ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

September 2023, Volume 32, Number 3 [DOI: 10.13164/re.2023-3]

Show all Hide all

D. Chen, S. Xiong, L. Guo [references] [full-text] [DOI: 10.13164/re.2023.0299] [Download Citations]
Research on Detection Method for Tunnel Lining Defects Based on DCAM-YOLOv5 in GPR B-Scan

This paper presents a detection method of DCAM-YOLOv5 for ground penetrating radar (GPR) to address the difficulty of identifying complex and multi-type defects in tunnel linings. The diversity of tunnel-lining defects and the multiple reflections and scattering caused by water-bearing defects make GPR images quite complex. Although existing methods can identify the position of underground defects from B-scans, their classification accuracy is not high. The DCAM-YOLOv5 adopts YOLOv5 as the baseline model and integrates deformable convolution and convolutional block attention module (CBAM) without adding a large number of parameters to improve the adaptive learning ability for irregular geometric shapes and boundary fuzzy defects. In this study, dielectric constant models of tunnel linings are established based on the electromagnetic simulation software (GPRMAX), including rebar and various structural defects. The simulated and field GPR B-scan images show that the DCAM-YOLOv5 method has better results for detecting different types of defects than other methods, which validates the effectiveness of the proposed detection method.

  1. JIANG, Y. J., ZHANG, X. P., TANIGUCHI, T. Quantitative condition inspection and assessment of tunnel lining. Automation in Construction, 2019, vol. 102, p. 258–269. DOI: 10.1016/j.autcon.2019.03.001
  2. YE, F., QIN, N., LIANG, X., et al. Analyses of the defects in highway tunnels in China. Tunnelling and Underground Space Technology, 2021, vol. 107, p. 1–17. DOI: 10.1016/j.tust.2020.103658
  3. TESIC, K., BARICEVIC, A., SERDAR, M. Non-destructive corrosion inspection of reinforced concrete using ground-penetrating radar: A review. Materials, 2021, vol. 14, no. 4, p. 1–20. DOI: 10.3390/ma14040975
  4. GOMEZA, J., CASAS, J. R., VILLALBA, S. Structural health monitoring with distributed optical fiber sensors of tunnel lining affected by nearby construction activity. Automation in Construction, 2020, vol. 117, p. 1–18. DOI: 10.1016/j.autcon.2020.103261
  5. MURTHY, A. R., PUKAZHENDHI, D., VISHNUVARDHAN, S., et al. Performance of concrete beams reinforced with GFRP bars under monotonic loading. Structures, 2020, vol. 27, p. 1274–1288. DOI: 10.1016/j.istruc.2020.07.020
  6. LEI, M. F., LIU, L. H., SHI, C. H., et al. A novel tunnel-lining crack recognition system based on digital image technology. Tunnelling and Underground Space Technology, 2021, vol. 108, p. 1–13. DOI: 10.1016/j.tust.2020.103724
  7. ASADI, P., GINDY, M., ALVAREZ, M., et al. A computer vision based rebar detection chain for automatic processing of concrete bridge deck GPR data. Automation in Construction, 2020, vol. 112, p. 1–12. DOI: 10.1016/j.autcon.2020.103106
  8. LOUPOS, K., DOULAMIS, A. D., STENTOUMIS, C., et al. Autonomous robotic system for tunnel structural inspection and assessment. International Journal of Intelligent Robotics and Applications, 2018, vol. 2, no. 1, p. 43–66. DOI: 10.1007/s41315-017-0031-9
  9. OKAZAKI, Y., OKAZAKI, S., ASAMOTO, S., et al. Applicability of machine learning to a crack model in concrete bridges. Computer-Aided Civil and Infrastructure Engineering, 2020, vol. 35, no. 8, p. 775–792. DOI: 10.1111/mice.12532
  10. LEI, W., HOU, F., XI, J., et al. Automatic hyperbola detection and fitting in GPR B-scan image. Automation in Construction, 2019, vol. 106, p. 1–14. DOI: 10.1016/j.autcon.2019.102839
