ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2018, Volume 27, Number 1 [DOI: 10.13164/re.2018-1]

Show all Hide all

S. Costanzo, F. Venneri, G. Di Massa, A. Borgia, A. Raffo [references] [full-text] [DOI: 10.13164/re.2018.0001] [Download Citations]
Bandwidth Performances of Reconfigurable Reflectarrays: State of Art and Future Challenges

Reconfigurable antennas allow to meet the increasing demands of modern RF communication systems for reconfiguration capabilities, such as beam-steering, multi-band operation, polarization flexibility or frequency agility. Active reflectarrays may represent a valuable solution to satisfy the above tasks. This paper reviews several experimental implementations of reconfigurable reflectarray designs developed in recent years. The paper describes the approaches adopted in the realization of active reflectarray designs, mainly focusing on their bandwidth performances. Future challenges in the design of wideband reconfigurable reflectarrays are also outlined.

  1. FENN, A. J., TEMME, D. H., DELANEY, W. P., COURTNEY, W. E. The development of phased-array radar technology. Lincoln Laboratory Journal, 2000, vol. 12, no. 2, p. 321–340.
  2. HUANG, J., ENCINAR, J. Reflectarray Antennas. Wiley-IEEE Press, 2008. ISBN: 9780470084915
  3. HUM, S. V., PERRUISSEAU-CARRIER, J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, p. 183–198. DOI: 10.1109/TAP.2013.2287296
  4. NAYERI, P., YANG, F., ELSHERBENI, A. Z. Beam-scanning reflectarray antennas: A technical overview and state of the art. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 4, p. 32–47. DOI: 10.1109/MAP.2015.2453883
  5. POZAR, D. M. Bandwidth of reflectarrays. Electronics Letters, 2003, vol. 39, no. 21, p. 1490–1491. DOI: 10.1049/el:20030990
  6. CHAHARMIR, M., SHAKER, J., GAGNON, N., LEE, D. Design of broadband, single layer dual-band large reflectarray using multi open loop elements. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 9, p. 2875–2883. DOI: 10.1109/TAP.2010.2052568
  7. ENCINAR, J. A. Design of two-layer printed reflectarrays using patches of variable size. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 10, p. 1403–1410. DOI: 10.1109/8.954929
  8. ENCINAR, J. A., ZORNOZA, J. A. Broadband design of threelayer printed reflectarrays. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, p. 1662–1664. DOI: 10.1109/TAP.2003.813611
  9. CARRASCO, E., BARBA, M., ENCINAR, J. Reflectarray element based on aperture-coupled patches with slots and lines of variable length. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 820–825. DOI: 10.1109/TAP.2007.891863
  10. COSTANZO, S., VENNERI, F., DI MASSA, G. Bandwidth enhancement of aperture-coupled reflectarrays. Electronics Letters, 2006, vol. 42, no. 23, p. 1320–1321. DOI: 10.1049/el:20062492
  11. VENNERI, F., COSTANZO, S., DI MASSA, G. Bandwidth behavior of closely spaced aperture-coupled reflectarrays. International Journal of Antennas and Propagation, vol. 2012, Article ID 846017, 2012. DOI:10.1155/2012/846017
  12. NAYERI, P., YANG, F., ELSHERBENI, A. Z. Broadband reflectarray antennas using double-layer subwavelength patch elements. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 1139–1142. DOI: 10.1109/LAWP.2010.2094178
  13. CARRASCO, E., BARBA, M., ENCINAR, J. A. Aperture-coupled reflectarray element with wide range of phase delay. Electronics Letters, 2006, vol. 42, no. 12, p. 667–668. DOI: 10.1049/el:20060472
  14. ROEDERER, A. Reflector antenna comprising a plurality of panels. US6411255, 2002-06-25.
  15. COSTANZO, S., VENNERI, F. Miniaturized fractal reflectarray element using fixed-size patch. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1437–1440. DOI: 10.1109/LAWP.2014.2341032
  16. DAHARI, M. H., JAMALUDDIN, M. H., ABBASI, M. I., KAMARUDIN, M. R. A review of wideband reflectarray antennas for 5G communication systems. IEEE Access, 2017, vol. 5, p. 17803–17815. DOI: 10.1109/ACCESS.2017.2747844
  17. HUANG, J., POGORZELSKI, R. J. A Ka-band microstrip reflectarray with elements having variable rotation angles. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 5, p. 650–656. DOI: 10.1109/8.668907
  18. COOLEY, M. E., WALKER, J. F., GONZALEZ, D. G., POLLON, G. E. Novel reflectarray element with variable phase characteristics. IEE Proceedings - Microwaves, Antennas and Propagation, 1997, vol. 144, no. 2, p. 149–151. DOI: 10.1049/ip-map:19970963
  19. GIANVITTORIO, J. P., RAHMAT-SAMII, Y. Reconfigurable patch antennas for steerable reflectarray applications. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 5, p. 1388–1392. DOI: 10.1109/TAP.2006.874311
  20. KAMODA, H., IWASAKI, T., TSUMOCHI, J., KUKI, T. 60-GHz electrically reconfigurable reflectarray using p-i-n diode. In IEEE MTT-S International Microwave Symposium Digest. Boston (MA, USA), 2009, p. 1177–1180. DOI: 10.1109/MWSYM.2009.5165912
  21. RODRIGUEZ-ZAMUDIO, J., MARTINEZ-LOPEZ, J. I., RODRIGUEZ-CUEVAS, J., MARTYNYUK, A. E. Reconfigurable reflectarrays based on optimized spiraphase type elements. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 1821–1830. DOI: 10.1109/TAP.2012.2186231
  22. SILVA-MONTERO, J., MARTINEZ-LOPEZ, J. I., RODRIGUEZ-CUEVAS, J., MARTYNYUK, A. E. Spiraphase-type reflectarray for large reflection elevation angles. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 10, p. 4342–4351. DOI: 10.1109/TAP.2015.2456981
  23. PERRUISSEAU-CARRIER, J., SKRIVERVIK, A. K. Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360 phase range. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 138–141. DOI: 10.1109/LAWP.2008.919327
  24. RAJAGOPALAN, H., RAHMAT-SAMII, Y., IMBRIALE, W. RF MEMs actuated reconfigurable reflectarray patch-slot element. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3689–3699. DOI: 10.1109/TAP.2008.2007388
  25. BAYRAKTAR, O., CIVI, O. A., AKIN, T. Beam switching reflectarray monolithically integrated with RF MEMS switches. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 854–862. DOI: 10.1109/TAP.2011.2173099
  26. CARRASCO, E., BARBA, M., REIG, B., DIEPPEDALE, C., ENCINAR, J. Characterization of a reflectarray gathered element with electronic control using ohmic RF MEMS and patches aperture-coupled to a delay line. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 9, p. 4190–4201. DOI: 10.1109/TAP.2012.2207046
  27. VENDIK, O., PARNES, M. A phase shifter with one tunable component for a reflectarray antenna. IEEE Antennas and Propag. Magazine, 2008, vol. 50, no. 4, p. 53–65. DOI: 10.1109/MAP.2008.4653662
  28. BOCCIA, L., AMENDOLA, G., DI MASSA, G. Performance improvement for a varactor loaded reflectarray element. In The 2nd European Conference on Antennas and Propagation EuCAP 2007. Edinburgh (U.K.), 2007. DOI: 10.1049/ic.2007.1617
  29. HUM, S. V., OKONIEWSKI, M., DAVIES, R. J. Modeling and design of electronically tunable reflectarrays. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 8, p. 2200–2210. DOI: 10.1109/TAP.2007.902002
  30. RIEL, M., LAURIN, J. J. Design of an electronically beam scanning reflectarray using aperture-coupled elements. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 5, p. 1260–1266. DOI: 10.1109/TAP.2007.895586
  31. LIU, C., HUM, S. An electronically tunable single-layer reflectarray antenna element with improved bandwidth. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 1241–1244. DOI: 10.1109/LAWP.2011.2104934
  32. VENNERI, F., COSTANZO, S., DI MASSA, G. Reconfigurable aperture coupled reflectarray element tuned by a single varactor diode. Electronics Letters, 2012, vol. 48, p. 68–69. DOI: 10.1049/el.2011.3691
  33. VENNERI, F., COSTANZO, S., DI MASSA, G. Design and validation of a reconfigurable single varactor-tuned reflectarray. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 2, p. 635–645. DOI: 10.1109/TAP.2012.2226229
  34. VENNERI, F., COSTANZO, S., DI MASSA, G. Tunable reflectarray cell for wide angle beam-steering radar applications. Journal of Electrical and Computer Engineering, vol. 2013, article ID 325746, 7 pages. DOI:10.1155/2013/325746.
  35. COSTANZO, S., VENNERI, F., RAFFO, A., DI MASSA, G., CORSONELLO, P. Radial-shaped single varactor-tuned phasing line for active reflectarrays. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 7, p. 3254–3259. DOI: 10.1109/TAP.2016.2562673
  36. MOESSINGER, A., MARIN, R., MUELLER, S., FREESE, J., JAKOBY, R. Electronically reconfigurable reflectarrays with nematic liquid crystals. Electronics Letters, 2006, vol. 42, no. 16, p. 899–900. DOI: 10.1049/el:20061541
  37. HU, W., CAHILL, R., ENCINAR, J., DICKIE, R., GAMBLE, H., FUSCO, V., GRANT, N. Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 10, p. 3112–3117. DOI: 10.1109/TAP.2008.929460
  38. PEREZ-PALOMINO, G., ENCINAR, J., BARBA, M., CARRASCO, E. Design and evaluation of multi-resonant unit cells based on liquid crystals for reconfigurable reflectarrays. IEE Proceedings - Microwaves, Antennas and Propagation, 2012, vol. 6, no. 3, p. 348–354. DOI: 10.1049/iet-map.2011.0234
  39. PEREZ-PALOMINO, G., BAINE, P., DICKIE, R., BAIN, M., ENCINAR, J., CAHILL, R., BARBA, M., TOSO, G. Design and experimental validation of liquid crystal based reconfigurable reflectarray elements with improved bandwidth in F-band. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 1704–1713. DOI: 10.1109/TAP.2013.2242833
  40. BILDIK, S., DIETER, S., FRITZSCH, C., MENZEL, W., JAKOBY, R. Reconfigurable folded reflectarray antenna based upon liquid crystal technology. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 1, p. 122–132. DOI: 10.1109/TAP.2014.2367491
  41. SAZEGAR, M., GIERE, A., ZHENG, Y., MAUNE, H., MOESSINGER, A., JAKOBY, R. Reconfigurable unit cell for reflectarray antenna based on barium-strontium-titanate thick-film ceramic. In Proceedings of the 39th European Microwave Conference (EuMC 2009). Rome (Italy), 2009, p. 598–601. DOI: 10.23919/EUMC.2009.5296104
  42. CARRASCO, E., PERRUISSEAU-CARRIER, J. Reflectarray antenna at terahertz using graphene. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 253–256. DOI: 10.1109/LAWP.2013.2247557
  43. GUCLU, C., PERRUISSEAU-CARRIER, J., AYDIN CIVI, O. Proof of concept of a dual band circularly polarized RF MEMS beam switching reflectarray. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. , p. 5451–5455. DOI: 10.1109/TAP.2012.2207690
  44. PERRUISSEAU-CARRIER, J. Dual-polarized and polarizationflexible reflective cells with dynamic phase control. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 5, p. 1494–1502. DOI: 10.1109/TAP.2010.2044333
  45. RODRIGO, D., JOFRE, L., PERRUISSEAU-CARRIER, J. Unit cell for frequency-tunable beams canning reflectarrays. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 5992–5999. DOI: 10.1109/TAP.2013.2281375

Keywords: Reflectarrays, reconfigurable antennas, bandwidth.

R. Ahmad, M. Komanec, D. Suslov, S. Zvanovec [references] [full-text] [DOI: 10.13164/re.2018.0010] [Download Citations]
Modified Octagonal Photonic Crystal Fiber for Residual Dispersion Compensation over Telecommunication Bands

A modified Octagonal Photonic Crystal Fiber (MO-PCF) is proposed and numerically investigated for the purpose of residual dispersion compensation in the optical transmission link. The results show that the proposed fiber with optimized parameters exhibits ultra-flattened negative dispersion over a 300 nm band from 1380 nm to 1680 nm with an average chromatic dispersion of -506 ps/(nm·km) and an absolute variation of 11.3 ps/(nm·km). In addition to large negative dispersion, the proposed MO-PCF also exhibits high birefringence in the order of 0.0207 at the wavelength of 1550 nm. The proposed MO-PCF can be advantageously used especially for residual chromatic dispersion compensation in the wavelength-division-multiplexing optical fiber transmission system. The proposed fiber is easy to fabricate and is tolerant to manufacturing imperfections.

  1. LIU, Y., WANG, J., LI, Y., et al. A novel hybrid photonic crystal dispersion compensating fiber with multiple windows. Optical and Laser Technology, 2012, vol. 44, no. 7, p. 2076–2079. DOI: 10.1016/j.optlastec.2012.03.023
  2. AGRAWAL, G. P. Fiber-Optic Communication Systems. 3rd ed. New York (USA): Wiley, 2002, p. 15–64. ISBN: 0-471-22114-7 (electronic)
  3. GEROME, F., AUGUSTE, J. L., BLONDY, J.-M. Design of dispersion-compensating fibers based in a dual-concentric-core photonic crystal fiber. Optics Letters, 2004, vol. 29, no. 23, p. 2725–2727. DOI: 10.1364/OL.29.002725
  4. KOSHIBA, M., SAITOH, K. Structural dependence of effective area and mode field diameter for holey fibers. Optics Express, 2003, vol. 11, no.15, p. 1746-1756. DOI: 10.1364/OE.11.001746
  5. ISLAM, M. A., AHMAD, R., SHARAFAT, M. A., et al. Proposal for highly residual dispersion compensating defected core decagonal photonic crystal fiber over S+C+L+U wavelength bands. Optical Engineering, 2014, vol. 53, no. 7, 5 p. DOI: 10.1117/1.OE.53.7.076106
  6. FRANCO, M. A. R., SERRÃO, V. A., SIRCILLI, F. Microstructured optical fiber for residual dispersion compensation over S + C + L + U wavelength bands. IEEE Photonics Technology Letters, 2008, vol. 20, no. 9, p. 751–753. DOI: 10.1109/LPT.2008.921085
  7. DA SILVA, J. P., BEZERRA, D. S., ESQUERRE, V. F. R., et al. Ge-doped defect-core microstructured fiber design by genetic algorithm for residual dispersion compensation. IEEE Photonics Technology Letters, 2010, vol. 22, no. 18, p. 1337–1339. DOI: 10.1109/LPT.2010.2055235
  8. ISLAM, M. A., ALAM, M. S. Design of a polarization maintaining equiangular spiral photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics Technology Letters. 2012, vol. 24, no. 11, p. 930–932. DOI: 10.1109/LPT.2012.2190981
  9. TEE, D. C., BAKAR, M. H. A., TAMCHEK, N., et al. Photonic crystal fiber in photonic crystal fiber for residual dispersion compensation over E + S + C + L + U wavelength bands. IEEE Photonics Journal, 2013, vol. 5, no. 3, 7 p. DOI: 10.1109/JPHOT.2013.2265980
  10. HABIB, M. S., AHMAD, R., HABIB, M. S. et al. Residual dispersion compensation over the S +C +L +U wavelength bands using highly birefringent octagonal photonic crystal fiber. Applied Optics, 2014, vol. 53, no. 14, p. 3057–3062. DOI: 10.1364/AO.53.003057
  11. RAZZAK, S. M. A., Y. NAMIHIRA, Y. Tailoring dispersion and confinement losses of photonic crystal fibers using hybrid cladding. Journal of Lightwave Technology, 2008, vol. 26, no. 13, p. 1909–1914. DOI: 10.1109/JLT.2008.922323
  12. RAZZAK, S. M. A., Y. NAMIHIRA, Y., SABER, A. Y., et al. Dispersion tolerance of various photonic crystal fibers. International Journal of Optomechatronics, 2007, vol. 1, no. 4, p. 359–368. DOI: 10.1080/15599610701672439
  13. RAZZAK, S. M. A., Y. NAMIHIRA, Y. Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers. IEEE Photonics Technology Letters, vol. 20, no. 4, p. 249–251. DOI: 10.1109/LPT.2007.912986
  14. RENVERSEZ, G., KUHLMEY, B., MCPHEDRAN, R. Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses. Optics Letters, 2003, vol. 28, no. 12, p. 989–991. DOI: 10.1364/OL.28.000989
  15. POLETTI, F., FINAZZI, V., MONRO, T. M., et al. Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers. Optics Express, 2005, vol. 13, no. 10, p. 3728–3736. DOI: 10.1364/OPEX.13.003728
  16. LEON-SAVAL, S. G., BIRKS, T. A., JOLY, N. Y., et al. Splicefree interfacing of photonic crystal fibers. Optics Letters, 2005, vol. 30, no. 13, p. 1629–1631. DOI: 10.1364/OL.30.001629
  17. ADEMGIL, H., HAXHA, S., ABDELMALEK, F. Highly nonlinear bending insensitive birefringent photonic crystal fibres. Engineering, 2010, vol. 2, no. 8, p. 608–616. DOI: 10.4236/eng.2010.28078
  18. HASAN, M. I., RAZZAK, S. M. A., HABIB, M. S. Design and characterization of highly birefringent residual dispersion compensating photonic crystal fiber. Journal of Lightwave Technology, 2014, vol. 32, no. 23, p. 4578–4584. DOI: 10.1109/JLT.2014.2359138
  19. SUZUKI, K., KUBOTA, H., KAWANISHI, S., et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Optics Express, 2001, vol. 9, no. 13, p. 676–680. DOI: 10.1364/OE.9.000676
  20. KAIJAGE, S. F., NAMIHIRA, Y., HAI, N. H., et al. Broadband dispersion compensating octagonal photonic crystal fiber for optical communication applications. Japanese Journal of Applied Physics, 2009, vol. 48, no. 052401, 8 p.
  21. LI, X., LIU, P., XU, Z., et al. Design of a pentagonal photonic crystal fiber with high birefringence and large flattened negative dispersion. Applied Optics, 2015, vol. 54, no. 24, p. 7350–7357. DOI: 10.1364/AO.54.007350
  22. KIM, S., KEE, C. S., LEE, C. G. Modified rectangular lattice photonic crystal fibers with high birefringence and negative dispersion. Optics Express, 2009, vol. 17, no. 10, p. 7952–7957. DOI: 10.1364/OE.17.007952
  23. STEEL, M. J., WHITE, T. P., MARTIJN DE STERKE, C., et al. Symmetry and degeneracy in microstructured optical fibers. Optics Letters, 2001, vol. 26, no. 8, p. 488–490. DOI: 10.1364/OL.26.000488
  24. MAHMUD, R. R., KHAN, M. A. G., RAZZAK, S. M. A. Design and comparison of SF57 over SiO2 on same structured PCF for residual dispersion compensation. Photonics Journal, 2016, vol. 8, no. 6, 10 p. DOI: 10.1109/JPHOT.2016.2628802
  25. GHOSH, D., BOSE, S., ROY, S., et al. Design and fabrication of microstructured optical fibers with optimized core suspension for enhanced supercontinuum generation. Journal of Lightwave Technology, 2015, vol. 33, no. 19, p. 4156–4162. DOI: 10.1109/JLT.2015.2464782
  26. LIU, Z., WU, C., TSE, M. L., et al. Ultrahigh birefringence indexguiding photonic crystal fiber and its application for pressure and temperature discrimination. Optics Letters, 2013, vol. 38, no. 9, p.1385–1387. DOI: 10.1364/OL.38.001385
  27. BISE, R. T., TREVOR, D. J. Sol-gel derived microstructured fiber: fabrication and characterization. In OFC/NFOEC Technical Digest of the Optical Fiber Communication Conference. Anaheim (CA, USA), 2005. DOI: 10.1109/OFC.2005.192772

Keywords: Finite element method, negative flat dispersion, residual dispersion compensation, high birefringence, photonic crystal fiber.

M. Sorahi-Nobar, A. Maleki-Javan [references] [full-text] [DOI: 10.13164/re.2018.0016] [Download Citations]
Supercontinuum Generation for Ultrahigh-Resolution OCT via Selective Liquid Infiltration Approach

In this paper, we apply liquid infiltration approach for supercontinuum generation (SCG) in photonic crystal fiber (PCF) in which by selectively infiltrating three air holes of PCF, a near zero dispersion is obtained that is a key parameter for SCG. Our numerical results show that by launching a very short input optical pulse of 50 fs in normal dispersion regime with wavelength centered about 700 nm, into 50 mm PCF infiltrated by ethanol, broadband, coherent and ripple free SC as wide as 1000 nm will be achieved that covers the visible light and a part of near infrared spectra used for ultrahigh-resolution optical coherence tomography.

  1. SCHUMAN, J. S., PULIAFITO, C. A., FUJIMOTO, J. G., et al. Optical Coherence Tomography of Ocular Diseases. 3rd ed. Thorofare, NJ: SLACK Inc., 2013. ISBN: 13 978-1-55642-864-7
  2. AVANAKI, M. R., CERNAT, R., TADROUS, P. J., et al. Spatial compounding algorithm for speckle reduction of dynamic focus OCT images. IEEE Photonics Technology Letters, 2013, vol. 25, no. 15, p. 1439–1442. DOI: 10.1109/LPT.2013.2266660
  3. DREXLER, W., FUJIMOTO, J. G. (Eds.) Optical Coherence Tomography: Technology and Applications. Springer Science & Business Media, 2015.ISBN: 978-3-319-06418-5
  4. GHANBARI, A., KASHANINIA, A., SADR, A., et al. Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber. OptikInternational Journal for Light and Electron Optics, 2017, vol. 140, p. 545–554. DOI: 10.1016/j.ijleo.2017.04.099
  5. IKUNO, Y., MARUKO, I., YASUNO, Y., et al. Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. Investigative Ophthalmology & Visual Science, 2011, vol. 52, no. 8, p. 5536–5540. DOI: 10.1167/iovs.10-6811
  6. UNTERHUBER, A., POVAZAY, B., BIZHEVA, K., et al. Advances in broad bandwidth light sources for ultrahigh resolution. Physics in Medicine and Biology, 2004, vol. 49, no. 7, p. 1235–1246.
  7. AGUIRRE, A., NISHIZAWA, N., FUJIMOTO, J., et al. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006, vol. 14, no. 3, p. 1145–1160. DOI: 10.1364/OE.14.001145
  8. DIOUF, M., SALEM, A. B., CHERIF, R., et al. Super-flat coherent supercontinuum source in As 38.8 Se 61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy. Applied Optics, 2017, vol. 56, no. 2, p. 163–169. DOI: 10.1364/AO.56.000163
  9. SAGHAEI, H. Supercontinuum source for dense wavelength division multiplexing in square photonic crystal fiber via fluidic infiltration approach. Radioengineering, 2017, vol. 26, no. 1, p. 16–22. DOI: 10.13164/re.2017.001
  10. SAGHAEI, H., MORAVVEJ-FARSHI, M. K., EBNALIHEIDARI, M., et al. Ultra-wide mid-infrared supercontinuum generation in As 40 Se 60 chalcogenide fibers: solid core PCF versus SIF. IEEE Journal of Selected Topics in Quantum Electronics, 2016, vol. 22, no. 2, 8 p. DOI: 10.1109/JSTQE.2015.2477048
  11. EBNALI-HEIDARI, M., SAGHAEI, H., KOOHI-KAMALI, F., et al. Proposal for supercontinuum generation by optofluidic infiltrated photonic crystal fibers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, vol. 20, no. 5, 8 p. DOI: 10.1109/JSTQE.2014.2307313
  12. SAGHAEI, H., EBNALI-HEIDARI, M., MORAVVEJ-FARSHI, M. K. Mid-infrared supercontinuum generation via As 2 Se 3 chalcogenide photonic crystal fibers. Applied Optics, 2015, vol. 54, no. 8, p. 2072-2079. DOI: 10.1364/AO.54.002072
  13. HUMBERT, G., WADSWORTH, W., LEON-SAVAL, S., et al. Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Optics Express, 2006, vol. 14, no. 4, p. 1596–1603. DOI: 10.1364/OE.14.001596
  14. POVAZAY, B., BIZHEVA, K., UNTERHUBER, A., et al. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, vol. 27, no. 20, p. 1800–1802. DOI: 10.1364/OL.27.001800
  15. CHAMPERT, P.-A., COUDERC, V., LEPROUX, P., et al. Whitelight supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system. Optics Express, 2004, vol. 12, no. 19, p. 4366–4371
  16. KUDLINSKI, A., BOUWMANS, G., VANVINCQ, O., et al. White-light cw-pumped supercontinuum generation in highly GeO 2-doped-core photonic crystal fibers. Optics Letters, 2009, vol. 34, no. 23, p. 3631–3633.DOI: 10.1364/OL.34.003631
  17. EBNALI-HEIDARI, M., DEHGHAN, F., SAGHAEI, H., et al. Dispersion engineering of photonic crystal fibers by means of fluidic infiltration. Journal of Modern Optics, 2012, vol. 59, no. 16, p. 1384–1390.
  18. SAGHAEI, H., HEIDARI, V., EBNALI-HEIDARI, M., et al. A systematic study of linear and nonlinear properties of photonic crystal fibers. Optik-International Journal for Light and Electron Optics, 2016, vol. 127, no. 24, p. 11938–11947. DOI: 10.1016/j.ijleo.2016.09.111
  19. COEN, S., CHAU, A. H. L., LEONHARDT, R., et al. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 2001, vol. 26, p. 1356–1358. DOI: 10.1364/OL.26.001356
  20. SAITOH, K., KOSHIBA, M., HASEGAWA, T., et al. Chromatic dispersion control in photonic crystal fibers: application to ultraflattened dispersion. Optics Express, 2003, vol. 11, p. 843–852. DOI: 10.1364/OE.11.000843
  21. FERCHER, A., DREXLER, W., HITZENBERGER, C., et al. Optical coherence tomography - principles and applications. Reports on Progress in Physics, 2003, vol. 66, no. 2, p. 239–303.
  22. NIELSEN, K., NOORDEGRAAF, D., SØRENSEN, T., et al. Selective filling of photonic crystal fibres. Journal of Optics A: Pure and Applied Optics, 2005, vol. 7, no. 8, p. L13–L20. DOI: 10.1088/1464-4258/7/8/L02
  23. DUDLEY, J. M., GENTY, G., COEN, S. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 2006, vol. 78, p. 1135–1184. DOI: 10.1103/RevModPhys.78.1135
  24. PNIEWSKI, J., STEFANIUK, T., VAN, H., et al. Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids. Applied Optics, 2016, vol. 55, no. 19, p. 5033–5040. DOI: 10.1364/AO.55.005033
  25. HORI, T., NISHIZAWA, N., GOTO, T., et al. Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse. Journal of the Optical Society of America B, 2004, vol. 21, no. 11, p. 1969–1980. DOI: 0.1364/JOSAB.21.001969
  26. FROSZ, M. H., SØRENSEN, T., BANG, O. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping. Journal of the Optical Society of America B, 2006, vol. 23, no. 8, p. 1692–1699. DOI: 10.1364/JOSAB.23.001692
  27. BARH, A., GHOSH, S., VARSHNEY, R. K., et al. An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation. Optics Express, 2013, vol. 21, no. 8, p. 9547–9565. DOI: 10.1364/OE.21.009547

Keywords: Photonic crystal fiber (PCF), optical coherence tomography (OCT), Liquid infiltration, supercontinuum generation, normal dispersion.

S. E. Darwish, A. S. Samra, M. H. Aly [references] [full-text] [DOI: 10.13164/re.2018.0022] [Download Citations]
ASE Noise in Raman Amplifiers: Pump Depletion Impact

This paper provides a detailed analysis for the effect of pump depletion on amplified spontaneous emission (ASE) noise power, optical signal to noise ratio (OSNR), and noise figure (NF) in forward pumped distributed Raman fiber amplifier (DRFA). The optimum pump power for high OSNR, low NF, and better gain is obtained ~ 256 mW at input signal power of 10-6 W, fiber length of 120 km, fiber loss of 0.2 dB/km, and optical filter bandwidth of 0.5 nm. The obtained results are compared with the previously published ones showing a good agreement.

  1. KOUDELKA, P., PETRUJOVA, B., LATAL, J., et al. Optical fiber distributed sensing system applied in cement concrete commixture research. Radioengineering, 2010, vol. 19, no. 1, p. 172–177. ISSN: 1805-9600
  2. TAKACHIO, N., SUZUKI, H. Application of Raman-distributed amplification to WDM transmission systems using 1.55 µm dispersion shifted fiber. Journal of Lightwave Technology, 2001, vol. 19, no. 1, p. 60–69. DOI: 10.1109/50.914486
  3. DARWISH, S., SAMRA, A., MAHMOUD, M., ALY M. H. Pump depletion impact in fiber Raman amplifier. Journal of Optoelectronics and Advanced Materials, 2016, vol. 18, p. 421-427. ISSN: 1454 – 4164
  4. MOCHIZUKI, K. Optical fiber transmission systems using stimulated Raman scattering theory. Journal of Lightwave Technology, 1985, vol. 3, no. 3, p. 688–694. DOI: 10.1109/JLT.1985.1074233
  5. SMITH, R. G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Applied Optics, 1972, vol. 11, p. 2489–2494. DOI: 10.1364/AO.11.002489
  6. MOCHIZUKI, K., EDAGAWA, N., IWAMOTO, Y. Amplified spontaneous Raman scattering in fiber Raman amplifiers. Journal of Lightwave Technology, 1986, vol. 4, no. 9, p. 1328–1333. DOI: 10.1109/JLT.1986.1074905
  7. DAKSS, M. L., MELMAN, P. Amplified spontaneous Raman scattering and gain in fiber Raman amplifiers. Journal of Lightwave Technology, 1985, vol. 3, no. 4, p. 806–813. DOI: 10.1109/JLT.1985.1074270
  8. MOENCH, W., LOECKLIN, E. Measurement of optical signal to noise ratio in coherent systems using polarization multiplexed transmission. In Proceedings of Optical Fiber Communication Conference (OFC 2017). Los Angeles (USA), 2017, p. Th2A.42. ISBN: 978-1-943580-23-1. DOI: 10.1364/OFC.2017.Th2A.42
  9. HEADLEY, C., AGRAWAL, G. P. Raman Amplifier in Fiber Optical Communication Systems. 1st ed. Burlington (USA): Elsevier Academic Press, 2005. ISBN: 0-12-044506-9
  10. FRIIS, S., MEJLING, L., ROTTWITT, K. Effects of Raman scattering and attenuation in silica fiber based parametric frequency conversion. Optics Express, 2017, vol. 25, no. 7, p. 7324–7337. DOI: 10.1364/OE.25.007324
  11. PREMARATNE, M. Analytical characterization of optical power and noise figure of forward pumped Raman amplifiers. Optics Express, 2004, vol. 12, no. 18, p. 4235–4245. DOI: 10.1364/OPEX.12.004235
  12. BROMAGE, J. Raman amplification for fiber communications systems. Journal of Lightwave Technology, 2004, vol. 22, no. 1, p. 79-93. DOI: 10.1109/JLT.2003.822828
  13. DIMITROPOULOS, D., SOLLI, D. R., CLAPS, R., JALALI, B. Noise figure and photon statistics in coherent anti-Stokes Raman scattering. Optics Express, 2006, vol. 14, no. 23, p. 11418–11432. DOI: 10.1364/OE.14.011418
  14. ISOE, G. M., MUGURO, K. M., WASWA, D. W. Noise figure analysis of distributed fibre Raman amplifier. International Journal of Scientific & Technology Research, 2013, vol. 2, no. 11, p. 375–378. ISSN: 2277-8616

Keywords: Pump depletion, optimum pump power, DRFA, ASE, OSNR, NF

M. Grabner, P. Pechac, P. Valtr [references] [full-text] [DOI: 10.13164/re.2018.0029] [Download Citations]
Analysis of Propagation of Electromagnetic Waves in Atmospheric Hydrometeors on Low-Elevation Paths

Attenuation of electromagnetic waves in millimeter wave bands is analyzed by means of experimental measurement of received signal fluctuations on terrestrial radio links operating in frequency bands 58, 94 and 122 GHz. Long-term time series of the received signal are processed to obtain annual and two-year cumulative distributions of attenuation due to hydrometeors. The measured statistics give the attenuation higher than predicted by the model of the Recommendation ITU-R P.530. Rain intensity measured simultaneously with rain attenuation is used to obtain fitted parameters of an attenuation/intensity power-law relationship. The empirical data extracted from the experiment are compared with the results of numerical simulations of attenuation due to rain and hailstones.

  1. KERR, E. Propagation of Short Radio Waves. 2nd ed. London (UK): Peter Peregrinus, 1987. ISBN: 0863410995
  2. KIZER, G. Digital Microwave Communication. 1st ed. New Jersey (USA): IEEE Press & Wiley, 2013. ISBN: 9780470125342
  3. MANABE, T., IHARA, T., AWAKA, J., et al. The relationship of raindrop-size distribution to attenuations experience at 50, 80, 140, and 240 GHz. IEEE Transactions on Antennas and Propagation, 1987, vol. 35, no. 11, p. 1326–1330. DOI: 10.1109/TAP.1987.1144005
  4. HIRATA, A., YAMAGUCHI, R., TAKAHASHI, H., et al. Effect of rain attenuation for a 10-Gb/s 120-GHz-band millimeter-wave wireless link. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 12, p. 3099–3105. DOI: 10.1109/TMTT.2009.2034342
  5. HONG, E., LANE, S., MURRELL, D., et al. Terrestrial link rain attenuation measurements at 84 GHz. In Proceedings of the United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM). Boulder (USA), 2017, p. 1–2. DOI: 10.1109/USNC-URSI-NRSM.2017.7878267
  6. GRABNER, M., PECHAC, P., VALTR, P. First results of concurrent rain attenuation measurement in three millimeter wave bands. In Proceedings of the XXXIth URSI General Assembly and Scientific Symposium. Beijing (China), 2014, p. 1–4. DOI: 10.1109/URSIGASS.2014.6929689
  7. GRABNER, M., PECHAC, P., VALTR, P. Attenuation due to hydrometeors in three millimeter wave bands. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP). Davos (Switzerland), 2016, p. 1–4. DOI: 10.1109/EuCAP.2016.7481331
  8. KOLKA, Z., KINCL, Z., BIOLKOVA, V., et al. Hybrid FSO/RF test link. In Proceedings of the 4th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT). St. Petersburg (Russia), 2012, p. 502–505. DOI: 10.1109/ICUMT.2012.6459718
  9. ITU RADIOCOMMUNICATION SECTOR Rec. ITU-R P.530-16, Propagation data and prediction methods required for the design of terrestrial line-of-sight systems. Geneva (Switzerland): ITU, 2015.
  10. ITU RADIOCOMMUNICATION SECTOR Rec. ITU-R P.837-6, Characteristics of precipitation for propagation modelling. Geneva (Switzerland): ITU, 2012.
  11. VAN DE HULST, H. C. Light Scattering by Small Particles. 1st ed. New York (USA): Dover Publications, 1981. ISBN: 0486642283
  12. ISHIMARU, A. Wave Propagation and Scattering in Random Media. 2nd ed. Piscataway (USA): IEEE Press, 1997. ISBN: 078034717X
  13. WISCOMBE, W. J. Improved Mie scattering algorithms. Applied Optics, 1980, vol. 19, no. 9, p. 1505–1509. DOI: 10.1364/AO.19.001505
  14. MARSHALL, J. S., PALMER, W. M. The distribution of raindrops with size. Journal of Meteorology, 1948, vol. 5, no. 4, p. 165–166. DOI: 10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2

Keywords: electromagnetic wave propagation, rain attenuation, scattering,

B. Tang [references] [full-text] [DOI: 10.13164/re.2018.0034] [Download Citations]
The Correlation Characteristics of Polarization Backscattering Matrix of Dense Chaff Clouds

This paper studied the correlation characteristics of the polarization backscattering matrix of the dense chaff cloud with uniform orientation and location distributions in circular symmetry region. Based on the theoretical analysis and numerical experiments, the correlation coefficients of the four elements in the polarization backscattering matrix are obtained, and the results indicate that the cross to co-polar correlation coefficient is still zero; and that the sum of the co-polar cross-correlation coefficient and the two times of linear depolarization ratio equals one. The results are beneficial for better understanding of the backscattering characteristics of dense chaff clouds, and are useful in the application of jamming recognition in radar electronic warfare. Numerical experiments are performed by using the method of moments.

