.11
  2. GAJEWSKI, S. Throughput-coverage characteristics for soft and partial frequency reuse in the LTE downlink. In Proceedings of 36th International Conference on Telecommunications and Signal Processing (TSP 2013). Rome (Italy), 2013, p. 199–203. DOI: 10.1109/TSP.2013.6613919
  3. MOGENSEN, P., WEI, N., KOVACS, I., et al. LTE capacity compared to the Shannon bound. In Proceedings of IEEE 65th Vehicular Technology Conference (VTC 2007-Spring). Dublin (Ireland), 2007, p. 1234–1238. DOI: 10.1109/VETECS.2007.260
  4. PORJAZOSKI, M., POPOVSKI, B. Analysis of intercell interference coordination by fractional frequency reuse in LTE. In Proceedings of International Conference on Software, Telecommunications and Computer Networks (SoftCOM). Dubrovnik (Croatia), 2010, p. 160–164.
  5. MAO, X., MAAREF, A., TEO, K. H. Adaptive soft frequency reuse for intercell interference coordination in SC-FDMA based 3GPP LTE uplinks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM). New Orleans (USA), 2008, p. 1–6. DOI: 10.1109/GLOCOM.2008.ECP.916
  6. GHAFFAR, R., KNOPP, R. Fractional frequency reuse and interference suppression for OFDMA networks. In Proceedings of 8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt). Avignon (France), 2010, p. 273–277.
  7. RAHMAN, M., YANIKOMEROGLU, H., WONG, W. Interference avoidance with dynamic inter-cell coordination for downlink LTE system. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Budapest (Hungary), 2009, p. 1–6. DOI: 10.1109/WCNC.2009.4917761
  8. BILIOS, D., BOURAS, C., KOKKINOS, V., et al. Optimization of fractional frequency reuse in long term evolution networks. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). Paris (France), 2012, p. 1853–1857. DOI: 10.1109/WCNC.2012.6214087
  9. XIE, Z., WALKE, B. Frequency reuse techniques for attaining both coverage and high spectral efficiency in OFDMA cellular systems. In Proceedings IEEE Wireless Communications and Networking Conference (WCNC). Sydney (Australia), 2010, p. 1–6. DOI: 10.1109/WCNC.2010.5506110
  10. NOVLAN, T. D., GANTI, R. K., GHOSH, A., ANDREWS, J. G. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 12, p. 4294–4395. DOI: 10.1109/TWC.2011.100611.110181
  11. HINDIA, M. N., KHANAM, S., REZA, A., W., et al. Frequency reuse for 4G technologies: A survey. In Proceedings of the 2nd International Conference on Mathematical Sciences & Computer Engineering (ICMSCE 2015). Langkawi (Malaysia), 2015.
  12. KRASNIQI, B., MACLENBRAUKER, C. F. Efficiency of partial frequency reuse in power used depending on user’s selection for cellular networks. In Proceedings of IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Toronto (Canada), 2011, p. 268–272. DOI: 10.1109/PIMRC.2011.6139963
  13. YANG, X. A multilevel soft frequency reuse technique for wireless communication systems. IEEE Communications Letters, 2014, vol. 18, no. 11, p. 1983–1986. DOI: 10.1109/LCOMM.2014. 2361533
  14. SELIM, M. M., EL-KHAMY, M., EL-SHARKAWY, M. Enhanced frequency reuse schemes for interference management in LTE femtocell networks. In Proceedings of International Symposium on Wireless Communications Systems (ISWCS). Paris (France) 2012, p. 326–330. DOI: 10.1109/ISWCS.2012.6328383
  15. ELAYOUBI, S. E., BEN HADDADA, O., FOURESTIE, B. Performance evaluation of frequency planning schemes in OFDMA-based networks. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 5, p. 1623–1633. DOI: 10.1109/TWC.2008.060458
  16. ALI, S. H., LEUNG, V. C. M. Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 8, p. 4286–4295. DOI: 10.1109/TWC.2009.081146
  17. KIM, K. T., OH, S. K. An incremental frequency reuse scheme for an OFDMA cellular system and its performance. In Proceedings of IEEE Vehicular Technology Conference (VTC 2008-Spring). Marina Bay (Singapore), 2008, p. 1504–1508. DOI: 10.1109/VETECS.2008.352
  18. STOLYAR, A. L., VISWANATHAN, H. Self-organizing dynamic fractional frequency reuse in OFDMA systems. In Proceedings of the IEEE 27th Conference on Computer Communications (INFOCOM). Phoenix (USA), 2008. DOI: 10.1109/INFOCOM.2008.119
  19. ALDHAIBANI, J. A., YAHYA1, A., AHMAD, A. B. Optimizing power and mitigating interference in LTE-A cellular networks through optimum relay location. Elektronika ir Elektrotechnika, 2014, vol. 20, no. 7, p. 73–79. DOI: 10.5755/j01.eee.20.7.3379
  20. KAWSER, M. T., ISLAM, M. R., AHMED, K. I., KARIM, M. R., SAIF, J. B. Efficient resource allocation and sectorization for fractional frequency reuse (FFR) in LTE femtocell systems. Radioengineering, 2015, vol. 24, no. 4, p. 940–947. DOI: 10.13164/re.2015.0940
  21. ERCEG, V., GREENSTEIN, L. J., TJANDRA, S. Y., et al. An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 1999, vol. 17, no. 7, p. 1205–1211. DOI: 10.1109/49.778178