  11. TAKAHIRO, Y., TSUKASA, M. Detection and localization of manhole and joint covers in radar images by support vector machine and Hough transform. Automation in Construction, 2021, vol. 126, p. 1–12. DOI: 10.1016/j.autcon.2021.103651
  12. LEE, K. L., MOKJI, M. M. Automatic target detection in GPR images using histogram of oriented gradients (HOG). In 2nd International Conference on Electronic Design (ICED). Penang (Malaysia), 2014, p. 181–186. DOI: 10.1109/ICED.2014.7015795
  13. NOREEN, T., KHAN, U. S. Using pattern recognition with HOG to automatically detect reflection hyperbolas in ground penetrating radar data. In International Conference on Electrical and Computing Technologies and Applications (ICECTA). Ras Al Khaimah (United Arab Emirates), 2017, p. 1–6. DOI: 10.1109/ICECTA.2017.8252064
  14. MERTENS, L., PERSICO, R., MATERA, L., et al. Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium. IEEE Transactions on Geoscience and Remote Sensing, 2016, vol. 54, no. 1, p. 580–596. DOI: 10.1109/TGRS.2015.2462727
  15. PEER, U., DY, J. G. Automated target detection for geophysical applications.IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 3, p. 1563–1572. DOI: 10.1109/TGRS.2016.2627245
  16. ZHOU, Z., ZHANG, J., GONG, C. Automatic detection method of tunnel lining multi- defects via an enhanced you only look once network. Computer-Aided Civil and Infrastructure Engineering, 2022, vol. 37, no. 6, p. 762–780. DOI: 10.1111/ mice.12836
  17. KIM, N., KIM, K., AN, Y. K., et al. Deep learning-based underground object detection for urban road pavement. International Journal of Pavement Engineering, 2020, vol. 21, no. 13, p. 1638–1650. DOI: 10.1080/10298436.2018.1559317
  18. PARK, S., KIM, J., JEON, K., et al. Improvement of GPR-based rebar diameter estimation using YOLO-v3. Remote Sensing, 2021, vol. 13, no. 10, p. 1–12. DOI: 10.3390/rs13102011
  19. YANG, J., SONG, F. B., ZHANG, P. L., et al. Application of deep learning in ground penetrating radar image recognition. In International Conference on Artificial Intelligence (CAIBDA). Xi’an (China), 2021, p. 16–20. DOI: 10.1109/CAIBDA53561.2021.00011
  20. LI, S. W., GU, X. Y., XU, X. G., et al. Detection of concealed cracks from ground penetrating radar images based on deep learning algorithm. Construction and Building Materials, 2021, vol. 273, p. 1–14. DOI: 10.1016/j.conbuildmat.2020.121949
  21. CHEN, L. J., YAO, H. D., FU, J. Y., et al. The classification and localization of crack using lightweight convolutional neural network with CBAM. Engineering Structures, 2023, vol. 275, no. B, p. 1–16. DOI: 10.1016/j.engstruct.2022.115291
  22. HUANG, F. Q., CHEN, M., FENG, G. F. Improved YOLO object detection algorithm based on deformable convolution. (in Chinese). Computer Engineering, 2021, vol. 47, no. 10, p. 269–275, 282. DOI: 10.19678/j.issn.1000-3428.0059096
  23. KAUR, P., DANA, K. J., ROMERO, F. A., et al. Automated GPR rebar analysis for robotic bridge deck evaluation. IEEE Transactions on Cybernetics, 2015, vol. 46, no. 10, p. 2265–2276. DOI: 10.1109/TCYB.2015.2474747
  24. CHEN, I. X. Y. GPR-Data-Classifier. [Online]. Available at: https://github.com/irenexychen/gpr-data-classifier
  25. ZHOU, X. R., CHEN, H. H., LI, J. L., et al. An automatic GPR B-scan image interpreting model. IEEE Transactions on Geoscience and Remote Sensing, 2018, vol. 56, no. 6, p. 3398–3412. DOI: 10.1109/TGRS.2018.2799586
  26. WANG, X. Y., CHEN, L., BAN, T. Y., et al. Accurate label refinement from multiannotator of remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 2023, vol. 61, p. 1–13. DOI: 10.1109/TGRS.2023.3241402
  27. WOO, S., PARK, J., LEE, J., et al. CBAM: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV). Munich (Germany), 2018, p. 3–19. DOI: 10.1007/978-3-030-01234-2_1