  1. BUTTERS, B. C. F. Chaff. IEE Proceedings-F - Communications, Radar and Signal Processing, 1982, vol. 129, no. 3, p. 197–201. DOI: 10.1049/ip-f-1:19820030
  2. NEJATINCE, A., VOGT, I. M., GOSSL, H. Design of chaff and chaff-supported communication systems. IEEE Transactions on Communications, Aug. 1976, vol. 24, no. 8, p.785–803. DOI: 10.1109/TCOM.1976.1093390
  3. HESSEMER, R. A. JR. Scatter communications with radar chaff. IRE Transactions on Antennas and Propagation, 1961, vol. 9, no. 2, p. 211–217. DOI: 10.1109/TAP.1961.1144981
  4. SEO, D.-W., KIM, H.-J., BAE, K.-U., MYUNG, N.-H. The effect of fiber orientation distribution on the effective permittivity of fiber composite materials. Journal of Electromagnetic Waves and Applications, 2010, vol. 24, no. 17-18, p. 2419–2430. DOI: 10.1163/156939310793675835
  5. WICKLIFF, R. G., GARBACZ, R. J. The average backscattering cross section of clouds of randomized resonant dipoles. IEEE Transactions on Antennas and Propagation, 1974, vol. 22, no. 3, p. 503-506. DOI: 10.1109/TAP.1974.1140813
  6. PEEBLES, P. Z. Bistatic radar cross sections of chaff. IEEE Transactions on Aerospace and Electronic Systems, 1984, vol. 20, no. 2, p. 128–140. DOI: 10.1109/TAES.1984.310435
  7. GUO, Y. P., UBERALL, H. Bistatic radar scattering by a chaff cloud. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 7, p. 837–841. DOI: 10.1109/8.155750
  8. MARCUS, S. W. Electromagnetic wave propagation through chaff clouds. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 7, p.2032–2042. DOI: 10.1109/TAP.2007.900178
  9. SEO, D.-W., YOO, J.-H., KWON, K. I., et al. Generalized equivalent conductor method for a chaff cloud with an arbitrary orientation distribution. Progress In Electromagnetics Research, 2010, vol. 105, p. 333–346. DOI: 10.2528/PIER10051202
  10. ZRNIC, D. S., RYZHKOV, A. V. Polarimetric properties of chaff. In IEEE International Geoscience and Remote Sensing Symposium IGARSS’03. Toulouse (France), 2003, vol. 4, p. 2359–2361. DOI: 10.1109/IGARSS.2003.1294441
  11. IOANNIDIS, G.A. Model for spectral and polarization characteristics of chaff. IEEE Transactions on Aerospace and Electronic Systems, 1979, vol. 15, no. 5, p. 723–726. DOI: 10.1109/TAES.1979.308862
  12. SHEN, Y., XIE, J. Statistical properties of chaff echoes. Chinese Journal of Radio Science, 1997, vol. 12, no. 1, p. 108-111. (In Chinese)
  13. WANG, X. S., CHEN, Z. J., LI, Y. Z. Polarization scattering characteristics of chaff cloud in outer space. In Proceedings of CIE International Conference on Radar. Bejing (China), 2001, p. 444–448. DOI: 10.1109/ICR.2001.984732
  14. LI, J. L., WANG, X. S., LI, Y. Z. Polarization characteristics of Gaussian oriented chaff clouds. Chinese Journal of Radio Science, 2008, vol. 23, no. 3, p. 389–395. (In Chinese)
  15. TANG, B. LI, H. M., SHENG, X. Q. Jamming recognition method based on the full polarisation scattering matrix of chaff clouds. IET Microwaves, Antennas and Propagation, 2012, vol. 6, no. 13, p. 1451–1460. DOI: 10.1049/iet-map.2012.0297
  16. YANG, Y., XIAO, S. P., FENG, D. J., et al. Polarisation oblique projection for radar seeker tracking in chaff centroid jamming environment without prior knowledge. IET Radar, Sonar and Navigation, 2014, vol. 8, no. 9, p. 1195–1202. DOI: 10.1049/iet-rsn.2013.0388
  17. SHAO, X. H., DU, H., XUE, J. H. A new method of ship and chaff polarization recognition under rain and snow cluster. In 2007 International Workshop on Anti-Counterfeiting, Security and Identification (ASID). Xiamen (China), 2007, p. 142–147. DOI: 10.1109/IWASID.2007.373715
  18. ALKU, L., MOISSEEV, D., AITTOMӒKI, T., et al. Identification and suppression of nonmeteorological echoes using spectral polarimetric processing. IEEE Transactions on Geoscience and Remote Sensing, 2015, vol. 53, no. 7, p. 3628–3638. DOI: 10.1109/TGRS.2014.2380476
  19. HARRINGTON, R. F. Field Computation by Moment Methods. Wiley-IEEE Press, 1993. ISBN: 0780310144
  20. GONG, Z. Modern Electromagnetic Theory. 2nd ed. Peking University Press, 2010. (p. 191–195).
  21. MOTT, H. Remote Sensing with Polarimetric Radar. Wiley-IEEE Press, 2007. (p. 65–68) DOI: 10.1002/0470079819
  22. VAN VLECK, J. H., BLOCH, F., HAMERMESH, M. Theory of radar reflection from wires or thin metallic strips. Journal of Applied Physics, 1947, vol. 18, p. 274–294. DOI: 10.1063/1.1697649
  23. RICHMOND, J., SCHWAB, L., WICKLIFF, R. Tumble-average radar backscatter of some thin-wire chaff elements. IEEE Transactions on Antennas and Propagation, 1974, vol. 22, no. 1, p. 124–126. DOI: 10.1109/TAP.1974.1140734
  24. SARABANDI, K. Derivation of phase statistics from the Mueller matrix. Radio Science, 1992, vol. 27, no. 5, p. 553–560. DOI: 10.1029/92RS00195

Keywords: Dense chaff clouds, polarization characteristics, electronic warfare, radar

R. Sanyal, P. P.Sarkar, S. K. Chowdhury [references] [full-text] [DOI: 10.13164/re.2018.0039] [Download Citations]
Miniaturized Band-notched UWB Antenna with Improved Fidelity Factor and Pattern Stability

This article presents a novel miniaturized monopole UWB antenna with enhanced band rejection characteristics at 5.5 GHz. The proposed configuration is derived from octagonal band notched UWB antenna which consists of W-shaped slotted ground plane and an open ended λ_g/4 hook shaped resonator as a band-notched element. By using proper miniaturization of the octagonal monopole and ground plane, 50% reduction in main structure can be realized without changing the dimension of resonator. Frequency and time domain performance of the proposed miniaturized antenna design is compared with conventional half size and full size structures. The noticeable improvements in terms of band rejection characteristics, radiation pattern stability and fidelity factor confirm the effectiveness of the proposed miniaturization technique. Furthermore, the proposed antenna provides much wider operating bandwidth (VSWR < 2) within 3.1-17.2 GHz with the exception around 5-6 GHz.

  1. FEDERAL COMMUNICATION COMMISSION. First Report and Order, Revision of Part 15 of the Commission's Rule Regarding Ultra-Wideband Transmission System FCC 02-48. 2002.
  2. BAHADORI, K., RAHMAT-SAMII, Y. A miniaturized ellipticcard UWB antenna with WLAN band rejection for wireless communications. IEEE Transaction on Antennas and Propagation, 2007, vol. 55, no. 11, p. 3326–3332. DOI: 10.1109/TAP.2007.908800
  3. MAMDOUH, M., ALI, M., SAAD, A. A., et al. A design of miniaturized ultra-wideband printed slot antenna with 3.5/5.5 GHZ dual band-notched characteristics: analysis and implementation. Progress In Electromagnetics Research B, 2013, vol. 52, p. 37–56. DOI: 10.2528/PIERB 13041303
  4. ABDEL-HAMEED, A. S., SALEM, D., ABDALLAH, E. A., et al. Quasi self-complementary UWB notched microstrip antenna for USB application. Progress In Electromagnetics Research B, 2013, vol. 56, p. 185–201. DOI: 10.2528/PIERB13040807
  5. SIDDIQUI, J. Y., SAHA, C., ANTAR, Y. M. M. Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 4015–4020. DOI: 10.1109/TAP.2014.2327124
  6. KANG, L., LI, H., WANG, X.-H., et al. Miniaturized bandnotched UWB MIMO antenna with high isolation. Microwave and Optical Technology Letters, 2016, vol. 58, no. 4, p. 878–881. DOI: 10.1002/mop.29691
  7. WU, Z.-H., WEI, F., SHI, X.-W., et al. A compact quad band notched UWB monopole antenna loaded one lateral L-shaped slot. Progress In Electromagnetics Research, 2013, vol. 139, p. 303–315. DOI: 102528/PIER13022714
  8. XIE, M., GUO, Q., WU, Y. Design of a miniaturized UWB antenna with band-notched and high frequency rejection capability. Journal of Electromagnetic Waves and Applications, 2011, vol. 25, no. 8-9, p. 1103–1112. DOI: 10.1163/156939311795761999
  9. CHEN, Z. N., TERENCE, S. P. S., QING, X. Small printed ultrawideband antenna with reduced ground plane effect. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 2, p. 383–388. DOI:10.1109/TAP.2006.889823
  10. ZHOU, J., LIU, L., CHEUNG, S. W. Compact quasi-selfcomplementary antenna for portable UWB applications. Microwave and Optical Technology Letters, 2014, vol. 56, no. 6, p. 1317–1323. DOI: 10.1002/mop.28317
  11. ABBOSH, A. M. Miniaturization of planar ultrawideband antenna via corrugation. IEEE Antennas and Wireless Propagation Letter, 2008, vol. 7, p. 685–688. DOI: 10.1109/LAWP.2008.2009323
  12. SUN, M., ZHANG, Y. P., LU, Y. Miniaturization of planar monopole antenna for ultrawideband radios. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 7, p. 2420–2425. DOI: 10.1109/TAP.2010.2048851
  13. RADIOM, S., ALIAKBARIAN, H., VANDENBOSCH, G. A. E., et al. An effective technique for symmetric planar monopole antenna miniaturization. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 10, p. 2989–2996. DOI: 10.1109/TAP.2009.2028620
  14. MOBASHSHER, A. T., ABBOSH, A. Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 2, p. 153–166. DOI: 10.1109/MAP.2015.2414488
  15. LIU, J., ESSELLE, K., P., HAY, S. G., et al. Effect of printed UWB antenna miniaturization on pulse fidelity and pattern stability. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 3903–3910. DOI: 10.1109/TAP.2014.2322885

Keywords: Miniaturized antenna, ultra wideband (UWB), radiation pattern stability, fidelity factor

S. Banerjee, B. Rana, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2018.0047] [Download Citations]
Gain Augmentation of a HMSIW based Equilateral Triangular Antenna using CRSF FSS Superstrate

In this paper, a half-mode substrate integrated waveguide (HMSIW) based equilateral triangular antenna is initially designed to operate at 6.5 GHz wireless frequency. This parent antenna is fitted with metallic vias all along two of its sides to make them perfect electrical conductor (PEC) walls while radiation taking place from the other side acts as perfect magnetic conductor (PMC) wall being devoid of such metallic vias. The antenna exhibits a gain of 5.5 dBi at the fundamental TE101 mode with linear polarization. Its gain is augmented using polarization independent coupled-resonator spatial filter (CRSF) frequency selective surface (FSS) as superstrate and is found to increase to 8.7 dBi at the same 6.5 GHz resonating frequency. The antenna prototype along with the FSS structure are both fabricated using Arlon AD270 substrate and experimental measurements are carried out. It is observed that both simulated and measured results are in close agreement with each other.

  1. HIROKAWA, J., ANDO, M. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates. IEEE Transaction on Antennas and Propagation, 1998, vol. 46, no. 5, p. 625–630. DOI: 10.1109/8.668903
  2. UCHIMURA, H., TAKENOSHITA, T., FUJII, M. Development of a laminated waveguide. IEEE Transaction on Microwave Theory and Techniques, 1998, vol. 46, no. 12, p. 2438–2443. DOI: 10.1109/22.739232
  3. DESLANDES, D., WU, K. Single-substrate integration technique of planar circuits and waveguide filters. IEEE Transaction on Microwave Theory and Techniques, 2003, vol. 51, no. 2, p. 593 to 596. DOI: 10.1109/TMTT.2002.807820
  4. XU, F., WU, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transaction on Microwave Theory and Techniques, 2005, vol. 53, no. 1, p. 66–73. DOI: 10.1109/TMTT.2004.839303
  5. DESLANDES, D., WU, K. Accurate modeling, wave mechanisms and design considerations of a substrate integrated waveguide. IEEE Transaction on Microwave Theory and Techniques, 2006, vol. 54, no. 6, p. 2516–2526. DOI: 10.1109/TMTT.2006.875807
  6. YAN, L., HONG, W., HUA, G., CHEN, J. X., WU, K., CUI, T. J. Simulation and experiment on SIW slot array antennas. IEEE Microwave Wireless Components Letters, 2004, vol. 14, p. 446 to 448. DOI: 10.1109/LMWC.2004.832081
  7. DESLANDES, D., WU, K. Substrate integrated waveguide leaky wave antenna: concept and design considerations. In Proceedings of the Asia-Pacific Microwave Conference (APMC’05). Suzhou, China, 2005.
  8. LUO, G. Q., HU, Z. F., DONG, X. L., SUN, L. L. Planar slot antenna backed by substrate integrated waveguide cavity. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 236 to 239. DOI: 10.1109/LAWP.2008.923023
  9. BOHORQUEZ, J. C., PEDRAZA, H. A. F., PINZON, I. C.H., CASTIBLANCO, J. A., PENA, N., GUARNIZO, H. F. Planar substrate integrated waveguide cavity-backed antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1139 to 1142. DOI: 10.1109/LAWP.2009.2034399
  10. AWIDA, M. H., FATHY, A. E. Substrate integrated waveguide Ku-band cavity-backed 2×2 microstrip patch array antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1054 to 1056. DOI: 10.1109/LAWP.2009.2031416
  11. WANG, H., FANG, D. G., ZHANG, B., CHE, W. Q. Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas. IEEE Transaction on Antennas and Propagation, 2010, vol. 58, p. 640–647. DOI: 10.1109/TAP.2009.2039298
  12. XU, J., HONG, W., TANG, H., KUAI, Z., WU, K. Half-mode substrate integrated waveguide (HMSIW) leaky-wave antenna for millimeter wave applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 85–88. DOI: 10.1109/LAWP.2008.919353
  13. LAI, Q. H., HONG, W., KUAI, Z. Q., ZHANG, Y. S., WU, K. Half-mode substrate integrated waveguide transverse slot array antennas. IEEE Transaction on Antennas and Propagation, 2009, vol. 57, p. 1064–1072. DOI: 10.1109/TAP.2009.2015799
  14. ZELINSKI, G. M., THIELE, G. A., HASTRITER, M. L., HAVRILLA, M. J., TERZOULI, A. J. Half width leaky wave antennas. IET Microwave Antennas and Propagation, 2007, vol. 1, p. 341–348. DOI: 10.1049/iet-map:20060011
  15. MARTINEZ-ROS, A. J., GOMEZ-TORNERO, J. L., GOUSSETIS, G. Planar leaky-wave antenna with flexible control of the complex propagation constant. IEEE Transaction on Antennas and Propagation, 2012, vol. 60, no. 3, p. 1625–1630. DOI: 10.1109/TAP.2011.2180320
  16. BANERJEE, S., RANA, B., PARUI, S. K. Substrate integrated waveguide based triangular antenna arrays. Microwave and Optical Technology Letters, 2016, vol. 58, p. 675–679. DOI: 10.1002/mop.29645
  17. BANERJEE, S., RANA, B., PARUI, S. K. SIW based compact and dual-band equilateral triangular antennas. Journal of Electromagnetic Waves and Applications, 2016, vol. 30, p. 637–650. DOI: 10.1080/09205071.2016.1142395
  18. BANERJEE, S., RANA, B., PARUI, S. K., CHATTERJEE, S., DEY, N. HMSIW based miniaturized sensing antennas for S- and C-band applications. IEEE Sensors Letters, 2017, vol. 1, no. 1, 4 p. DOI: 10.1109/LSENS.2017.2677858
  19. CHEN, H-Y., TAO. Y. Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem Cross elements. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3482–3486. DOI: 10.1109/TAP.2011.2161440
  20. FOROOZESH, A., SHAFAI, L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 258–270. DOI: 10.1109/TAP.2009.2037702
  21. PIRHADI, A., BAHRAMI, H., NASRI, J. Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2101–2106. DOI: 10.1109/TAP.2012.2186230
  22. ATTIA, H., YOUSEFI, L., RAMAHI, O. High-gain patch antennas loaded with high characteristic impedance superstrates. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 858–861. DOI: 10.1109/LAWP.2011.2165196
  23. HOSSEINI, A., CAPOLINO, F., FLAVIIS, F. D. Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 3, p. 909–921. DOI: 10.1109/TAP.2014.2386358
  24. LEE, D. H., LEE, Y. J., YEO, J., MITTRA, R., PARK, W. S. Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves Antennas and Propagation, 2007, vol. 1, no. 1, p. 248–254. DOI: 10.1049/ietmap:20050318
  25. VAIDYA, A. R., GUPTA, R. K., MISHRA, S. K., MUKHERJEE, J. Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate. Microwave and Optical Technology Letters, 2012, vol. 54, no. 6, p. 1488–1493. DOI: 10.1002/mop.26818
  26. ZHOU, H., QU, S., LIN, B., WANG, J., MA, H., XU, Z., PENG, W., BAI, P. Filter-antenna consisting of conical FSS radome and monopole antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 3040–3045. DOI: 10.1109/TAP.2012.2194648
  27. RANA, B., CHATTERJEE, A., PARUI, S. K. Gain enhancement of a dual-polarized dielectric resonator antenna using polarization independent FSS. Microwave and Optical Technology Letters, 2016, vol. 58, no. 6, p. 1415–1420. DOI: 10.1002/mop.29832
  28. CHATTERJEE, A., PARUI, S. K. Gain enhancement of a wide slot antenna using a second-order bandpass frequency selective surface. Radio Engineering, 2015, vol. 24, no. 2, p. 455–461. DOI: 10.13164/re.2015.0455
  29. ZHOU, H., QU, S., XU, Z., LIN, B., WANG, J., MA, H., BAI, P., PENG, W. A compact second-order Frequency Selective Surface with broadband response. Microwave and Optical Technology Letters, 2012, vol. 54, no. 2, p. 392–394. DOI: 10.1002/mop.26532
  30. LAI, Q., FUMEAUX, Ch., HONG, W., VAHLDIECK, R. Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Transaction on Microwave Theory and Techniques, 2009, vol. 57, no. 8, p. 1996–2004. DOI: 10.1109/TMTT.2009.2025429
  31. POZAR, D. M. Microwave Engineering. 3rded. New York (USA): Wiley, 2005. ISBN: 978-0-470-63155-3
  32. SAUER, T. Numerical Analysis. Upper Saddle River (NJ, USA): Person Educ., 2006. ISBN-13: 9780321783677
  33. FENG, X., WU, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transaction on Microwave Theory and Techniques, 2005, vol. 53, no. 1, p. 66–73. DOI: 10.1109/TMTT.2004.839303
  34. DESLANDES, D., WU, K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave Wireless Components Letters, 2001, vol. 11, no. 2, p. 68–70. DOI: 10.1109/7260.914305

Keywords: Antenna gain, coupled-resonator spatial filter (CRSF), frequency selective surface (FSS), half-mode SIW (HMSIW), substrate integrated waveguide (SIW)

R. Singha, V. Damera [references] [full-text] [DOI: 10.13164/re.2018.0054] [Download Citations]
Artificial Material Integrated Ultra-wideband Tapered Slot Antenna for Gain Enhancement with Band Notch Characteristics

The gain of the ultra-wideband tapered slot antenna (TSA) is enhanced by using broadband artificial material with band notch characteristics. The proposed artificial material unit cell is designed by fabricating non-resonant three S-shaped parallel metallic line on single side of the dielectric substrate which provides a longer current path compared to the parallel-line structure. The proposed S-shaped structure is printed on the top side of the tapered slot antenna in the extended substrate periodically. The effective refractive index of the artificial material is lower than antenna substrate and phase velocity in the region of artificial material is much higher than the other region. Therefore, the proposed artificial material acts like a beam focusing lens. The band notch at 5.5 GHz is achieved by creating a split ring resonator (SRR) slot near the balun. The basic and artificial material loaded TSAs are fabricated and the measurement results show that the gain of the basic antenna has been increased by 1.6 dBi. At the same time, the proposed antenna achieves a VSWR below 2 from 3 to 11 GHz except at 5.5 GHz with a notch band from 5.1 to 5.8 GHz for band rejection of wireless local area network (WLAN) application.

  1. GIBSON, P. J. The Vivaldi aerial. In 9th European Microwave Conference. Brighton (UK), 1979, p. 101–105. DOI: 10.1109/EUMA.1979.332681
  2. REID, E. W., ORTIZ-BALBUENA, L., GHADIRI, A., MOEZ, K. A 324 element Vivaldi antenna array for radio astronomy instrumentation. IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61, no. 1, p. 241–249. DOI: 10.1109/TIM.2011.2159414
  3. ELLIS, T. J., REBEIZ, G. M. MM-wave tapered slot antennas on micromachined photonic bandgap dielectrics. In IEEE MTT-S International Microwave Symposium Digest. San Francisco (CA, USA), 1996, p. 1157–1160. DOI: 10.1109/MWSYM.1996.511235
  4. JAYASINGHE, J. M. J. W., ANGUERA, J., UDUWAWALA, D. N. Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering, 2013, vol. 22, no. 3, p. 700–707.
  5. SONG, K., LEE, S.-H., KIM, K., HUR, S., KIM, J. Emission enhancement of sound emitters using an acoustic metamaterial cavity. Scientific Report, 2014, vol. 4, no. 4165, 6 p. DOI: 10.1038/srep04165
  6. JIANG, W. X., QIN, C. W., HAN, T. C., et al. Broadband alldielectric magnifying lens for far-field high-resolution imaging. Advanced Materials, 2013, vol. 25, p. 6963–6968. DOI: 10.1002/adma.201303657
  7. LANDY, N., SMITH, D. R. A full-parameter unidirectional metamaterial cloak for microwaves. Nature Materials, 2013, vol. 12, p. 25–28. DOI: 10.1038/nmat3476
  8. R. LIU, R., CHENG, Q., HAND, T., et al. Experimental demonstration of electromagnetic tunneling through an epsilonnear-zero metamaterial at microwave frequencies. Physical Review Letters, 2008, vol. 100, no. 2, p. 023903-1–023903-4. DOI: 10.1103/PhysRevLett.100.023903
  9. CAO, T., WEI, C. W., SIMPSON, R. E., et al. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Scientific Report, 2014, vol. 4, no. 3955, 8 p. DOI: 10.1038/srep03955
  10. LIU, X., LEI, Z., YANG, R., et al. The band notch sensitivity of Vivaldi antenna towards CSRRs. Progress In Electromagnetics Research Letters, 2013, vol. 43, p. 125–135. DOI: 10.2528/PIERL13080611
  11. SIDIQUI, J. Y., SAHA, C., ANTAR, Y. M. M. Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 8, p. 4015–4020. DOI: 10.1109/TAP.2014.2327124
  12. RANGA, Y., MATEKOVITS, L., ESSELLE, K. P. et al. Multioctave frequency selective surface reflector for ultrawideband antennas. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 219–222. DOI: 10.1109/LAWP.2011.2130509
  13. ZHOU, B., CUI, T. J. Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 326 to 329. DOI: 10.1109/LAWP.2011.2142170
  14. CHEN, L., LEI, Z., YANG, R., et al. A broadband artificial material for gain enhancement of antipodal tapered slot antenna. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 1, p. 395–400. DOI: 10.1109/TAP.2014.2365044
  15. ZHU, F., GAO, S., HO, A. T. S., et al. Miniaturized tapered slot antenna with signal rejection in 5–6-GHz band using a balun. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 507–510. DOI: 10.1109/LAWP.2012.2199276
  16. BHASKAR, M., JOHARI, E., AKHTER, Z., et al. Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 233–238. DOI: 10.1002/mop.29534
  17. SAHA, C., NATANI, P., SHAIK, L. A., et al. Square/hexagonal split ring resonator loaded exponentially tapered slot ultra wideband (UWB) antenna with frequency notch characteristics. Microwave and Optical Technology Letters, 2017, vol. 59, no. 6, p. 1241–1245. DOI: 10.1002/mop.30511
  18. CHEN, X., GREZEGORCZYK, T. M., WU, B.-I., et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 2004, vol. 70, p. 016608-1 to 016608-7. DOI: 10.1103/PhysRevE.70.016608
  19. LIU, R., CHENG, Q., CHIN, J. Y., et al. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Optics Express, 2009, vol. 17, no. 23, p. 21030–21041. DOI: 10.1364/OE.17.021030
  20. GAZIT, E. Improved design of the Vivaldi antenna. Institution of Electrical Engineers Proceedings, 1988, vol. 135, no. 2, p. 89–92. DOI: 10.1049/ip-h-2.1988.0020
  21. SCHUPPERT, B. Microstrip/slotline transition: modeling and experimental investigation. IEEE Transactions on Microwave Theory and Techniques, 1988, vol. 36, no. 8, p. 1272 –1282. DOI: 10.1109/22.3669

Keywords: Tapered slot antenna, artificial material, split ring resonator, wireless local area network (WLAN)

M. Gopikrishna, D. D. Krishna, C. K. Aanandan [references] [full-text] [DOI: 10.13164/re.2018.0063] [Download Citations]
A Compact Rectangular Monopole Antenna Design with a Novel Feed for an Improved UWB Performance

Printed wideband antennas, if not optimised both in frequency & time domain, often fail to qualify for UWB applications. This is primarily observed in designs based on multiple resonances. The excitation of different modes causes variation in the position of the antenna phase centre and radiation patterns with frequency. In this paper, we propose a novel compact UWB antenna design with optimised resonances within the 3.1 – 10.6 GHz band. The design comprises of a rectangular CPW-fed monopole. The novelty in the design lies in the impedance transformer arrangement at the antenna feed which not only maintains constant impedance over the wide band but contributes towards maintaining uniformity in the radiation patterns over the frequency band. The proposed antenna is characterized, both in the frequency and time domain, confirming its suitability for UWB operation. The impedance bandwidth of the antenna is from 2.9-11.5GHz with an omni–directional radiation pattern over the full band, unlike most of the planar UWB antennas reported in literature whose pattern deteriorates particularly at the upper end of the band. It also exhibits appreciable polarization purity and radiation efficiency. The time domain parameters, Full Width Half Maxima (FWHM) and Ringing, are computed from the measured antenna transfer function. The computed Fidelity of the transmitted pulses indicates superior pulse handling capabilities. The antenna is suitable for commercial hand held devices as its PCB area is just 30 x 12mm2 when fabricated on the FR4 substrate with permittivity 4.4 and height 1.6mm.

  1. GHOSH, D., DE, A., TAYLOR, M. C., et al. Transmission and reception by ultra-wideband (UWB) antennas. IEEE Antennas and Propagation Magazine, 2006, vol. 48, no. 5, p. 67–99. DOI: 10.1109/MAP.2006.277157
  2. GALVAN-TEJADA, G. M., PEYROT-SOLIS, M. A., AUGILAR, H. J. Ultra Wideband Antennas: Design, Methodologies, and Performance. CRC Press, 2015. ISBN: 9781482206500
  3. MA, T. G., JENG, S. K. A printed dipole antenna with tapered slot feed for ultrawide-band applications. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 11, p. 3833–3836. DOI: 10.1109/TAP.2005.858819
  4. MA, T. G., JENG, S. K. Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 3, p. 1194–1202. DOI: 10.1109/TAP.2004.842648
  5. GOPIKRISHNA, M., KRISHNA, D. D., CHANDRAN, A. R., et al. Square monopole antenna for ultra wide band communication applications. Journal of Electromagnetic Waves and Applications, 2007, vol. 21, no. 11, p. 1525–1537. DOI: 10.1163/156939307782000299
  6. CHU, Q. X., YANG, Y. Y. A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3637–3644. DOI: 10.1109/TAP.2008.2007368
  7. ACHARJEE, J., MANDAL, K., MANDAL, S. K., et al. A compact printed monopole antenna with enhanced bandwidth and variable dual band notch for UWB applications. Journal of Electromagnetic Waves and Applications, 2016, vol. 30, no. 15, p. 1980–1992. DOI: 10.1080/09205071.2016.1234419
  8. LEE, S. S., CHOI, S. S., PARK, J. K., et al. Experimental study of UWB antenna in the time domain. Microwave and Optical Technology Letters, 2005, vol. 47, no. 6, p. 554–558. DOI: 10.1002/mop.21228
  9. SHAMEENA, V. A., SUMA, M. N., RAJ ROHITH, K., et al. Compact ultra-wideband planar serrated antenna with notch band ON/OFF control. Electronics Letters, 2006, vol. 42, no. 23, p. 1323–1324. DOI: 10.1049/el:20062863
  10. WU, Q., JIN, R., GENG, J., et al. Ultra-wideband rectangular disk monopole antenna with notched ground. Electronics Letters, 2007, vol. 43, no. 11, p. 605-6. DOI: 10.1049/el:20070910
  11. LI, Y., LI, W.,YE, Q. A reconfigurable triple notch band antenna integrated with defected microstrip structure bandstop filter for ultrawideband cognitive radio applications. International Journal of Antennas and Propagation, 2013, vol. 2013, p. 1–13. DOI: 10.1155/2013/472645
  12. WU, Q., JIN, R., GENG, J., DING, M. Printed omni-directional UWB monopole antenna with very compact size. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, p. 896–899. DOI: 10.1109/TAP.2008.917018
  13. GOPIKRISHNA, M., KRISHNA, D. D., ANANDAN, C. K., et al. Design of a compact semi-elliptic monopole slot antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 6, p. 1834–1837. DOI: 10.1109/TAP.2009.2015850
  14. ANGUERA, J., ANDUJAR, A. Ground plane contribution in wireless handheld devices using radar cross section analysis. Progress in Electromagnetics Research, 2012, vol. 26, p. 101–114. DOI: 10.2528/PIERM12081704
  15. FEREIDOONY, F., CHAMAANI, S., MIRTAHERI, S. A. UWB monopole antenna with stable radiation pattern and low transient distortion. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 302–305. DOI: 10.1109/LAWP.2011.2141106
  16. SORGEL, W., WIESBECK, W. Influence of the antennas on the ultrawideband transmission. Eurasip Journal on Applied Signal Processing, 2005, p. 296–305. DOI: 10.1155/ASP.2005.296
  17. DUROC, Y., GHIOTTO, A., VUONG, T. P., et al. UWB antennas: Systems with transfer function and impulse response. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 5, p. 1449– 1451. DOI: 10.1109/TAP.2007.895636
  18. KWON, D. H. Effect of antenna gain and group delay variations on pulse-preserving capabilities of ultrawideband antennas. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 8, p. 2208–2215. DOI: 10.1109/TAP.2006.879189
  19. GOPIKRISHNA, M., AANANDAN, C. K. On The Radiation Characteristics of Planar Printed UWB Antennas. Scholars Press, 2013. ISBN: 978-36-395-1104-8

Keywords: Ultrawide-band, Monopole antenna, Antenna Transfer Function, Time domain

Li-Ye Xiao, Wei Shao, Zhi-Xin Yao, Shanshan Gao [references] [full-text] [DOI: 10.13164/re.2018.0070] [Download Citations]
Data Mining Techniques in Artificial Neural Network for UWB Antenna Design

With data mining techniques for the preprocessing of training patterns, an artificial neural network (ANN) model is proposed for parametric modeling of electromagnetic behavior of ultrawide band (UWB) antennas in this paper. In this ANN method, two data mining techniques, including correlation analysis and data classification based on support vector machine (SVM), are employed to determine geometrical variable inputs and classify the inputs during the training and testing processes. Compared with the traditional ANN, the proposed model with data mining can achieve the trained model with small training datasets and accurate results. The validity and efficiency of this proposed method are confirmed with two band-notched UWB antenna examples.

  1. RAYAS-SANCHEZ, J. E. EM-based optimization of microwave circuits using artificial neural networks: The state-of-the-art. IEEE Transactions on Microwave Theory and Techniques, Jan. 2004, vol. 52, no. 1, p. 420–435. DOI: 10.1109/TMTT.2003.820897
  2. RIZZOLI, V., COSTANZO, A., MASOTTI, D., et al. Computeraided optimization of nonlinear microwave circuits with the aid of electromagnetic simulation. IEEE Transactions on Microwave Theory and Techniques, Jan. 2004, vol. 52, no. 1, p. 362–377. DOI: 10.1109/TMTT.2003.820898
  3. STEER, M. B., BANDLER, J. W., SNOWDEN, C. M. Computeraided design of RF and microwave circuits and systems. IEEE Transactions on Microwave Theory and Techniques, Mar. 2002, vol. 50, no. 3, p. 996–1005. DOI: 10.1109/22.989983
  4. BURRASCANO, P., FIORI, S., MONGIARDO, M. A review of artificial neural networks applications in microwave computeraided design. International Journal of RF and Microwave Computer-Aided Engineering, May 1999, vol. 9, no. 3, p. 158–174. DOI: 10.1109/22.989983
  5. ZHANG, Q. J., GUPTA, K. C., DEVABHAKTUNI, V. K. Artificial neural networks for RF and microwave design - From theory to practice. IEEE Transactions on Microwave Theory and Techniques, Apr. 2003, vol. 51, no. 4, p. 1339–1350. DOI: 10.1109/TMTT.2003.809179
  6. DING, X., DEVABHAKTUNI, V. K., CHATTARAJ, B., et al. Neural-network approaches to electromagnetic based modeling of passive components and their applications to high-frequency and high-speed nonlinear circuit optimization. IEEE Transactions on Microwave Theory and Techniques, Jan. 2004, vol. 52, no. 1, p. 436–449. DOI: 10.1109/TMTT.2003.820889
  7. CAO, Y., WANG, G., ZHANG, Q. J. A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions. IEEE Transactions on Microwave Theory and Techniques, Nov. 2009, vol. 57, no. 11, p. 2727–2742. DOI: 10.1109/TMTT.2009.2032476
  8. LI, W. A., TU, Z. H., CHU, Q. X., et al. Differential stepped-slot UWB antenna with common-mode suppression and dual sharpselectivity notched bands. IEEE Antennas and Wireless Propagation Letters, Oct. 2015, vol. 15, p. 1120–1123. DOI: 10.1109/LAWP.2015.2496159
  9. FENG, F., ZHANG, C., MA, J., et al. Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions. IEEE Transactions on Microwave Theory and Techniques, Jan. 2016, vol. 64, no. 1, p. 60–77. DOI: 10.1109/TMTT.2015.2504099
  10. ANGIULLI, G., CACCIOLA, M., VERSACI, M. Microwave devices and antennas modelling by support vector regression machines. IEEE Transactions on Magnetics, 2007, vol. 43, no. 4, p. 1589–1592. DOI: 10.1109/TMAG.2007.892480
  11. RODGERS, J. L., NICEWANDER, W. A. Thirteen ways to look at the correlation coefficient. The American Statistician, 1988, vol. 42, p. 59–66. DOI: 10.1080/00031305.1988.10475524
  12. Pearson Correlation Coefficient. 1 page. Cited 2017-09-23. Available at: https://en.wikipedia.org/wiki/Pearson_correlation_ coefficient
  13. SCHMIDT, R., LAUNSBY, R. G. Understanding Industrial Designed Experiments. Colorado Springs (CO, USA): Air Force Academy, 1992. ISBN: 0-9622176-1-1
  14. GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, Jul. 1999, vol. 14, no. 3, p. 1052–1061. DOI: 10.1109/61.772353
  15. CORTES, C., VAPNIK, V. Support-vector networks. Machine Learning, 1995, vol. 20, no. 3, p. 273–297. DOI: 10.1007/BF00994018
  16. SHIN, K. S., LEE, T. S., KIM, H. An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications, 2005, vol. 28, no. 1, p. 127–135. DOI: 10.1016/j.eswa.2004.08.009
  17. CHEN, H. L., LIU, D. Y., YANG, B., et al. A new hybrid method based on local fisher discriminant analysis and support vector machines for hepatitis disease diagnosis. Expert Systems with Applications, 2011, vol. 38, no. 9, p. 11796-11803. DOI: 10.1016/j.eswa.2011.03.066
  18. CHEN, H. L., YANG, B., LIU, J., et al. A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Systems with Applications, 2011, vol. 38, no. 7, p. 9014–9022. DOI: 10.1016/j.eswa.2011.01.120
  19. CRISTIANINI, N., SHAWE-TAYLOR, J. An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge University Press, 2000. ISBN:0-521-78019-5
  20. HECHT-NIELSEN, S. R. Kolmogorov’s mapping neural network existence theorem. In IEEE International Joint Conference on Neural Networks. New York (USA), 1987, vol. 3, p. 11–14. PUI: 18657248 SGR: 0023566098 SCOPUS: 2-s2.0-0023566098
  21. RYU, K. S., KISHK, A. A. UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band. IEEE Transactions on Antennas and Propagation, Dec. 2009, vol. 57, no. 12, p. 3942–3950. DOI: 10.1109/TAP.2009.2027727
  22. LIN, C. LIBSVM. 1 page. Cited 2017-03-20. Available at: http:// www.csie.ntu.edu.tw/~cjlin/
  23. FCC Website [Online]. Cited 2017-02-15. Available at: www.fcc.gov/pshs/techtopics/ techtopics10.html
  24. YANG, X. S. Flower pollination algorithm for global optimization. In Proceedings of the 11th International Conference on Unconventional Computation and Natural Computation (UCNC). Orleans (France), Sept. 2012, p. 242–243. DOI: 10.1007/978-3- 642-32894-7_27

Keywords: Artificial neural network (ANN), data mining, pole-residue-based transfer function (TF), support vector machine (SVM), ultrawide band (UWB) antenna

S. Mohammadi-Asl, J. Nourinia, Ch. Ghobadi, M. Majidzadeh [references] [full-text] [DOI: 10.13164/re.2018.0079] [Download Citations]
Targeting Wideband Circular Polarization: An Efficient 2×2 Sequentially-Phase-Fed Rotated Array Antenna

This paper outlines an efficient design of a wideband sequential-phase (SP) fed circularly polarized corner-truncated patch array antenna (CPCTPAA) with sequentially rotated (SR) array elements. The SP feed network is composed of a circular ring with an inner section of 270°. Four shorting strips are attached to the circular ring to the end of which corner-truncated patches (CTPs) are appended. Through the proposed feed structure, stable phase difference is attained at the end of the shorting strips which in turn ends in CP generation. Each array element of 2×2 CPCTPAA is a CTP printed on the top side of the FR4 substrate. On the backside, rectangular slots are removed from the ground plane to enhance the bandwidth characteristics of the proposed design. Moreover, suitable rectangular slots are embedded at the crossing points of CTPs and feed lines which instigate extra improvements in CPCTPAA performance. These amendments, all together, are deemed for achieving an efficient and cost-effective CPCTPAA design with smaller occupied implementation space. Simulation and experimental studies are conducted on a 70×70×1.6 mm3 prototype to evaluate performance of the proposed array antenna. Results are discussed in depth.