Keywords: Frequency reuse, LTE, SPFR, FFR, resource management, SFR, PFR, ICI reduction

K.-T. Nguyen, D.-T. Do, M. Voznak [references] [full-text] [DOI: 10.13164/re.2017.0369] [Download Citations]
An Optimal Analysis in Wireless Powered Full-duplex Relaying Network

Wireless-powered cellular networks (WPCNs) are currently being investigated to exploit the reliability and improve battery lifetime of mobile users. This paper investigates the energy harvesting structure of the full-duplex relaying networks. By using the time switching based relaying (TSR) protocol and Amplify-and-Forward (AF) model in delay-limited transmission scheme, we propose the closed-form expression of the outage probability and then calculate the optimal throughput. An important result can be taken obviously that the time fraction in TSR, the position of relay, the noise as well as the energy conversation impacting on the outage probability as well as the optimal throughput. By Monte Carlo simulation, the numerical results indicate an effective relaying strategy in full-duplex cooperative systems. Finally, we provide fundamental design guidelines for selecting time fraction in TSR that satisfies the requirements of a practical relaying system.

  1. ZIHAO, W., ZHIYONG, C., YAO, Y., et al. Wireless energy harvesting and information transfer in cognitive two-way relay networks. In Proceedings of the Global Communications Conference (GLOBECOM). Austin, TX (USA), 2014, p. 3465–3470. DOI: 10.1109/GLOCOM.2014.7037344
  2. KE, X., PINGYI, F., BEN LETAIEF, K. Time-switching based SWPIT for network-coded two-way relay transmission with data rate fairness. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Queensland (Australia), 2015, p. 5535–5539. DOI: 10.1109/ICASSP.2015.7179030
  3. KE, X., PINGYI, F., CHUANG Z., et al. Wireless information and energy transfer for two-hop non-regenerative MIMO-OFDM relay networks. IEEE Journal on Selected Areas in Communications, 2015, vol. 33, no. 8, p. 1595–1611. DOI: 10.1109/JSAC.2015.2391931
  4. KRIKIDIS, I., TIMOTHEOU, S., NIKOLAOU, S., et al. Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 2014, vol. 52, no. 11, p. 104–110. DOI: 10.1109/MCOM.2014.6957150
  5. LIU, Y., WANG, X. Information and energy cooperation in OFDM relaying: Protocols and optimization. IEEE Transactions on Vehicular Technology, 2015, vol. 65, no. 7, p. 5088–5098. DOI: 10.1109/TVT.2015.2455232
  6. MOUSAVIFAR, S. A., YUANWEI, L., LEUNG, C., et al. Wireless energy harvesting and spectrum sharing in cognitive radio. In Proceedings of the Vehicular Technology Conference (VTC Fall). Vancouver (Canada), 2014, p. 1–5. DOI: 10.1109/VTCFall.2014.6966232
  7. SIBOMANA, L., ZEPERNICK, H. J., HUNG, T. Wireless information and power transfer in an underlay cognitive radio network. In Proceedings of the 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS). Gold Coast, QLD (Australia), 2014, p. 1–7. DOI: 10.1109/ICSPCS.2014.7021107
  8. SIXING, Y., ERQING, Z., ZHAOWEI, Q., et al. Optimal cooperation strategy in cognitive radio systems with energy harvesting. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 9, p. 4693–4707. DOI: 10.1109/TWC.2014.2322972
  9. SIXING, Y., ZHAOWEI, Q., SHUFANG, L. Achievable throughput optimization in energy harvesting cognitive radio systems. IEEE Journal on Selected Areas in Communications, 2015, vol. 33, no. 3, p. 407–422. DOI: 10.1109/JSAC.2015.2391712
  10. EL SHAFIE, A. Space time coding for an energy harvesting cooperative secondary terminal. IEEE Communications Letters, 2014, vol. 18, no. 9, p. 1571–1574. DOI: 10.1109/LCOMM.2014.2337294