Keywords: Ground penetrating radar, tunnel-lining defects, YOLOv5, deformable convolution, CBAM, GPRMAX

R. Mutlu, T. D. Kumru [references] [full-text] [DOI: 10.13164/re.2023.0312] [Download Citations]
A Zeno Paradox: Some Well-known Nonlinear Dopant Drift Memristor Models Have Infinite Resistive Switching Time

There are nonlinear drift memristor models utilizing window functions in the literature. The resistive memories can also be modeled using memristors. If the memristor’s resistance switches from its minimum value to its maximum value or from its maximum value to its minimum value, the transition phenomenon is called resistive or memristive switching. The value of the time required for this transition is especially important for resistive computer memory applications. The switching time is measured by experiments and should be calculatable from the parameters of the memristor model used. In the literature, to the best of our knowledge, the resistive switching times have not been calculated except for the HP memristor model and a piecewise linear memristor model. In this study, the memristive switching times of some of the well-known memristor models using a window function are calculated and found to be infinite. This is not feasible according to the experiments in which a finite memristive switching time is reported. Inspired by these results, a new memristor window function that results in a finite switching time is proposed. The results of this study and the criteria given here can be used to make more realistic memristor models in the future.

  1. CHUA, L. O. Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  2. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  3. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., et al. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. DOI: 10.1038/nature06932
  4. WILLIAMS, R. S. How we found the missing memristor. IEEE Spectrum, 2008, vol. 45, no. 12, p. 28–35. DOI: 10.1109/MSPEC.2008.4687366
  5. PRODROMAKIS, T., TOUMAZOU, C. A review on memristive devices and applications. In 17th IEEE International Conference on Electronics, Circuits and Systems. Athens (Greece), 2010, p. 934–937. DOI: 10.1109/ICECS.2010.5724666
  6. PERSHIN, Y. V., DI VENTRA, M. Memory effects in complex materials and nanoscale systems. Advances in Physics, 2011, vol. 60, no. 2, p. 145–227. DOI: 10.1080/00018732.2010.544961
  7. CHUA, L. O. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  8. DOMARADZKI, J., WOJCIESZAK, D., KOTWICA, T., et al. Memristors: A short review on fundamentals, structures, materials and applications. International Journal of Electronics and Telecommunications, 2020, vol. 66, no. 2, p. 373–381. DOI: 10.24425/ijet.2020.131888
  9. HU, S. G., WU, S. Y., JIA, W. W., et al. Review of nanostructured resistive switching memristor and its applications. Nanoscience and Nanotechnology Letters, 2014, vol. 6, no. 9, p. 729–757. DOI: 10.1166/nnl.2014.1888
  10. MAZUMDER, P., KANG, S. M., WASER, R. Memristors: Devices, models, and applications. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1911–1919. DOI: 10.1109/JPROC.2012.2190812
  11. SHIN, S., KIM, K., KANG, S. M. Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 2011, vol. 10, no. 2, p. 266–274. DOI: 10.1109/TNANO.2009.2038610