  1. CAO, Y. F., CHEUNG, S. W. YUK, T. I. Dual-cap mushroom-like metasurface used in CP reconfigurable monopole antenna for performance enhancement. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 12, p. 5949–5955, DOI: 10.1109/TAP.2015.2489682
  2. NOGHABAEI, S. M., H., RAHIM, S. K. A., SOH, P. J., et al. A dual-band circularly polarized patch antenna with a novel asymmetric slot for WiMAX application. Radioengineering, 2013, vol. 22, no. 1, p. 291–295.
  3. ZUO, S. L., YANG, L., ZHANG, Z. Y. Dual-band CP antenna with a dual-ring cavity for enhanced beamwidth. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 867–870. DOI: 10.1109/LAWP.2014.2382580
  4. ZHANG, L. DONG, T. Low RCS and high-gain CP microstrip antenna using SA-MS. Electronics Letters, 2017, vol. 53, no. 6, p. 375–376. DOI: 10.1049/el.2016.4654
  5. MANOHAR, M., KSHETRIMAYUM, R. S., GOGOI, A. K. A compact dual band-notched circular ring printed monopole antenna for super wideband applications. Radioengineering, 2017, vol. 26, no. 1, p. 64–70. DOI: 10.13164/re.2017.0064
  6. LEE, S. R., LIM, E. H., LO, F. L. Broadband single-layer E-patch reflect array. Radioengineering, 2017, vol. 26, no. 1, p. 97–106. DOI: 10.13164/re.2017.0097
  7. LIAO, S., XUE, Q. Compact UHF three-element sequential rotation array antenna for satcom applications. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 5, p. 2328–2338. DOI: 10.1109/TAP.2017.2684190
  8. WEI, K., LI, J. Y., WANG, L., et al. Study of horizontally polarized omnidirectional microstrip antenna arrays. Radioengineering, 2017, vol. 26, no. 1, p. 107–113. DOI: 10.13164/re.2017.0107
  9. KUZU, S., ALCAM, M. Array antenna using defected ground structure shaped with fractal form generated by Apollonius circle. IEEE Antennas and Wireless Propagation Letters. 2017, vol. 16, p. 1020–1023. DOI: 10.1109/LAWP.2016.2616944
  10. LIN, S. K., LIN, Y. C. A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential rotation arrays. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 7, p. 2721–2724. DOI: 10.1109/TAP.2011.2152346
  11. LI, Y., ZHANG, Z., FENG, Z. A sequential-phase feed using a circularly polarized shorted loop structure. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 3, p. 1443–1447. DOI: 10.1109/TAP.2012.2227103
  12. YANG, W., ZHOU, J., YU, Z., et al. Bandwidth- and gainenhanced circularly polarized antenna array using sequential phase feed. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1215–1218. DOI: 10.1109/LAWP.2014.2332560
  13. DENG, C., LI, Y., ZHANG, Z., et al. A wideband sequential-phase fed circularly polarized patch array. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 7, p. 3890–3893. DOI: 10.1109/TAP.2014.2321380
  14. WILEY, A. R., GUO, Y. J. Circularly polarized ellipse-loaded circular slot array for millimeter-wave WPAN applications. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 10, p. 2862–2870. DOI: 10.1109/TAP.2009.2029305
  15. DESHMUKH, A. A., RAY, K. P. Formulation of resonance frequencies for dual-band slotted rectangular microstrip antennas. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 4, p. 78–97. DOI: 10.1109/MAP.2012.6309159

Keywords: Circular polarization, corner-truncated patches, rectangular shaped slots, sequential phase feed, wide Impedance bandwidth, wide CP bandwidth

N. K. Darimireddy, R. Ramana Reddy, A. Mallikarjuna Prasad [references] [full-text] [DOI: 10.13164/re.2018.0085] [Download Citations]
Asymmetric Triangular Semi-Elliptic Slotted Patch Antennas for Wireless Applications

Microstrip radiators with Circular Polarization (CP) are paid much attention in wireless and navigational applications. In this paper, four microstrip rectangular radiators with axially centered asymmetric Triangular-Semi Elliptic (TSE) slots along the square boundary of the patch is proposed. The probe feed is applied along the diagonal of the square patch and it is optimized for its position to get CP radiation. The first Asymmetric Slotted Patch (ASP#1) of 50 mm X 50 mm provides 10dB RL (Return Loss) bandwidth of 200 MHz (2320 to 2520 MHz) with CP and 3dB AR (Axial Ratio) bandwidth of 40 MHz with a gain of 3.3dBi. A 10dB RL bandwidth of 340MHz (2320 to 2660 MHz) with CP and 3dB AR bandwidth of 60MHz (2370 to 2430 MHz) with a gain of 3.8dBi is obtained for second Asymmetric Slotted Patch (ASP#2) of 50 mm X 50 mm. The scale down versions of ASP#2 presented are ASP#3 (40 mm X 40 mm) and ASP#4 (30 mm X 30 mm) suitable to operate in IEEE 802.11y (3.65-3.7 GHz) and 802.11a (5.2 GHz) Wi-Fi applications with CP radiation. The proposed ASP#3 offers 10dB RL bandwidth of 390 MHz, 3dB AR bandwidth of 100 MHz and a peak gain of 4.3dBi with CP. ASP# 4 offers 10dB RL bandwidth of 590 MHz, 3dB AR bandwidth of 160 MHz and a peak gain of 3.95dBi with CP. It is evident from the results the proposed ASP#1 and ASP#2 are suitable for WLAN (2.4 GHz) and ISM (2.4-2.483 GHz) band applications. All the proposed four antennas are fabricated, measured results are compared with the simulation results.

  1. SHARMA, S. K., RAO S., SHAFAI, L. (Eds.) Handbook of Reflector Antennas and Feed Systems. Vol. 1. London (UK): Artech House, 2013. ISBN-13: 978-1608075157
  2. GUHA, D., ANTAR, Y. M. M. (Eds.) Microstrip and Printed Antennas: New Trends, Techniques and Applications. UK: John Wiley & Sons, 2011. ISBN: 978-1-119-97298-3
  3. LONG, S. A., SHEN, L. C., SCHAUBERT, D. H., FARRAR, F.G. An experimental study of the circular-polarized elliptical printedcircuit antenna. IEEE Transactions on Antennas and Propagation, 1981, vol. 29, no. 1, p. 95–99. DOI: 10.1109/TAP.1981.1142549
  4. SHARMA, P. C., GUPTA, K. C. Analysis and optimized design of single feed circularly polarized microstrip antennas. IEEE Transactions on Antennas and Propagation, 1983, vol. 31, no. 6, p. 949–955. DOI: 10.1109/TAP.1983.1143162
  5. DESHPANDE, M. D., DAS, N. K. Rectangular microstrip antenna for circular polarization. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 6, p. 744–746. DOI: 10.1109/TAP.1986.1143886
  6. YANG, S.L.S., KISHK, A. A., LEE, K. F. Wideband circularly polarized antenna with L-shaped slot. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 6, p. 1780–1783. DOI: 10.1109/TAP.2008.923340
  7. PALANISAMY, V., GARG, R. Analysis of circularly polarized square ring and crossed strip microstrip antennas. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 11, p. 1340–1345. DOI: 10.1109/TAP.1986.1143766
  8. PITRA, K. RAIDA, Z., LACIK, J. Low-profile circularly polarized antenna exploiting Fabry-Perot resonator principle. Radioengineering, 2015, vol. 24, no. 4, p. 898–905. DOI: 10.13164/re.2015.0898
  9. IWASAKI, H. A circularly polarized small size microstrip antenna with cross slot. IEEE Transactions on Antennas and Propagation, 1996, vol. 44, no. 10, p. 1399–1402. DOI: 10.1109/8.537335
  10. ANANTHA BHARATHI, LAKSHMINARAYANA MERUGU, PVD SOMASEKHAR RAO. A novel single feed frequency and polarization reconfigurable microstrip patch antenna. AEUInternational Journal of Electronics and Communications, 2017, vol. 72, p. 8–16. DOI: 10.1016/j.aeue.2016.11.012
  11. WONG, K. L., LIN, Y. F. Circularly polarized patch antenna with tuning stub. Electronics Letters, 1998, vol. 34, no. 9, p. 831–832. DOI: 10.1049/el:19980593
  12. ROW, J. S., AI, C. Y. Compact design of single-feed circularly polarized patch antenna. Electronics Letters, 2004, vol. 40, no. 18, p. 1093–1094. DOI: 10.1049/el:20045602
  13. SHARMA, V., SHARMA, M. M. Dual band circularly polarised modified rectangular patch antenna for wireless communication. Radioengineering, 2014, vol. 23, no. 1, p. 195–202.
  14. NASIMUDDIN, QING, X., CHEN, Z. N. Compact circularly polarized symmetric-slit microstrip antennas. IEEE Antennas and Propagation Magazine, 2011, vol. 53, no. 4, p. 63–75. DOI: 10.1109/MAP.2011.6097287
  15. KIROV, G. S., MIHAYLOVA, D. P. Circularly polarized aperture coupled microstrip antenna with resonant slots and a screen. Radioengineering, 2010, vol. 19, no. 1, p. 111–116.
  16. SHAHIN SHEIKH, Circularly polarized meshed patch antenna. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 352–355. DOI: 10.1109/LAWP.2015.2445836
  17. TORRES, A. E., MARANTE, F., TAZON, A., et al. New microstrip radiator feeding by electromagnetic coupling for circular polarization. AEU-International Journal of Electronics and Communications, 2015, vol. 69, no. 12, p. 1880–1884. DOI: 10.1016/j.aeue.2015.09.016
  18. SHANMUGANANTHAM, T., RAGHAVAN, S. Novel printed CPW‐FED slot antenna for wireless applications. Microwave and Optical Technology Letters, 2010, vol. 52, no. 6, p. 1258–1261. DOI: 10.1002/mop.25210
  19. DENG, J. Y., YIN, Y.-Z., HUANG, Y. H., et al. Compact circularly polarized microstrip antenna with wide beam width for compass satellite service. Progress In Electromagnetics Research Letters, 2009, vol. 11, p. 113–118. DOI: 10.2528/PIERL09080801
  20. REDDY, V. V., SARMA, N.V.S.N. Compact circularly polarized asymmetrical fractal boundary microstrip antenna for wireless applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 118–121. DOI: 10.1109/LAWP.2013.2296951
  21. ZE-KUN PAN, WEI-XIN LIN, QING-XIN CHU. Compact widebeam circularly polarized patch antenna with a parasitic ring for CNSS application. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2847−2850. DOI: 10.1109/TAP.2014.2307348
  22. PRAKASH, K. C., MATHEW, S., ANITHA, R., et al. Circularly polarized dodecagonal patch antenna with polygonal slot for RFID applications. Progress In Electromagnetics Research C, 2016, vol. 61, p. 9–15. DOI: 10.2528/PIERC15110301
  23. LEI ZHONG, JING-SONG HONG, HONG-CHENG ZHOU. A dual-fed aperture-coupled microstrip antenna with polarization diversity. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 10, p. 4524–4529. DOI: 10.1109/TAP.2016.2589965
  24. LI, J GUO, J., ZHANG, A., et al. Miniaturized single-feed crossaperture coupled circularly polarized microstrip patch antenna. Progress In Electromagnetics Research C, 2016, vol. 63, p. 183 to 191. DOI: 10.2528/PIERC16031301

Keywords: Microstrip radiator, asymmetric slot, symmetric slot, CP radiation, WLAN, TSE-slot

Jae-Hyun Kim, Boo-Gyoun Kim [references] [full-text] [DOI: 10.13164/re.2018.0094] [Download Citations]
Effect of the Aperture Ratio on the Impedance Bandwidth of an Aperture Coupled Microstrip Antenna

The effect of the aperture ratio on the impedance bandwidth of an aperture coupled microstrip antenna (ACMA) is investigated according to the coupling strength from a microstrip feed line to a patch. Since the coupling strength between a feed line and a patch of an ACMA with a high permittivity (εr = 10) feed substrate is small, the impedance bandwidth of the ACMA increases as the aperture ratio increases beyond 0.1. As the feed substrate thickness increases, the aperture ratio for the maximum impedance bandwidth increases and the ratio of the maximum impedance bandwidth to the impedance bandwidth obtained at the aperture ratio of 0.1 increases. Since the coupling strength between a feed line and a patch of an ACMA with a low permittivity (εr = 2.2) feed substrate is large, the maximum impedance bandwidth of the ACMA is approximately the same as the impedance bandwidth obtained at the aperture ratio of 0.1.

  1. CHEN, Z. N., LUK, K. M. Antennas for Base Stations in Wireless Communications. 1st ed., NewYork: McGraw-Hill, 2009. ISBN: 0387723994
  2. GRAG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. 2nd ed., Boston, London: Artech House, 2000. ISBN: 0890065136
  3. WATERHOUSE, R. B. Microstrip Patch Antennas: A Designer’s Guide. Boston(MA): Kluwer Academic, 2003. ISBN: 1441953388
  4. WONG, K.-L. Compact and Broadband Microstrip Antennas. 1st ed., New York: John Wiley & Sons, 2002. ISBN: 0471417173
  5. TARGONSKI, S. D., WATERHOUSE, R. B., POZAR, D. M. Design of wide-band aperture-stacked patch microstrip antennas. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 9, p. 1245–1251. DOI: 10.1109/8.719966
  6. PAVULURI, S. K., WANG, C., SANGSTER, A. J. High efficiency wideband aperture-coupled stacked patch antennas assembled using millimeter thick micromachined polymer structure. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 11, p. 3616–3621. DOI: 10.1109/TAP.2010.2071334
  7. BARBA, M. A high-isolation, wideband and dual-linear polarization patch antenna. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, p. 1472–1476. DOI: 10.1109/TAP.2008.922889
  8. ROWE, W. S. T., WATERHOUSE, R. B. Theoretical investigation on the use of high permittivity materials in microstrip aperture stacked patch antennas. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 9, p. 2484–2486. DOI: 10.1109/TAP.2003.816383
  9. SULLIVAN, P. L., SCHAUBERT, D. H. Analysis of an aperture coupled microstrip antenna. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 8, p. 977–984. DOI: 10.1109/TAP.1986.1143929
  10. POZAR, D. M. A Review of Aperture Coupled Microstrip Antennas: History, Operation, Development, and Applications. 12 p. [Online] Cited 2017-12-08. Available at: http: //www.ecs.umass.edu/ece/pozar/aperture.pdf
  11. LIU, L., KOROLKIEWICZ, E., GHASSEMLOOY, Z., SAMBELL, A., DANAHER, S., BUSAWON, K. Investigation of the equivalent circuit parameters and design of a dual polarised dual frequency aperture coupled microstrip antenna. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 2304–2308. DOI: 10.1109/TAP.2013.2241716
  12. LAI, A., LEONG, K. M. K. H., ITOH, T. Infinite wavelength resonant antennas with monopolar radiation pattern based on periodic structures. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 868–876. DOI: 10.1109/TAP.2007.891845
  13. GUO, Y.-X., LUK, K.-M., LEE, K.-F. L-probe fed thick-substrate patch antenna mounted on a finite ground plane. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 8, p. 1955–1963. DOI: 10.1109/TSP.2003.815430
  14. BHARDWAJ, S., RAHMAT-SAMII, Y. Revisiting the generation of cross-polarization in rectangular patch antennas: A near-field approach. IEEE Transactions on Antennas and Propagation, 2014, vol. 56, no. 1, p. 14–38. DOI: 10.1109/MAP.2014.6821758

Keywords: Aperture coupled antenna, bandwidth enhancement, aperture width, aperture length, feed substrate, MMIC

T. Satitchantrakul, N. Chudpooti, P. Akkaraekthalin, R. Silapunt, D. Torrungrueng [references] [full-text] [DOI: 10.13164/re.2018.0101] [Download Citations]
An Implementation of Compact Quarter-Wave-Like- Transformers Using Multi-section Transmission Lines

This paper proposes a novel miniaturization technique of quarter-wave transformers (QWTs), implemented using multi-section transmission lines (MSTLs), based on the quarter-wave-like transformer (QWLT) theory. Multi-section QWLT characteristics are derived analytically and solved via appropriate optimization algorithms for associated transmission-line parameters. For an illustration purpose, two- and three-section QWLT prototypes with 50% physical size reduction from the corresponding QWT size operating at 2.4 GHz are fabricated using microstrips and tested. It is found that these prototypes yield acceptable return loss at 2.4 GHz without significant bandwidth reduction, comparing to the QWT result.

  1. ZHU, L. Guided-wave characteristics of periodic coplanar waveguides with inductive loading unit-length transmission parameters. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 10, p. 2133–2138. DOI: 10.1109/TMTT.2003.817435
  2. MIRZAVAND, R., HONARI, M. M., ABDIPOUR, A., MORADI, G. Compact microstrip Wilkinson power dividers with harmonic suppression and arbitrary power division ratios. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 1, p. 61 to 68. DOI: 10.1109/TMTT.2012.2226054
  3. PARK, J. H., LEE, Y. Improved capacitive loading method for miniaturization of 0 dB forward-wave directional couplers. IEEE Microwave Wireless Components Letters, 2011, vol. 21, no. 4, p. 191–193. DOI: 10.1109/LMWC.2011.2109056
  4. KUO, T. N., LIN, Y. S., WANG, C. H., CHEN, C. H. A compact LTCC branch-line coupler using modified-T equivalent-circuit model for transmission line. IEEE Microwave Wireless Components Letters, 2006, vol. 16, no. 2, p. 90–92. DOI: 10.1109/LMWC.2005.863194
  5. ZHANG, X. Y., DIN, X., KAO, H. L., WEI, B-H., CAI, Z. Y., XUE, Q. Compact LTCC bandpass filter with wide stopband using discriminating coupling. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2014, vol. 4, no. 4, p. 656–663. DOI: 10.1109/TCPMT.2013.2297522
  6. LAI, A., ITOH, T., CALOZ, C. Composite right/left-handed transmission line metamaterials. IEEE Microwave Magazine, 2004, vol. 5, no. 3, p. 34–50. DOI: 10.1109/MMW.2004.1337766
  7. CALOZ, C., ITOH, T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 5, p. 1159–1166. DOI: 10.1109/TAP.2004.827249
  8. FOUDA, A. E., SAFWAT, A. M. E., EL-HENNAWY, H. On the applications of the coupled-line composite right/left-handed unit cell. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 6, p. 1584–1591. DOI: 10.1109/TMTT.2010.2049162
  9. KARPUZ, C. Bandstop characteristics of a triangular microstrip slotted patch as an electromagnetic bandgap (EBG). Microwave and Optical Technology Letters, 2003, vol. 36, no. 3, p. 149–150. DOI: 10.1002/mop.10704
  10. CAKIR, G., SEVGI, L. A design of novel microstrip electromagnetic bandgap (EBG) structure. Microwave and Optical Technology Letters, 2005, vol. 46, no. 4, p. 399–401. DOI: 10.1002/mop.20999
  11. ZHOU, C., YANG, H. Y. D. Design considerations of miniaturized least dispersive periodic slow-wave structures. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 2, p. 467–474. DOI: 10.1109/TMTT.2007.914633
  12. DESLANDES, D., WU, K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave Wireless Components Letters, 2001, vol. 11, no. 2, p. 68–70. DOI: 10.1109/7260.914305
  13. BOZZI, M., WINKLER, S. A., WU, K. Broadband and compact ridge substrate integrated waveguides. IET Microwaves, Antennas & Propagation, 2010, vol. 4, no. 11, p. 1965–1973. DOI: 10.1049/iet-map.2009.0529
  14. NIEMBRO-MARTIN, A., NASSERDDINE, V., PISTONO, E., ISSA, H., FRANC, A., VOUNG, T., FERRARI, P. Slow-wave substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 8, p. 1625–1633. DOI: 10.1109/TMTT.2014.2328974
  15. JIN, H., WANG, K., GUO, J., DING, S., WU, K. Slow-wave effect of substrate integrated waveguide patterned with microstrip polyline. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 6, p. 1717–1726. DOI: 10.1109/TMTT.2016.2559479
  16. XUE, Q., SHUM, K. M., CHAN, C. H. Novel oscillator incorporating a compact microstrip resonant cell. IEEE Microwave Wireless Components Letters, 2001, vol. 11, no. 5, p. 202–204. DOI: 10.1109/7260.923028
  17. KURGAN, P., FILIPCEWICZ, J., KITLINSKI, M. Development of a compact microstrip resonant cell aimed at efficient microwave component size reduction. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 12, p. 1291–1298. DOI: 10.1049/iet-map.2012.0192
  18. KOZIEL, S., BEKASIEWICZ, A. Rapid simulation-driven multiobjective design optimization of decomposable compact microwave passives. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 8, p. 2454–2461. DOI: 10.1109/TMTT.2016.2583427
  19. MCGINN, V. P., MORAN, W. P. Physically short linear impedance transformers. Microwave and Optical Technology Letters, 1988, vol. 1, no. 7, p. 249–252. DOI: 10.1002/mop.4650010708
  20. LIM., T., LEE, S., LEE, Y. Improved method of reactive loading for miniaturisation of transmission lines with minimal degradation in performance. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 9, p. 905–912. DOI: 10.1049/iet-map.2014.0547
  21. CHEN, G., HAMID, M. Multi-section transmission line transformers of arbitrary length. In Symposium of Antenna Technology and Applied Electromagnetics. 1986, p. 1-9. DOI: 10.1109/ANTEM.1986.7856352
  22. AHN, H.-R. Modified asymmetric impedance transformers (MCCTs and MCVTs) and their application to impedancetransforming three-port 3-dB power dividers. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3312-3321. DOI: 10.1109/TMTT.2011.2171708
  23. AHN, H.-R. Compact CVT-/CCT-unequal power dividers for high power-division ratios and design methods for arbitrary phase differences. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 2954–2964. DOI: 10.1109/TMTT.2014.2362131
  24. AHN, H.-R., WOLFF, I. General design equations of three-port power dividers, small-sized impedance transformers, and their applications to small-sized three-port 3-dB power dividers. IEEE Transactions on Microwave Theory and Techniques, 2001, vol. 49, no. 7, p. 1277–1288. DOI: 10.1109/22.932248
  25. JONGSUEBCHOKE, I., AKKARAEKTHALIN, P., TORRUNGRUENG, D. Theory and design of quarter-wave-like transformers implemented using conjugately characteristic-impedance transmission lines. Microwave and Optical Technology Letters, 2016, vol. 58, no. 11, p. 2614–2619. DOI: 10.1002/mop.30120
  26. TORRUNGRUENG, D. Meta-Smith Charts and Their Potential Applications. La Vergne, TN Morgan & Claypool, 2010. ISBN-10: 1608455807
  27. WORASAWATE, D., TORRUNGRUENG, D. Analysis of a multi-section impedance transformer using an equivalent CCITL model. In Proceeding of the 2006 ECTI International Conference. Ubon Ratchathani (Thailand), May 2006, p. 111–114.
  28. LIMSAENGRUCHI, S., SILAPUNT, R., TORRUNGRUENG, D. Passband and stopband characteristics on two-section microstrip CCITLs. In Proceeding of the ITC-CSCC 2012. Sapporo (Japan), July 2012
  29. POZAR, D. M. Microwave Engineering. 3rd ed. John Wiley&Sons, 2004. ISBN: 9788126510498
  30. Agilent Genesys EDA software 2008.07, Agilent Technologies Inc., USA, 2008
  31. CST microwave studio, htttp//www.cst.com

Keywords: Quarter-wave transformer, Quarter-wave-like transformer, multi-section transmission line

A. Alhegazi, Z. Zakaria, N. A. Shairi, A. Salleh, S. Ahmed [references] [full-text] [DOI: 10.13164/re.2018.0110] [Download Citations]
Compact UWB Filtering-Antenna with Controllable WLAN Band Rejection Using Defected Microstrip Structure

An ultra-wideband (UWB) filtering-antenna with controllable band notch is reported in this paper. The filtering-antenna consists of a modified monopole antenna and defected microstrip structure (DMS). The monopole antenna is modified using microstrip transition in the feedline and block with a triangular-shape slot on each side of the circular patch to produce wider impedance bandwidth with better return loss. The DMS is constructed using U-shaped slot etched on the feedline to provide band notch and remove WLAN band (5.1-5.8 GHz). A switch is employed in the DMS to control the created band notch. The measured results show that the proposed design exhibits a wide impedance bandwidth with controllable WLAN band rejection, realized peak gain of 4.85 dB and omnidirectional radiation pattern. Therefore, the proposed design is suitable for UWB applications.

  1. LIAO, X.-J., YANG, H.-C., HAN, N., LI, Y. UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band. Electronics Letters, 2010, vol. 46, no. 24, p. 1593–1594. DOI: 10.1049/el.2010.1943
  2. JUSOH, M., JAMLOS, M. F. B., KAMARUDIN, M. R., et al. A reconfigurable ultrawideband (UWB) compact tree-design antenna system. Progress in Electromagnetics Research C, 2012, vol. 30, p. 131–145. DOI: 10.2528/PIERC12041011
  3. OSMAN, M. A. R., ABD RAHIM, M. K., SAMSURI, N. A., et al. Embroidered fully textile wearable antenna for medical monitoring applications. Progress in Electromagnetics Research C, 2011, vol. 117, p. 321–337. DOI: 10.2528/pier11041208
  4. BOUTEJDAR, A., IBRAHIM, A. A., BURTE, E. A compact multiple band-notched planer antenna with enhanced bandwidth using parasitic strip lumped capacitors and DGS-technique. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2015, vol. 13, no. 2, p. 203–208. DOI: 10.11591/telkomnika.v13i2.6976
  5. LABADE, R., DEOSARKAR, S., PISHAROTY, N. Compact integrated Bluetooth UWB antenna with quadruple bandnotched characteristics. International Journal of Electrical and Computer Engineering, 2015, vol. 5, no. 6, p. 1433–1440. ISSN: 2088-8708
  6. BAHADORI, K., RAHMAT-SAMII, Y. A miniaturized ellipticcard UWB antenna with WLAN band rejection for wireless communications. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 11, p. 3326–3332. DOI: 10.1109/TAP.2007.908800
  7. CHU, Q.-X., YANG, Y.-Y. A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3637–3644. DOI: 10.1109/TAP.2008.2007368
  8. SAM, W. Y., ZAKARIA, Z. A review on reconfigurable integrated filter and antenna. Progress in Electromagnetics Research B, 2015, vol. 63, p. 263–273. DOI: 10.2528/PIERB15082501
  9. HAIDER, N., CARATELLI, D., YAROVOY, A. G. Recent developments in reconfigurable and multiband antenna technology. International Journal on Antennas and Propagation, 2013, 14 p. DOI: 10.1155/2013/869170
  10. ALHEGAZI, A., ZAKARIA, Z., SHAIRI, N. A., et al. Review of recent developments in filtering-antennas. International Journal on Communications Antennas and Propagation, 2016, vol. 6, no. 3, p. 125–131. DOI: 10.15866/irecap.v6i3.8905
  11. HABIB, M. A., BOSTANI, A., DJAIZ, A., ET AL. Ultra wideband CPW-fed aperture antenna with WLAN band rejection. Progress in Electromagnetics Research, 2010, vol. 106, p. 17–31. DOI: 10.2528/PIER10011905
  12. BARBARINO, S., CONSOLI, F. UWB circular slot antenna provided with an inverted-L notch filter for the 5 GHz WLAN band. Progress in Electromagnetics Research, 2010, vol. 104, p. 1–13. DOI: 10.2528/PIER10040507
  13. SUDHAKAR, A., SATYANARAYANA, M., PRAKASH, M. S., et al. Single band-notched UWB square monopole antenna with double U- slot and key shaped slot. In Fifth International Conference on Communication Systems and Network Technologies (CSNT). Gwalior (India), 2015 DOI: 10.1109/CSNT.2015.30
  14. TU, Z., LI, W., CHU, Q. Single-layer differential CPW-fed notchband tapered-slot UWB antenna. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1296–1299. DOI: 10.1109/LAWP.2014.2332355
  15. NOURI, A., DADASHZADEH, G. R. A compact UWB bandnotched printed monopole antenna with defected ground structure. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1178–1181. DOI: 10.1109/LAWP.2011.2171312
  16. XIAO, J. K., ZHU, W. J. New defected microstrip structure bandstop filter. In Progress in Electromagnetics Research Symposium Proceedings. Suzhou (China), 2011, vol. 1, p. 1471–1474.
  17. BOUDAGHI, H., AZARMANESH, M., MEHRANPOUR, M. A frequency reconfigurable monopole antenna using switchable slotted ground structure. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 22, p. 655–658. DOI: 10.1109/LAWP.2012.2204030
  18. LEE, J., KIM, K., RYU, H., WOO, J. A compact ultrawideband MIMO antenna with WLAN band-rejected operation for mobile devices. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 990–993. DOI: 10.1109/LAWP.2012.2214431
  19. LUO, G. Q., HONG, W., TANG, H. J., et al. Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, p. 92–98. DOI: 10.1109/TAP.2006.888459
  20. BARBUTO, M., TROTTA, F., BILOTTI, F., TOSCANO, A. Horn antennas with integrated notch filters. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 781–785. DOI: 10.1109/TAP.2014.2378269
  21. BARBUTO, M., TROTTA, F., BILOTTI, F., TOSCANO, A. Varying the operation bandwidth of metamaterial-inspired filtering modules for horn antennas. Progress in Electromagnetics Research C, 2015, vol. 58, p. 61–68. DOI: 10.2528/PIERC15051402
  22. VALIZADE, A., GHOBADI, C., NOURINIA, J., et al. A novel design of reconfigurable slot antenna with switchable band notch and multiresonance functions for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1166–1169. DOI: 10.1109/LAWP.2012.2218271
  23. TASOUJI, N., NOURINIA, J., GHOBADI, C., TOFIGH, F. A novel printed UWB slot antenna with reconfigurable band-notch characteristics. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 922–925. DOI: 10.1109/LAWP.2013.2273452
  24. LIN, S. J., WANG, C. C., CHEN, C. C., et al. A high performance IBC-hub transceiver for intrabody communication system. Microwave and Optical Technology Letters, 2012, vol. 54, no. 5, p. 1143–1157. DOI: 10.1002/mop.26797
  25. HU, Z. H., HALL, P. S., KELLY, J. R., et al. UWB pyramidal monopole antenna with wide tunable band-notched behaviour. Electronics Letters, 2010, vol. 46, no. 24, p. 1588–1590. DOI: 10.1049/el.2010.2839
  26. HORESTANI, A. K., SHATERIAN, Z., NAQUI, J., et al. Reconfigurable and tunable S-shaped split ring resonators and application in band-notched UWB antennas. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 9, p. 3766–3776. DOI: 10.1109/TAP.2016.2585183
  27. SRIFI, M. N., PODILCHAK, S. K., ESSAAIDI, M., et al. Compact disc monopole antennas for current and future ultrawideband (UWB) applications. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 12, p. 4470–4480. DOI: 10.1109/TAP.2011.2165503
  28. ALHEGAZI, A., ZAKARIA, Z., SHAIRI, N. A., et al. Integrated filtering antenna with high selectivity band rejection for UWB applications. Przegląd Elektrotechniczny, 2016, no. 9, p. 224–228. DOI: 10.15199/48.2016.09.55
  29. ABDOLLAHVAND, M., DADASHZADEH, G., MOSTAFA, D. Compact dual band-notched printed monopole antenna for UWB application. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 1148–1151. DOI: 10.1109/LAWP.2010.2091250
  30. TAYLOR RAYNO, J., SHARMA, S. K. Frequency reconfigurable spirograph planar monopole antenna (SPMA). In Proceedings of the International Symposium on Antennas and Propagation (ISAP 2012). Nagoya (Japan), 2012, p. 1305–1308.
  31. NXP SEMICONDUCTORS. Silicon PIN diode BAP64-02 (datasheet). 9 p. [Online] Cited 2016-12-20. Available at: http://www.nxp.com/documents/data_sheet/BAP64-02.pdf
  32. SHAIRI, N. A. High Isolation of Single Pole Double Throw Switch with Switchable Resonator for Wireless Communications. PhD thesis. Universiti Teknikal Malaysia Melaka, 2015
  33. RAHMAN, T. A., et al. Reconfigurable Ultra Wideband Antenna Design and Development for Wireless Communication. Project Report. Universiti Teknologi Malaysia, 2008.
  34. TANG, M.-C., ZIOLKOWSKI, R. W., XIAO, S. Compact hyperband printed slot antenna with stable radiation properties. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 6, p. 2962–2969. DOI: 10.1109/TAP.2014.2314299
  35. TANG, M. C., WANG, H., DENG, T.W., ZIOLKOWSKI, R. W. Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 8, p. 3292–3301. DOI: 10.1109/TAP.2016.2570254
  36. DOROSTKAR, M. A., ISLAM, M. T., AZIM, R. Design of a novel super wide band circular-hexagonal fractal antenna. Progress in Electromagnetics Research. 2013, vol. 139, p. 229–247. DOI: 10.2528/PIER13030505

Keywords: Bandstop filter, defected microstrip structure, filtenna, monopole antenna, reconfigurable antenna, ultra-wideband (UWB)

M. Du, J. Xu, X. Ding, J. P. Cao, J. H. Deng, Y. L. Dong [references] [full-text] [DOI: 10.13164/re.2018.0118] [Download Citations]
35-GHz Wideband Vertical Off-Center-Fed Dipole and Its Array in LTCC Technology

A 35-GHz wideband low-temperature co-fired ceramic (LTCC) vertical off-center-fed dipole antenna and its 2×2 array are presented. The widened bandwidth of the dipole antenna is achieved by paralleling a ring-shaped stub placed above the ground with a vertical off-center-fed dipole. The fabricated dipole antenna with a dimension of 7.5×19×0.94 mm3 exhibits a measured -10-dB |S11| bandwidth of 25.4% and a measured maximum gain of 4.4 dBi at 32 GHz. Then, a 2×2 array was designed. The array with a dimension of 15×25×0.94 mm3 exhibits a measured -10-dB |S11| bandwidth of 28.6% and a maximum gain of 10.37 dBi at 31 GHz with a fluctuation of 1.8 dB over 31 to 39 GHz frequency range. The radiation performances of the dipole antenna and its array were also measured. Good agreement is obtained between the simulations and measurements.