  11. SAKR, A. H., HOSSAIN, E. Cognitive and energy harvesting-based D2D communication in cellular networks: Stochastic geometry modeling and analysis. IEEE Transactions on Communications, 2015, vol. 63, no. 5, p. 1867–1880. DOI: 10.1109/TCOMM.2015.2411266
  12. NASIR, A. A., XIANGYUN, Z., DURRANI, S., et al. Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 7, p. 3622–3636. DOI: 10.1109/TWC.2013.062413.122042
  13. DO, D.-T. Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 2015, vol. 62, no. 2, p. 449–459. DOI: 10.1007/s11235- 015-0085-7
  14. YANG, H., CLERCKX, B. Joint wireless information and power transfer for an autonomous multiple antenna relay system. IEEE Communications Letters, 2015, vol. 19, no. 7, p. 1113–1116. DOI: 10.1109/LCOMM.2015.2428252
  15. DO, D.-T. Power switching protocol for two-way relaying network under hardware impairments. Radioengineering, 2015, vol. 24 , no. 3, p. 765–771. DOI: 10.13164/re.2015.0765
  16. AHMED, I., IKHLEF, A., SCHOBER, R., et al. Joint power allocation and relay selection in energy harvesting AF relay systems. IEEE Wireless Communications Letters, 2013, vol. 2, no. 2, p. 239–242. DOI: 10.1109/WCL.2013.012513.130007
  17. HONG, X., KAI-KIT, W., NALLANATHAN, A. Secure wireless energy harvesting-enabled AF-relaying SWIPT networks. In Proceedings of the IEEE International Conference on Communications (ICC). London (UK), 2015, p. 2307–2312. DOI: 10.1109/ICC.2015.7248669
  18. RIIHONEN, T., WERNER, S., WICHMAN, R. Comparison of fullduplex and half-duplex modes with a fixed amplify-and-forward relay. In Proceedings of the 2009 IEEE Wireless Communications and Networking Conference (WCNC). Budapest (Hungary), 2009, p. 1–5. DOI: 10.1109/WCNC.2009.4917634
  19. YANG, J., LIU, X., YANG, Q. Power allocation of two-way fullduplex AF relay under residual self-interference. In Proceedings of the 2014 IEEE 14th International Symposium on Communications and Information Technologies (ISCIT). Incheon, (South Korea), p. 213– 217. DOI: 10.1109/ISCIT.2014.7011903
  20. ZHONG, C., SURAWEERA, H. A., ZHENG, G., et al. Wireless information and energy transfer with full-duplex relaying. IEEE Transactions on Communications, 2014, vol. 62, no. 10, p. 3447–3461. DOI: 10.1109/TCOMM.2014.2357423
  21. DAVID, H. A. Order Statistics. 1st ed. New York, NY (USA): Wiley, 1970.
  22. NGUYEN, K. T., NGUYEN, H. T., NGUYEN, T.-Q., et al. A performance analysis in energy harvesting full-duplex relay. In Proceedings of the 1st International Conference on Applied Mathematics in Engineering and Reliability. Ho Chi Minh City (Vietnam), May 2016, p. 139–143. DOI: 10.1201/b21348-23

Keywords: Energy harvesting, full-duplex, one way relaying network, time switching-based protocol, throughput, amplify-and-forward

K. Garg, D. K. Upadhyay [references] [full-text] [DOI: 10.13164/re.2017.0376] [Download Citations]
Design of Second Order Recursive Digital Integrators with Matching Phase and Magnitude Response

Location of poles and zeroes greatly affect phase response and magnitude response of a system. Recently, pole-zero optimization emerged as an effective approach to approximately match magnitude response of a system with that of an ideal one. In this brief, a methodology for the design of linear phase integrators and ones with constant phase of -90 degree is proposed. The aim of this method is to simultaneously attain multiple objectives of magnitude and phase optimization. In this method, magnitude response error is minimized under the constraint that the maximum passband phase-response error is below a prescribed level. Examples are included to illustrate the proposed design technique.