  12. THOMAS, A. Memristor-based neural networks. Journal of Physics D: Applied Physics, 2013, vol. 46, no. 9, p. 1–12. DOI: 10.1088/0022-3727/46/9/093001
  13. PERSHIN, Y. V., DI VENTRA, M. Practical approach to programmable analog circuits with memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, vol. 57, no. 8, p. 1857–1864. DOI: 10.1109/TCSI.2009.2038539
  14. WEY, T. A., JEMISON, W. D. Variable gain amplifier circuit using titanium dioxide memristors. IET Circuits, Devices and Systems, 2011, vol. 5, no. 1, p. 59–65. DOI: 10.1049/iet-cds.2010.0210
  15. YENER, S. C., MUTLU, R., KUNTMAN, H. A new memristor-based high-pass filter/amplifier: Its analytical and dynamical mod-els. In 24th International Conference Radioelektronika. Bratislava (Slovakia), 2014, p. 1–4. DOI: 10.1109/Radioelek.2014.6828420
  16. JOGLEKAR, Y. N., WOLF, S. J. The elusive memristor: Properties of basic electrical circuits. European Journal of Physics, 2009, vol. 30, no. 4, p. 661–675. DOI: 10.1088/0143-0807/30/4/001
  17. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1805-9600
  18. PRODROMAKIS, T., PEH, B. P., PAPAVASSILIOU, C., et al. A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 2011, vol. 58, no. 9, p. 3099–3105. DOI: 10.1109/TED.2011.2158004
  19. ZHA, J., HUANG, H., LIU, Y. A novel window function for memristor model with application in programming analog circuits. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, vol. 63, no. 5, p. 423–427. DOI: 10.1109/TCSII.2015.2505959
  20. GALE, E. TiO2-based memristors and ReRAM: Materials, mechanisms and models (a review). Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 1–10. DOI: 10.1088/0268-1242/29/10/104004
  21. BAGHEL, V. S., AKASHE, S. Low power memristor based 7T SRAM using MTCMOS technique. In Fifth International Conference on Advanced Computing & Communication Technologies (ACCT). Haryana (India), 2015, p. 222–226. DOI: 10.1109/ACCT.2015.58
  22. GIBBONS, J. F., BEADLE, W. E. Switching properties of thin NiO films. Solid-State Electronics, 1964, vol. 7, no. 11, p. 785–790. DOI: 10.1016/0038-1101(64)90131-5
  23. YAO, J., SUN, Z., ZHONG, L., et al. Resistive switches and memories from silicon oxide. Nano Letters, 2010, vol. 10, no. 10, p. 4105–4110. DOI: 10.1021/nl102255r
  24. KWON, D. H., KIM, K. M., JANG, J. H., et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010, vol. 5, no. 2, p. 148–153. DOI: 10.1038/nnano.2009.456
  25. YANG, J. J., PICKETT, M. D., LI, X., et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008, vol. 3, no. 7, p. 429–433. DOI: 10.1038/nnano.2008.160
  26. AKINAGA, H., SHIMA, H. Resistive Random Access Memory (ReRAM) based on metal oxides. Proceedings of the IEEE, 2010, vol. 98, no. 12, p. 2237–2251. DOI: 10.1109/JPROC.2010.2070830
  27. WASER, R., AONO, M. Nanoionics-based resistive switching memories. Nature Materials, 2007, vol. 6, no. 11, p. 833–840. DOI: 10.1038/nmat2023
  28. CHOI, B. J., JEONG, D. S., KIM, S. K., et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 2005, vol. 98, no. 3, p. 1–10. DOI: 10.1063/1.2001146
  29. XIE, H., WANG, M., KURUNCZI, P., et al. Resistive switching properties of HfO2-based ReRAM with implanted Si/Al ions. In AIP Conference Proceedings, 2012, vol. 1496, no. 1, p. 26–29. DOI: 10.1063/1.4766481