  1. YEAP, S. B., CHEN, Z. N., QING, X. Gain-enhanced 60-GHz LTCC antenna array with open air cavities. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3470–3473. DOI: 10.1109/TAP.2011.2161549
  2. ZHANG, W., ZHANG, Y. P., SUN, M. et al. A 60-GHz circularlypolarized array antenna-in-package in LTCC technology. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6228–6232. DOI: 10.1109/TAP.2013.2279992
  3. WANG, L., GUO, Y. X., SHENG, W. X. Wideband high-gain 60- GHz LTCC L-probe patch antenna array with a soft surface. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 1802–1809. DOI: 10.1109/TAP.2012.2220331
  4. SUN, H., GUO, Y. X., WANG, Z. 60-GHz circularly polarized Uslot patch antenna array on LTCC. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 1, p. 430–435. DOI: 10.1109/TAP.2012.2214018
  5. CHIN, K. S., JIANG, W., CHE, W. et al. Wideband LTCC 60- GHz antenna array with a dual-resonant slot and patch structure. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 174–182. DOI: 10.1109/TAP.2013.2287294
  6. YANG, W., WANG, H., CHE, W. Q., et al. High-gain and lowloss millimeter-wave LTCC antenna array using artificial magnetic conductor structure. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 1, p. 390–395. DOI: 10.1109/TAP.2014.2364591
  7. C. HUI, C., GUO, Y. X., WANG, Z. 60-GHz LTCC wideband vertical off-center dipole antenna and arrays. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 1, p. 153–161. DOI: 10.1109/TAP.2012.2220094
  8. DU, M., XU, J., DONG, Y.L., DING, X. LTCC SIW-vertical-feddipole array fed by microstrip network with tapered microstrip-toSIW transition for wideband millimeter-wave applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1953–1956. DOI: 10.1109/LAWP.2017.2690325
  9. LIU, C., GUO, Y. X., BAO, X., XIAO, S. Q. 60-GHz LTCC integrated circularly polarized helical antenna array. IEEE Transactions on Antennas and Propagation, 2013, vol. 60, no. 3, p. 1329–1335. DOI: 10.1109/TAP.2011.2180351
  10. CAO, B., WANG, H., WANG, Z., et al. W-band LTCC helical antenna array with substrate integrated horn. In Asia-Pacific Microwave Conference (APMC). Sendai (Japan), 2014, p. 357–359. ISBN: 9784902339314
  11. WANG, X. Y., LI, J. L., ZHANG, Y. M., et al. A high-gain LTCC horn antenna with different feeding structures. In 2013 International Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST). Chengdu (China), 2013, p. 154–156. DOI: 10.1109/MMWCST.2013.6814593
  12. LEVINE, E., SHTRIKMAN, S., TREVES, D. Double-sided printed arrays with large bandwidth. IEE Proceedings H - Microwaves, Antennas and Propagation, 1988, vol. 135, no. 1, p. 54–59. DOI: 10.1049/ip-h-2.1988.0010
  13. EVTIOUSHKINE, G. A., KIM, J. W., HAN, K. S. Very wideband printed dipole antenna array. Electronics Letters, 1998, vol. 34, no. 24, p. 2292–2293. DOI: 10.1049/el:19981615
  14. BAKHRAKH, L. D., LOS, V. F., SHAMANOV, A. N. Ultrawideband method of feeding a dipole antenna. In 4th International Conference on Antenna Theory and Techniques. Sevastopol (Ukraine), 2003, p. 535–538. DOI: 10.1109/ICATT.2003.1238795
  15. YIN, Y. Z., MA, J. P., ZHAO, Y. J., et al. Wideband printed dipole antenna for wireless LAN. In IEEE Antennas and Propagation Society International Symposium. Washington (USA), 2005, p. 568–571. DOI: 10.1109/APS.2005.1552074
  16. GAO, F., ZHANG, F., LU, L., et al. Low-profile dipole antenna with enhanced impedance and gain performance for wideband wireless applications. IEEE Antennas and Wireless Propagation Letters. 2013, vol. 12, p. 372–375. DOI: 10.1109/LAWP.2013.2252141
  17. TU, Z., ZHOU, D. F., ZHANG, G. Q., et al. A wideband cavitybacked elliptical printed dipole antenna with enhanced radiation patterns. IEEE Antennas and Wireless Propagation Letters. 2013, vol. 12, p. 1610–1613. DOI: 10.1109/LAWP.2013.2294058
  18. SHADROKH, S., YU, Y. Q., JOLANI, F., et al. Ultra-compact endloaded planar dipole antenna for ultra-wideband radar and communication applications. Electronics Letters, 2014, vol. 50, no. 21, p. 1495–1496. DOI: 10.1049/el.2014.2008
  19. POZAR, D. M. Microwave Engineering, 4nd ed. JohnWiley & Sons, Inc., 2011. ISBN: 978-0-470-63155-3
  20. KRAUS, D. J., MARHEFKA, R. J. Antennas: For All Applications. 3rd ed. New York (NY, USA): McGraw-Hill, 2002. ISBN-13: 978-0072321036
  21. XU, J., CHEN, Z. N., QING, X., HONG, W. Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity array antenna on LTCC. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 3, p. 826–832. DOI: 10.1109/TAP.2010.2103018

Keywords: Dipole antenna, wideband, antenna array, millimeter-wave (mmW), low-temperature co-fired ceramic (LTCC)

Z. M. Loni, H. G. Espinosa, D. V. Thiel [references] [full-text] [DOI: 10.13164/re.2018.0127] [Download Citations]
Insulated Wire Fed Floating Monopole Antenna for Coastal Monitoring

A thin, flexible, insulated wire submerged in seawater forms a coaxial cable which has attenuation at ultra-high frequency (UHF) dependent on the operating frequency, the diameter of the insulating material and the diameter of the inner conductor. An extension of the insulated wire above the surface through a spherical float forms a monopole antenna. Attenuation through the wire depends on the conductivity and temperature of seawater. This paper reports the effect of electromagnetic (EM) wave propagation at 433 MHz through insulated wires with different radii of the insulating material and inner conductor. The attenuation was calculated and measured in the range of 32-47 dB/m. The propagation from the monopole antenna to a fixed shore based receiver was measured to be approximately equal to 1 dB/m. The propagation measurements were compared with a shielded coaxial cable. Results show that the propagation range depends on the ratio of the insulation radius to conductor radius for insulated wire, however, a shielded coaxial cable showed no significant attenuation. The technique has applications in coastal wireless sensor networks where the water depth changes continually due to tide and wave motion.

  1. LIU, L., ZHOU, S., CUI, J. Prospects and problems of wireless communication for underwater sensor network. Wireless Communications and Mobile Computing (special issue on Underwater Sensor Networks: Architectures and Protocols), 2008, vol. 8, no. 8, p. 977–994. DOI: 10.1002/wcm.654
  2. HEIDEMANN, J., STOJANOVIC, M., ZORZI, M. Underwater sensor networks: applications, advances and challenges. Philsophical Transactions of the Royal Society A, 2012, vol. 370, no. 1958, p. 158–175. DOI: 10.1098/rsta.2011.0214
  3. AL SHAMMAA, A. I., SHAW, A., SAMAN, S. Propagation of electromagnetic waves at MHz frequencies through seawater, IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 11, p. 2843–2849. DOI: 10.1109/TAP.2004.834449
  4. ABDOU, A., SHAW, A., MASON, A., et al. Wireless sensor network for underwater communication. In IET Conference on Wireless Sensor Systems. London (UK), 2012, p. 3–8. DOI: 10.1049/cp.2012.0579
  5. JIMENEZ, E., QUINTANA, G., MENA, P., et al. Investigation on radio wave propagation in shallow seawater: Simulations and measurements. In IEEE Conference on Underwater Communications and Networking. Lerici (Italy), 2016. DOI: 10.1109/UComms.2016.7583453
  6. DATSKO, V. N. Surface electromagnetic waves on seawater. Journal of Communication Technology and Electronics, 2016, vol. 61, no. 1, p. 10–11. DOI: 10.1134/S1064226916010034
  7. MILFORD, G. N., DUNBAR, R. M. Electromagnetic propagation to VHF frequencies along an insulated wire antenna immersed in saltwater. In IEEE Conference on Military Communications and Information Systems (MilCIS). Canberra (Australia), 2011, 6 p. DOI: 10.1109/MilCIS.2011.6470390
  8. LEE, Y. H., MENG, Y. S. Empirical modelling of ducting effects on a mobile microwave link over a sea surface. Radionegineering, 2012, vol. 21, no. 4, p. 1054–1059.
  9. ZHAO, X., HUANG, S., FAN, H. Influence of sea surface roughness on the electromagnetic wave propagation in the duct environment. Radionegineering, 2010, vol. 19, no. 4, p. 601–605.
  10. DEBYE, P. Polar Molecules. Williamsburg (USA): Dover, 1945.
  11. KLEIN, L., SWIFT, C. T. An improved model for the dielectric constant of seawater at microwave frequencies. IEEE Journal of Oceanic Engineering, 1977, vol. 2, no. 1, p. 104–111. DOI: 10.1109/JOE.1977.1145319
  12. KING, W. P., SMITH, G. S. Antenna in Matters. London (UK): MIT Press, Cambridge, 1981. ISBN: 0262110741
  13. HERTEL, W., SMITH, G. S. The insulated linear antenna – revisited. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 6, p. 914–920. DOI: 10.1109/8.865224
  14. LONI, Z. M., ESPINOSA, H. G., THIEL, D. V. Floating monopole antenna on a tethered subsurface sensor at 433 MHz for ocean monitoring applications. IEEE Journal on Oceanic Engineering, 2017, vol. 42, no. 4, p. 818–825. DOI: 10.1109/JOE.2016.2639111
  15. N9923A Keysight Technologies. [Online]. Cited 2017-09-26. Available at: https://www.keysight.com/en/pdx-x201782-pnN9923A/fieldfox-handheld-rf-vector-network-analyzer-4-ghz-and6-ghz?cc=GR&lc=eng%E2 % 80%9D
  16. JAMES, D. A., GALEHAR, A., THIEL, D. V. Mobile sensor communications in aquatic environments for sporting applications, Procedia Engineering, 2010, vol. 2, no. 2, p. 3017–3022. DOI: 10.1016/j.proeng.2010.04.104
  17. BROWN, K., ROOT PTY LTD. Geo technical and investigation report. Raby Bay canal batter stability update, 24 June 2013.
  18. Proteck 3290N 100KHz, 2.9GHz RF Field strength analyzer. [Online]. Cited 2017-09-26. Available at: http: //www.testequipmentdatasheets.com/protek-3290n-hand-held29ghz-rf-signal-strength-analyzer/
  19. JACKSON, N. C., THIEL, D. V. ISM band 2.45 GHz propagation studies in a coastal environment. In 2015 International Symposium on Antennas and Propagation (ISAP). Hobart (TAS, Australia), 2015, p. 663–666. ISBN: 978-4-8855-2302-1

Keywords: Floating monopole antenna, ocean wave propagation, wireless sensor networks, insulated wire transmission.

V. Ruzek, J. Drinovsky, J. Cupak [references] [full-text] [DOI: 10.13164/re.2018.0134] [Download Citations]
Feature Selective Validation of Automotive EMC Pre-compliance Tests

The pre-compliance tests of electromagnetic immunity are at present a crucial issue for all major automotive manufacturers. In current practice, there are two basic ways to implement these tests. The first one is based on significant simplification of measurement methods and the subsequent transformation of results for relevant estimation of certification measurement results. The second is based on the application of numerical methods and the calculation of the electric field intensity distribution in the car body. The question, however, remains the degree of correlation between these methods, especially when confronting the results of certification measurement. This article provides an overview of the results obtained using both methods and offers an innovative view of the method of comparison using the FSV.

  1. RUZEK, V., DRINOVSKY, J. Aspects of EMS precompliance testing. In Proceedings of 9th International Conference Vsacky Cab 2011. Semily, 2011, p. 117–121. ISBN 978-80-214-4319-8
  2. SADIKU, M.N.O. Numerical Techniques in Electromagnetics. 2nd ed. Boca Raton: CRC Press, 2000. ISBN 08-493-1395-3
  3. DRINOVSKY, J., SVACINA, J., RUZEK, V., ZACHAR, J. Electromagnetic compatibility in automotive industry. Elektrorevue – Internet Journal. 2012, vol. 14, no. 3, p.1–8. ISSN: 1213-1539
  4. PIGNARI, S., CANAVERO, F.G. Theoretical assessment of bulk current injection versus radiation. IEEE Transactions on Electromagnetic Compatibility, 1996, vol. 38, no. 3, p. 469–477. DOI: 10.1109/15.536077. ISSN 00189375
  5. ADAMS, J. W., CRUZ, J., MELQUIST, D. Comparison measurements of currents induced by radiation and injection. IEEE Transactions on Electromagnetic Compatibility, 1992, vol. 34, no. 3, p. 360–362. DOI: 10.1109/15.155856
  6. ISO 11452-2: Road Vehicles — Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy — Part 2: Absorber-lined Shielded Enclosure. Ed. 2. Geneva, Switzerland: ISO copyright office, 2004
  7. ISO 11451-4: Road Vehicles — Vehicle Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy — Part 4: Bulk Current Injection (BCI). Ed. 3. Geneva, Switzerland: ISO copyright office, 2013.
  8. ISO 11452-4: Road Vehicles — Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy — Part 4: Harness Excitation Methods. Ed. 4. Geneva, Switzerland: ISO copyright office, 2011.
  9. HILL, D. A. Currents induced on multiconductor transmission lines by radiation and injection. IEEE Transactions on Electromagnetic Compatibility, 1992, vol. 34, no. 4, p. 445–450. DOI: 10.1109/15.179277
  10. COLEBY, D. E., DUFFY, A. P. A visual interpretation rating scale for validation of numerical models. COMPEL: International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, vol. 24, no. 4, p. 1078–1092. DOI: 10.1108/03321640510615472
  11. DUFFY, A. P., MARTIN, A. J. M., ORLANDI, A., et al. Feature Selective Validation (FSV) for validation of computational electromagnetics (CEM). Part I - The FSV method. IEEE Transactions on Electromagnetic Compatibility, 2006, vol. 48, no. 3, p. 449–459. DOI: 10.1109/TEMC.2006.879358
  12. ORLANDI, A., DUFFY, A. P., ARCHAMBEAULT, B., et al. Feature Selective Validation (FSV) for validation of computational electromagnetics (CEM). Part II - Assessment of FSV performance. IEEE Transactions on Electromagnetic Compatibility, 2006, vol. 48, no. 3, p. 460–467. DOI: 10.1109/TEMC.2006.879360
  13. JINJUJ, B., ZHANG, G., WANG, L., DUFFY, A. Credibility evaluation of uncertainty analysis results of EMC simulation. In 2014 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP). DOI: 10.1109/APCAP.2014.6992803
  14. JAUREGUI, R., POUS, M., SILVA, F. Use of reference limits in the Feature Selective Validation (FSV) method. In 2014 International Symposium on Electromagnetic Compatibility (EMC Europe). DOI: 10.1109/EMCEurope.2014.6931054
  15. TESAR, J. Gas Permittivity Measurement by Resonator Method. Diploma Thesis. Masaryk University, Brno, 2010. (In Czech)
  16. HARRINGTON, R. F. Field Computation by Moment Methods. Piscataway (USA): IEEE Press, 1993. ISBN 978-0-7803-1014-8
  17. EMCOS, GEORGIA. Harness Studio User´s Manual. 162 pages. [Online] Cited 2017-04-25. Available at: www.emcos.com
  18. EMCOS, GEORGIA. EMC Studio: Computer Simulation Software. 130 pages. [Online] Cited 2017-07-28. Available at: https://www.emcos.com/?products=emc-studio

Keywords: Feature Selective Validation, pre-compliance testing, automotive EMC, results processing

V. Clupek, V. Zeman, P. Dzurenda [references] [full-text] [DOI: 10.13164/re.2018.0143] [Download Citations]
Light-weight Mutual Authentication with Non-repudiation

In this paper, we focused on a problem of authentication on low-cost devices. We have proposed a new light-weight protocol for mutual authentication of communication entities with non-repudiation of realized events. The protocol is simple and suitable for implementation on low-cost devices. Non-repudiation of realized events is achieved by involving a Trusted Third Party (TTP) to the communication. The proposed protocol uses only an appropriate lightweight hash function and pre-shared secret data. Security of the proposed protocol was verified by the BAN (Burrows-Abadi-Needham) logic.

  1. GUBBI, J., BUYYA, R., MARUSIC, S., et al. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 2013, vol. 29, no. 7, p. 1645–1660. DOI: 10.1016/j.future.2013.01.010
  2. EL MOUSTAINE, E., LAURENT, M. A lattice based authentication for low-cost RFID. In Proceedings of the IEEE International Conference on RFID-Technologies and Applications (RFID-TA). Nice (France), 2012, p. 68–73. DOI: 10.1109/RFID-TA.2012.6404569
  3. SHI, Z., XIA, Y., YU, C. A strong RFID mutual authentication protocol based on a lightweight public-key cryptosystem. Indonesian Journal of Electrical Engineering and Computer Science, 2013, vol. 12, no. 3, p. 2320–2326. DOI: 10.11591/telkomnika.v12i3.4517
  4. CHEN, Y., CHOU, J. S. ECC-based untraceable authentication for large-scale active-tag RFID systems. Electronic Commerce Research, 2015, vol. 15, no. 1, p. 97–120. DOI: 10.1007/s10660-014-9165-0
  5. JIN, C., XU, C., ZHANG, X., et al. A secure RFID mutual authentication protocol for healthcare environments using elliptic curve cryptography. Journal of Medical Systems, 2015, vol. 39, no. 3, p. 24. DOI: 10.1007/s10916-015-0213-7
  6. PORAMBAGE, P., SCHMITT, C., KUMAR, P., et al. PAuthKey: A pervasive authentication protocol and key establishment scheme for wireless sensor networks in distributed IoT applications. International Journal of Distributed Sensor Networks, 2014, vol. 10, no. 7, p. 357430. DOI: 10.1155/2014/357430
  7. LIU, Z., ZHANG, W., WU, C. A lightweight code-based authentication protocol for RFID systems. In Proceedings of the International Conference on Applications and Techniques in Information Security. Beijing (China), 2015, vol. 557, p. 114–128. DOI: 10.1007/978-3- 662-48683-2_11
  8. CHIKOUCHE, N., FOUDIL, C., CAYREL, P. L., et al. Improved RFID authentication protocol based on randomized McEliece cryptosystem. International Journal of Network Security, 2015, vol. 17, no. 4, p. 413–422. DOI: 10.6633/IJNS.201507.17(4).05
  9. CHIEN, H. Y., LAIH, C. S. ECC-based lightweight authentication protocol with untraceability for low-cost RFID. Journal of Parallel and Distributed Computing, 2009, vol. 69, no. 10, p. 848–853. DOI: 10.1016/j.jpdc.2009.07.007
  10. CHEN, C. M., CHEN, S. M., ZHENG, X., et al. A secure RFID authentication protocol adopting error correction code. The Scientific World Journal, 2014, vol. 2014, p. 1–12. DOI: 10.1155/2014/704623
  11. SHAH, M. D., GALA, S, N., SHEKOKAR, N. M. Lightweight authentication protocol used in wireless sensor network. In Proceedings of the International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA). Mumbai (India), 2014, p. 138–143. DOI: 10.1109/CSCITA.2014.6839249
  12. SUN, H. M., TING, W. C. A Gen2-based RFID authentication protocol for security and privacy. IEEE Transactions on Mobile Computing, 2009, vol. 8, no. 8, p. 1052–1062. DOI: 10.1109/TMC.2008.175
  13. QINGLING, C., YIJU, Z., YONGHUA, W. A minimalist mutual authentication protocol for RFID system & BAN logic analysis. In Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management (CCCM’08). Guangzhou (China), 2008, vol. 2, p. 449–453. DOI: 10.1109/CCCM.2008.305
  14. PANG, L., LI, H., HE, L., et al. Secure and efficient lightweight RFID authentication protocol based on fast tag indexing. International Journal of Communication Systems, 2014, vol. 27, no. 11, p. 3244–3254. DOI: 10.1002/dac.2538
  15. HEYSE, S., KILTZ, E., LYUBASHEVSKY, V., et al. Lapin: An effi- cient authentication protocol based on ring-lpn. In Proceedings of the Fast Software Encryption. Washington, D. C. (USA), 2012, vol. 7549, p. 346–365. DOI: 10.1007/978-3-642-34047-5_20
  16. BILLET, O., ETROG, J., GILBERT, H. Lightweight privacy preserving authentication for RFID using a stream cipher. In Proceedings of the International Workshop on Fast Software Encryption. Seoul (Korea), 2010, vol. 6147, p. 55–74. DOI: 10.1007/978-3-642-13858-4_4
  17. FOUDA, M. M., FADLULLAH, Z. M., KATO, N., et al. A lightweight message authentication scheme for smart grid communications. IEEE Transactions on Smart Grid, 2011, vol. 2, no. 4, p. 675–685. DOI: 10.1109/TSG.2011.2160661
  18. CHO, J. S., YEO, S. S., KIM, S. K. Securing against brute-force attack: A hash-based RFID mutual authentication protocol using a secret value. Computer Communications, 2011, vol. 34, no. 3, p. 391–397. DOI: 10.1016/j.comcom.2010.02.029.
  19. CHIEN, H. Y. Sasi: A new ultralightweight RFID authentication protocol providing strong authentication and strong integrity. IEEE Transactions on Dependable and Secure Computing, 2007, vol. 4, no. 4, p. 337–340. DOI: 10.1109/TDSC.2007.70226
  20. KULSENG, L., YU, Z., WEI, Y., et al. Lightweight mutual authentication and ownership transfer for RFID systems. In Proceedings of the IEEE INFOCOM. San Diego (USA), 2010, p. 1–5. DOI: 10.1109/INFCOM.2010.5462233
  21. HAMMOURI, G., SUNAR, B. PUF-HB: A tamper-resilient HB based authentication protocol. In Proceedings of the International Conference on Applied Cryptography and Network Security. New York (USA), 2008, vol. 5037, p. 346–365. DOI: 10.1007/978-3-540- 68914-0_21
  22. SHOR, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 1999, vol. 41, no. 2, p. 303–332. DOI: 10.1137/S0036144598347011
  23. BURROWS, M., ABADI, M., NEEDHAM, R. A logic of authentication. In Proceedings of the Royal Society of London A. London (United Kingdom), 1989, vol. 426, no. 1871, p. 233–271. DOI: 10.1098/rspa.1989.0125
  24. BALASCH, J., EGE, B., EISENBARTH, T., et al. Compact implementation and performance evaluation of hash functions in attiny devices. In Proceedings of the International Conference on Smart Card Research and Advanced Applications. Graz (Austria), 2012, vol. 7771, p. 158–172. DOI: 10.1007/978-3-642-37288-9_11
  25. GUO, J., PEYRIN, T., POSCHMANN, A. The PHOTON family of lightweight hash functions. In Proceedings of the Annual Cryptology Conference. Santa Barbara (USA), 2011, vol. 6841, p. 222–239. DOI: 10.1007/978-3-642-22792-9_13
  26. BOGDANOV, A., KNEZEVIC, M., LEANDER, G., et al. Spongent: The design space of lightweight cryptographic hashing. IEEE Transactions on Computers, 2013, vol. 62, no. 10, p. 2041–2053. DOI: 10.1109/TC.2012.196
  27. BERTONI, G., DAEMEN, J., PEETERS, M., et al. Keccak sponge function family main document. Submission to NIST (Round 2), 2009, vol. 3, no. 30.
  28. KARIA, D., BAVISKAR, J., MAKWANA R., et al. Performance analysis of ZigBee based Load Control and power monitoring system. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics (ICACCI). Mysore (India), 2013, p. 1479–1484. DOI: 10.1109/ICACCI.2013.6637398

Keywords: Light-weight mutual authentication, hash functions, non-repudiation, Trusted Third Party, Internet of Things.

K. Dwarika, H. Xu. [references] [full-text] [DOI: 10.13164/re.2018.0151] [Download Citations]
Differential Full Diversity Spatial Modulation using Amplitude Phase Shift Keying

Diversity is a fundamental concept used to reduce the adverse effects of fading in wireless communications. Differential full diversity spatial modulation (DFD-SM) is a differential spatial modulation (DSM) scheme that makes use of a cyclic signaling phase shift keying (PSK) constellation to achieve transmit diversity. In this paper, firstly, we extend the work of DFD-SM to improve its throughput and/or error performance, by making use of an amplitude phase shift keying (APSK) constellation. Next, a power allocation concept(PAC) based on generalized differential modulation (GDM) is applied to DFD-SM using APSK. Finally we derive a theoretical upper bound on the average bit error probability (ABEP) for DFD-SM using APSK. It is shown through Monte Carlo simulations that the proposed DFD-SM using APSK scheme outperforms conventional DFD-SM by approximately 1 dB at the same throughput, and that the proposed power allocation scheme provides an approximate 3 dB gain over the conventional scheme.

  1. MESLEH, R., HAAS, H., SINANOVIC S., et al. Spatial modulation. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 4, p. 2228–2242. DOI: 10.1109/TVT.2007.912136
  2. BIAN, Y., WEN, M., CHENG, X. et al. A differential scheme for spatial modulation. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM). 2013, p. 3925–3930. DOI: 10.1109/GLOCOM.2013.6831686
  3. BIAN, Y., CHENG, X., WEN, M., et al. Differential spatial modulation. IEEE Transactions on Vehicular Technology, 2015 vol. 64, no. 7, p. 3262–3268. DOI: 10.1109/TVT.2014.2348791
  4. WEN, M., DING, Z., CHENG, X., et al. Performance analysis of differential spatial modulation with two transmit antennas. IEEE Communications Letters, 2014, vol. 18, no. 3, p. 475–478. DOI: 10.1109/LCOMM.2014.012014.132524
  5. ISHIKAWA, N., SUGIURA, S. Unified differential spatial modulation. IEEE Wireless Communications Letters, 2014, vol. 3, no. 4, p. 337–340. DOI: 10.1109/LWC.2014.2315635
  6. ZANG, W., YIN, Q., DENG, H. Differential full diversity spatial modulation and its performance analysis with two transmit antennas. IEEE Wireless Communications Letters, 2015, vol. 19, no. 4, p. 677–680. DOI: 10.1109/LCOMM.2015.2403859
  7. RAJASHEKAR, R., ISHIKAWA, N., SUGIURA, S., et al. Full-diversity dispersion matrices from algebraic field extensions for differential spatial modulation. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 1, p. 385–394. DOI: 10.1109/TVT.2016.2536802
  8. CHOW, Y. C., NIX, A. R., MCGEEHAN, J. P. Analysis of 16-APSK modulation in AWGN and Rayleigh fading channel. Electronic Letter, 1992, vol. 28, no. 17, p. 1608—1610. DOI: 10.1049/el:19921023
  9. XIA, X. Differentially en/decoded orthogonal space-time block codes with APSK signals.IEEE Communications Letters, 2002, vol. 6, no. 4, p. 150–152. DOI: 10.1109/4234.996040
  10. MARTIN, P. A. Differential spatial modulation for APSK in timevarying fading channels. IEEE Communications Letters, 2015, vol. 19, no. 7, p. 1261–1264. DOI: 10.1109/LCOMM.2015.2426172
  11. LIU, J., DAN, L., YANG, P., et al. High-rate APSK-aided differential spatial modulation: design method and performance analysis. IEEE Communications Letters, 2017, vol. 21, no. 1, p. 168–171. DOI: 10.1109/LCOMM.2016.2610962
  12. LI, L., FANG, Z., ZHU, Y., et al. Generalized differential transmission for STBC systems. In Proceedings of the 2008 IEEE Global Communications Conference (GLOBECOM). 2008, p. 1–5. DOI: 10.1109/GLOCOM.2008.ECP.836
  13. FANG, Z., LI, L., BAO, X., et al. Generalized differential modulation for amplify-and-forward wireless relay networks. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 6, p. 3058–3062. DOI: 10.1109/TVT.2008.2012125
  14. FANG, Z., LIANG, F., LI, L., et al. Performance analysis and power allocation for two-way amplify-and-forward relaying with generalized differential modulation. IEEE Transactions on Vehicular Technology, 2014, vol. 63, no. 2, p. 937–942. DOI: 10.1109/TVT.2013.2279856
  15. DWARIKA, K., XU, H. Power allocation and low complexity detector for differential full diversity spatial modulation using two transmit antennas. Radioengineering, 2017, vol. 26, no. 2, p. 461–469. DOI: 10.13164/re.2017.0461
  16. BEKO, M., XAVIER, J., BARROSO, V. Noncoherent communication in multiple-antenna systems: receiver design and codebook construction. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5703–5715. DOI: 10.1109/TSP.2007.901151
  17. BEKO, M., XAVIER, J., BARROSO, V. Further results on the capacity and error probability analysis of noncoherent MIMO systems in the low SNR regime. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 7, p. 2915–2930. DOI: 10.1109/TSP.2008.917363

Keywords: Spatial Modulation (SM), differential spatial modulation (DSM), full transmit diversity, amplitude phase shift keying (APSK)

S.A. Shaikh, A.M. Tonello [references] [full-text] [DOI: 10.13164/re.2018.0159] [Download Citations]
DoA Estimation in EM Lens Assisted Massive Antenna System Using Subsets Based Antenna Selection and High Resolution Algorithms

In recent times, massive antenna array technology has captured significant attention among wireless communication researchers. This is a field with strong potential to increase rates of data transfer; mitigate interference and serve a large number of users simultaneously. To contribute further to this emerging technology, this paper presents an approach for the line-of-sight (LoS) based direction of arrival (DoA) estimation using the electromagnetic (EM) lens-focusing antenna concept. The EM lens focuses the received signal energy as a function of the angle of arrival (AoA) to a small subset/area of the antenna array. This is advantageous, as it helps to reduce both hardware implementation (RF chains) and the complexity of signal processing in the large number of antennas system. Furthermore, this focusing capability of the EM lens provides additional interference rejection gain which leads to estimate the DoA of user terminals precisely. Hence, in this work, subsets based antenna selection approach and subspace-based high resolution DoA estimation algorithms have been considered in combination with the EM lens assisted massive antenna system. In simulations where the DoA is estimated with the EM lens, the results are comparable with conventional methods of DoA estimation without an EM lens, despite the significantly reduced overall system complexity.

  1. LARSSON, E., EDFORS, O., TUFVESSON, F., et al. Massive MIMO for next generation wireless systems. IEEE Communication Magazine, 2014, vol. 52, no. 2, p. 186–195. DOI: 10.1109/MCOM.2014.6736761
  2. JO, K., KO, Y., PARK, C., et al. Multiple-antenna post low noise amplifier RF combining. In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM). Honolulu (Hawaii), 2009, p. 1–5. DOI: 10.1109/GLOCOMW.2009.5360684
  3. ZENG, Y., ZHANG, R., CHEN, Z. Electromagnetic lens-focusing antenna enabled massive MIMO: Performance improvement and cost reduction. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1194–1206. DOI: 10.1109/JSAC.2014.2328151
  4. GAO, X., EDFORS, O., TUFVESSON, F.,et al. Massive MIMO in real propagation environments: Do all antennas contribute equally? IEEE Transactions on Communications, 2015, vol. 63, no. 11, p. 3917–3928. DOI: 10.1109/TCOMM.2015.2462350
  5. SHAIKH, S., TONELLO, A. Localization based on angle of arrival in EM lens-focusing massive MIMO. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE). Berlin (Germany), 2016, p. 127–131. DOI: 10.1109/ICCE-Berlin.2016.7684736
  6. SAVIC, V., LARSSON, E. Fingerprinting-based positioning in distributed massive MIMO systems. In Proceedings of the IEEE International Conference on Vehicular Technology (VTC Fall). Boston (USA), 2015, p. 1–5. DOI: 10.1109/VTCFall.2015.7390953
  7. TONELLO, A., INSERRA, D. Radio positioning based on DoA estimation: an implementation perspective. In Proceedings of the IEEE International Conference on Communications (ICC). Budapest (Hungary), 2013, p. 27–31. DOI: 10.1109/ICCW.2013.6649195
  8. SHAIKH, S., TEKIN, I. Two axis direction finding antenna system using sum-difference patterns in X-band. Microwave and Optical Technology Letters, 2015, vol. 57, no. 9, p. 2085–2092. DOI: 10.1002/mop.29269
  9. CHEN, H., WAN, Q., FAN, R., et al. Direction-of-arrival estimation based on sparse recovery with second-order statistics. Radioengineering, 2015, vol. 24, no. 1, p. 208–213. DOI: 10.13164/re.2015.0208
  10. SUN, L., WANG, H., XU, G. An efficient sparse representation algorithm for direction-of-arrival estimation. Radioengineering, 2013, vol. 22, no. 3, p. 834–840. ISSN: 1805-9600
  11. PIKSA, P., ZVANOVEC, S., CERNY, P. Elliptic and hyperbolic dielectric lens antennas in mm-waves. Radioengineering, 2011, vol. 20, no. 1, p. 270–275. DOI: 10.13164/re. 2011.
  12. SHAFIN, R., LIU, L., ZHANG, J. DoA estimation and RMSE characterization for 3D massive-MIMO/FD-MIMO OFDM system. In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM). San Diego (USA), 2015, p. 1–6. DOI: 10.1109/TWC.2016.2594173
  13. WANG A., LIU, L., ZHANG, J. Low Complexity direction of arrival (DoA) estimation for 2D massive MIMO systems. In Proceedings of the IEEE International Conference on Global Communications (GLOBECOM). Anaheim (USA), 2012, p. 703–707. DOI: 10.1109/GLOCOMW.2012.6477660
  14. LUTZ, S., WALTER, T. Lens based 77 GHz TDM MIMO radar sensor for angular estimation in multitarget environments. In Proceedings of the IEEE International Conference on European Radar (EuRAD). Nuremberg (Germany), 2013, p. 212–215. ISBN: 978-2-87487-033-0
  15. LEVINE, E., MALAMUD, G., SHTRIKMAN, S., et al. A study of microstrip array antennas with the feed network. IEEE Transactions on Antennas and Propagation, 1989, vol. 37, no. 4, p. 426–434. DOI: 10.1109/8.24162
  16. ANTENNA ARRAYS (PHASED ARRAYS). [Online] Cited 2017-02-24. Available at: http://www.antennatheory.com/arrays/main.php/phased
  17. BALANIS, C. Antenna Theory, Analysis and Design. 3rd ed., rev. New Jersey (USA): John Wiley and Sons Inc, 2005. ISBN: 0-471-66782-X
  18. STUTZMAN, W., THIELE, G. Antenna Theory and Design. 2nd ed., rev. New York (USA): John Wiley and Sons Inc, 1998. ISBN: 0-471-02590-9
  19. ZENG, Y., ZHANG, R. Millimeter wave MIMO with lens antenna array: a new path division multiplexing paradigm. IEEE Transactions on Communications, 2016, vol. 64, no. 4, p. 1557–1571. DOI: 10.1109/TCOMM.2016.2533490
  20. LAU, P. CHEN, Z., QING, X. Electromagnetic field distribution of lens antennas. In Proceedings of the Asia-Pacific Conference on Antennas Propagation, 2013, p. 1–2.
  21. WAWERU, N., KONDITI, O., LANGAT, P. Performance analysis MUSIC, Root-MUSIC and ESPRIT DOA estimation algorithm. International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, 2014, vol. 8, no. 1, p. 209–216.
  22. ADAM, I., ISLAM, M. Performance study of direction of arrival (DOA) estimation algorithms for linear array antenna. In Proceedings of the International Conference on Signal Processing Systems. Singapore, 2009, p. 268–271. DOI: 10.1109/ICSPS.2009.47
  23. GROSS, F. Smart Antennas for Wireless Communications with Matlab. New York (USA): McGraw Hill, 2005. ISBN: 978-0071447898
  24. TEHRANI, M., LAURIN, J., SAVARIA, Y. Multiple targets directionof-arrival estimation in frequency scanning array antennas. IET Radar, Sonar and Navigation, 2016, vol. 10, no. 3, p. 624–631. DOI: 10.1049/iet-rsn.2015.0401
  25. ALLEN, B., GHAVAMI, M. Adaptive Array Systems. 1st ed., rev. England: John Wiley and Sons Inc, 2005. ISBN: 978-0-470-86189-9
  26. SANAVEI, S., NOSRATINIA A. Antenna selection in MIMO systems. IEEE Communication Magazine, 2004, vol. 42, no. 10. DOI: 10.1109/MCOM.2004.1341263
  27. LIU, A., LAU,V. Phase only RF precoding for massive MIMO systems with limited RF chains. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 17, p. 4505–4515. DOI: 10.1109/TSP.2014.2337840
  28. AL-SHURAIFI, M., AL-RAWESHIDY, H. Optimizing antenna selection using limited CSI for massive MIMO systems. In Proceedings of the Int. Conference on Innovative Computing Technology (INTECH). Luton (UK), 2014, p. 180–184. DOI: 10.1109/INTECH.2014.6927740
  29. MA, Y., CAI, J., BAO, D., et al. An efficient MUSIC algorithm using subspace projection. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). Ningbo (China), 2015, p. 1–6. DOI: 10.1109/ICSPCC.2015.7338949
  30. SHAIKH, S., TONELLO, A. Performance Analysis of 180◦ HRR Coupler Used for Direction Finding with an Antenna Array. International Journal of Online Engineering (iJOE), 2017. [To be appeared]

Keywords: Massive antenna system, electromagnetic (EM) lens, DoA estimation, wireless communication, 5G networks

V. Stopjakova, M. Rakus, M. Kovac, D. Arbet, L. Nagy, M. Sovcik, M. Potocny [references] [full-text] [DOI: 10.13164/re.2018.0171] [Download Citations]
Ultra-Low Voltage Analog IC Design: Challenges, Methods and Examples

The paper brings an overview of main challenges and design techniques effectively applicable for ultra-low voltage analog integrated circuits in nanoscale technologies. New design challenges linked with a low value of the supply voltage and the process fluctuation in nanotechnologies, such as device models, robustness to process variation, device mismatch and others are discussed firstly. Then, design techniques and approaches to analog integrated circuits towards (ultra) low-voltage systems and applications are described. Finally, examples of basic building blocks of ultra-low voltage analog ICs designed in standard CMOS technology using such design techniques are presented. Finally, the developed circuits are compared to the state-of-the-art solutions in terms of the main parameters and features.