  1. KUMAR, B., CHAOUDHURY, D. R., KUMAR, A. On the design of linear phase, FIR integrators for midband frequencies. IEEE Transactions on Signal Processing, Oct. 1996, vol. 44, no. 10, p. 2391–2395. DOI: 10.1109/78.539024
  2. AL-ALAOUI, M. Novel digital integrator and differentiator. Electronics Letters, Feb. 1993, vol. 29, no. 4, p. 376–378. DOI: 10.1049/el:19930253
  3. NGO, N. Q. A new approach for the design of wideband digital integrator and differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, Sep. 2006, vol. 53, no. 9, p. 936–940. DOI: 10.1109/TCSII.2006.881806
  4. TSENG, C. C. Closed-form design of digital IIR integrators using numerical integration rules and fractional sample delays. IEEE Transactions on Circuits and Systems I: Regular Papers, Mar. 2007, vol. 54, no. 3, p. 643–655. DOI: 10.1109/TCSI.2006.887641
  5. TSENG, C. C., LEE, S. L. Digital IIR integrator design using Richardson extrapolation and fractional delay. IEEE Transactions on Circuits and Systems I: Regular Papers, Sep. 2008, vol. 55, no. 8, p. 2300- 2309. DOI: 10.1109/TCSI.2008.920099
  6. TSENG, C. C. Digital integrator design using Simpson rule and fractional delay filter. textitIEE Proceedings - Vision, Image, and Signal Processing, Feb. 2006, vol. 153, no. 1, p. 79–86. DOI: 10.1049/ipvis:20045208
  7. TSENG, C. C., LEE, S. L. Design of digital IIR integrator using discrete Hartley transform interpolation method. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems. Taipei, May 2009, p. 2181–2184. DOI: 10.1109/ISCAS.2009.5118229
  8. PAPAMARKOS, N., CHAMZAS, C. A new approach for the design of digital integrators. IEEE Transactions on Circuits System Part I: Fundamental Theory and Applications, 1996, vol. 43, no. 9, p. 785-791, DOI: 10.1109/81.536749
  9. AL-ALAOUI, M. A. Class of digital integrators and differentiators. IET Signal Processing, 2011, vol. 5, no. 2, p. 251–260. DOI: 10.1049/iet-spr.2010.0107
  10. UPADHYAY, D. K., SINGH, R. K. Recursive wideband digital differentiator and integrator. Electronics Letters, 2011, vol. 47, no. 11, p. 647–648. DOI: 10.1049/el.2011.0420
  11. JIANG, A., KWAN, H. K. Minimax design of IIR digital filters using SDP relaxation technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, vol. 57, no. 2, p. 378–390. DOI: 10.1109/TCSI.2009.2023770
  12. LAI, X. P., LIN, Z. P. Minimax design of IIR digital filters using a sequential constrained least-squares method. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 7, p. 3901–3906. DOI: 10.1109/TSP.2010.2046899
  13. ABABNEH, J. I., BATAINEH, M. H. Linear phase FIR filter design using particle swarm optimization and genetic algorithms. Digital Signal Processing, Jul. 2008, vol. 18, no. 4, p. 657–668. DOI: 10.1016/j.dsp.2007.05.011
  14. UPADHYAY, D. K. Recursive wideband digital differentiators. Electronics Letters, Dec. 2010, vol. 46, no. 25, p. 1661–1662. DOI: 10.1049/el.2010.2113
  15. UPADHYAY, D. K. Class of recursive wideband digital differentiators and integrators. Radioengineering, Sep. 2012, vol. 21, no. 3, p. 904–910. ISSN: 1805-9600
  16. JAIN, M., GUPTA, M., JAIN, N. Linear phase second order recursive digital integrators and differentiators. Radioengineering, Jun. 2012, vol. 21, no. 2, p. 712–717. ISSN: 1805-9600
  17. JAIN, M., GUPTA, M., JAIN, N. Analysis and design of digital IIR integrators and differentiators using minimax and pole, zero, and constant optimization methods. Hindawi Publishing Corporation ISRN Electronics, vol. 2013, p. 1-14. DOI: 10.1155/2013/493973
  18. GUPTA, M., RELAN, B., YADAV, R., et al. Wideband digital integrators and differentiators designed using particle swarm optimisation. IET Signal Processiing, 2014, vol. 8, no. 6, p. 668–679. DOI: 10.1049/iet-spr.2013.0011
  19. JALLOUL, M. K., AL-ALAOUI, M. A. Design of recursive digital integrators and differentiators using particle swarm optimization. International Journal of Circuit Theory and Applications, Jul. 2015, vol. 44, no. 5, p. 948–967. DOI: 10.1002/cta.2115
  20. UPADHYAY, D. K. Recursive wideband linear phase digital differentiators and integrators. In Proceedings of the International Conference on Computing Communication Control and Automation (ICCUBEA). 2015, p. 927–931. DOI: 10.1109/ICCUBEA.2015.184
  21. AGGARWAL, A., RAWAT, T. K., KUMAR, M., et al. Efficient design of digital FIR differentiator using L1-method. Radioengineering, Jun. 2016, vol. 25, no. 2, p. 383–389. DOI: 10.13164/re.2016.0383
  22. AL-ALAOUI, M. A. Using fractional delay to control the magnitude and phases of integrators and differentiators. IET Signal Processing, Jun. 2007, vol. 1, no. 2, p. 107–119. DOI: 10.1049/iet-spr:20060246