  30. ZHOU, P., SHEN, H., LI, J., et al. Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application. Thin Solid Films, 2010, vol. 518, no. 20, p. 5652–5655. DOI: 10.1016/j.tsf.2009.10.034
  31. LINN, E., ROSEZIN, R., KUGELER, C., et al. Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 2010, vol. 9, no. 5, p. 403–406. DOI: 10.1038/nmat2748
  32. ROSEZIN, R., LINN, E., NIELEN, L., et al. Integrated complemen-tary resistive switches for passive high-density nanocrossbar arrays. Electron Device Letters, 2011, vol. 32, no. 2, p. 191–193. DOI: 10.1109/LED.2010.2090127
  33. KARAKULAK, E., MUTLU, R., UÇAR, E. Sneak path current equivalent circuits and reading margin analysis of complementary resistive switches based 3D stacking crossbar memories. Informacije MIDEM, 2014, vol. 44, no. 3, p. 235–241.
  34. KARAKULAK, E., MUTLU, R., UÇAR, E. Reconstructive sensing circuit for complementary resistive switches-based crossbar memories. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, vol. 24, no. 3, p. 1371–1383. DOI: 10.3906/elk-1309-71
  35. GAO, L., ALIBART, F., STRUKOV, D. B. Programmable CMOS/memristor threshold logic. IEEE Transactions on Nanotechnology, 2013, vol. 12, no. 2, p. 115–119. DOI: 10.1109/TNANO.2013.2241075
  36. JUNG, C. M., JO, K. H., LEE, E. S., et al. Zero-sleep-leakage flip-flop circuit with conditional-storing memristor retention latch. IEEE Transactions on Nanotechnology, 2012, vol. 11, no. 2, p. 360–366. DOI: 10.1109/TNANO.2011.2175943
  37. ROBINETT, W., PICKETT, M., BORGHETTI, J., et al. A memristor-based nonvolatile latch circuit. Nanotechnology, 2010, vol. 21, no. 23, p. 1–6. DOI: 10.1088/0957-4484/21/23/235203
  38. XIA, Q., ROBINETT, W., CUMBIE, M. W., et al. Memristor-CMOS hybrid integrated circuits for reconfigurable logic. Nano Letters, 2009, vol. 9, no. 10, p. 3640–3645. DOI: 10.1021/nl901874j
  39. EDWARDS, A. H., BARNABY, H. J., CAMPBELL, K. A., et al. Reconfigurable memristive device technologies. Proceedings of the IEEE, 2015, vol. 103, no. 7, p. 1004–1033. DOI: 10.1109/JPROC.2015.2441752
  40. JO, K. H., JUNG, C. M., MIN, K. S., et al. Self-adaptive write circuit for low-power and variation tolerant memristors. IEEE Transactions on Nanotechnology, 2010, vol. 9, no. 6, p. 675–678. DOI: 10.1109/TNANO.2010.2052108
  41. VOURKAS, I., SIRAKOULIS, G. C. Emerging memristor-based logic circuit design approaches: A review. IEEE Circuits and Systems Magazine, 2016, vol. 16, no. 3, p. 15–30. DOI: 10.1109/MCAS.2016.2583673
  42. WANG, F. Z., HELIAN, N., WU, S., et al. Delayed switching in memristors and memristive systems. IEEE Electron Device Letters, 2010, vol. 31, no. 7, p. 755–757. DOI: 10.1109/LED.2010.2049560
  43. XIE, Y. Modeling, architecture, and applications for emerging memory technologies. IEEE Design & Test of Computers, 2011, vol. 28, no. 1, p. 44–51. DOI: 10.1109/MDT.2011.20
  44. WANG, F. Z., HELIAN, N., WU, S., et al. Delayed switching applied to memristor neural networks. Journal of Applied Physics, 2012, vol. 111, no. 7, p. 1–3. DOI: 10.1063/1.3672409
  45. OZGUVENC, A., MUTLU, R., KARAKULAK, E. Sawtooth signal generator with a memristor. In 1st International Conference on Engineering Technology and Applied Sciences. Afyon (Turkey), 2016, p. 1–6.