  1. COURTLAND, R. Intel now packs 100 million transistors in each square millimeter (article). [Online] Cited 2008-06-23. Available at: https://spectrum.ieee.org/nanoclast/semiconductors/processors/intelnow-packs-100-million-transistors-in-each-square-millimeter
  2. SIU, S.-L., TAM, W.-S., WONG, H., et al. Influence of multifinger layout on the subthreshold behavior of nanometer MOS transistors. Elsevier Microelectronics Reliability, 2011, p. 1606–1609. DOI: 10.1016/j.microrel.2011.09.011
  3. BINKLEY, D. M. Tradeoffs and Optimization in Analog CMOS Design. Wiley, 2008. ISBN: 978-0-470-03136-0
  4. TSIVIDIS, Y. Operation and Modeling of the MOS Transistor. 2nd ed., Boston (MA): WCB/McGraw-Hill, 1999. ISBN: 9780070655232
  5. ENZ, CH., VITTOZ, E. A. Charge-based MOS Transistor Modeling: The EKV Model for Low-power and RF IC Design. Hoboken (NJ): John Wiley, 2006. ISBN: 9780470855416
  6. RAZAVI, B. Design of Analog CMOS Integrated Circuits. 1st ed., New York, NY (USA): McGraw Hill, 2001. ISBN: 0-07-238032-2
  7. ROY, K., MUKHOPADHYAY, S., MAHMOODI-MEIMAND, H. Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proceedings of the IEEE, Feb 2003, vol. 91, no. 2, p. 305–327. DOI: 10.1109/JPROC.2002.808156
  8. ZHAO, W., CAO, Y. New generation of predictive technology model for sub-45 nm early design exploration. IEEE Transactions on Electron Devices, Nov. 2006, vol. 53, no. 11, p. 2816–2823. DOI: 10.1109/TED.2006.884077
  9. BUCHER, M., LALLEMENT C., ENTZ, C., et al. Accurate MOS modelling for analog circuit simulation using the EKV model. In Proceedings of the IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. (ISCAS 96). Atlanta, GA (USA), 1996, p. 703–706, vol. 4. DOI: 10.1109/ISCAS.1996.542121
  10. ONABAJO, M., SILVA-MARTINEZ, J. Analog Circuit Design for Process Variation-resilient Systems-on-a-chip. Springer Science & Business Media, 2012.
  11. CHANG, J., CHEN, Y., CHAN, W., et. al. A 7nm 256Mb SRAM in high-k metal-gate finFET technology with write-assist circuitry for low-VMIN applications. In Proceedings of the IEEE International Solid-State Circuits Conference. 2017, p. 206–208. DOI: 10.1109/ISSCC.2017.7870333
  12. SCHRODER, D. K. Negative bias temperature instability: What do we understand? In Proceedings of the Microelectronics Reliability. 2007, p. 841–852. ISSN: 0026-2714
  13. KUMAR, R., KURSUN, V. Voltage optimization for temperature variation insensitive CMOS circuits. In Proceedings of the 48th Midwest Symposium on Circuits and Systems. Covington, KY, 2005, p. 476–479. DOI: 10.1109/MWSCAS.2005.1594141
  14. WOLPERT, D., AMPADU, P. Managing Temperature Effects in Nanoscale Adaptive Systems. Springer New York, 2012. ISBN: 978-1-4614-0748-5
  15. RODRIGUEZ-VILLEGAS, E., BARNES, H. Solution to trapped charge in FGMOS transistors. Electronics Letters, 2003, vo. 39, no. 19, p. 1416–1417. DOI: 10.1049/el:20030900
  16. BAEK, K. J., GIM, J. M., KIM, H. S., et al. Analogue circuit design methodology using self-cascode structures. Electronics Letters, 2013, vol. 49, no. 9, p. 591–592. DOI: 10.1049/el.2013.0554
  17. DUQUE-CARILLO, J. F., AUSIN, J. L., TORELLI, G., et al. 1- V rail-to-rail operational amplifiers in standard CMOS technology. IEEE Journal of Solid-State Circuits, 2000, vol. 35, no. 1, p. 33–44. DOI: 10.1109/4.818918
  18. KUMAR, M., SANDEEP, A., SUJATA, P. Level shifter design for low power applications. International Journal of Computer Science and Information Technology (IJCSIT), 2010, vol. 2, no. 5, p. 124–132. DOI: 10.5121/ijcsit.2010.2509
  19. WANG, A., CALHOUN, B. H., CHANDRAKASAN, A. P. Sub-Threshold Design for Ultra Low-Power Systems. 1st ed., New York (USA): Springer Science+Business Media, 2006. ISBN: 0-387-33515-3
  20. SHOULI, Y.,SANCHEZ-SINENCIO, E. Low voltage analog circuit design techniques: A tutorial. In Proceedings of the IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2000, vol. 83, no. 2, p. 179–196. ISSN: 0916-8508
  21. CUNHA, A. I. A, SCHNEIDER, M. C., GALUP-MONTORO, C. An MOS transistor model for analog circuit design. IEEE Journal of Solid-State Circuits, 1998, vol. 33, no. 10, p. 1510–1519. DOI: 10.1109/4.720397
  22. BLALOCK, B. J., ALLEN, P. E., RINCON-MORA, G. A. A 1 v CMOS op amp using bulk-driven MOSFETs. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA (USA), 1995, p. 192–193. DOI: 10.1109/ISSCC.1995.535518
  23. TSIVIDIS, Y. Mixed Analog-Digital VLSI Devices and Technology. 2nd ed., Singapore: World Scientific Publishing Co., 2002. ISBN: 978-981-238-111-8
  24. BLALOCK, B. J., ALLEN, P. E. A low-voltage, bulk-driven MOSFET current mirror for CMOS technology. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS ’95). Seattle, WA (USA), 1995, p. 1972–1975, vol. 3. DOI: 10.1109/ISCAS.1995.523807
  25. ARBET, D., STOPJAKOVA, V., KOVAC, et al. 130 nm CMOS bulkdriven variable gain amplifier for low-voltage applications. Journal of Circuits, Systems and Computers, 2017, vol. 26, no. 8, p. 1–19. DOI: 10.1142/S0218126617400035
  26. NIRANJAN, V., KUMAR, A., JAIN, S. B. Low voltage flipped voltage follower based current mirror using DTMOS technique. In Proceedings of the International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT-2013). Aligarh (India), 2013, p. 250-254. DOI: 10.1109/MSPCT.2013.6782129
  27. ZUO, L. Low-Voltage Bulk-Driven Amplifier Design and Its Application in Implantable Biomedical Sensor. (Ph.D. thesis). University of Tennessee, Knoxville (USA), 2012.
  28. XANTHOPOULOS, C., et al. IC laser trimming speed-up through wafer-level spatial correlation modeling. In Proceedings of the 2014 International Test Conference. 2014, p. 1–7. DOI: 10.1109/TEST.2014.7035329
  29. GODOY, P., DAWSON, J. L. Chopper stabilization of analog multipliers, variable gain amplifiers, and mixers. IEEE Journal of Solid-State Circuits, 2018, vol. 43., no. 10, p. 2311–2321. DOI: 10.1109/JSSC.2008.2004328
  30. DANCHIV, A., BODEA, M. An area efficient low offset autozero amplifier design. In Proceedings of the Ph.D. Research in Microelectronics and Electronics. 2009, p. 140–143. DOI: 10.1109/RME.2009.5201331
  31. PASTRE, M., KAYAL, M. Methodology for the Digital Calibration of Analog Circuits and Systems. 1st ed., Springer, 2006. ISBN: 978-1-4020-4253-9
  32. RAKUS, M., STOPJAKOVA, V., ARBET, D. Analysis of bulk-driven technique for low-voltage IC design in 130 nm CMOS technology. In Proceedings of the 15th International Conference on Emerging eLearning Technologies and Applications (ICETA). 2017, p. 1–6. DOI: 10.1109/ICETA.2017.8102522
  33. ELZAKKER, M., TUIJL, E., GERAEDTS, P., et al. A 10-bit charge-redistribution ADC consuming 1.9 µW at 1 MS/s. IEEE Journal of Solid-State Circuits, 2010, vol. 45, no. 5, p. 1007–1015. DOI: 10.1109/JSSC.2010.2043893
  34. MIYAHARA, M., ASADA, Y., PAIK, D.,et al. A low-noise self-calibrating dynamic comparator for high-speed ADCs. IEEE Asian Solid-State Circuits, 2008, vol. 56, no. 8, p. 269–272. DOI: 10.1109/ASSCC.2008.4708780
  35. SARKAR, S., BANERJEE, S. 500 MHz differential latched current comparator for calibration of current steering DAC. IEEE Students’ Technology Symposium (TechSym). 2014, p. 309–3012. DOI: 10.1109/TechSym.2014.6808066
  36. FAN, S., WEI, R., ZHAO, L., et al. An ultra-low quiescent current power management system with maximum power point tracking (MPPT) for battery-less wireless sensor applications. IEEE Transactions on Power Electronics, 2013, no. 99, p. 1–1. DOI: 10.1109/TPEL.2017.2769708
  37. AKBARI, M., MAYMANDI-NEJAD M., MIRBOZORGI, S. A. A new rail-to-rail ultra low voltage high speed comparator. In Proceedings of the 21st Iranian Conference on Electrical Engineering. 2013, p. 1–6.
  38. LI, Y., MAO, W., ZHANG, Z., et al. An ultra-low voltage comparator with improved comparison time and reduced offset voltage. In Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems. 2014, p. 407–410. DOI: 10.1109/APCCAS.2014.7032806
  39. NAGY, L., ARBET, D., KOVAC, M., et al. Low-power bulk-driven rail-to-rail comparator in 130 nm CMOS technology. In Proceedings of the IEEE AFRICON 2017. Cape Town (South Africa), 2017, p. 649–652. DOI: 10.1109/AFRCON.2017.8095559
  40. ARBET, D., KOVAC, M., NAGY, L., et al. Low-voltage bulk-driven variable gain amplifier in 130 nm CMOS technology In Proceedings of the 2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS). Kosice (Slovakia), 2016, p. 1–6. DOI: 10.1109/DDECS.2016.7482439
  41. ARBET, D., KOVAC, M., NAGY, L., et al. Variable-gain amplifier for ultra-low voltage applications in 130 nm CMOS technology. In Proceedings of the 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija, 2016, p. 51–56.
  42. RAIKOS, G., VLASSIS, S. 0.8 V bulk-driven variable gain amplifier. In Proceedings of the 2010 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). 2010, p. 347–350. DOI: 10.1109/ICECS.2010.5724524
  43. MI, M. L. S., ISLAM, M. S., SAMPE, J., et al. Review of charge pump topologies for micro energy harvesting systems. American Journal of Applied Sciences, 2016, vol. 13, no. 5, p. 628–645. DOI: 10.3844/ajassp.2016.628.645
  44. NAGY, G., ARBET, D., STOPJAKOVA, V., et al. Novel CMOS bulkdriven charge pump for ultra low input voltage. Radioengineering, 2016, vol. 25, no. 2, p. 321–331. DOI: 10.13164/re.2016.0321
  45. SOVCIK, M., KOVAC, M., ARBET, D., et al. Ultra-low-voltage driver for large load capacitance in 130 nm CMOS technology. In Proceedings of the IEEE 20th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), 2017, p. 127–132. DOI: 10.1109/DDECS.2017.7934567
  46. INTASCHI, L., BRUSCHI, P., IANNACCONE, G., et al. A 220-mV input, 8.6 step-up voltage conversion ratio, 10.45- µW output power, fully integrated switched-capacitor converter for energy harvesting. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC). 2017, p. 1–4. DOI: 10.1109/CICC.2017.7993623
  47. SOVCIK, M., KOVAC, M., ARBET, D., et al. Ultra-low-voltage boosted driver for self-powered systems. Microelectronics Reliability, 2018, vol. 80, p. 155–163. DOI: 10.1016/j.microrel.2017.11.006
  48. KIM, J., MOK, P. K. T., KIM, C. A 0.15 V input energy harvesting charge pump with dynamic body biasing and adaptive dead-time for efficiency improvement. IEEE Journal of Solid-State Circuits, 2015, vol. 50, no. 2, p. 414–425. DOI: 0.1109/JSSC.2014.2375824
  49. OZAKI, T., HIROSE, T., NAGAI, T., et al. A 0.21-V minimum input, 73.6 % maximum efficiency, fully integrated voltage boost converter with MPPT for low-voltage energy harvesters. In Proceedings of the 40th European Solid State Circuits Conference (ESSCIRC). 2014, p. 255–258. DOI: 10.1109/ESSCIRC.2014.6942070
  50. SHIH, Y. C., OTIS, B. P. An inductorless DC-DC converter for energy harvesting with a 1.2-µW bandgap-referenced output controller. IEEE Transactions on Circuits and Systems II: Express Briefs, 2011, vol. 58, no. 12, p. 832–836. DOI: 10.1109/TCSII.2011.2173967
  51. CHEN, P. H., ISHIDA, K., ZHANG, X., et al. 120-mV input, fully integrated dual-mode charge pump in 65-nm CMOS for thermoelectric energy harvester. In Procedings of the 17th Asia and South Pacific Design Automation Conference. 2012, p. 469–470. DOI: 10.1109/ASPDAC.2012.6164994
  52. CHEN, P. H., ISHIDA, K., ZHANG, X., et al. 0.18-V input charge pump with forward body biasing in startup circuit using 65nm CMOS. IEEE Custom Integrated Circuits Conference 2010, 2010, p. 1–4. DOI: 10.1109/CICC.2010.5617444
  53. OZAKI, T., HIROSE, T., ASANO, H., et al. Fully-integrated high-conversion-ratio dual-output voltage boost converter with MPPT for low-voltage energy harvesting. IEEE Journal of Solid-State Circuits, 2016, vol. 51, no. 10, p. 2398–2407. DOI: 10.1109/JSSC.2016.2582857
  54. MIN, K. S., KIM, Y. H., AHN, J. H., et al. CMOS charge pumps using cross-coupled charge transfer switches with improved voltage pumping gain and low gate-oxide stress for low-voltage memory circuits. In IEEE International Symposium on Circuits and Systems. 2002, vol. 5, p. V–V. DOI: 10.1109/ISCAS.2002.1010761
  55. KI, W. H., LU, Y., SU, F., et al. Analysis and design strategy of on-chip charge pumps for micro-power energy harvesting applications. In Proceedings of the IFIP/IEEE International Conference on Very Large Scale Integration–System on a Chip. 2011, p. 158–186. DOI: 10.1007/978-3-642-32770-4_10

Keywords: Ultra-low supply voltage, analog design, integrated circuits, ultra-low voltage design techniques, bulk-driven

S. Cheab, P. W. Wong, S. Soeung [references] [full-text] [DOI: 10.13164/re.2018.0186] [Download Citations]
Design of Multi-Band Filters Using Parallel Connected Topology

This paper presents the design of multi-band filters using parallel connected topology. The resonator in each branch is the dual-mode resonator which provides two resonant modes per passband for miniaturization. The coupling values of the resonator are obtained by mapping the filtering function of the dual-mode resonator to the second order Chebyshev polynomial. The control of the filter parameters, such as pass-band bandwidths and band separation, is addressed. Dual-band and triple-band filter prototypes are designed and fabricated to validate the proposed concept. The measured results show good agreement with the simulations.

  1. TSAI, L. C., HSUE , C. W. Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique. IEEE Microwave Theory and Techniques, 2004, vol. 52, no. 4, p. 1111–1117. DOI: 10.1109/TMTT.2004.825680
  2. LEE, J., UHM M. S., YOM, I. B. A dual-passband filter of canonical structure for satellite applications. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 6, p. 271–273. DOI: 10.1109/LMWC.2004.828010
  3. MACCHIRARELLA, G., TAMIAZZO, S. Design techniques for dual-passband filters. IEEE Microwave Theory and Techniques, 2005, vol. 53, no. 11, p. 3265–3271. DOI: 10.1109/TMTT.2005.855749
  4. CAMERON, R. J., YU M., WANG, Y. Direct-coupled microwave filters with single and dual stopbands. IEEE Microwave Theory and Techniques, 2005, vol. 53, no. 11, p. 3288–3297. DOI:10.1109/TMTT.2005.859032
  5. LAFORGE, P. D., MANSOUR, R. R., YU M. Manifoldcoupled switched filter bank implementing filters with embedded switches. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest. Atlanta (USA), 2008, p. 1027–1030. DOI: 10.1109/MWSYM.2008.4633010
  6. MOBBS, C. The use of matched four-port filters to realize switched multiplexer having low amplitude and group delay ripple. IEEE Microwave Theory and Techniques, 1987, vol. 35, no. 12, p. 1183–1191. DOI: 10.1109/TMTT.1987.1133836
  7. TANG, C.W., TSENG, C. T. Design of a packaged microstrip triplexer with star-junction topology. In Proceedings of the IEEE European Microwave Conference. Amsterdam (Netherlands), 2012, p. 459–462. DOI: 10.23919/EuMC.2012.6459406
  8. ZHAO, P., WU, K. L. An iterative and analytical approach to optimal synthesis of a multiplexer with a star-junction. IEEE Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 3362–3369. DOI: 10.1109/TMTT.2014.2364222
  9. MACCHIRARELLA, G., TAMIAZZO, S. Synthesis of star-junction multiplexers. IEEE Microwave Theory and Techniques, 2010, vol. 58, no. 12, p. 3732–3741. DOI: 10.1109/TMTT.2010.2086570
  10. RHODES, J. D., LEVY, R. A Generalized multiplexer theory. IEEE Transactions on Microwave Theory and Techniques, 1976, vol. 27, no. 2, p. 99–111. DOI: 10.1109/TMTT.1979.1129570
  11. CHEAB S., WONG, P. W., CHEW X. Y. Parallel connected dualmode filter.IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 9, p. 582–584. DOI: 10.1109/LMWC.2015.2451393
  12. CAMERON, R. J. Advanced filter synthesis. IEEE Microwave Magazine, 2011, vol. 12, no. 6, p. 42–61. DOI: 10.1109/MMM.2011.942007
  13. CAMERON, R. J., KUDSIA, C. M., MANSOUR, R., Microwave Filters for Communication Systems: Fundamentals, Design and Applications. Hoboken (USA): Wiley-Interscience, 2007. ISBN: 0471450227
  14. WONG, P. W. Miniaturized stepped-impedance dual-mode resonator filter. In Proceedings of the IEEE Conference on Microwave Technology & Computational Electromagnetics (ICMTCE). Beijing (China), 2011, p. 174–176. DOI: 10.1109/ICMTCE.2011.5915193
  15. HUNTER, I. Theory and Design of Microwave Filters. UK: The Institution of Engineering and Technology, 2001. ISBN: 0852967772
  16. CHEAB S., WONG, P. W. Compact, quasi-elliptic dual-band bandpass filter with improved isolation. In Proceedings of the IEEE MTT-S International Microwave Symposium. Phoenix (USA), 2015, p. 1–3. DOI: 10.1109/MWSYM.2015.7167115
  17. TSENG, C. H., SHAO, H. Y. A new dual-band microstrip bandpass filter using net-type resonators. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 4, p. 196–198. DOI: 10.1109/LMWC.2010.2042549
  18. CHANG, W. S., CHANG, H. Y. Analytical design of microstrip short-circuit terminated stepped-impedance resonator dual-band filters. IEEE Microwave Theory and Techniques, 2011, vol. 59, no. 7, p. 1730–1739. DOI: 10.1109/TMTT.2011.2132140
  19. KHAJAVI, N. , MAKKI, S. V. , MAJIDIFAR, S. Design of high performance microstrip dual-band bandpass filter. Radioengineering, 2015, vol. 24, no. 1, p. 32–37. DOI: 10.13164/re.2015.0032
  20. CHEN, F. C., CHU, Q. X. Novel multistub loaded resonator and its application to high-order dual-band filters. IEEE Microwave Theory and Techniques, 2010, vol. 58, no. 6, p. 1551–1561. DOI: 10.1109/TMTT.2010.2049161
  21. ZHOU, M., TANG, X., XIAO, F. Compact dual band filter using novel E-type resonators with controllable bandwidths. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 12, p. 779–781. DOI: 10.1109/LMWC.2008.2007696
  22. ZHANG, X. Y. ,CHEN, J. X., XUE, Q., et al. Dual-band bandpadd filters using stub-loaded resonators. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 8, p. 583–585. DOI: 10.1109/LMWC.2007.901768
  23. MONDAL, P., MONDAL, M. K. Design of dual-band bandpass filter using stub-loaded open-loop resonators. IEEE Microwave Theory and Techniques, 2008, vol. 56, no. 1, p. 150–155. DOI: 10.1109/TMTT.2007.912204
  24. SUN, S. J., SU, T., DENG, K., et al. Shorted-ended steppedimpedance dual-resonance resonator and its application to bandpass filter. IEEE Microwave Theory and Techniques, 2013, vol. 61, no. 9, p. 3209–3215. DOI: 10.1109/TMTT.2013.2273895
  25. LUO, S., ZHU, L., SUN, S. Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator. IEEE Microwave Theory and Techniques, 2011, vol. 59, no. 5, p. 1222–1229. DOI: 10.1109/TMTT.2011.2123106
  26. WEI, F., QIN, P. Y., GUO, Y. J., et al. Design of multi-band bandpass filters based on stub loaded stepped-impedance resonator with defected microstrip structure. IET Microwaves, Antennas & Propagation, 2016, vol. 10, no. 2, p. 230–236. DOI: 10.1049/iet-map.2015.0495
  27. CHEN, W. Y., WENG, M. H, CHANG, S. J. A new tri-band bandpass filter based on stub-loaded step-impedance resonator. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 4, p. 179–181. DOI: 10.1109/LMWC.2012.2187884

Keywords: dual-band, dual-mode, multi-band filter, parallel connected topology, stepped-impedance resonator (SIR), transmission zero (TZ), triple-band

A. Othman, R. Barrak, M. Mabrouk [references] [full-text] [DOI: 10.13164/re.2018.0193] [Download Citations]
A Multiband Filter for Multistandards Wireless Communications Receivers

A new topology for a multiband filter suitable for multistandard and multiband mobile terminals is proposed. This filter named MultiCrossed Open Stubs (MCOS) is based on the wideband Quarter-Wave Short Circuited Stubs (QWSCS) topology and consists of open stubs connected together with the main transmission line via a~multicross junction. This technique allows division the wide bandpass response into several subbands by means of open stub transmission zeros. Full synthesis of the MCOS filter using ABCD matrices and its application to GSM, GPS, UMTS, LTE, and Wi-Fi standards using FR4 microstrip technology are presented. Scattering (S) parameters simulations and measurements show good agreement according to standard specifications in terms of center frequencies and bandwidths. The achievable return losses for all bands are higher than 10dB, and transmission losses are between 3.9,dB and 6 dB. The proposed multiband filter topology is well suited for the implementation of reconfigurable multiband filters.

  1. CRUZ, P., CARVALHO, N. B., REMLEY, K. A. Designing and testing software-defined radios. IEEE Microwave Magazine, 2010, vol. 11, no. 4, p. 83–94. ISSN: 1527-3342. DOI: 10.1109/MMM.2010.936493
  2. SANI, M. M. A., KHAN, Z. I., RASHID, N. E. A., et al. Single ring dual-band bandpass filter with meander for 2.5 GHz and 5.2 GHz. In Proceedings of the IEEE International RF and Microwave Conference. Malaysia, 2015, p. 22–26. DOI: 10.1109/RFM.2015.7587704
  3. CHEN, C. F. Design of a compact microstrip quint-band filter based on the tri-mode stub-loaded stepped-impedance resonators. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 7, p. 357–359. ISSN: 1531-1309. DOI: 10.1109/LMWC.2012.2202894
  4. LI, X., WANG, H. An approach for multi-band bandpass filter design based on asymmetric half-wavelength resonators. Progress In Electromagnetics Research, 2013, vol. 140, p. 31–42. ISSN: 1559-8985. DOI: 10.2528/PIER13031504
  5. ZHANG, S., ZHU, L. Compact tri-band bandpass filter based on λ/4 resonators with u-folded coupled-line. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 5, p. 258–260. ISSN: 1531-1309. DOI: 10.1109/LMWC.2013.2255868
  6. HSU, K.W., HUNG,W. C., TU,W. H. Compact quint-band microstrip bandpass filter using double-layered substrate. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (IMS). Seattle (USA), 2013, p. 1–4. DOI: 10.1109/MWSYM.2013.6697353
  7. MOHAMED, H. A., EL-SHAARAWY, H. B., ABDALLA, E. A., et al. A very compact novel multi-band BPF for recent mobile/satellite communication systems. Progress In Electromagnetics Research, 2014, vol. 50, p. 47–56. ISSN: 1937-8718. DOI: 10.2528/PIERC14031307
  8. GAO, L., ZHANG, X. Y., HU, B. J., et al. Novel multistub loaded resonators and their applications to various bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 5, p. 1162–1172. ISSN: 0018-9480. DOI: 10.1109/TMTT.2014.2314680
  9. LIU, H., LEI, J., GUAN, X., et al. Compact high-temperature superconducting filter using multimode stub-loaded resonator. IEEE Transactions on Applied Superconductivity, 2014, vol. 24, no. 2, p. 8–15. ISSN: 1051-8223. DOI: 10.1109/TASC.2014.2301753
  10. LIU, H., REN, B., GUAN, X., et al. Quad-band high-temperature superconducting bandpass filter using quadruple-mode square ring loaded resonator. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 2931–2941. ISSN: 0018-9480. DOI: 10.1109/TMTT.2014.2366147
  11. TU, W. H., HSU, K. W. Design of sext-band bandpass filter and sextaplexer using semilumped resonators for system in a package. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 3, p. 265–273. ISSN: 2156-3950. DOI: 10.1109/TCPMT.2014.2387198
  12. QUENDO, C., RIUS, E., PERSON, C. An original topology of dualband filter with transmission zeros. In Proceedings of the IEEE MTTS International Microwave Symposium Digest (IMS). Philadelphia (USA), 2003, p. 1093–1096. DOI: 10.1109/MWSYM.2003.1212559
  13. HONG, J. S., LANCASTER, M. J. Microstrip Filters For RF/Microwave Applications. New York (USA): John Wiley & Sons, 2001. ISBN: 0-471-38877-7
  14. QUENDO, C., RIUS, E., MANCHEC, A., et al. Planar tri-band filter based on dual behavior resonator (DBR). In Proceedings of the European Microwave Conference (EuMC). Paris (France), 2005, p. 1–4. DOI: 10.1109/EUMC.2005.1608845
  15. Digital Cellular Telecommunications System (Phase 2+); Radio Transmission and Reception. ETSI. GSM 05.05 version 8.5.1 release 1999, 2000.
  16. Global Positionning System Wing (GPSW) Systems Engineering & Integration. ETSI. IS-GPS-200E, 2010.
  17. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Conformance Specification; Radio Transmission and Reception; Part 1: Conformance Testing. ETSI. 3GPP TS 36.521-1 version 10.3.0 release 10, 2012.
  18. Universal Mobile Telecommunications System (UMTS); UE Radio Transmission and Reception (FDD). ETSI. 3GPP ts 25.101 version 5.2.0 release 5, 2002.
  19. IEEE802.11g. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band. IEEE std. 3GPP TS 25.101 version 5.2.0 Release 5, 2003.

Keywords: Microstrip technology, Multiband filters, Multistandard receivers, S-parameters, Stubs

N. Al-Areqi, K. Y. You, C. Y. Lee, N. H. Khamis, M. N. Dimon [references] [full-text] [DOI: 10.13164/re.2018.0200] [Download Citations]
Wideband and Compact Wilkinson Power Divider Utilizing Series Delta-Stub and Folded Stepped-Impedance Transmission Line

In this paper, a Wilkinson power divider is modified using four-series delta-stub and folded stepped-impedance transmission line (FSITL) in order to achieve a reduced circuit size of 84% and fractional bandwidth of 116%. Series delta-stubs are used instead of open shunt stubs to obtain an optimum shifting frequency and wider bandwidth. Folded stepped-impedance transmission line (FSITL) is used to achieve reduced circuit size. The proposed power divider is fabricated using RT/duroid 5880 substrate with thickness of 0.38 mm. The dimension of the power divider is 13 mm × 6.5 mm. The proposed power divider has typical power division of -3 dB and insertion loss less than -1 dB, better than -13 dB of isolation, less than -10 dB return loss and phase imbalances less than 2° from 1.5 to 3 GHz. Both simulation and measurement results show a good agreement.

  1. POZAR, D. M. Microwave Engineering. 4th ed. United States of America, 2011. ISBN: 978-1-118-29813-8
  2. WANG, J., NI, J., GUO, Y. X., et al. Miniaturized microstrip Wilkinson power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 7, p. 440–442. DOI: 10.1109/LMWC.2009.2022124
  3. YANG, J., GU, C., WU, W. Design of novel compact coupled microstrip power divider with harmonic suppression. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 9, p. 572–574. DOI: 10.1109/LMWC.2008.2002444
  4. TSENG, C. H., WU, C. H. Compact planar Wilkinson power divider using pi-equivalent shunt-stub-based artificial transmission lines. Electronics Letters, 2010, vol. 46, no. 19, p. 1327–1328. DOI: 10.1049/el.2010.2194
  5. TANG, C. W., CHEN, M. G. Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 9, p. 1926–1934. DOI: 10.1109/TMTT.2007.904331
  6. TANG, C. W., CHEN, M. G. Synthesizing microstrip branch-line couplers with predetermined compact size and bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 9, p. 1926–1934. DOI: 10.1109/TMTT.2007.904331
  7. SEDIGHY, S. H., KHALAJ-AMIRHOSSEINI, M. Compact Wilkinson power divider using stepped impedance transmission lines. Journal of Electromagnetic Waves and Applications, 2011, vol. 25, no. 13, p. 1773–1782. DOI: 10.1163/156939311797453980
  8. DENG, P. H., GUO, J. H., KUO, W. C. New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs. Progress In Electromagnetics Research, 2012, vol. 123, p. 407–426. DOI: 10.2528/PIER11111612
  9. CHANG, C. L., TSENG, C. H. Compact Wilkinson power divider using two-section asymmetrical T-structures. Electronics Letters, 2013, vol. 49, no. 8, p. 546–547. DOI: 10.1049/el.2013.0366
  10. MESCHANOV, V. P., RASUKOVA, I. A., TUPIKIN, V. D. Stepped transformers on TEM-transmission lines. IEEE Transactions on Microwave Theory and Techniques, 1996, vol. 44, no. 6, p. 793–798. DOI: 10.1109/22.506436
  11. LIM, C., SETTALURI, R. K., TRIPATHI, V. K., et al. Compact folded-line RF power dividers. In SPIE Proceedings Series. Society of Photo-Optical Instrumentation Engineers, 2001, p. 725 to 730.
  12. SETTALURI, R. K., WEISSHAAR, A., LIM, C., et al. Design of compact multilevel folded-line RF couplers. IEEE Transactions on Microwave Theory and Techniques, 1990, vol. 47, no. 12, p. 2331 to 2339. DOI: 10.1109/22.808979
  13. SONG, K., XUE, Q. Novel ultra-wideband (UWB) multilayer slotline power divider with bandpass response. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 1, p. 13–15. DOI: 10.1109/LMWC.2009.2035951
  14. AHMED, U. T., ABBOSH, A. M. Design of wideband single-layer in-phase power divider using microstrip to slotline coupled structure. Microwave and Optical Technology Letters, 2015, vol. 57, no. 4, p. 789–791. DOI: 10.1002/mop.28959
  15. AHMED, U. T., ABBOSH, A. M. Modified Wilkinson power divider using coupled microstrip lines and shunt open-ended stubs. Electronics Letters, 2015, vol. 51, no. 11, p. 838–839. DOI: 10.1049/el.2015.0595
  16. DE LIMA COIMBRA, M. A new kind of radial stub and some applications. In IEEE 14th European Microwave Conference. Liege (Belgium), 1984. p. 516–521. DOI: 10.1109/EUMA.1984.333364
  17. DE LIMA COIMBRA, M. The generalized delta stubs. In International Microwave Symposium Digest. 1987, p. 1071–1075.
  18. ZHOU, B., WANG, H., SHENG, W. X. A modified UWB Wilkinson power divider using delta stub. Progress In Electromagnetics Research Letters, 2010, vol. 19, p. 49–55. DOI: 10.2528/PIERL1010180
  19. SHI, J., XU, K. Compact differential power divider with enhanced bandwidth and in-phase or out-of-phase output ports. Electronics Letters, 2014, vol. 50, no. 17, p. 1209–1211. DOI: 10.1049/el.2014.1300
  20. ABBOSH, A. M. Multilayer inphase power divider for UWB applications. Microwave and Optical Technology Letters, 2008, vol. 50, no. 5, p. 1402–1405. DOI: 10.1002/mop.23379
  21. KAO, J. C., TSAI, Z. M., LIN, K. Y., et al. A modified Wilkinson power divider with isolation bandwidth improvement. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 9, p. 2768–2780. DOI: 10.1109/TMTT.2012.2206402
  22. LIN, C. M., SU, H. H., CHIU, J. C., et al. Wilkinson power divider using microstrip EBG cells for the suppression of harmonics. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 10, p. 700–702. DOI:10.1109/LMWC.2007.905595
  23. AHN, H. R., KIM, B., NAM, S. Compact UHF 3 dB MCCT power dividers. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 7, p. 445–447. DOI: 10.1109/LMWC.2014.2316213
  24. KIM, I. S., LEE, C. H., LEE, D., et al. A smaller step impedance line Wilkinson power divider with an improved better stopband. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1607–1610. DOI: 10.1002/mop.29871
  25. ZHAO, X. L., GAO, L., ZHANG, X. Y., et al. Novel filtering power divider with wide stopband using discriminating coupling. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 8, p. 580–582. DOI: 10.1109/LMWC.2016.2585551
  26. OSMAN, S. A. M., EL-TAGER, A. M. E., ABDELGHANY, F. I., et al. Two-way modified Wilkinson power divider for UWB applications using two sections of unequal electrical lengths. Progress In Electromagnetics Research C. 2016, vol. 68, p. 221–233. DOI: 10.2528/PIERC16072107
  27. DARDEER, O., ABOUELNAGA, T., MOHRA, A., et al. Compact UWB power divider, analysis and design. Journal of Electromagnetic Analysis and Applications, 2017, vol. 9, no. 2, 13 p. DOI: 10.4236/jemaa.2017.92002
  28. VERMA, A. K., CHAUDHARI, N. P., KUMAR, A. Improved performance step impedance lowpass filter. AEU-International Journal of Electronics and Communications, 2013, vol. 67, no. 9, p. 761–770. DOI: 10.1016/j.aeue.2013.03.003

Keywords: Wilkinson power divider, wideband, compact size, series delta-stub, folded stepped-impedance, S-parameters

M. Kumar, Sk N. Islam, G. Sen, S. K. Parui, S. Das [references] [full-text] [DOI: 10.13164/re.2018.0207] [Download Citations]
Design of Miniaturized 10dB Wideband Branch Line Coupler Using Dual and T-Shape Transmission Lines

This paper presents a design mechanism of miniaturized wideband branch line coupler (BLC) with loose coupling of 10 dB. Dual transmission lines are used as a feed network which provides a size reduction of 32% with a fractional bandwidth (FBW) of 60% for 10±0.5 dB coupling but return loss performance is found to be poor in the operating band. For further improvement of return loss performance as well as for size reduction of the BLC, a T- shape transmission lines are used instead of series quarter wavelength transmission lines, and hence the overall size reduction of around 44% with FBW of 50.4% is achieved. The return loss and isolation performance is found to be < 15 dB in the entire operating band (2.5–4.1 GHz) with respect to design frequency 3G Hz. The proposed BLC is analyzed, fabricated and tested.