Keywords: Digital integrator, genetic algorithm, linear phase, polezero optimization, recursive, simulated annealing

R. Barsainya, T. K. Rawat [references] [full-text] [DOI: 10.13164/re.2017.0387] [Download Citations]
Novel Design of Recursive Differentiator Based on Lattice Wave Digital Filter

In this paper, a novel design of third and fifth order differentiator based on lattice wave digital filter (LWDF), established on optimizing L_1-error approximation function using cuckoo search algorithm (CSA) is proposed. We present a novel realization of minimum multiplier differentiator using LWD structure leading to requirement of optimizing only N coefficients for Nth order differentiator. The gamma coefficients of lattice wave digital differentiator (LWDD) are computed by minimizing the L_1-norm fitness function leading to a flat response. The superiority of the proposed LWDD is evident by comparing it with other differentiators mentioned in the literature. The magnitude response of the designed LWDD is found to be of high accuracy with flat response in a wide frequency range. The simulation and statistical results validates that the designed minimum multiplier LWDD circumvents the existing one in terms of minimum absolute magnitude error, mean relative error (dB) and efficient structural realization, thereby making the proposed LWDD a promising approach to digital differentiator design.

  1. AL-ALAOUI, M. A. Novel FIR approximations of IIR differentiators with applications to image edge detection. In Proceedings of the 18th IEEE International Conference on Electronics, Circuits and Systems (ICECS). Beirut (Lebanon), 2011, p. 11–14. DOI: 10.1109/ICECS.2011.6122335
  2. LAGUNA, P., THAKOR, N. V., CAMINAL, P., et al. Low-pass differentiators for biological signals with known spectra: Application to ECG signal processing. IEEE Transactions on bio-medical engineering, 1990, vol. 37, no. 4, p. 420–425. DOI: 10.1109/10.52350
  3. SKOLNIK, M. I. Introduction to Radar Systems. 2nd ed. New York, NY (USA): McGraw & Hill, 1980. ISBN: 0070579091
  4. XU, Y., DAI, T., SYCARA, K., et al. Service level differentiation in multi-robots control. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS). Taipei (China), 2010, p. 2224–2230. DOI: 10.1109/IROS.2010.5649366
  5. AL-ALAOUI, M. A. Novel digital integrator and differentiator. IET Electronics letters, 1993, vol. 29, no. 4, p. 376–378. DOI: 10.1049/el:19930253
  6. NGO, N. Q. A new approach for the design of wideband digital integrator and differentiator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, vol. 53, no. 9, p. 936–940. DOI: 10.1109/TCSII.2006.881806
  7. GUPTA, M., JAIN, M., KUMAR, B. Novel class of stable wideband recursive digital integrators and differentiators. IET Signal Processing, 2010, vol. 4, no. 5, p. 560–566. DOI: 10.1049/iet-spr.2009.0030
  8. DEVATE, J., KULKARNI, S. Y., PAI, K. R. Wideband IIR digital integrator and differentiator using curve fitting technique. In Proceedings of the International Conference on Signal Processing, Communication and Networking (ICSCN). 2015, p. 1–4. DOI: 10.1109/ICSCN.2015.7219845
  9. GUPTA, M., JAIN, M., KUMAR, B. Recursive wideband digital integrator and differentiator. International Journal of Circuit Theory and Applications, 2011, vol. 39, no. 7, p. 775–782.
  10. UPADHYAY, D. K. Class of recursive wideband digital differentiators and integrators. Radioengineering, 2012, vol. 21, no. 3, p. 904–910. ISSN: 1805-9600
  11. UPADHYAY, D. K. Recursive wideband digital differentiators. IET Electronics letters, 2010, vol. 46, no. 25, p. 1661–1662. DOI: 10.1049/el.2010.2113