  46. YENER, S. C., MUTLU, R., YENER, T., et al. Memristor-based timing circuit. In 2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT’2017). Istanbul (Turkey), 2017, p. 1–3. DOI: 10.1109/EBBT.2017.7956776
  47. MUTLU, R., KARAKULAK, E. A methodology for memristance calculation. Turkish Journal of Electrical Engineering & Computer Sciences, 2014, vol. 22, no. 1, p. 121–131. DOI: 10.3906/elk-1205-16
  48. VONGEHR, S., MENG, X. The missing memristor has not been found. Scientific Reports, 2015, vol. 5, no. 1, p. 1–7. DOI: 10.1038/srep11657
  49. SONI, K., SAHOO, S. A review on different memristor modeling and applications. In 2022 International Mobile and Embedded Technology Conference (MECON). Noida (India), 2022, p. 688–695. DOI: 10.1109/MECON53876.2022.9752214
  50. https://en.wikipedia.org/wiki/Zeno%27s_paradoxes
  51. CARRASCO-AGUILAR, M. A., MORALES-LOPEZ, F. E., SANCHEZ-LOPEZ, C., et al. Flux-charge analysis and experimental verification of a parallel memristor-capacitor circuit. Memories-Materials, Devices, Circuits and Systems, 2023, vol. 4, p. 1–6. DOI: 10.1016/j.memori.2023.100043
  52. PERSHIN, Y. V., DI VENTRA, M. A simple test for ideal memristors. Journal of Physics D: Applied Physics, 2018, vol. 52, no. 1, p. 1–4. DOI: 10.1088/1361-6463/aae680
  53. ADHIKARI, S. P., SAH, M. P., KIM, H., et al. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
  54. MUSTAFA, J., WASER, R. A novel reference scheme for reading passive resistive crossbar memories. IEEE Transactions on Nanotechnology, 2006, vol. 5, no. 6, p. 687–691. DOI: 10.1109/TNANO.2006.885016
  55. WITRISAL, K. Memristor-based stored-reference receiver–the UWB solution? Electronics Letters, 2009, vol. 45, no. 14, p. 713–714. DOI: 10.1049/el.2009.0123
  56. MASSOUD, Y., XIONG, F., SMAILI, S. A memristor-based random modulator for compressive sensing systems. In 2012 IEEE International Symposium on Circuits and Systems (ISCAS). Seoul (South Korea), 2012, p. 2445–2448. DOI: 10.1109/ISCAS.2012.6271793
  57. GOKNAR, I. C., ONCUL, F., MINAYI, E. New memristor applications: AM, ASK, FSK, and BPSK modulators. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 2, p. 304–313. DOI: 10.1109/MAP.2013.6529381
  58. ABUELMA’ATTI, M. T., KHALIFA, Z. J. A new memristor emu-lator and its application in digital modulation. Analog Integrated Circuits and Signal Processing, 2014, vol. 80, p. 577–584. DOI: 10.1007/s10470-014-0364-3
  59. WEY, T. A., BENDERLI, S. W. Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift. Electronics Letters, 2009, vol. 45, no. 22, p. 1103–1104. DOI: 10.1049/el.2009.2174
  60. TRUONG, S. N., VAN PHAM, K., YANG, W., et al. New pulse amplitude modulation for fine tuning of memristor synapses. Microelectronics Journal, 2016, vol. 55, p. 162–168. DOI: 10.1016/j.mejo.2016.07.010
  61. FOUDA, M. E., RADWAN, A. G. Power dissipation of memristor-based relaxation oscillators. Radioengineering, 2015, vol. 24, no. 4, p. 968–973. DOI: 10.13164/re.2015.0968
  62. DI VENTRA, M., PERSHIN, Y. V., CHUA, L. O. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 2009, vol. 97, no. 10, p. 1717–1724. DOI: 10.1109/JPROC.2009.2021077