  1. LI, Y., SUN, S., YANG, F. Dual-band hybrid patch coupler with embedded spiral open stubs. In Proceedings of Asia Pacific Microwave Conference. Kaohsiung (Taiwan), 2012, p. 169–171. DOI: 10.1109/APMC.2012.6421535
  2. SUN, S., ZHU, L. Miniaturized patch hybrid couplers using asymmetrically loaded cross slots. IET Microwaves, Antennas and Propagation, 2010, vol. 4, no. 9, p. 1427–1433. DOI: 10.1049/IET-MAP.2009.0293
  3. TSAI, K. Y., YANG, H. S., CHEN, J. H., CHEN, Y. J. E. A miniaturized 3 dB branch-line hybrid coupler with harmonics suppression. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 10, p. 537–539. DOI: 10.1109/LMWC.2011.2164901
  4. GHALI, H., MOSELHY. T. A. Miniaturized fractal rat-race, branch-line, and coupled-line hybrids. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 11, p. 2513 to 2520. DOI: 10.1109/TMTT.2004.837154
  5. TANAKA, H., BANBA, N., ARI, S., NISHIKAWA, T. 2 GHz one octave-band 90 degree hybrid coupler using coupled meander line optimized by 3-D FEM. In IEEE MTT-S International Microwave Symposium Digest. San Diego (CA, USA), 1994, vol. 2, p. 903 to 906. DOI: 10.1109/MWSYM.1994.335211
  6. VOGEL, R. W. Analysis and design of lumped- and lumpeddistributed-element directional couplers for MIC and MMIC applications. IEEE Transactions on Microwave Theory and Techniques, 1992, vol. 40, no. 2, p. 253–262. DOI: 10.1109/22.120097
  7. MOHRA, A. S., ALKANHAL, M. A., ABDULLAH, E. A. Sizereduced defected ground microstrip directional coupler. Microwave and Optical Technology Letters, 2010, vol. 52, p. 1933–1937. DOI: 10.1002/mop.25410
  8. YAMAMOTO, S., HIROKAWA, J., ANDO, M. Length reduction of a short-slot directional coupler in a single-layer dielectric substrate waveguide by removing dielectric near the side walls of the coupler. In IEEE Antennas and Propagation Society Symposium. Monterey (CA, USA), 2004, vol. 3 p. 2353–2356. DOI: 10.1109/APS.2004.1331844
  9. XINHUA REN, QI ZHU, SHANJIA XU. Design of directional coupler with left-handed transmission line. In IEEE Antennas and Propagation Society International Symposium, 2006, p. 4157 to 4160.
  10. ABDALLA, M. A. Y., PHANG, K., ELEFTHERIADES, G. V. A compact highly reconfigurable CMOS MMIC directional coupler. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 2, p. 305–319. DOI: 10.1109/TMTT.2007.913360
  11. TANG, C. W., CHEN, M. G., TSAI, C. H. Miniaturization of microstrip branch-line coupler with dual transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 3, p. 185–187. DOI: 10.1109/LMWC.2008.916798
  12. KAWAI, T., TANIGUCHI, H., OHTA, I., ENOKIHARA, A. Broadband branch-line coupler with arbitrary power split ratio utilizing microstrip series stubs. In40th European Microwave Conference. Paris (France), 2010, p. 1170–1173. DOI: 10.23919/EUMC.2010.5616093
  13. WONG, Y. S., ZHENG, S. Y., CHAN, W. S. Multifold bandwidth branch line coupler with filtering characteristic using coupled port feeding. Progress In Electromagnetic Research, 2011, vol. 118, p. 17–35. DOI: 10.2528/PIER11041401
  14. ARRIOLA, W. A., LEE, J. Y., KIM, D. I. S. Wideband 3 dB branch line coupler based on λ/4- open circuited coupled lines. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 9, p. 486–488. DOI: 10.1109/LMWC.2011.2138687
  15. LEE, L., LEE, Y. Wideband branch-line couplers with singlesection quarter-wave transformers for arbitrary coupling levels. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 1, p. 19–21. DOI: 10.1109/LMWC.2011.2176723

Keywords: Branch line coupler, dual line, miniaturization, T- shape transmission line (TL), wideband

Y. Yuan, W. Wu, W. Yuan, S. Wu, N. Yuan [references] [full-text] [DOI: 10.13164/re.2018.0214] [Download Citations]
A Method Based on the Theory of Small Reflections to Design Arbitrary Passband Microstrip Filters

A method to design a kind of microstrip filters consisting of only opened stubs and shorted stubs is proposed in this paper. This method is based on the Theory of Small Reflections, and the equations to calculate dimensions of this type of filters is exhibited. Two filters developed by our method are simulated and fabricated. The first filter has a passband on 5~8GHz. The second one is a dual-band filter and can work on both 2.4GHz and 5.8GHz. By using our method, the designed filters only contain opened stubs and shorted stubs, therefore, it is easy to design and fabricate this type of filters. The comparison between calculated and measured reflection coefficient curves shows a satisfactory fitting degree, this manifestation verifies that the method in our paper has a good application in filter design. The position of transmission zeros about the second filter are investigated. All the results show that our method can be a good guidance in microstrip filter design.

  1. ANGUERA, J., ANDUJAR, A., HUYNH, M. C., ORLENIUS, C., et al. Advances in antenna technology for wireless handheld devices. International Journal on Antennas and Propagation, 2013, 25 p. DOI: 10.1155/2013/838364
  2. EL-HALABI, H., ISSA, H., PISTONO, E., KADDOUR, D., et al. Compact low-pass stepped impedance filters with enhanced out of band response. Microwave and Optical Technology Letters, 2017, vol. 59, no. 8, p. 1791–1800. DOI: 10.1002/mop.30635
  3. GAN, D. C., HE, S. B., DAI, Z. J., et al. A quad-band bandpass filter using split-ring based on T-shaped stub-loaded steppedimpedance resonators. Microwave and Optical Technology Letters, 2017, vol. 59, no, 8, p. 2098–2104. DOI: 10.1002/mop.30684
  4. LI, R., ZHU, L. Compact UWB bandpass filter using stub-loaded multiple-mode resonator. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 1, p. 40–42. DOI: 10.1109/LMWC.2006.88725
  5. KUO, J. T., SHIH, E. Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth, IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 5, p. 1554–1559. DOI: 10.1109/TMTT.2003.810138
  6. DING, L., WANG, X. Z., ANG, N. S. S., et al. Ultrathin film broadband terahertz antireflection coating based on impedance matching method. IEEE Journal of Selected Topics in Quantum Electronics. 2017, vol. 23, no. 4, 8 p. DOI: 10.1109/JSTQE.2016.2629666
  7. ZHANG, Y. P., SUN, M. Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 10, p. 3779–3785. DOI: 10.1109/TMTT.2006.882895
  8. TORRUNGRUENG, D., THIMAPORN, C., LAMULTEE, S., et al. Theory of small reflections for conjugately characteristicimpedance transmission lines. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 10, p. 659–661. DOI: 10.1109/LMWC.208.2003450
  9. TORUNGRUENG, D., THIMAPORN, C. A generalized ZY Smith chart for solving nonreciprocal uniform transmission-line problems. Microwave and Optical Technology Letters, 2004, vol. 40, no. 1, p. 57–61. DOI: 10.1002/mop.11284
  10. HUANG, Y., BAO, J. F., TANG, G. B., et al. Design consideration of SAW/BAW band reject filters embedded in impedance converter. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, vol. 64, no. 9, p. 1368–1374. DOI: 10.1109/TUFFC.2017.2713395
  11. ORAIZI, H., MORADIAN, M., HIRASAWA, K. Design and optimization of microstrip parallel-coupled-line bandpass filters incorporating impedance matching. IEICE Transactions on Communications, 2006, vol. E89B, no. 11, p. 2982–2989. DOI: 10.1093/ietcom/e89–b.11.2982
  12. WU, Y. L., LIU, Y. N., LI, S. L. A dual-frequency transformer for complex impedances with two unequal sections. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 2, p. 77–79. DOI: 10.1109/LMWC.2008.2011315
  13. CHOW, Y. L., WAN, K. L. A transformer of one-third wavelength in two sections – for a frequency and its first harmonic. IEEE Microwave and Wireless Components Letters, 2002, vol. 12, no. 1, p. 22–23. DOI: 10.1109/7260.975723
  14. LOPEZ, A. R. Double-tuned impedance matching. IEEE Antennas and Propagation Magazine, 2012, vol. 54, no. 2, p. 109–116. DOI: 10.1109/map.2012.6230722
  15. KIROV, G. S., ABDEL-RAHMAN, A., NADIM, G., et al. Impedance matching improvement for a class of wideband antennas. IEEE Antennas and Propagation Magazine, 2004, vol. 46, no. 6, p. 98–101. DOI: 10.1109/MAP.2004.1396743
  16. PARK, M. J., LEE, B. Dual-band design of single-stub impedance matching networks with application to dual-band stubbed Tjunctions. Microwave and Optical Technology Letters, 2010, vol. 52, no. 6, p. 1359–1362. DOI: 10.1002/mop.25201
  17. DUTTA ROY, S. C. Characteristics of single- and multiplefrequency impedance matching networks. IEEE Transactions on Circuits and Systems II-Express Briefs, 2015, vol. 62, no. 3, p. 222–225. DOI: 10.1109/TCSII.2014.2368973
  18. DUTTA ROY, S. C. Network design for multiple frequency impedance matching by the frequency transformation technique. IETE Journal of Research, 2013, vol. 59, no. 6, p. 698–703. DOI: 10.4103/0377-2063.126966
  19. DEMIR, S. Design of wideband impedance transformers. IEEE Antennas and Propagation Magazine, 2003, vol.45, no. 5, p. 71 to 72. DOI: 10.1109/MAP.2003.6176015
  20. ORFANIDIS, S. J. A two-section dual-band Chebyshev impedance transformer. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 9, p. 382–384. DOI: 10.1109/LMWC.2003.817135
  21. MARTINS, G. C., SERDIJN, W. A. Multistage compleximpedance matching network analysis and optimization. IEEE Transactions on Circuits and Systems II-Express Briefs, 2016, vol. 63, no. 9, p. 833–837. DOI: 10.1109/TCSII.2016.2534738
  22. OLOKEDE, S. S., PAUL, B. S. A novel microstrip feed based on the theory of small reflection. In IEEE Radio & Antenna Days of the Indian Ocean. St. Gilles-les-Bains (Reunion), 2016, p. 1–2. DOI: 10.1109/RADIO.2016.7772018
  23. PRODROMAKIS, T., PAPAVASSILIOU, C., MICHELAKIS, K. Microstrip stepped impedance lowpass filters based on the Maxwell-Wagner polarization mechanism. In IEEE International Symposium on Circuits & Systems. Seattle (WA, USA), 2008, p. 616–619. DOI: 10.1109/ISCAS.2008.4541493
  24. CESAR-DE-ALENCAR, D., MENEZES, R. A. X. Direct synthesis of microwave filters using modified small reflections theory. In 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. Rio-de-Janeiro (Brazil), 1999, vol. 1, p. 183–186. DOI: 10.1109/IMOC.1999.867085
  25. DAI, G. L., ZHANG, X. Y., CHAN, C. H., et al. An investigation of open- and short-ended resonators and their applications to bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2003–2210. DOI: 10.1109/TMTT.2009.2027173
  26. ORAIZI, H., ESFAHLAN, M. S., FORATI, E. Design of steppedimpedance low pass filters with impedance matching by the particle swarm optimization and conjugate gradient method. In European Conference on Circuit Theory and Design. Antalya (Turkey), 2009, p. 639–642. DOI: 10.1109/ECCTD.2009.5275068
  27. SONG, C. T. P., HALL, P. S., GHAFOURI-SHIRAZ, H., et al. Sierpinski monopole antenna with controlled band spacing and input impedance. Electronic Letters, 1999, vol. 36, no. 13, p. 1036–1037. DOI: 10.1049/el:19990748
  28. POZAR, D. M. Microwave Engineering. 3rd ed. New York (USA): John Wiley and Sons Ltd., 2005. ISBN: 8126510498
  29. RUSSELL, S. J., NORVIG, P. Artificial Intelligence: a Modern Approach. 3rd ed. Prentice Hall, 2010. ISBN: 0136042597
  30. KUO, J. T., YEH, T. H., YEH, C. C. Design of microstrip bandpass filters with a dual-passband response. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1331–1337. DOI: 10.1109/TMTT.2005.845765

Keywords: Theory of Small Reflections, reflection coefficient, broadband filter, dual-band filter

P. Montezuma, A. Ferreira, R. Dinis, M. Beko [references] [full-text] [DOI: 10.13164/re.2018.0221] [Download Citations]
Power Amplification Efficient Transmitter Structures for Massive MIMO with SC-FDE Schemes: A Promising Combination for 5G Systems?

It is well-known that massive multiple-input multiple-output (MIMO) systems have high potential for future wireless broadband systems. Requirements such as high spectral and power efficiency are also crucial in 5G. Based on a multi-amplifier structure it is possible to define a double layered structure where each amplification branch is connected to an antenna array to achieve both constellation and power directivies, assuring at same time similar performances to systems using transmitters with 2-dimensional antenna arrays. Thus, a different path can be followed to improve energy efficiency of power amplification where the usage of parallel amplification branches is combined with big arrays of antennas and multi-stream communication systems. These systems can be combined with single-carrier with frequency domain equalization (SC-FDE) schemes to improve the power efficiency in uplink due to the low envelope fluctuations.

  1. RUSEK, F., PERSSON, D., LAU, B. K., et al. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 2013, vol. 30, no. 1, p. 40–60. DOI:10.1109/MSP.2011.2178495
  2. BOCCARDI, F., HEATH JR., R. W., LOZANO, A., et al. Five disruptive technology directions for 5G. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 74–80. DOI: 10.1109/MCOM.2014.6736746
  3. NGO, H. Q., LARSSON, E. G., MARZETTA, T. L. Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 2013, vol. 61, no. 4, p. 1436–1449. DOI: 10.1109/TCOMM.2013.020413.110848
  4. GERSHAM, A. B., SIDIROPOULOS, N. D., SHAHBAZPANAHI, S. Convex optimization-based beamforming. IEEE Signal Processing Magazine, 2010, vol. 27, no. May, p. 62–75. DOI: 10.1109/MSP.2010.936015
  5. LI, W., CHANG, T., LIN, C., et al. Coordinated beamforming for multiuser MISO interference channel under rate outage constraints. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 5, p. 1087–1103. DOI: 10.1109/TSP.2012.2231080
  6. WANG, R., CAI, J., YU, X., et al. Disruptive technologies and potential cellular architecture for 5G. Open Electrical Electronic Engineering Journal, 2015, no. 9, p. 512–517. DOI: 10.2174/1874129001509010512
  7. ASTUCIA, V., MONTEZUMA, P., DINIS, R., et al. On the use of multiple grossly nonlinear amplifiers for higly efficient linear amplification of multilevel constellations. In Proceedings of the IEEE Vehicular Technology Conference (VTC) 2013-Fall. 2013, p. 1–5. DOI: 10.1109/VTCFall.2013.6692320
  8. MONTEZUMA, P., GUSMÃO, A. Design of TC-OQAM schemes using a generalised nonlinear OQPSK-type format. IEE Electronics Letters, 1999, vol. 35, no. 11, p. 860–861. DOI: 10.1049/el:19990616
  9. MONTEZUMA, P., DINIS, R. Implementing physical layer security using transmitters with constellation shaping. In Proceedings of the IEEE International Conference on Computer Communications and Networks (ICCCN) 2015. 2015, p. 1–4. DOI: 10.1109/ICCCN.2015.7288418
  10. FERREIRA, A. Massive MIMO Transmission Techniques. (Master Thesis). FCT, UNL, Lisbon, Sep. 2016.
  11. DINIS, R., MONTEZUMA, P., SOUTO, N., et al. Iterative frequency-domain equalization for general constellations. In Proceedings of the IEEE Sarnoff Symposium. 2010, p. 1–5. DOI: 10.1109/SARNOF.2010.5469792
  12. AMOROSO, F., KIVETT, J. Simplified MSK signalling technique. IEEE Transactions on Communications, 1977, vol. 25, no. 4, p. 433–441. DOI: 10.1109/TCOM.1977.1093835
  13. BEKO, M., DINIS, R. Designing good multi-dimensional constellation. IEEE Wireless Communications Letters, 2012, vol. 1, no. 3, p. 221–224. DOI: 10.1109/WCL.2012.032312.120203
  14. BARICZ, A. Generalized Bessel Functions of the First Kind. Springer, 2010. DOI: 10.1007/978-3-642-12230-9
  15. CAIRE, G., TARICCO, G., BIGLIERI, E. Bit-interleaved coded modulation. IEEE Transactions on Information Theory, 1998, vol. 44, p. 927–947. DOI: 10.1109/18.669123
  16. XU, Z., YUAN, T., GONG, Y., et al. Achieving secure communication through random phase rotation technique. In IEEE Wireless Communications and Mobile Computing Conference (IWCMC). 2017, p. 2073–2078. DOI: 10.1109/IWCMC.2017.7986603
  17. BENVENUTO, N., TOMASIN, S. Block iterative DFE for single carrier modulation. IEE Electronics Letters, 2002, vol. 39, no. 19, p. 1144–1145. DOI: 10.1049/el:20020767
  18. DINIS, R., KALBASI, R., FALCONER, D., et al. Iterative layered space-time receivers for single-carrier transmission over severe timedispersive channels. IEEE Commmunications Letters, 2004, vol. 8, no. 9, p. 579–581. DOI: 10.1109/LCOMM.2004.835339
  19. SILVA, P., DINIS, R. Frequency-Domain Multiuser Detection for CDMA Systems. River Publishers, 2012. ISBN: 9788792329707
  20. SILVA, F., DINIS, R., MONTEZUMA, P. Estimation of the feedback reliability for IB-DFE receivers. International Scholarly Research Notices Communications and Networking, 2011, vol. 2011, p. 1–7. DOI: 10.5402/2011/980830
  21. MASSEY, J. L. An introduction to contemporary cryptology. Proceedings of the IEEE, 1988, vol. 76, no. 5, p. 533–549. DOI: 10.1109/5.4440
  22. BARENGHI, A., BREVEGLIERI, L., KOREN, I., et al. Fault injection attacks on cryptographic devices: Theory, practice, and countermeasures. Proceedings of the IEEE, 2012, vol. 100, no. 11, p. 3056–3076. DOI: 10.1109/JPROC.2012.2188769
  23. HARRISON, W. K., ALMEIDA, J., BLOCH, M. R., et al. Coding for secrecy: An overview of error-control coding techniques for physical-layer security. IEEE Signal Processing Magazine, 2013, vol. 30, no. 5, p. 41–50. DOI: 10.1109/MSP.2013.2265141
  24. COLERI, S., ERGEN, M., PURI, A., et al. Channel estimation techniques based on pilot arrangement in OFDM systems. IEEE Transactions on Broadcast, 2002, vol. 48, no. 3, p. 223–229. DOI: 10.1109/TBC.2002.804034
  25. HSIEH, M. H., WEI, C. Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels. IEEE Transactions on Consumer Electronics, 1998, vol. 44, no. 1, p. 217–225. DOI: 10.1109/30.663750
  26. MANGQING, G., GANG, X., JINCHUN, G., et al. Enhanced EVD based channel estimation and pilot decontamination for massive MIMO networks. Journal of China Universities Posts and Telecommunications, 2015, vol. 22, no. 6, p. 72–77. DOI: 10.1016/S1005-8885(15)60697-5
  27. MONTEZUMA, P., DINIS, R., RIBEIRO, S., et al. Two methods for estimation of amplifier imbalances in multi-amplifier transmission structures. Radioengineering, 2017, vol. 26, no. 1, p. 285–290. DOI: 10.13164/re.2017.0285
  28. FERREIRA, A., GASPAR, G., MONTEZUMA, P., et al. Combining info and spatial directivities in multiple antenna transmission systems. In IEEE Young Engineers Forum (YEF-ECE) 2017. 2017, p. 1–5. DOI: 10.1109/YEF-ECE.2017.7935631

Keywords: massive MIMO, multi-amplifier, power efficiency, double layered structure

J. Tan, C. G. Shi, J. J. Zhou [references] [full-text] [DOI: 10.13164/re.2018.0234] [Download Citations]
Novel Power Control Scheme for Target Tracking in Radar Network with Passive Cooperation

Distributed radar network systems (DRNS) have been shown to provide significant performance improvement. With the recent development, radar network has become an attractive platform for target tracking. In practice, the netted radars in DRNS are supposed to maximize their transmitting power to achieve better target tracking performance, which may be in contradiction with low probability of intercept (LPI). This paper investigates the problem of adaptive resource scheduling based on time difference of arrival (TDOA) cooperation for target tracking by DRNS consisting of a dedicated radar netting station and multiple netted radars. Firstly, the standard interacting multiple model (IMM) algorithm incorporating extended Kalman filter (EKF) is improved by modifying the Markov transition probability with current measurements. Then, a novel resource scheduling strategy based on TDOA cooperation is presented, in which the LPI perfor¬mance for target tracking in DRNS is improved by optimiz¬ing the radar revisit interval and the transmitted power for a predefined target tracking accuracy. The comparison of the predictive error covariance matrix and the expected error covariance matrix is utilized to control the radar netting station under intermittent-working state with TDOA cooperation. Due to the lack of analytical closed-form expression for receiver operating characteristics (ROC), we utilize several popular information-theoretic criteria, namely, Bhattacharyya distance, Kullback-Leibler (KL) divergence, J-divergence, and mutual information (MI) as the metrics for target detection performance in target tracking process. The resulting optimization problems which are associated with different information-theoretic criteria are unified under a common framework. The non¬linear programming (NP) based genetic algorithm (GA) or else known as NPGA is employed to encounter with the highly nonconvex and nonlinear optimization problems in the framework. Numerical results demonstrate that the proposed algorithm not only has excellent target tracking accuracy, but also has better LPI performance comparing to other methods.

  1. SHI, C. G., SALOUS, S., WANG, F., ZHOU, J. J. Cramer-Rao lower bound evaluation for linear frequency modulation based active radar networks operating in a Rice fading environment. Sensors, 2016, vol. 16, no. 12, 2072. DOI: 10.3390/s16122072
  2. PACE, P. E. Detecting and Classifying Low Probability of Intercept Radar. Boston: Artech House, 2009, p. 342–352.
  3. HAIMOVICH, A. M., BLUM, R. S., CIMINI, L. J. JR. MIMO radar with widely separated antennas. IEEE Signal Processing Magazine, 2008, vol. 25, no. 1, p. 116–129. DOI: 10.1109/MSP.2008.4408448
  4. FISHER, E., HAIMOVICH, A., BLUM, R. S., et al. Spatial diversity in radars–models and detection performance. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 823–836. DOI: 10.1109/TSP.2005.862813
  5. NAGHSH, M. M., MODARRES-HASHEMI, M., SHAHBAZ PANAHI, S., SOLTANALIAN, M., STOICA, P. Unified optimization framework for multi-static radar code design using informationtheoretic criteria. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 21, p. 5401–5416. DOI: 10.1109/TSP.2013.2278154
  6. ALMSLMANY, A. E., CAO, Q. S., YANG, C. Y. High speed dim air target detection using airborne radar under clutter and jamming effects. Radioengineering, 2015, vol. 24, no. 2, p. 632–642. DOI: 10.13164/re.2015.0632
  7. LEI, P., HUANG, X. Robust detection of moving human target in foliage-penetration environment based on Hough transform. Radioengineering, 2014, vol. 23, no. 1, p. 3–10.
  8. NIU, R. X., BLUM, R. S., VARSHNEY, P. K., DROZD, A. L. Target localization and tracking in noncoherent multiple-input multiple-output radar systems. IEEE Transactions on Aerospace and Electronic System, 2012, vol. 48, no. 2, p. 1466–1487. DOI: 10.1109/TAES.2012.6178073
  9. MEHMOOD, R., HUDA, N. U., SONG, J., RIAZ, M. M., IQBAL, N. Improved mean shift target localization using true background weighted histogram and geometric centroid adjustment. Radioengineering, 2016, vol. 25, no. 3, p. 612–622. DOI: 10.13164/re.2016.0612
  10. GODRICH, H., TAJER, A., POOR, H. V. Distributed target tracking in multiple widely separated radar architectures. In 2012 IEEE 7th Sensor Array and Multichannel Signal Processing Workshop (SAM). Hoboken (NJ, USA), 2012, p. 153–156. DOI: 10.1109/SAM.2012.6250453
  11. CHAVALI, P., NEHORAI, A. Scheduling and power allocation in a cognitive radar network for multiple–target tracking. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 2, p. 715 to 728. DOI: 10.1109/TSP.2011.2174989
  12. YAN, J. K., LIU, H. W., JIU, B., BAO, Z. Power allocation algorithm for target tracking in unmodulated continuous wave radar network. IEEE Sensors Journal, 2015, vol. 15, no. 2, p. 1098–1108. DOI: 10.1109/JSEN.2014.2360039
  13. ZHANG, J., JIN, T., HE, Y., ZHOU, Z. M. A centralized processing framework for foliage-penetration human tracking in multistatic radar. Radioengineering, 2016, vol. 25, no. 1, p. 98–105. DOI: 10.13164/re.2016.0098
  14. CHEN, Y. F., NIJSURE, Y., YUEN, C., CHEW, Y. H., DING, Z. G. Adaptive distributed MIMO radar waveform optimization based on mutual information. IEEE Transactions on Aerospace and Electronic System, 2013, vol. 49, no. 2, p. 1374–1385. DOI: 10.1109/TAES.2013.6494422
  15. NGUYEN, N. H., DOGANCAY, K., DAVIS, L. M. Adaptive waveform selection for multistatic target tracking. IEEE Transactions on Aerospace and Electronic System, 2015, vol. 51, no. 1, p. 688–700. DOI: 10.1109/TAES.2014.130723
  16. KULPA, J. S. Channel influence mitigation in pseudo-noise waveform design for radar applications. Radioengineering, 2014, vol. 23, no. 1, p. 128–133.
  17. GODRICH, H., PETROPULU, A. P., POOR. H. V. Sensor selection in distributed multiple-radar architectures for localization: A knapsack problem formulation. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 1, p. 247–259. DOI: 10.1109/TSP.2011.2170170
  18. RADMARD, M., CHITGARHA, M. M., MAJD, M. N., NAYEBI, M. M. Antenna placement and power allocation optimization in MIMO detection. IEEE Transactions on Aerospace and Electronic System, 2014, vol. 50, no. 2, p. 1468–1478. DOI: 10.1109/TAES.2014.120776
  19. MA, B. T., CHEN, H. W., SUN, B., XIAO, H. T. A joint scheme of antenna selection and power allocation for localization in MIMO radar sensor networks. IEEE Communications Letters, 2014, vol. 18, no. 12, p. 2225–2228. DOI: 10.1109/LCOMM.2014.2365206
  20. SCHLEHER, D. C. LPI radar: fact or fiction. IEEE Aerospace and Electronic Systems Magazine, 2006, vol. 21, no. 5, p. 3–6. DOI: 10.1109/MAES.2006.1635166
  21. LYNCH, D. JR. Introduction to RF stealth. Sci Tech Publishing, 2004, p. 20–78. DOI: 10.1049/SBRA120E
  22. STOVE, A. G., HUME, A. L., BAKER, C. J. Low probability of intercept radar strategies. IEE Proceedings of Radar, Sonar and Navigation, 2004, vol. 151, no. 5, p. 249–260. DOI: 10.1049/iprsn:20041056
  23. LAWRENCE, D. E. Low probability of intercept antenna array beamforming. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 9, p. 2858–2865. DOI: 10.1109/TAP.2010.2052573
  24. ZHANG, Z. K., ZHOU, J. J. A novel LPI method of radar’s energy control. Progress in Electromagnetics Research C, 2012, vol. 33, p. 81–94. DOI:10.2528/PIERC12080303
  25. ZHANG, Z. K., ZHU, J. H., TIAN, Y. B., LI, H. L. Novel sensor selection strategy for LPI based on an improved IMMPF tracking method. Journal of Systems Engineering and Electronics, 2014, vol. 25, no. 6, p. 1004–1010. DOI: 10.1109/JSEE.2014.00115
  26. CHEN, J., WANG, F., ZHOU, J. J., SHI, C. G. A novel radar radiation control strategy based on passive tracking in multiple aircraft platforms. In 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP). Xian (China), 2014, p. 777–780. DOI: 10.1109/ChinaSIP.2014.6889350
  27. WU, W., WANG, G. H., LIU, Y., LI, S. Z. Airborne radar/IRST/ESM synergistic tracking and management. Systems Engineering and Electronics, 2011, vol. 33, no. 7, p. 1517–1522. DOI: 10.3969 / j.issn.1001-506X.2011.07.16 (in Chinese)
  28. SHI, C. G., WANG, F., SELLATHURAI, M., ZHOU, J. J. LPI optimization framework for target tracking in radar network architectures using information-theoretic criteria. International Journal of Antennas and Propagation, 2014, 10 p. DOI: 10.1155/2014/654561
  29. SHI, C. G., ZHOU, J. J., WANG, F. Low probability of intercept optimization for radar network based on mutual information. In 2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP), 2014, p. 683-687. DOI: 10.1109/ChinaSIP.2014.6889331
  30. SHI, C. G., WANG, F., ZHOU, J. J., ZHANG, H. Security information factor based low probability of identification in distributed multiple-radar system. In IEEE International Conference on Acoustics, Speech and Signal Processing. Brisbane (Australia), 2015, p. 3716–3720. DOI: 10.1109/ICASSP.2015.7178665
  31. NARYKOV, A. S., KRASNOV, O. A., YAROVOY, A. Algorithm for resource management of multiple phased array radars for target tracking. In The 16th International Conference on Information Fusion. Istanbul (Turkey), 2013, p. 1258–1264.
  32. NARYKOV, A. S., YAROVOY, A. Sensor selection algorithm for optimal management of the tracking capability in multisensor radar system. In Proceedings of the 43rd European Microwave Conference. Nuremberg (Germany), 2013, p. 1811–1814. DOI: 10.23919/EuMC.2013.6687031
  33. ZHANG, Z. N., SHAN, G. L. Non-myopic sensor scheduling to track multiple reactive targets. IET Signal Processing, 2015, vol. 9, no. 1, p. 37–47. DOI: 10.1049/iet-spr.2013.0187
  34. FAWCETT, T. An introduction to ROC analysis. Pattern Recognition Letters, 2006, vol. 27, no. 8, p. 861–874. DOI: 10.1016/j.patrec.2005.10.010
  35. HAND, D. J., TILL, R. J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning, 2001, vol. 45, no. 2, p. 171–186. DOI: 10.1023/A:1010920819831
  36. WU, P. L., GUO, Q., ZHANG, X. Y., BO, Y. M. Maneuvering target tracking using passive TDOA measurements. In Proceedings of the 33rd Chinese Control Conference. Nanjing (China), 2014, p. 758–762. DOI: 10.1109/ChiCC.2014.6896722
  37. SHI, C. G., ZHOU, J. J., WANG, F. LPI based resource management for target tracking in distributed radar network. In IEEE Radar Conference (RadarConf). Philadelphia (PA, USA), 2016, p. 822–826. DOI: 10.1109/RADAR.2016.7485222
  38. TOBES, Z., RAIDA, Z. Use of the analog neural networks in the adaptive antenna control systems. Radioengineering, 2002, vol. 11, no. 3, p. 14–21.
  39. TOBES, Z., RAIDA, Z. Improvements of analog neural networks based on Kalman filter analysis. Radioengineering, 2002, vol. 11, no. 1, p. 6–13.
  40. BISWAS, S. K., QIAO, L., DEMPSTER, A. G. A novel a priori state computation strategy for the unscented Kalman filter to improve computational efficiency. IEEE Transactions on Automatic Control, 2017, vol. 62, no. 4, p. 1852–1864. DOI: 10.1109/TAC.2016.2599291
  41. GUO, Z., DONG, C. Y., CAI, Y. L., YU, Z. H. Time-varying transition probability based IMM-SRCKF algorithm for maneuvering target tracking. Journal of Systems Engineering and Electronics, 2015, vol. 37, no. 1, p. 24–30. DOI: 10.3969/j.issn.1001-506X.2015.01.05 (In Chinese)
  42. CHITGARHA, M. M., RADMARD, M., MAJD, M. N., NAYEBI, M. M. Improving MIMO radar’s performance through receivers’ positioning. IET Signal Processing, 2017, vol. 11, no. 5, p. 622 to 630. DOI: 10.1049/iet-spr.2016.0556
  43. WANG, X., HAN, C. Z. A VS-MIMO algorithm for maneuvering target tracking. In The 2nd International Conference on Industrial Mechatronics and Automation. Wuhan (China), 2010, vol. 1, p. 334–337.
  44. SONG, X. F., WILLETT, P., ZHOU, S. L. Optimal power allocation for MIMO radars with heterogeneous propagation losses. In IEEE International Conference on Acoustics, Speech and Signal Processing. Kyoto (Japan), 2012, p. 2465–2468. DOI: 10.1109/ICASSP.2012.6288415
  45. SONG, X. F., WILLETT, P., ZHOU, S. L., GLAZ, J. MIMO radar detection with heterogeneous propagation losses. In IEEE Statistical Signal Processing Workshop. Ann Arbor (MI, USA), 2012, p. 776–779. DOI: 10.1109/SSP.2012.6319819
  46. RAPTIS, V., VOTIS, C., TATSIS, G., CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., KOSTARAKIS, P. Active tuning antennas for wireless communication. In AIP Conference Proceedings, 2010, vol. 1203, no. 1, p. 1058–1062. DOI: 10.1063/1.3322310
  47. RAPTIS, V., TATSIS, G., VOTIS, C., CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., KOSTARAKIS, P. Tuning techniques for planar antennas in wireless communication. In AIP Conference Proceedings, 2010, vol. 1203, no. 1, p. 1053–1057. DOI: 10.1063/1.3322309
  48. RAPTIS, V., TATSIS, G., CHRONOPOULOS, S. K., MALLIOS, S., KOSTARAKIS, P. Development and experimental measurements of a tunable antenna. Communications and Network, 2013, vol. 5, no. 3, p. 220–224. DOI: 10.4236/cn.2013.53026
  49. BANERJEE, S., SHARIF, H. Communication subsystems for emerging wireless technologies. Radioengineering, 2012, vol. 21, no. 4, p. 1036–1049.
  50. TAFIADIS, D., CHRONOPOULOS, S.K., KOSMA, E. I., et al. Using receiver operating characteristics curve to define the cutoff points of voice handicap index applied to young adult male smokers. Journal of Voice, 2017, DOI: 10.1016/j.jvoice.2017.06.007

Keywords: Low probability of intercept (LPI), resource scheduling, distributed radar network systems (DRNS), target tracking, time difference of arrival (TDOA)

D. Du, X. Zeng, X. Jian, F. Yu, L. Miao [references] [full-text] [DOI: 10.13164/re.2018.0249] [Download Citations]
Analysis of Three-Dimensional Spatial Selectivity for Rician Channel

The spatial selectivity of multipath fading determines the spatial diversity strategy to increase the performance of the communication system. This paper analyses the three-dimensional (3-D) spatial selectivity of Rician channel to strive to alleviate the current lack of analytical studies. A~3-D multipath angular power density (APD) model for Rician channel is proposed. Analytical expressions of the 3-D multipath shape factors are given based on the APD using the multipath shape factors theory. Finally, some important spatial fading statistics like the fading rate variance, level crossing rate (LCR), average fade duration (AFD), spatial correlation and coherence distance are derived, and the analysis on the impact of 3-D spatial angular directions on these spatial fading statistics is presented through simulations. The results would provide useful insight on quantifying and simplifying the analysis and design of the 3-D multiple input multiple output (MIMO) beamforming technology and smart antenna arrays.