  12. AL-ALAOUI, M. A. Class of digital integrators and differentiators. IET Signal Processing, 2011, vol. 5, no. 2, p. 251–260. DOI: 10.1049/iet-spr.2010.0107
  13. AL-ALAOUI, M. A., BAYDOUN, M. Novel wideband digital differentiators and integrators using different optimization techniques. In Proceedings of the International Symposium on Signals, Circuits and Systems (ISSCS). Iasi (Romania), 2013, p. 1–4. DOI: 10.1109/ISSCS.2013.6651225
  14. GUPTA, M., RELAN, B., YADAV, R., et al. Wideband digital integrators and differentiators designed using particle swarm optimisation. IET Signal Processing, 2014, vol. 8, no. 6, p. 668–679. DOI: 10.1049/iet-spr.2013.0011
  15. JAIN, M., GUPTA, M., JAIN, N. K. Analysis and design of digital IIR integrators and differentiators using minimax and pole, zero, and constant optimization methods. ISRN Electronics, 2013, Article ID: 493973. DOI: 10.1155/2013/493973
  16. GUPTA, M., JAIN, M., JAIN, N. Linear phase second order recursive digital integrators and differentiators. Radioengineering, 2012, vol. 21, no. 2, p. 712–717. ISSN: 1805-9600
  17. FETTWEIS, A. Wave digital filters: Theory and practice. IEEE Proceeding, 1986, vol. 74, no. 2, p. 270–327. DOI: 10.1109/PROC.1986.13458
  18. YLI-KAAKINEN, J., SARAMA¨KI, T. A systematic algorithm for the design of lattice wave digital filters with short-coefficient wordlength. IEEE Transaction on Circuits and Systems-I, 2007, vol. 54, no. 8, p. 1838–1851. DOI: 10.1109/TCSI.2007.902513
  19. GAZSI, L. Explicit formulas for lattice wave digital filters. IEEE Transaction on Circuits and Systems, 1985, vol. 32, no. 1, p. 68–88. DOI: 10.1109/TCS.1985.1085595
  20. AGGARWAL, M., BARSAINYA, R., RAWAT, T. K. FPGA implementation of Hilbert transformer based on lattice wave digital filters. In Proceedings of the IEEE Conference on Reliability, Infocom Technologies and Optimization (ICRITO). Noida (India), 2015, p. 1–5. DOI: 10.1109/ICRITO.2015.7359331
  21. BARSAINYA, R., AGGARWAL, M., RAWAT, T. K. Multiplierless implementation of quadrature mirror filter. In Proceedings of the IEEE Conference on Reliability, Infocom Technologies and Optimization (ICRITO). Noida (India), 2015, p. 1–6. DOI: 10.1109/ICRITO.2015.7359328
  22. BARSAINYA, R., AGGARWAL, M., RAWAT, T. K. Minimum multiplier implementation of a comb filter using lattice wave digital filter. In Proceedings of the Annual IEEE India Conference (INDICON). New Delhi (India), 2015, p. 1–6. DOI: 10.1109/INDICON.2015.7443491
  23. GROSSMANN, L. D., ELDAR, Y. C. An L1-method for the design of linear-phase FIR digital filters. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 11, p. 5253–5266. DOI: 10.1109/TSP.2007.896088
  24. HASHIM, H. A., EL-FERIK, S., ABIDO, M. A. A fuzzy logic feedback filter design tuned with PSO for L1 adaptive controller. Expert Systems with Applications, 2015, vol. 42, no. 23, p. 9077–9085. DOI: 10.1016/j.eswa.2015.08.026
  25. YANG, X. S., DEB, S. Cuckoo search via Levy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore (India), 2009, p. 210–214. DOI: 10.1109/NABIC.2009.5393690
  26. YANG, X. S., DEB, S. Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, vol. 1, no. 4, p. 330–343. arXiv: 2010arXiv1005.2908Y
  27. YANG, X. S., DEB, S. Cuckoo search: Recent advances and applications. Neural Computing and Applications, 2014, vol. 24, no. 1, p. 169–174. DOI: 10.1007/s00521-013-1367-1

Keywords: Lattice wave digital filter, digital differentiator, wideband, L1-CSA, minimum multiplier