Keywords: Memristor, memristor models, nonlinear dopant drift, window function, memristive switching, Zeno paradox

C. L. Ng, S. Soeung, S. Cheab, K. Y. Leong [references] [full-text] [DOI: 10.13164/re.2023.0325] [Download Citations]
A Modified Vector Fitting Technique to Extract Coupling Matrix from S-parameters

In this paper, a modified vector fitting technique to extract coupling matrix from S-parameters is introduced. This work allows designers to extract the coupling matrix of different or any pre-defined topologies from the simulated or measured S-parameter data. A study on vector fitting (VF) equations that can extract the rational polynomial of bandpass filter responses is carried out. The rational polynomials are formed by applying the VF process to S-parameter responses without having to remove the phase offset and de-embedding the transmission lines. The desired coupling matrix configuration is generated directly from the extracted polynomials using unconstrained and finitely bounded non-linear polynomials (NLP) optimization. Without the need for matrix transformation, the matrix elements are still able to show a one-to-one relationship in coupling values of resonators. Two bandpass filters are shown as examples to illustrate the performance of the new variation of VF.

  1. HONG, J. G., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. 2nd ed., rev. Germany: Wiley, 2004. ISBN: 9780471464204
  2. LAMPEREZ, A. G., SARKAR, T. K., PALMA, M. S. Filter model generation from scattering parameters using the Cauchy method. In 2002 32nd European Microwave Conference. Milan (Italy), 2002, p. 1–4. DOI: 10.1109/EUMA.2002.339310
  3. BURGER, S., HOEFT, M. Improved filter tuning in the time domain. In 1st Australian Microwave Symposium (AMS). Melbourne (VIC, Australia), 2014, p. 27–28. DOI: 10.1109/AUSMS.2014.7017349
  4. MILLER, E. K., SARKAR, T. K. Model-order reduction in electromagnetics using model-based parameter estimation. In Frontiers in Electromagnetics, 1999, p. 371–436. DOI: 10.1109/9780470544686.ch9
  5. MACCHIARELLA, G., TRAINA, D. A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements. IEEE Microwave and Wireless Components Letters, 2006, vol. 16, no. 5, p. 243–245. DOI: 10.1109/LMWC.2006.873583
  6. REGINELLI, N. F., SARKAR, T. K., PALMA, M. S. Interpolation and extrapolation of S-parameter data of a microwave filter in the frequency domain using the Cauchy method. In IEEE/MTT-S International Microwave Symposium-IMS. Philadelphia (USA), 2018, p. 330–333. DOI: 10.1109/MWSYM.2018.8439416
  7. CAMERON, R. J., KUDSIA, C. M., MANSOUR, R. R. Microwave Filters for Communication Systems: Fundamentals, Design, and Applications. United Kingdom: Wiley, 2015. ISBN: 9781118274347
  8. ZHAO, P., WU, K.-L. Model-based vector-fitting method for circuit model extraction of coupled-resonator diplexers. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 6, p. 1787–1797. DOI: 10.1109/TMTT.2016.2558639
  9. GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 1999, vol. 14, no. 3, p. 1052–1061. DOI: 10.1109/61.772353
  10. HU, H., WU, K. L. A generalized coupling matrix extraction technique for bandpass filters with uneven-Qs. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 2, p. 244–251. DOI: 10.1109/TMTT.2013.2296744
  11. DESCHRIJVER, D., DHAENE, T. Rational fitting of S-parameter frequency samples with maximum absolute error control. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 5, p. 247–249. DOI: 10.1109/LMWC.2010.2045575
  12. GUSTAVSEN, B. Improving the pole relocating properties of vector fitting. IEEE Transactions on Power Delivery, 2016, vol. 21, no. 3, p. 1587–1592. DOI: 10.1109/TPWRD.2005.860281
  13. MICHALCZYK, J., MICHALSKI, J. J. Quadrature-based approach used for improved fitting of filter measured S-parameters. In 51st European Microwave Conference (EuMC). London (United Kingdom), 2022, p. 43–46. DOI: 10.23919/EuMC50147.2022.9784273
  14. ZHANG, Q. J., GUPTA, K. C., DEVABHAKTUNI, V. K. Artificial neural networks for RF and microwave design-from theory to practice. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1339–1350. DOI: 10.1109/TMTT.2003.809179
  15. ZHANG, C., JIN, J., NA, W., et al. Multivalued neural network inverse modeling and applications to microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3781–3797. DOI: 10.1109/TMTT.2018.2841889
  16. JIN, J., ZHANG, C., FENG, F., et al. Deep neural network technique for high-dimensional microwave modeling and applications to parameter extraction of microwave filters. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 10, p. 4140–4155. DOI: 10.1109/TMTT.2019.2932738