  1. DURGIN, G. D., RAPPAPORT, T. S. Theory of multipath shape factors for small-scale fading wireless channels. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 5, p. 682–693. DOI: 10.1109/8.855486
  2. LU, J., HAN, Y. Application of multipath shape factors in Nakagamim fading channel. In Proceedings of the IEEE International Conference on Wireless Communications and Signal Processing. Nanjing (China), 2009, p. 1–4. DOI: 10.1109/WCSP.2009.5371524
  3. SHANG, H., HAN, Y., LU, J. Statistical analysis of Rician and Nakagami-m fading channel using multipath Shape factors. In Proceedings of the IEEE International Conference on Computational Intelligence and Natural Computing Proceedings (CINC). Wuhan (China), 2010, p. 398–401. DOI: 10.1109/CINC.2010.5643809
  4. MORAITIS, N., CONSTANTINOU, P., VOUYIOUKAS, D. Power angle profile measurements and capacity evaluation of a SIMO system at 60 GHz. In Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. Instanbul (Turkey), 2010, p. 1027–1031. DOI: 10.1109/PIMRC.2010.5672088
  5. MORAITIS, N., VOUYIOUKAS, D., CONSTANTINOU, P. Indoor angular profile measurements and channel characterization at the millimeter-wave band. In Proceedings of the IEEE 5th European Conference on Antennas and Propagation (EUCAP). Rome (Italy), 2011, p. 155-159. ISBN: 978-88-8202-074-3
  6. LONI, Z. M., ULLAH, R., KHAN, N. M. Analysis of fading statistics based on angle of arrival measurements. In Proceedings of the IEEE 2011 International Workshop on Antenna Technology (iWAT). Hong Kong (China), 2011, p. 314-319. DOI: 10.1109/IWAT.2011.5752364
  7. LONI, Z. M., KHAN, N. M. Analysis of fading statistics in cellular mobile communication systems. The Journal of Supercomputing, 2013, vol. 64, no. 2, p. 295–309. DOI: 10.1007/s11227-012-0799-1
  8. RODRIGUEZ, I., ALMEIDA, E. P. L., ABREU, R., et al. Analysis and comparison of 24 GHz cmWave radio propagation in urban and suburban scenarios. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Doha (Qatar), 2016, p. 1–7. DOI: 10.1109/WCNC.2016.7564893
  9. FUHL, J., ROSSI, J. P., BONEK, E. High-resolution 3-D direction of arrival determination for urban mobile radio. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 4, p. 672–682. DOI: 10.1109/8.564093
  10. FLEURY, B. H. First- and second-order characterization of direction dispersion and space selectivity in the radio channel. IEEE Transactions on Information Theory, 2000, vol. 46, no. 6, p. 2027–2044. DOI: 10.1109/18.868476
  11. PAL, A., BEACH, M., NIX, A. A novel quantification of 3D directional spread from small-scale fading analysis. In Proceedings of the IEEE International Conference on Communications. Istanbul (Turkey), 2006, p. 1699–1704. DOI: 10.1109/ICC.2006.254964
  12. VACHLEV, D. G., BRADY, D. Three-dimensional multipath shape factors for spatial modeling of wireless channels. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 11, p. 5542–5551. DOI: 10.1109/TWC.2009.080988
  13. GULFAM, S. M., NAWAZ, S. J., AHMED, A., et al. Analysis on multipath shape factors of air-to-ground radio communication channels. In Proceedings of the IEEE Wireless Telecommunications Symposium (WTS). London (UK), 2016, p. 1–5. DOI: 10.1109/WTS.2016.7482050
  14. ZHOU, T., TAO, C., LIU, L., et al. Ricean k-factor measurements and analysis for wideband high-speed railway channels at 2.35 GHz. Radioengineering, 2014, vol. 23, no. 2, p. 578–585. DOI: 10.13164/re
  15. RAIDA, Z., KOLKA, Z., MARSALEK, R., et al. Communication subsystems for emerging wireless technologies. Radioengineering, 2012, vol. 21, no. 4, p. 1036–1049. DOI: 10.13164/re
  16. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Performance of turbo coded OFDM under the presence of various noise types. Wireless Personal Communications, 2016, vol. 87, no. 4, p. 1319–1336. DOI: 10.1007/s11277-015-3055-1
  17. CHRONOPOULOS, S. K., TATSIS, G., KOSTARKIS, P. Turbo coded OFDM with large number of subcarriers. Journal of Signal and Information Processing, 2012, vol. 3, no. 2, p. 161–168. DOI: 10.4236/jsip.2012.32021
  18. WANG, W., LIANG, D., WANG, Z., et al. Design and implementation of a FPGA and DSP based MIMO radar imaging system. Radioengineering, 2015, vol. 24, no. 2, p. 518–526. DOI: 10.13164/re.2015.0518
  19. IVANIS, P., DRAJIC, D., BRKIC, S. Cross-layer combining of adaptive modulation and truncated ARQ in multichannel beamforming MIMO systems. Radioengineering, 2015, vol. 24, no. 4, p. 1050–1059. DOI: 10.13164/re.2015.1050
  20. CLARKE, R. H., KHOO, W. L. 3-D mobile radio channel statistics. IEEE Transactions on Vehicular Technology, 1997, vol. 46, no. 3, p. 798–799. DOI: 10.1109/25.618205
  21. CHEN, Y., MUCCHI, L., WANG, R., et al. Modeling network interference in the angular domain: Interference azimuth spectrum. IEEE Transactions on Communications, 2014, vol. 62, no. 6, p. 2107–2120. DOI: 10.1109/TCOMM.2014.2314651
  22. NAKAGAMI, M. The m-distribution-A general formula of intensity distribution of rapid fading. Statistical Method of Radio Propagation, 1960, p. 3–36. DOI: 10.1016/B978-0-08-009306-2.50005-4
  23. PAPOULIS, A., PILLAI, S. U. Probability, Random Variables and Stochastic Processes. 1st ed., New York (USA): MiGraw-Hill, 2002. ISBN: 0071122567

Keywords: three-dimensional spatial selectivity; Rician channel;multipath shape factors; angular power density

Z. Zhou, Z. Tang, J. Wei, X. Xia [references] [full-text] [DOI: 10.13164/re.2018.0256] [Download Citations]
General Time-Division AltBOC Modulation Technique for GNSS Signals

In this paper, a general time-division alternate binary offset carrier (GTD-AltBOC) modulation method is proposed, which is an extension of TD-AltBOC and time-multiplexed offset-carrier quadrature phase shift keying (TMOC-QPSK) with high design flexibility. In this method, binary complex subcarriers and a time-division technique with flexible time slot assignment are used to achieve constant envelope modulation of the signal components with a variable power allocation ratio (PAR). The underlying principle of GTD-AltBOC and the constraints related to the PAR are investigated. For the generation of GTD-AltBOC signals, a lookup table (LUT)-based scheme is presented; the minimum required clock rate is half or less of that for existing non-time-division methods. The receiver processing complexities are analyzed for three typical receiving modes, and the power spectral densities (PSDs), cross-correlation functions, multiplexing efficiencies and code-tracking performance are simulated; the results show that GTD-AltBOC enables a significant decrease in receiving complexity compared with existing methods while maintaining high performance in terms of multiplexing efficiency and code tracking.

  1. EU: EUROPEAN GNSS (GALILEO). Open Service: Signal in Space Interface Control Document (OS SIS ICD). Issue 1.3, 2016, p. 4–7. [Online] Cited 2017-10-21. Available at: https://www.gsceuropa.eu/system/files/galileo_documents/Galileo-OS-SIS-ICD.pdf
  2. PELTON, N. J., MADRY, S., CAMACHO-LARA, S. Handbook of Satellite Applications. 2nd ed. Springer International Publishing, 2017. ISBN: 978-3-319-23386-4
  3. LESTARQUIT, L., ARTAUD, G., ISSLER, J.-L. AltBOC for dummies or everything you always wanted to know about AltBOC. In Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). 2008, p. 961–970. ISSN: 2331-5911
  4. TANG, Z., ZHOU, H., WEI, J., et al. TD-AltBOC: A new COMPASS B2 modulation. Science China-Physics Mechanics & Astronomy, 2011, vol. 54, p. 1014–1021. DOI: 10.1007/s11433-011-4332-y
  5. SHIVARAMAIAH, N. C., DEMPSTER, A. G., RIZOS, C. TimeMultiplexed Offset-Carrier QPSK for GNSS. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 2, p. 1119–1138. DOI: 10.1109/TAES.2013.6494403
  6. WON, J. H., EISSFELLER, B., SCHMITZ-PEIFFER, A., et al. Trade-Off Between Data Rate and Signal Power Split in GNSS Signal Design. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 3, p. 2260–2281. DOI: 10.1109/TAES.2012.6237591
  7. FONTANA, R. D., CHEUNG, W., NOVAK, P. M., et al. The New L2 Civil Signal. In Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001). 2001, p. 617–631. ISSN: 2331-5911
  8. SPILKER, J. J., VAN DIERENDONCK, A. J. Proposed New Civil GPS Signal at 1176.45 MHz. In Proceedings of the 12th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1999). 1999, p. 1717–1726. ISSN: 2331-5911
  9. BETZ, J., BLANCO, M. A., CAHN, C. R., et al. Description of the L1C Signal. In Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). 2006, p. 2080–2091. ISSN: 2331-5911
  10. ZHANG, K. Generalised constant-envelope dualQPSK and altBOC modulations for modern GNSS signals. Electronics Letters, 2013, vol. 49, no. 21, p. 1335–1337. DOI: 10.1049/el.2013.2095
  11. YAO, Z., LU, M. Implementation, and Performance Analysis of ACEBOC Modulation. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2013). 2013, p. 361–368. ISSN: 2331-5911
  12. YAO, Z., ZHANG, J., LU, M. ACE-BOC: dual-frequency constant envelope multiplexing for satellite navigation. IEEE Transactions on Aerospace and Electronic Systems, 2016, vol. 52, no. 1, p. 466–485. DOI: 10.1109/TAES.2015.140607
  13. GUO, F., YAO, Z., LU, M. BS-ACEBOC: A generalized lowcomplexity dual-frequency constant-envelope multiplexing modulation for GNSS. GPS Solutions, 2017, vol. 21, no. 2, p. 561–575. DOI: 10.1007/s10291-016-0547-8
  14. YAN, T., WEI, J., TANG, Z., et al. General AltBOC Modulation with Adjustable Power Allocation Ratio for GNSS. The Journal of Navigation, 2016, vol. 69, no. 3, p. 531–560. DOI: 10.1017/S037346331500079X
  15. SHIVARAMAIAH, N. C., DEMPSTER, A. G., RIZOS, C. Hybrid tracking loop architectures for the Galileo E5 signal. In Proceedings of the European navigation conference on global navigation satellite systems (ENC GNSS 2009). 2009.
  16. DAFESH, P. A., CAHN, C. R. Phase-Optimized Constant-Envelope Transmission (POCET) Modulation Method for GNSS Signals. In Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009). 2009, p. 2860–2866. ISSN: 2331-5911
  17. BETZ, J. W., KOLODZIEJSKI, K. R. Generalized Theory of Code Tracking with an Early-Late Discriminator, Part I: Lower Bound and Coherent Processing. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 4, p. 1538–1550. DOI: 10.1109/TAES.2009.5310316
  18. TAWK, Y., BOTTERON, C., JOVANOVIC, A., et al. Analysis of Galileo E5 and E5ab code tracking. GPS Solutions, 2012, vol. 16, no. 2, p. 243–258. DOI: 10.1007/s10291-011-0226-8

Keywords: Global navigation satellite system (GNSS), AltBOC, Modulation, Time-division, Signal design

P. Rakesh, T. Kishore Kumar, F. Albu [references] [full-text] [DOI: 10.13164/re.2018.0270] [Download Citations]
Novel Sparse Algorithms based on Lyapunov Stability for Adaptive System Identification

Adaptive filters are extensively used in the identification of an unknown system. Unlike several gradient-search based adaptive filtering techniques, the Lyapunov Theory-based Adaptive Filter offers improved convergence and stability. When the system is described by a sparse model, the performance of Lyapunov Adaptive (LA) filter is degraded since it fails to exploit the system sparsity. In this paper, the Zero-Attracting Lyapunov Adaptation algorithm (ZA-LA), the Reweighted Zero-Attracting Lyapunov Adaptation algorithm (RZA-LA) and an affine combination scheme of the LA and proposed ZA-LA filters are proposed. The ZA-LA algorithm is based on ℓ1-norm relaxation while the RZA-LA algorithm uses a log-sum penalty to accelerate convergence when identifying sparse systems. It is shown by simulations that the proposed algorithms can achieve better convergence than the existing LMS/LA filter for a sparse system, while the affine combination scheme is robust in identifying systems with variable sparsity.

  1. HAYKIN, S. Adaptive Filter Theory. 4th ed. Upper Saddle River (NJ, USA): Prentice Hall, 2002. ISBN: 9780130901262
  2. WIDROW, B. STEARNS, S. D. Adaptive Signal Processing. Englewood Cliffs (NJ, USA): Prentice Hall, 1985. ISBN: 0-13- 004029-0
  3. MAN, Z., WU, H. R., LAI, W., et al. Design of adaptive filters using Lyapunov stability theory. In Proceedings of the 6th IEEE International Workshop on Intelligent Signal Processing and Communication Systems. Melbourne (Australia), 1998, p. 304– 308. ISBN: 0732620309
  4. SENG, K. P., MAN, Z., WU, H. R. Lyapunov-theory-based radial basis function networks for adaptive filtering. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2002, vol. 49, no. 8, p. 1215–1220. DOI: 10.1109/TCSI.2002.801255
  5. MAN, Z., WU, H. R., LIU, S., et al. A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks. IEEE Transactions on Neural Networks, 2006, vol. 17, no. 6, p. 1580–1581. DOI: 10.1109/TNN.2006.880360
  6. ZHAO, H., ZHANG, J. Filtered-s Lyapunov algorithm for active control of nonlinear noise processes. In Proceedings of the 9th International Conference on Signal Processing. Beijing (China), 2008, p. 311–314. DOI: 10.1109/ICOSP.2008.4697133
  7. RADECKI, J., ZILIC, Z., RADECKA, K. Echo cancellation in IP networks. In Proceedings of the 45th Midwest Symposium on Circuits and Systems. Tulsa (USA), August 2002, p. 219–222. DOI: 10.1109/MWSCAS.2002.1186837
  8. SCHREIBER, W. F. Advanced television systems for terrestrial broadcasting: some problems and some proposed solutions. In Proceedings of the IEEE, 1995, vol. 83, no. 6, p. 958–981. DOI: 10.1109/5.387095
  9. LI, W., PREISIG, J. C. Estimation of rapidly time-varying sparse channels. IEEE Journal of Oceanic Engineering, 2007, vol. 32, no. 4, p. 927–939. DOI: 10.1109/JOE.2007.906409
  10. SHIH, S. Y., CHEN. K. C. Compressed sensing construction of spectrum map for routing in cognitive radio networks. Wireless Communication and Mobile Computing, 2012, vol. 12, no. 18, p. 1592–1607. DOI: 10.1002/wcm.2338
  11. DAI, L., WANG, Z., YANG, Z. Compressive sensing based time domain synchronous OFDM transmission for vehicular communications. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, no. 9, p. 460–469. DOI: 10.1109/JSAC.2013.SUP.0513041
  12. GUI, G., MEHBODNIYA, A., ADACHI, F. Bayesian sparse channel estimation and data detection for OFDM communication systems. In Proceedings 2013 IEEE 78th Vehicular Technology Conference (VTC-Fall). LasVegas (USA), September 2013, p. 1–5. DOI: 10.1109/VTCFall.2013.6692113
  13. CANDES, E. Compressive sampling. In Proceedings of the International Congress of Mathematics. Madrid (Spain), 2006, vol. 3, p. 1433–1452. DOI: 10.4171/022-3/69
  14. BARANIUK, R. G. Compressive sensing. IEEE Signal Processing Magazine, July 2007, vol. 24, no. 4, p. 118–121. DOI: 10.1109/MSP.2007.4286571
  15. TIBSHIRANI, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (B), 1996, vol. 58, no. 1, p. 267–288.
  16. CHEN, Y., GU, Y., HERO III, A. O. Sparse LMS for system identification. In IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei (Taiwan), 2009, p. 3125 to 3128. DOI: 10.1109/ICASSP.2009.4960286
  17. CANDES, E. J., WAKIN, M. B., BOYD, S. P. Enhancing sparsity by reweighted ℓ1 minimization. Journal of Fourier Analysis and Applications, 2008, vol. 14, no. 5, p. 877–905. DOI: 10.1007/s00041-008-9045-x
  18. MARTINEZ-RAMON, M., ARENAS-GARCIA, J., NAVIAVAZQUEZ, A., et al. An adaptive combination of adaptive filters for plant identification. In Proceedings of the 14th International Conference on DSP. Santorini (Greece), July 2002, p. 1195–1198. DOI: 10.1109/ICDSP.2002.1028307
  19. ARENAS-GARCIA, J., MARTINEZ-RAMON, M., GOMEZVERDEJO, V., et al. Multiple plant identifier via adaptive LMS convex combination. In Proceedings IEEE International Symposium on Intelligent Signal Processing. Budapest (Hungary), 2003, p. 137–142. DOI: 10.1109/ISP.2003.1275828
  20. DAS, B. K., CHAKRABORTY, M. Sparse adaptive filtering by an adaptive convex combination of the LMS and the ZA-LMS algorithms. IEEE Transactions on Circuits and Systems I, 2014, vol. 61, no. 5, p. 1499–1507. DOI: 10.1109/TCSI.2013.2289407
  21. GOGINENI, V. C., CHAKRABORTY, M. Adaptive convex combination of APA and ZA-APA algorithms for sparse system identification. 19 pages. [Online] Cited 2015-09-10. Available at: https://arxiv.org/pdf/1509.03203.pdf
  22. RADHIKA, S., ARUMUGAM, S. Steady state mean square analysis of convex combination of ZA-APA and APA for acoustic echo cancellation. In Proceedings of International Symposium on Intelligent Systems Technologies and Applications. Kochi (India), 2015, p. 437–446. DOI: 10.1007/978-3-319-23036-8_38
  23. ARENAS-GARCIA, J., FIGUEIRAS-VIDAL, A. R. Adaptive combination of proportionate filters for sparse echo cancellation. IEEE Transactions on Audio, Speech, and Language Processing, August 2009, vol. 17, no. 6, p. 1087–1098. DOI: 10.1109/TASL.2009.2019925
  24. BERSHAD, N. J., BERMUDEZ, J. C. M., TOURNERET, J.-Y. An affine combination of two LMS adaptive filters—transient mean-square analysis. IEEE Transactions on Signal Processing, May 2008, vol. 56, no. 5, p. 1853–1864. DOI: 10.1109/TSP.2007.911486
  25. CANDIDO, R., SILVA, M. T. M., NASCIMENTO, V. H. Affine combinations of adaptive filters. In 42nd Asilomar Conference on Signals, Systems and Computers. Pacific Grove (CA, USA), 2008. DOI: 10.1109/ACSSC.2008.5074399
  26. TRUMP, T. Output signal based combination of two NLMS adaptive filters – transient analysis. Proceedings of Estonian Academy of Sciences, 2011, vol. 60, no. 4, p. 258–268. DOI: 10.3176/proc.2011.4.06
  27. BUTSENKO, M., TRUMP, T. An affine combination of adaptive filters for sparse impulse response identification. In 23rd Telecommunications Forum (TELFOR). Belgrade, (Serbia), 2015, p. 396–399. DOI: 10.1109/TELFOR.2015.7377491
  28. BUTSENKO, M., TRUMP, T. An affine combination of adaptive filters for channels with different sparsity levels. Telfor Journal, 2016, vol. 8, no. 1, p. 32–37. DOI: 10.5937/telfor1601032B
  29. MULGREW, B., COWAN, C. F. N. Adaptive Filters and Equalizers. MA (USA): Kluwer Academic Publishers, 1988.
  30. SLOTINE, J. J. E., LI, W. Applied Nonlinear Control. NJ (USA): Prentice Hall, 1991. ISBN: 0-13-040890-5
  31. MENGUC, E. C., ACIR, N. Lyapunov stability theory based adaptive filter algorithm for noisy measurements. In 2013 UKSim 15th International Conference on Computer Modelling and Simulation. Cambridge (UK), 2013, p. 451–454. DOI: 10.1109/UKSim.2013.50
  32. MENGUC, E. C., ACIR, N. A novel adaptive filter algorithm for tracking of chaotic time series. In IEEE 19th Conference on Signal Processing and Communication Applications. Antalya (Turkey), 2011, p. 490–493. (in Turkish), DOI: 10.1109/SIU.2011.5929694
  33. MENGUC, E. C., ACIR, N. A novel adaptive filter design using Lyapunov stability theory. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, vol. 23, no. 6, p. 719–728. DOI: 10.3906/elk-1212-29
  34. MENGUC, E. C., ACIR. N. Real-time implementation of Lyapunov stability theory-based adaptive filter on FPGA. IEICE Transactions on Electronics, 2016, vol. E99.C, no. 1, p. 129–137. DOI: 10.1587/transele.E99.C.129
  35. FAZEL, M. Matrix rank minimization with applications. Ph.D. Thesis. Electrical Engineering Department, Stanford University, 2002, vol. 54, 130 p.
  36. FAZEL, M., HINDI, H., BOYD, S.P. Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices. In Proceedings of the American Control Conference, Denver, Colorado (USA). June 4-6, 2003, p. 2156– 2162. DOI: 10.1109/ACC.2003.1243393
  37. HANS, M. C., LEVERGOOD, T. M. Echo Cancelation. Digital Equipment Corporation, Cambridge Research Lab, Technical report CRL 94/7, October 13, 1994.

Keywords: Sparse system identification, Lyapunov adaptive filter (LA), ℓ1-norm, Zero-attracting LA, Reweighted ZA-LA, Affine combination, Convergence, Mean square deviation, Mean square error

J. Oravec, J. Turan, L. Ovsenik, T. Ivaniga, D. Solus, M. Marton [references] [full-text] [DOI: 10.13164/re.2018.0281] [Download Citations]
Asymmetric Image Encryption Approach with Plaintext-Related Diffusion

This paper deals with topic of image encryption based on chaotic maps. A solution which has advantage of robustness against chosen-plaintext attacks is proposed. Permutations of image pixels are carried out in a way that enables operations on grayscale images with arbitrary resolution. All calculations done with user key and also all diffusion processes employ the same chaotic map. This feature enables usage of look-up tables which reduce computational times. The paper includes several experiments which verify achieved results and also briefly describes advantages and drawbacks of proposed solution.

  1. MATTHEWS, R. On the derivation of a ’chaotic’ encryption algorithm. Cryptologia, 1989, vol. 8, no. 1, p. 29–42. DOI: 10.1080/0161-118991863745
  2. FRIDRICH, J. Symmetric ciphers based on two–dimensional chaotic maps. International Journal of Bifurcation and Chaos, 1998, vol. 8, no. 6, p. 1259–1284. DOI: 10.1142/S021812749800098X
  3. CHEN, G., MAO, Y., CHUI, C. K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals, 2004, vol. 21, no. 3, p. 749–761. DOI: 10.1016/j.chaos.2003.12.022
  4. MAO, Y., CHEN, G., LIAN, S. A novel fast image encryption scheme based on 3D chaotic baker maps. International Journal of Bifurcation and Chaos, 2004, vol. 14, no. 10, p. 3613–3624. DOI: 10.1142/S021812740401151X
  5. YE, R. A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism. Optics Communications, 2011, vol. 284, no. 22, p. 5290–5298. DOI: 10.1016/j.optcom.2011.07.070
  6. FIPS Publication 197: Specification for the Advanced Encryption Standard (AES). 2001, 47 pages. [Online] Cited 2017-04-27. Available at: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
  7. HAJDUK, V., BRODA, M., KOVAC, et al. Image steganography with QR code and cryptography. In Proceedings of the Radioelektronika 2016. Kosice (Slovakia), 2016, p. 350–353. DOI: 10.1109/RADIOELEK.2016.7477370
  8. SOLAK, E., COKAL, C., YILDIZ, O. T., et al. Cryptanalysis of Fridrich’s chaotic image encryption. International Journal of Bifurcation and Chaos, 2010, vol. 20, no. 5, p. 1405–1413. DOI: 10.1142/S0218127410026563
  9. ZHANG, X., ZHU, G., MA, S. Remote-sensing image encryption in hybrid domains. Optics Communications, 2012, vol. 285, no. 7, p. 1736–1743. DOI: 10.1016/j.optcom.2011.12.023
  10. LIU, H., WANG, X. Triple-image encryption scheme based on one-time key stream generated by chaos and plain images. Journal of Systems and Software, 2013, vol. 86, no. 3, p. 826–834. DOI: 10.1016/j.jss.2012.11.026
  11. ZHANG, Y. A chaotic system based image encryption algorithm using plaintext-related confusion. Telkomnika, 2014, vol. 12, no. 11, p. 7952–7962. DOI: 10.11591/telkomnika.v12i11.6480
  12. FU, C., HOU, S., ZHOU, W., et al. A chaos-based image encryption scheme with a plaintext related diffusion. In Proceedings of the 9th International Conference on Information, Communications and Signal Processing ICICS 2013. Tainan (Taiwan), 2013, p. 1–5. DOI: 10.1109/ICICS.2013.6782914
  13. KANSO, A., GHEBLEH, M. A novel image encryption algorithm based on a 3D chaotic map. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, no. 2, p. 2943–2959. DOI: 10.1016/j.cnsns.2011.11.030
  14. GUANGHUI, C., KAI, H., YIZHI, Z., et al. Chaotic image encryption based on running-key related to plaintext. The Scientific World Journal, 2014, vol. 15, no. 1, p. 1–9. DOI: 10.1155/2014/490179
  15. MAY, R. Simple mathematical models with very complicated dynamics. Nature, 1976, vol. 261, no. 5560, p. 459–467. DOI: 10.1038/261459a0
  16. GLEICK, J. Chaos. London: Vintage Books, 1998. ISBN: 978-0-749-38606-1
  17. ARNOLD, V. I., AVEZ, A. Ergodic Problems of Classical Mechanics. New Jersey: W. A. Benjamin, 1968.

Keywords: Arnold's cat map, confusion, diffusion, chaotic maps, image encryption, logistic map

S. Hou, Y. Zhou, H. Liu, N. Zhu [references] [full-text] [DOI: 10.13164/re.2018.0289] [Download Citations]
Exploiting Support Vector Machine Algorithm to Break the Secret Key

Template attacks (TA) and support vector machine (SVM) are two effective methods in side channel attacks (SCAs). Almost all studies on SVM in SCAs assume the required power traces are sufficient, which also implies the number of profiling traces belonging to each class is equivalent. Indeed, in the real attack scenario, there may not be enough power traces due to various restrictions. More specifically, the Hamming Weight of the S-Box output results in 9 binomial distributed classes, which significantly reduces the performance of SVM compared with the uniformly distributed classes. In this paper, the impact of the distribution of profiling traces on the performance of SVM is first explored in detail. And also, we conduct Synthetic Minority Oversampling TEchnique (SMOTE) to solve the problem caused by the binomial distributed classes. By using SMOTE, the success rate of SVM is improved in the testing phase, and SVM requires fewer power traces to recover the key. Besides, TA is selected as a comparison. In contrast to what is perceived as common knowledge in unrestricted scenarios, our results indicate that SVM with proper parameters can significantly outperform TA.

  1. KOCHER, P. C., JAFFE, J., JUN, B. Differential power analysis. In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology. London (UK), 1999, p. 388–397. DOI: 10.1007/3-540-48405-1_25
  2. CHARI, S., RAO, J., ROHATGI, P. Template attacks. In Proceedings of the 4th International Workshop on Cryptographic Hardware and Embedded Systems-CHES 2002. Redwood Shores (USA), 2002, p. 13–28. DOI: 10.1007/3-540-36400-5_3
  3. BRIER, E., CLAVIER, C., OLIVIER, F. Correlation power analysis with a leakage model. In Proceedings of the 6th International Workshop on Cryptographic Hardware and Embedded Systems. Cambridge (USA), 2004, p. 16–29. DOI: 10.1007/978-3-540-28632-5_2
  4. SCHINDLER, W., LEMKE, K., PAAR, C. A stochastic model for differential side channel cryptanalysis. In Proceedings of the 7th International Workshop on Cryptographic Hardware and Embedded Systems. Edinburgh (UK), 2005, p. 30–46. DOI: 10.1007/11545262_3
  5. MANGARD, S., OSWALD, E., POPP, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards. 1st ed. Secaucus (USA): Springer US, 2007. ISBN: 978-0-387-30857-9. DOI: 10.1007/978-0- 387-38162-6
  6. RIVEST, R. L. Cryptography and machine learning. In Proceedings of the International Conference on the Theory and Applications of Cryptology: Advances in Cryptology (ASIACRYPT). 1991, Fujiyoshida (Japan), p. 427–439. DOI: 10.1007/3-540-57332-1_36
  7. MARTINASEK, Z., ZEMAN, V. Innovative method of the power analysis. Radioengineering, 2013, vol. 22, no. 2, p. 586–594. ISSN: 1805-9600
  8. MARTINASEK, Z., HAJNY, J., MALINA, L. Optimization of power analysis using neural network. In Proceedings of the 12th International Conference Smart Card Research and Advanced Applications (CARDIS). Berlin (Germany), 2013, p. 94–107. DOI: 10.1007/978-3-319-08302-5_7
  9. WHITNALL, C., OSWALD, E. Robust profiling for DPA-style attacks. In Proceedings of the 17th International Workshop Cryptographic Hardware and Embedded Systems (CHES). Saint-Malo (France), 2015, p. 3–21. DOI: 10.1007/978-3-662-48324-4_1
  10. MARTINASEK, Z., ZEMAN, V., MALINA, L., et al. k-Nearest neighbors algorithm in profiling power analysis attack. Radioengineering, 2016, vol. 25, no. 2, p. 365–382. DOI: 10.13164/re.2016.0365
  11. HOSPODAR, G., GIERLICHS, B., MULDER, D. E., et al. Machine learning in side-channel analysis: A first study. Journal of Cryptographic Engineering, 2011, vol. 1, no. 4, p. 293–302. DOI: 10.1007/s13389-011-0023
  12. HE, H., JAFFE, J., ZOU, L. Side Channel Cryptanalysis Using Machine Learning: Using an SVM to Recover DES Keys from a Smart Card. 2012, Stanford University - CS229 Fall Project
  13. HEUSER, A., ZOHNER, M. Intelligent machine homicide - breaking cryptographic devices using support vector machines. In Proceedings of the Constructive Side-Channel Analysis and Secure Design: Third International Workshop (COSADE). Darmstadt(Germany), 2012, p. 249–264. DOI: 10.1007/978-3-642-29912-4_18
  14. BARTKEWITZ, T., LEMKE-RUST, K. Efficient template attacks based on probabilistic multi-class support vector machines. In Proceedings of the Smart Card Research and Advanced Applications. Graz (Austria), 2013, p. 263–276. DOI: 10.1007/978-3-642-37288-9_18
  15. LERMAN, L., MEDEIROS, S. F., BONTEMPI, G., et al. A machine learning approach against a masked AES. In Proceedings of the 12th International Conference of Smart Card Research and Advanced Applications (CARDIS). Berlin (Germany), 2013, p. 61–75. DOI: 10.1007/978-3-319-08302-5_5
  16. HOU, S. R., ZHOU, Y. J., LIU, H. M., et al. Wavelet support vector machine algorithm in power analysis attacks. Radioengineering, 2017, vol. 26, no. 3, p. 890–902. DOI: 10.13164/re.2017.0890
  17. VEROPOULOS, K., CAMPBELLL, C., CRISTIANINI, N. Controlling the sensitivity of support vector machines. In Proceedings of the International Joint Conference on Artificial Intelligence. Stockholm (Sweden), 1999, p. 55–60. DOI: 10.1.1.42.7895
  18. HSU, C. W., LIN, C. J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 2002, vol. 13, no. 2, p. 415–425. DOI: 10.1109/72.991427
  19. CHAWLA, N. V., BOWYER, K. W., HALL, L. O., et al. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, vol. 16, p. 321–357. DOI: 10.1613/jair.953
  20. AKBANI, R., KWEK, S., JAPKOWICZ, N. Applying support vector machines to imbalanced datasets. In Proceedings of the15th European Conference on Machine Learning. Pisa (Italy), 2004, p. 39–50. DOI: 10.1007/978-3-540-30115-8_7
  21. CORTES, C., VAPNIK, V. Support-vector networks. Machine Learning, 1995, vol. 20, no. 3, p. 273–297. DOI: 10.1007/BF00994018
  22. HANG, L. Statistical Learning Method. 1st ed. Beijing (China): Tsinghua University press, 2012. ISBN: 978-7-302-27595-4
  23. LIN, H. T., LIN, C. J., WENG, R. C. A note on platt’s probabilistic outputs for support vector machines. Machine Learning, 2007, vol. 63, no. 3, p. 267–276. DOI: 10.1007/s10994-007-5018-6
  24. GUILLEYHO, S. DPA contest v4. [Online] Cited 2017-10-24. Available at: http://www.dpacontest.org/v4/rsm_doc.php
  25. PENG, H., LONG, F., DING, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, vol. 27, no. 8, p. 1226–1238. DOI: 10.1109/TPAMI.2005.159
  26. GIERLICHS, B., LEMKE-RUST, K., PAAR, C. Templates vs. stochastic methods. In Proceedings of the 8th International Workshop on Cryptographic Hardware and Embedded Systems (CHES). Yokohama (Japan), 2006, p. 15–29. DOI: 10.1007/11894063_2
  27. CHAWLA, N. V., JAPKOWICZ, N., KOTCZ, A. Editorial: Special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 2004, vol. 6, no. 1, p. 1–6. DOI: 10.1145/1007730.1007733
  28. HAIBO, H., GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, vol. 21, no. 9, p. 1263–84. DOI: 10.1109/TKDE.2008.239
  29. LEMAITRE, G., NOGUEIRA, F., ARIDAS, C. K. Imbalancedlearn: A Python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 2017, vol. 18, no. 17, p. 1–5
  30. CHANG, C. C., LIN, C. J. A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST). 2011, vol. 2, no. 27. DOI: 10.1145/1961189.1961199
  31. HSU, C. W., CHANG, C. C., LIN, C. J. A practical guide to support vector classification. BJU International, 2008. DOI: 10.1177/02632760022050997
  32. LEMAITRE, G., NOGUEIRA, F., ARIDAS, C. K. Imbalanced-Learn. [Online] Cited 2017-10-24. Available at: https://github.com/scikit-learn-contrib/imbalanced-learn
  33. POWERS, D. M. W. Evaluation: From precision, recall and F-measure to roc, informedness, markedness & correlation. Journal of Machine Learning Technologies, 2011, vol. 2, p. 37–63. DOI: 10.1.1.214.9232
  34. DAVIS, J., GOADRICH, M. The relationship between precisionrecall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning. New York (USA), 2006, p. 233–240. DOI: 10.1145/1143844.1143874
  35. STANDAERT, F. X., MALKIN, T. G., YUNG, M. A unified framework for the analysis of side-channel key recovery attacks. In Proceedings of the 28th Annual International Conference on Advances in Cryptology: the Theory and Applications of Cryptographic Techniques. Berlin (Germany), 2009, p. 443– 461. DOI: 10.1007/978-3-642-01001-9_26

Keywords: Power analysis, support vector machine, synthetic minority oversampling technique, Hamming Weight class

S. Kozlowski [references] [full-text] [DOI: 10.13164/re.2018.0299] [Download Citations]
A Carrier Synchronization Algorithm for SDR-based Communication with LEO Satellites

In this work a carrier synchronization algorithm for communication with low Earth orbit (LEO) satellites was proposed. The algorithm has a form of a software routine and is intended to be run on a typical personal computer (PC) providing computational resources for a software defined radio (SDR) receiver. Due to limited computational power of PCs in comparison with other devices, such as FPGAs, the work was focused on providing carrier synchronization with minimal processing. The algorithm includes a nonlinear operation for recovering carrier wave from the received signal, a software 2nd order type 2 phase locked loop for tracking the recovered carrier, and a correction block for removing frequency shift from the received signal. Computer simulations were performed to investigate algorithm’s behavior. Additionally, execution time was measured to determine maximal symbol rate of a signal to be processed.

  1. GE, F., CHIANG, C. J., GOTTLIEB, Y. M., et al. GNU Radiobased digital communications: computational analysis of a GMSK transceiver. In IEEE Global Telecommunications Conference (GLOBECOM 2011). Houston (TX, USA), Dec. 2011, p. 1–6. DOI: 10.1109/GLOCOM.2011.6133692
  2. TANAKA, Y., INAMORI, M., SANADA, Y. Timing synchronization scheme for OFDM signal in general purpose processor based software defined radio receiver. In IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC). Sydney (NSW, Australia), Sept. 2012, p. 2287 to 2290. DOI: 10.1109/PIMRC.2012.6362737
  3. CHEN, Z., WU, J. LTE physical layer implementation based on GPP multi-core parallel processing and USRP platform. In 9th International Conference on Communications and Networking in China (CHINACOM). Maoming (China), Aug. 2014, p. 197–201. DOI: 10.1109/CHINACOM.2014.7054285
  4. TSENG, S.-M., KUO, Y.-C., KU, Y.-C., et al. Software Viterbi decoder with SSE4 parallel processing instructions for software DVB-T receiver. In IEEE International Symposium on Parallel and Distributed Processing with Applications. Chengdu (China), Aug. 2009, p. 102–105. DOI: 10.1109/ISPA.2009.100
  5. ANDROLEWICZ, J. F., BUFFINGTON, R. L., KIEF, C. J., et al. Software-defined and cognitive radio technology for military space applications. In Wireless Innovation Forum Conference on Communications Technologies and Software Defined Radio. Washington (USA), Nov.-Dec. 2011.
  6. GEDNEY, R. Low-cost, high-speed modems for small LEO-toground and LEO-to-LEO data links. In 29th Annual AIAA/USU Conference on Small Satellites. Logan (UT, USA), Aug. 2015.
  7. SKARZYNSKI, J., DARMETKO, M., KOZLOWSKI, S., et al. SDR implementation of the receiver of adaptive communication system. Radio Science, April 2016, vol. 51, no. 4, p. 344–351. DOI:10.1002/2015RS005899
  8. ALI, I., AL-DHAHIR, N., HERSHEY, J. E. Doppler characterization for LEO satellites. IEEE Transactions on Communications, March 1998, vol. 46, no. 3, p. 309–313. DOI: 10.1109/26.662636
  9. DASCAL, V., DOLEA, P., CRISTEA, O., et al. Low-cost SDRbased ground receiving station for LEO satellite operations. In 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS). Nis (Serbia), Oct. 2013, vol. 02, p. 627–630. DOI: 10.1109/TELSKS.2013.6704456
  10. BOSCO, M., TORTORA, P., CINARELLI, D. Alma mater ground station transceiver: a software defined radio for satellite communications. In IEEE Metrology for Aerospace (MetroAeroSpace). Benevento (Italy), May 2014, p. 549–554. DOI: 10.1109/MetroAeroSpace.2014.6865986
  11. GAPPMAIR, W., CIONI, S., VANELLI-CORALLI, A., et al. Exact analysis of different detector algorithms for NDA carrier phase recovery of 16/32-APSK signals. Transactions on Emerging Telecommunications Technologies, March 2010, vol. 21, no. 2, p. 154–166. DOI: 10.1002/ett.1353
  12. DE GAUDENZI, R., GUILLEN I FABREGAS, A., MARTINEZ, A. Performance analysis of turbo-coded APSK modulations over nonlinear satellite channels. IEEE Transactions on Wireless Communications, Sept. 2006, vol. 5, no. 9, p. 2396–2407. DOI: 10.1109/TWC.2006.1687763
  13. BEITLER, U., AMRANI, O. Real time cycle slip detection and correction for APSK modulation. IEEE Transactions on Communications, Feb. 2014, vol. 62, no. 2, p. 736–746. DOI: 10.1109/TCOMM.2013.112913.130206
  14. ETSI EN 302 307 V1.2.1 (2009-08). Digital video broadcasting (DVB); second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications (DVB-S2).
  15. MA, L., SHI, L., WANG, Z. Performance analysis of a second order FLL assisted third order PLL for tracking Doppler rates. WSEAS Transactions on Communications, 2014, vol. 13, p. 26–43. E-ISSN: 2224-286
  16. HARRIS, F., VENOSA, E., CHEN, X., DICK, C. Non-data aided symbol and carrier synchronization via band-edge filters. In 46th Asilomar Conference on Signals, Systems and Computers. Pacific Grove (CA, USA), Nov. 2012.
  17. LANDIS, S., BOBROVSKY, B. Z. Decision directed versus nondata aided PLLs: a comparative review. IEEE Transactions on Communications, April 2010, vol. 58, no. 4, p. 1256–1261. DOI: 10.1109/TCOMM.2010.04.080286
  18. STK. [Online] Cited May 2017. Available at: http://www.agi.com/products/stk/
  19. GNU Radio. [Online] Cited May 2017. Available at: http://gnuradio.org/
  20. KROUPA, V. F. Phase Lock Loops and Frequency Synthesis. John Wiley & Sons, 2003. ISBN: 0-470-84866-9
  21. GARDNER, F. M. Phase Lock Techniques. 3rd ed. John Wiley & Sons, 2005. ISBN: 978-0-471-43063-6
  22. Intel Intrinsics Guide. [Online] Cited May 2017. Available at: https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Keywords: Software defined radio, satellite communication, frequency synchronization, phase locked loop

W. AbuShehab, S. Althunibat, G. AlSukkar [references] [full-text] [DOI: 10.13164/re.2018.0307] [Download Citations]
A Practical Method for Performance Estimation for Collaborative Sensing in Cognitive Radio Networks

This paper presents a novel practical method for evaluating the local sensing performance of the participating users in collaborative spectrum sensing in cognitive radio networks. The proposed method considers data delivery as a base to evaluate the local sensing performance of each user. Moreover, the proposed method does not rely on any prior information about users. The estimated local sensing performance of all users is used further to evaluate the global performance of the whole network. Mathematical analysis and simulation results demonstrate the high accuracy of the proposed method.

  1. MITOLA, J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. PhD Dissertation, KTH, Sweden, Dec. 2000.
  2. HAYKIN, S. Cognitive radio: Brain-empowered wireless communications. IEEE Journal of Selected Areas on Communications, 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  3. GOLDSMITH, A. et al. Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. In Proceedings of the IEEE. 2009. vol. 97, no. 5, p. 894–914. DOI: 10.1109/JPROC.2009.2015717
  4. YUCEK, T., ARSLAN, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE communications surveys and tutorials, 2009, vol. 11, no. 1, p. 116–130. DOI: 10.1109/SURV.2009.090109
  5. AXELL, E., et al. Spectrum sensing for cognitive radio: State-of-theart and recent advances. IEEE Signal Processing Magazine, 2012, vol. 29, no. 3, p. 101–116. DOI: 10.1109/MSP.2012.2183771
  6. AKYILDIZ, I. F., et al. Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication (Elsevier), 2011, vol. 4, no. 1, p. 40–62. DOI: 10.1016/j.phycom.2010.12.003
  7. DI BENEDETTO, M.-G., et al. Cognitive Radio and Networking for Heterogeneous Wireless Networks. 1st ed. Springer International Publishing, 2015. (YILMAZ, H., BIRKAN, S. E., TUGCU, T. Cooperative Spectrum Sensing.) DOI: 10.1007/978-3-319-01718-1_3
  8. WANG, J., et al. Cooperative Spectrum Sensing. INTECH Open Access Publisher, 2009. DOI: 10.5772/7839
  9. ZHANG, W., et al. Optimization of cooperative spectrum sensing with energy detection in cognitive radio networks. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 12, p. 5761–5766. DOI: 10.1109/TWC.2009.12.081710
  10. DENG, R., et al. Energy-efficient cooperative spectrum sensing by optimal scheduling in sensor-aided cognitive radio networks. IEEE Transactions on Vehicular Technology, 2012, vol. 61, no. 2, p. 716– 725. DOI: 10.1109/TVT.2011.2179323
  11. SINGH, A., BHATNAGAR, M. R., MALLIK, R. K. Cooperative spectrum sensing in multiple antenna based cognitive radio network using an improved energy detector. IEEE Communications Letters, 2011, vol. 16, no. 1, p. 64–67. DOI: 10.1109/LCOMM.2011.103111.111884
  12. ZENG, K., PAWELCZAK, P., CABRIC, D. Reputation-based cooperative spectrum sensing with trusted nodes assistance. IEEE Communications Letters, 2010, vol. 14, no. 3, p. 226–228. DOI: 10.1109/LCOMM.2010.03.092240
  13. ALTHUNIBAT, S., et al. On the trade-off between security and energy efficiency in cooperative spectrum sensing for cognitive radio. IEEE communications letters, 2013, vol. 17, no. 8, p. 1564–1567. DOI: 10.1109/LCOMM.2013.062113.130759
  14. GHASEMI, A., SOUSA, E. S. Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. 2005. DOI: 10.1109/DYSPAN.2005.1542627
  15. MIN, A.W., et al. Secure cooperative sensing in IEEE 802.22 WRANs using shadow fading correlation. IEEE Transactions on Mobile Computing, 2011, vol. 10, no. 10, p. 1434–1447. DOI: 10.1109/TMC.2010.252
  16. CABRIC, D., MISHRA, S. M., BRODERSEN, R. W. Implementation issues in spectrum sensing for cognitive radios. In Proceedings of the thirty-eighth Asilomar conference on Signals, systems and computers. 2004. DOI: 10.1109/ACSSC.2004.1399240
  17. MALEKI, S., CHEPURI, S. P., LEUS, G. Energy and throughput efficient strategies for cooperative spectrum sensing in cognitive radios. In Proceedings of the IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications. 2011. DOI: 10.1109/SPAWC.2011.5990482
  18. GHASEMI, A., SOUSA, E. S. Optimization of spectrum sensing for opportunistic spectrum access in cognitive radio networks. In Proceedings of the 4th IEEE Consumer Communications and Networking Conference. 2007. DOI: 10.1109/CCNC.2007.206
  19. ATAPATTU, S., et al. Energy detection based cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 4, p. 1232–1241. DOI: 10.1109/TWC.2011.012411.100611
  20. MALEKI, S., CHEPURI, S. P., LEUS, G. Optimization of hard fusion based spectrum sensing for energy-constrained cognitive radio networks. Physical Communication, 2016, vol. 9, p. 193–198. DOI: 10.1016/j.phycom.2012.07.003
  21. ALTHUNIBAT, S., RENZO, M. D., GRANELLI, F. Cooperative spectrum sensing for cognitive radio networks under limited time constraints. Computer Communications, 2014, vol. 43, p. 55–63. DOI: 10.1016/j.comcom.2014.02.001
  22. AHSANT, B., VISWANATHAN, R. A review of cooperative spectrum sensing in cognitive radios. Advancement in Sensing Technology, 2013, p. 69–80. DOI: 10.1007/978-3-642-32180-1_4

Keywords: Cognitive Radio; Cognitive Radio Networks; Collaborative Spectrum Sensing; Performance Estimation.

P.Kavitha, S.Shanmugavel [references] [full-text] [DOI: 10.13164/re.2018.0313] [Download Citations]
Analytical Evaluation of Chunk-Based Tractable Multi-cell OFDMA system

This paper evaluates thoroughly the performance of multi-cell OFDMA system. The two types of deployment in multi-cell OFDMA system, such as Strict Fractional Frequency Reuse (FFR) and Soft FFR (SFR) were evaluated. In order to model the base station locations, homogeneous Poisson point processes were used, i.e. tractable model instead of hexagonal grid was considered. In order to reduce complexity, chunk-based resource allocation scheme was embedded. Each cell divides the users into the users of the central cell area and the users of the cell edge area according to their average received Signal to Interference and Noise Ratio (SINR) compared with FFR threshold. The primary stage of the analysis includes the spectral efficiency’s expression deriving from these two deployment scenarios, followed by the analysis with the use of coverage probability. However, the improvement of spectral efficiency is achieved in the case of SFR. On the contrary, coverage probability is far improved by using strict FFR scheme. Through numerical anaysis, We have shown that the optimal FFR threshold to achieve the highest spectral efficiency was 12 dB for both Strict FFR as well as SFR.

  1. ASTELY, D., DAHLMAN, E., FURUSKAR, A., et al. LTE: The evolution of mobile broadband. IEEE Communications Magazine, 2009, vol. 47, no. 4, p. 44–51. DOI: 10.1109/MCOM.2009.4907406
  2. LI, G., LIU, H. Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communication, 2006, vol. 5, no. 12, p. 3451–3459. DOI: 10.1109/TWC.2006.256968
  3. POLAK, L., KALLER, O., KLOZAR, L., et al. Mobile communication networks and digital television broadcasting systems in the same frequency bands: Advanced co-existence scenarios. Radioengineering, 2014, vol. 23, no. 1, p. 375–386. ISSN: 1210-2512
  4. MILOS, J., POLAK, L., HANUS, S., et al. Wi-Fi influence on LTE downlink data and control channel performance in shared frequency bands. Radioengineering, 2017, vol. 26, no. 1, p. 201–210. DOI: 10.13164/re.2017.0201
  5. FOROUZAN, N., GHORASHI, S. Resource allocation for downlink Multi-Cell OFDMA cognitive radio network using hungarian method. Radioengineering, 2013, vol. 22, no. 4, p. 1117–1127. ISSN: 1210- 2512
  6. GHAFFAR, R., KNOPP, R. Interference suppression strategy for cell-edge users in the downlink. IEEE Transactions on Wireless Communications, 2009, vol. 11, no. 1, p. 154–165. DOI: 10.1109/TWC.2011.111211.101921
  7. ALI, S. H., LEUNG, V. C. M. Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 8, p. 4286–4295. DOI: 10.1109/TWC.2009.081146
  8. SOUMAYA, H., CHOONGIL, Y., JIHYUNG, K., et al. Dynamic hard fractional frequency reuse for Mobile WiMAX. In Proceedings of the IEEE International Conference on Pervasive Computing and Communication. 2009, p. 1-6. DOI: 10.1109/PERCOM.2009.4912869
  9. ZHU, H., KARACHONTZITIS, S., TOUMPAKARIS, D. Lowcomplexity resource allocation and its application to distributed antenna systems. IEEE Wireless Communications, 2010, vol. 17, no. 3, p. 44–50. DOI: 10.1109/MWC.2010.5490978
  10. ZHU, H., WANG, J. Chunk-based resource allocation in OFDMA systems- part I: Chunk allocation. IEEE Transactions on Communications, 2009, vol. 57, no. 9, p. 2734–2744. DOI: 10.1109/TCOMM.2009.09.080067
  11. PAPOUTSIS, V. D., KOTSOPOULOS, S. A. Chunk-based resource allocation in distributed MISO-OFDMA systems with fairness guarantee. IEEE Communications Letters, 2011, vol. 15, no. 4, p. 377– 379. DOI: 10.1109/LCOMM.2011.020111.102273
  12. ZHU, H., WANG, J. Chunk-based resource allocation in OFDMA systems-part II: Joint chunk, power and bit allocation. IEEE Transactions on Communications, 2012, vol. 60, no. 2, p. 499–509. DOI: 10.1109/TCOMM.2011.112811.110036
  13. JUTHATIP, W., WIROONSAK, S. Chunk-based subcarrier assignment with power allocation and rate constraints for downlink OFDMA. In Proceedings of the International Symposium on Communication and Information Technologies. 2014, p. 494–498. DOI: 10.1109/ISCIT.2014.7011962
  14. SHEN, Z., ANDREWS, J. G., EVANS, B. L. Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 2005, vol. 4, no. 6, p. 2726–2730. DOI: 10.1109/TWC.2005.858010
  15. LI, J., SHROFF, N., CHONG, E. A reduced-power channel reuse scheme for wireless packet cellular networks. IEEE/ACM Transactions Networking, 1999, vol. 7, no. 6, p. 818–832. DOI: 10.1109/90.811448
  16. VARAHRAM, P., ALI, B. M. A low complexity partial transmit sequence for peak to average power ratio reduction in OFDM systems. Radioengineering, 2011, vol. 20, no. 3, p. 677–682. ISSN: 1210-2512
  17. CHRONOPOULOS, S. K., TATSIS, G., RAPTIS, V., et al. Enhanced PAPR in OFDM without deteriorating BER performance. International Journal of Communications, Network and System Sciences, 2011, vol. 4, p. 164–169. DOI: 10.4236/ijcns.2011.43020
  18. CHRONOPOULOS, S. K., CHRISTOFILAKIS, V., TATSIS, G., et al. Reducing peak-to-average power ratio of a Turbo coded OFDM. Wireless Engineering and Technology, 2012, vol. 3, p. 195–202. DOI: 10.4236/wet.2012.34028
  19. GAO, N., WANG, X. Optimal subcarrier-chunk scheduling for wireless OFDMA systems. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 7, p. 2116–2123. DOI: 10.1109/TWC.2011.050511.100458
  20. CHUNG, S. T., GOLDSMITH, A. J. Degrees of freedom in adaptive modulation: A unified view. IEEE Transactions on Communications, 2001, vol. 49, no. 9, p. 1561–1571. DOI: 10.1109/26.950343
  21. GONZALEZ, D., GARCIA-LOZANO, M., RUIZ, S., et al. An analytical view of static intercell interference coordination techniques in OFDMA networks. In Proceedings of the IEEE Wireless Communications and Networking Conference. 2012, p. 300–305. DOI: 10.1109/WCNCW.2012.6215510
  22. ZHU, H., WANG, J. Performance analysis of chunk-based resouynamicrce allocation in Multi-Cell OFDMA systems. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 2, p. 367– 375. DOI: 10.1109/JSAC.2014.141216
  23. HAENGGI, M., ANDREWS, J. G., BACELLI, F., et al. Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 2009, vol. 27, no. 7 , p. 1029–1046. DOI: 10.1109/JSAC.2009.090902
  24. ANDREWS, J. G., BACCELLI, F., GANTI, R. K. A new tractable model for cellular coverage. In Proceedings of the Allerton Conference on Communication, Control, and Computing. 2010, p. 1204– 1211. DOI: 10.1109/ALLERTON.2010.5707051
  25. GANTI, R. K., BACCELLI, F., ANDREWS, J. G. A new way of computing rate in cellular networks. In Proceedings of the IEEE International Conference on Communications. 2011, p. 1–5. DOI: 10.1109/icc.2011.5962727
  26. NOVLAN, T. D., GANTI, R. K., GHOSH, A., et al. Analytical evaluation of fractional frequency reuse for OFDMA cellular networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 12, p. 1–12. DOI: 10.1109/TWC.2011.100611.110181
  27. AHMED, J. Spectral efficiency comparison of OFDM and MCCDMA with carrier offset. Radioengineering, 2017, vol. 26, no. 1, p. 221–226. DOI: 10.13164/re.2017.0221
  28. SUNG, N., STOYAN, D., KENDALL, et.al. Stochastic Geometry and its Applications. 3rd ed., John Wiley & Sons, 2013. ISBN: 978- 0-470-66481-0
  29. ZHU, H., RAY LIU, K. J. Resource Allocation for Wireless Networks: Basics, Techniques, and Applications. 1st ed., Cambridge University Press, 2008. ISBN: 9780511619748
  30. CHANG, R., TAO, Z., ZHANG, J., et al. A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks. In Proceedings of the IEEE International conference on Communications. 2009, p. 1–6. DOI: 10.1109/ICC.2009.5198612
  31. SADR, S., ADVE, R. S. Partially-distributed resource allocation in small-cell networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 12, p. 6851–6862. DOI: 10.1109/TWC.2014.2327030
  32. GAJEWSKI, S. Soft- partial frequency reuse method for LTEA. Radioengineering, 2017, vol. 26, no. 1, p. 359-368. DOI: 10.13164/re.2017.0359
  33. KAWSER, M. T., ISLAM, M. R., AHMED, K. I., et al. Efficient resource allocation and sectorization for fractional frequency reuse (FFR) in LTE femtocell systems. Radioengineering, 2015, vol. 24, no. 4, p. 940–947. DOI: 10.13164/re.2015.0940
  34. KAVITHA, P., SHANMUGAVEL, S. Spectral efficiency analysis of Multi-Cell OFDMA system with sectoring. ICTACT Journal on Communication Technology, 2017, vol. 8, no. 1, p. 1443–1446. DOI: 10.21917/ijct.2017.0213

Keywords: Chunk,Spectral Efficiency, Coverage Probability,Multi-Cell OFDMA, Resource Allocation, Frequency Reuse, Poisson Model.

N.Zhao, X.F.Chi, L.L.Zhao, Y.H.Zhu [references] [full-text] [DOI: 10.13164/re.2018.0326] [Download Citations]
A Spectrum Efficient Self-Admission Framework for Coexisting IEEE 802.15.4 Networks under Heterogeneous Traffics

Due to the limited bandwidth resource and the interference among networks, it is challengeable to coordinate the bandwidth resource of multiple IEEE 802.15.4-based wireless personal area networks (WPANs) with heterogeneous traffics, especially in a distributed mode. In this paper, to handle this problem, we first propose a renewal carrier sense multiple access (CSMA)-based self-admission access mechanism for coexisting WPANs in order to maximize the frequency resource utilization and satisfy the diverse rate requirements of heterogeneous traffics. Secondly, we propose the time-space-hard core point process (TS-HCPP) to abstract the renewal CSMA-based self-admission access process for the IEEE 802.15.4 network with multi-channels. TS-HCPP considers the correlation of time and space, and appropriately judges the strong interference between coexisting WPANs, which can solve the density underestimation problems of traditional HCPP. Finally, relying on the TS-HCPP, we obtain the optimum combination of access parameters, which meets the minimum service rate requirements for heterogeneous traffics and maximizes the frequency resource utilization. The simulation results show that the density of coexisting WPANs evaluated by the TS-HCPP matches the experimental results, and an improvement in spectral efficiency of coexisting WPANs can be achieved in our proposed self-admission framework.

  1. Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). IEEE standard 802.15.4-2006 part 15.4. ISBN: 0-7381-4996-9 SH95552
  2. SVECOVA, M., KOCUR, D. Time of arrival complementing method for cooperative localization of a target by two-node UWB sensor network. Radioengineering, 2016, vol. 25, no. 3, p. 602-611. DOI: 10.13164/re.2016.0602
  3. HATAMIAN, M., BARDMIL, M.A., ASADBOLAND, M., et al. Congestion-aware routing and fuzzy-based rate controller for wireless sensor networks. Radioengineering, 2016, vol. 25, no. 1, p. 114–123. DOI: 10.13164/re.2016.0114
  4. KENYERES, M., KENYERES, J., SKORPIL, V. Split distributed computing in wireless sensor networks. Radioengineering, 2015, vol. 24, no. 3, p. 749–756. DOI: 10.13164/re.2015.0749
  5. LUONG, P., NGUYEN, T. M., LE, L. B. Throughput analysis for coexisting IEEE 802.15.4 and 802.11 networks under unsaturated traffic. Eurasip Journal on Wireless Communications and Networking, 2016:127, 14 p. DOI: 10.1186/s13638-016-0586-4
  6. VATTI, R. A., GAIKWAD, A. N. Frame converter for cooperative coexistence between IEEE 802.15.4 wireless sensor networks and Wi-Fi. In Proceedings of the 3rd International Conference on Advanced Computing, Networking and Informatics (ICACNI). India, 2016, p. 151–157. DOI: 10.1007/978-81-322-2529-4_16
  7. KIM, T.H., HA, J.Y., CHOI, S. Improving spectral and temporal efficiency of collocated IEEE 802.15.4 LR-WPANs. IEEE Transactions on Mobile Computing, 2009, vol. 8, no. 12, p. 1596 to 1609. DOI: 10.1109/TMC.2009.85
  8. ELSAWY, H., HOSSAIN, E., CAMORLINGA, S. A distributed spectrum sharing method for improving coexistence of IEEE 802.15.4 networks. In Proceedings of the 54th Annual IEEE Global Telecommunications Conference (GLOBECOM). Houston (USA), 2011, p. 1–5. DOI: 10.1109/GLOCOM. 2011.6133612
  9. LIU, R., WANG, Y., WU, S., et al. Energy efficiency and area spectral efficiency tradeoff for coexisting wireless body sensor networks. Science China-Information Sciences, 2016, vol. 59, no. 12, p. 122311:1–15. DOI: 10.1007/s11432-016-0320-1
  10. LIU, R., WANG, Y., SHU, M., et al. Throughput assurance of wireless body area networks coexistence based on stochastic geometry. Plos One, 2016, vol. 12, no.1, p. e0171123:1–22. DOI: 10.1371/journal. pone.0171123
  11. ELASWY, H., HOSSAIN, E., CAMORLINGA, S. Spectrumefficient multi-channel design for coexisting IEEE 802.15. 4 networks: a stochastic geometry approach. IEEE Transactions on Mobile Computing, 2014, vol. 13, no. 7, p. 1611–1624. DOI: 10.1109/TMC.2013.123
  12. HA, J.Y., KIM, T.H., HONG, S.P., et al. An enhanced CSMA-CA algorithm for IEEE 802.15.4 LR-WPANs. IEEE Communications Letters, 2007, vol. 11, no. 5, p. 461–463. DOI: 10.1109/LCOMM. 2007.061891
  13. ELSAWY, H., HOSSAIN, E. Modeling random CSMA wireless networks in general fading environments. In Proceedings of 2012 IEEE International Conference on Communications (ICC). Ottawa (Canada), 2012, p. 5457–5461. DOI: 10.1109/ICC.2012.6364571
  14. ELSAWY, H., HOSSAIN, E. A modified hard core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Transactions on Communications, 2013, vol. 61, no. 4, p. 1520–1534. DOI: 10.1109/TCOMM.2013.020813.120594
  15. LEI, T., WEN, X., LU, Z., et al. A modified Matern hard core point process for modeling and analysis of dense IEEE 802.11 networks. In Proceedings of the 13th International Symposium on Wireless Communication Systems (ISWCS). Poznan (Poland), 2016, p. 608–612. DOI: 10.1109/ISWCS.2016.7600976
  16. WEBER, S.P., YANG, X., ANDREWS, J.G., et al. Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 2005, vol. 51, no. 12, p. 4091–4102. DOI: 10.1109/TIT.2005.858939
  17. BACCELLI, F., BLASZCZYSZYN, B., MUHLETHALER, P. Stochastic analysis of spatial and opportunistic aloha. IEEE Journal on Selected Areas in Communications, 2009, vol. 27, no. 7, p. 1105–1119. DOI: 10.1109/JSAC.2009.090908
  18. KAYNIA, M., JINDAL, N., OIEN, G.E. Improving the performance of wireless ad hoc networks through MAC layer design. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 1, p. 240–252. DOI: 10.1109/TWC.2010.110310.100316
  19. KIM, Y., HWANG, G. Design and analysis of medium access protocol: throughput and short-term fairness perspective. IEEE/ACM Transactions on Networking, 2015, vol. 23, no. 3, p. 959–975. DOI: 10.1109/TNET.2014.2310815
  20. KIM, Y., HWANG, G., UM, J., et al. Throughput performance optimization of super dense wireless networks with the renewal access protocol. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 5, p. 3440–3451. DOI: 10.1109/TWC.2016.2521648
  21. WEBER, S., ANDREWS, J.G., JINDAL, N. An overview of the transmission capacity of wireless networks. IEEE Transactions on Communications, 2010, vol. 58, no. 12, p. 3593–3604. DOI: 10.1109/TCOMM.2010.093010.090478

Keywords: Coexisting IEEE 802.15.4 network, time-space-hard core point process (TS-HCPP), spectral efficiency, renewal carrier sense multiple access (CSMA)-based self-admission process

Qiang DU, Yaoliang SONG, Zeeshan AHMAD [references] [full-text] [DOI: 10.13164/re.2018.0335] [Download Citations]
Fractional Delayer Utilizing Hermite Interpolation with Caratheodory Representation

Fractional delay is indispensable for many sorts of circuits and signal processing applications. Fractional delay filter (FDF) utilizing Hermite interpolation with an analog differentiator is a straightforward way to delay discrete signals. This method has a low time-domain error, but a complicated sampling module than the Shannon sampling scheme. A simplified scheme, which is based on Shannon sampling and utilizing Hermite interpolation with a digital differentiator, will lead a much higher time-domain error when the signal frequency approaches the Nyquist rate. In this letter, we propose a novel fractional delayer utilizing Hermite interpolation with Caratheodory representation. The samples of differential signal are obtained by Caratheodory representation from the samples of the original signal only. So, only one sampler is needed and the sampling module is simple. Simulation results for four types of signals demonstrate that the proposed method has significantly higher interpolation accuracy than Hermite interpolation with digital differentiator.

  1. SIVANAND, S., YANG, J. F., KAVEH, M. Focusing filters for wide-band direction finding. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 2, p. 437–445. DOI: 10.1109/78.80827
  2. KROON, P., ATAL, B. S. On the use of pitch predictors with high temporal resolution. IEEE Transactions on Signal Processing, 1991, vol. 39, no. 3, p. 733–735. DOI: 10.1109/78.80859
  3. DENG, T.-B., SOONTORNWONG, P. Delay-error-constrained minimax design of all-pass variable-fractional-delay digital filters. Signal Processing, 2016, vol. 120, p. 438–447. DOI: 10.1016/j.sigpro.2015.10.002
  4. DENG, T.-B., QIN, W. Improved bi-equiripple variable fractional delay filters. Signal Processing, 2014, vol. 94, no. 1, p. 300–307. DOI: 10.1016/j.sigpro.2013.07.004
  5. SOONTORNWONG, P., CHIVAPREECHA, S. Pascalinterpolation-based non-integer delay filter and low-complexity realization. Radioengineering, 2015, vol. 24, no. 4, p. 1002–1012. DOI: 10.13164/re.2015.1002
  6. LAAKSO, T. I., VALIMAKI, V., KARJALAINEN, M., et al. Splitting the unit delay-tools for fractional delay filter design. IEEE Signal Processing Magazine, 1996, vol. 13, no. 1, p. 30–60. DOI: 10.1109/79.482137
  7. YU, Y.-J., XU W.-J. Investigation on the optimization criteria for the design of variable fractional delay filters. IEEE Transactions on Circuits and System II: Express Briefs, 2013, vol. 60, no. 8, p. 522–526. DOI: 10.1109/TCSII.2013.2268239
  8. TSENG, C.-C., LEE S.-L. Design of wideband fractional delay filters using derivative sampling method. IEEE Transactions on Circuits and System I: Regular Papers, 2010, vol. 57, no. 8, p. 2087–2098. DOI: 10.1109/TCSI.2009.2037451
  9. TSENG, C.-C., LEE S.-L. Design of fractional delay filter using Hermite interpolation method. IEEE Transactions on Circuits and System I: Regular Papers, 2012, vol. 59, no. 7, p. 1458–1471. DOI: 10.1109/TCSI.2011.2177136
  10. BEYLKIN, G., MONZON, L. On generalized Gaussian quadratures for exponentials and their applications. Applied and Computational Harmonic Analysis, 2002, vol. 23, no. 3, p. 332–373. DOI: 10.1006/acha.2002.0380
  11. BEYLKIN, G., MONZON, L. On approximation of functions by exponential sums. Applied and Computational Harmonic Analysis. 2005, vol. 19, no. 1, p. 17–48. DOI: 10.1016/j.acha.2005.01.003
  12. HORN, R. A., JOHNSON, C. R. Matrix Analysis. Rev. New York (USA): Cambridge University Press, 1985. ISBN: 0521305861

Keywords: Delayer, fractional delay, Hermite interpolation, Caratheodory representation

K. Ulovec, M. Smutny [references] [full-text] [DOI: 10.13164/re.2018.0342] [Download Citations]
Perceived Audio Quality Analysis in Digital Audio Broadcasting Plus System Based on PEAQ

Broadcasters need to decide on bitrates of the services in the multiplex transmitted via Digital Audio Broadcasting Plus system. The bitrate should be set as low as possible for maximal number of services, but with high quality, not lower than in conventional analog systems. In this paper, the objective method Perceptual Evaluation of Audio Quality is used to analyze the perceived audio quality for appropriate codecs --- MP2 and AAC offering three profiles. The main aim is to determine dependencies on the type of signal --- music and speech, the number of channels --- stereo and mono, and the bitrate. Results indicate that only MP2 codec and AAC Low Complexity profile reach imperceptible quality loss. The MP2 codec needs higher bitrate than AAC Low Complexity profile for the same quality. For the both versions of AAC High-Efficiency profiles, the limit bitrates are determined above which less complex profiles outperform the more complex ones and higher bitrates above these limits are not worth using. It is shown that stereo music has worse quality than stereo speech generally, whereas for mono, the dependencies vary upon the codec/profile. Furthermore, numbers of services satisfying various quality criteria are presented.

  1. BODSON, D. Digital audio around the world. IEEE Vehicular Technology Magazine, 2010, vol. 5, no. 4, p. 24–30. DOI: 10.1109/MVT.2010.939105
  2. BERG, J., BUSTAD, C., JONSSON, L., et al. Perceived audio quality of realistic FM and DAB+ radio broadcasting systems. Journal of the Audio Engineering Society, 2013, vol. 61, no. 10, p. 755–777.
  3. GILSKI, P., STEFANSKI, J. Subjective and objective comparative study of DAB plus broadcast system. Archives of Acoustics, 2017, vol. 42, no. 1, p. 3–11. DOI: 10.1515/aoa-2017-0001
  4. POCTA, P., BEERENDS, J. G. Subjective and objective assessment of perceived audio quality of current digital audio broadcasting systems and web-casting applications. IEEE Transactions on Broadcasting, 2015, vol. 61, no. 3, p. 407–415. DOI: 10.1109/TBC.2015.2424373
  5. MANOUSELIS, N., KARAMPIPERIS, P., VARDIAMBASIS, I. O., et al. Digital audio and internet radio broadcasting systems under a QoS perspective. In Proceedings of the 4th WSEAS International Conference on Telecommunications and Informatics. Prague (Czech Republic), 2005, p. 1–6. ISBN: 960-8457-11-4
  6. LEE, S., LEE, Y.-T., SEO, J., et al. An audio quality evaluation of commercial digital radio systems. IEEE Transactions on Broadcasting, 2011, vol. 57, no. 3, p. 629–635. DOI: 10.1109/TBC.2011.2152910
  7. ETSI ETSI Standard EN 300 401 V2.1.1. Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers. 2017.
  8. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, GENEVA, SWITZERLAND. ISO/IEC 11172-3:1993 Information Technology – Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1,5 Mbit/s – Part 3: Audio.
  9. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, GENEVA, SWITZERLAND. ISO/IEC 13818-3:1998 Information Technology – Generic Coding of Moving Pictures and Associated Audio Information – Part 3: Audio.
  10. ETSI ETSI Specification TS 103 466 V1.1.1. Digital Audio Broadcasting (DAB); DAB audio coding (MPEG Layer II). 2016.
  11. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, GENEVA, SWITZERLAND. ISO/IEC 13818-7:1997 Information Technology – Generic Coding of Moving Pictures and Associated Audio Information – Part 7: Advanced Audio Coding (AAC).
  12. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION, GENEVA, SWITZERLAND. ISO/IEC 14496-3:1999 Information Technology – Coding of Audio-visual Objects – Part 3: Audio.
  13. ETSI ETSI Specification TS 102 563 V2.1.1. Digital Audio Broadcasting (DAB); DAB+ Audio Coding (MPEG HE-AACv2). 2016.
  14. MELTZER, S., MOSER, G. HE-AAC v2 - audio coding for today’s digital media world. EBU Technical Review, 2006, p. 37–48.
  15. ITU TELECOMMUNICATION STANDARDIZATION SECTOR, GENEVA SWITZERLAND. Mean Opinion Score (MOS) Terminology. Recommendation ITU-T P.800.1. 2016. Approved in 2016-07- 29.
  16. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Methods for the Subjective Assessment of Small Impairments in Audio Systems. Recommendation ITU-R BS.1116. 1994–2015. Approved in 2015-02-04.
  17. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for the Subjective Assessment of Intermediate Quality Levels of Coding Systems. Recommendation BS.1534. 2001–2015. Approved in 2015-10.
  18. RUND, F., KHADDOUR, H., SCHIMMEL, J., et al. Objective quality assessment for the acoustic zoom. In Proceedings of the 38th International Conference on Telecommunications and Signal Processing (TSP 2015). Prague (Czech Republic), 2015, p. 392–396. DOI: 10.1109/TSP.2015.7296290
  19. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for Objective Measurements of Perceived Audio Quality. Recommendation ITU-R BS.1387-1. 1998–2001. Approved in 2001-11-24.
  20. HOLTERS, M., ZOLZER, U. GSTPEAQ - An open source implementation of the PEAQ algorithm. In Proceedings of the 18th International Conference on Digital Audio Effects (DAFx-15). Trondheim (Norway), 2015, p. 181–184. ISSN: 2413-6689
  21. OPTICOM. OPERA User Manual Version 3.5. 204 pages. [Online] Cited 2017-08-10. Available at: http://www.opticom.de/download/OperaManual3.5.pdf
  22. HINES, A., GILLEN, E., KELLY, D., et al. ViSQOLAudio: An objective audio quality metric for low bitrate codecs. Journal of the Acoustical Society of America, 2015, vol. 137, no. 6, p. 449–455. DOI: 10.1121/1.4921674
  23. EUROPEAN BROADCASTING UNION, GENEVA, SWITZERLAND. EBU Evaluations of Multichannel Audio Codecs, Phase 3. EBU Tech 3339. March 2010.

Keywords: Objective audio quality assessment, Digital Audio Broadcasting Plus (DAB+), Perceptual Evaluation of Audio Quality (PEAQ), MP2, AAC codec family, number of services