Keywords: Coupling matrix, microwave filter, S-parameter extraction, vector fitting

S. Q. Lv, X. Y. Cao, J. Gao, R. Z. Xue [references] [full-text] [DOI: 10.13164/re.2023.0332] [Download Citations]
Study on the Generation of Vortex Waves Based on Coding Metasurfaces and Genetic Algorithms

In this paper, the mechanism of vortex electromagnetic wave generated by coding metasurface is studied, and the shortcomings of this method are found through the research, what is more, the reasons for its production are analyzed and summarized. The genetic algorithm is proposed to optimize the arrangement of the encoded metasurface, to improve the angle convergence between the main lobes of the vortex electromagnetic wave, which is conducive to the next transmission detection work. In order to verify this method, two units with phase difference of 180° are designed, and the vortex electromagnetic wave with orbital angular momentum of 1 is produced. Finally, the fabricated sample is measured, and the results are in good agreement with the simulation results.

  1. MORABITO, A. F., DI DONATO, L., ISERNIA, T. Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory. IEEE Antennas and Propagation Magazine, 2018, vol. 60, no. 2, p. 59–67. DOI: 10.1109/MAP.2018.2796445
  2. BARBUTO, M., ALÙ, A., BILOTTI, F., et al. Dual-circularly polarized topological patch antenna with pattern diversity. IEEE Access, 2021, vol. 9, p. 48769–48776. DOI: 10.1109/ACCESS.2021.3068792
  3. WANG, J., LIU, K., CHENG, Y., et al. Vortex SAR imaging method based on OAM beams design. IEEE Sensors Journal, 2019, vol. 19, no. 24, p. 11873–11879. DOI: 10.1109/JSEN.2019.2937976
  4. LIU, K., LI, X., GAO, Y., et al. Microwave imaging of spinning object using orbital angular momentum. Journal of Applied Physics, 2017, vol. 122, p. 1–7. DOI: 10.1063/1.4991655
  5. CHO, Y. H., BYUN, W. J. Generalized Friis transmission equation for orbital angular momentum (OAM) radios. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 4, p. 2423–2429. DOI: 10.1109/TAP.2019.2891438
  6. QIN, H., TSO, R. Efficient quantum secret sharing based on polarization and orbital angular momentum. Journal of the Chinese Institute of Engineers, 2019, vol. 42, no. 2, p. 143–148. DOI: 10.1080/02533839.2018.1553634
  7. ZHANG, Z., XIAO, S., LI, Y., et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 521–524. DOI: 10.1109/LAWP.2016.2586975
  8. HU, J., BRÈS, C. S., HUANG, C. B. Talbot effect on orbital angular momentum beams: Azimuthal intensity repetition-rate multiplication. Optics Letters, 2018, vol. 43, no. 16, p. 4033–4036. DOI: 10.1364/OL.43.004033
  9. ZHENG, Q., LI, Y., HAN, Y., et al. Efficient orbital angular momentum vortex beam generation by generalized coding metasurface. Applied Physics A, 2019, vol. 125, no. 2, p. 1–5. DOI: 10.1007/s00339-018-2373-z
  10. ZHANG, K., YUAN, Y., ZHANG, D., et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Optics Express, 2018, vol. 26, no. 2, p. 1351–1360. DOI: 10.1364/OE.26.001351
  11. ZHANG, Z., ZHENG, S., JIN, X., et al. Generation of plane spiral OAM waves using traveling-wave circular slot antenna. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 8–11. DOI: 10.1109/LAWP.2016.2552227
  12. RUFFATO, G., ROSSI, R., MASSARI, M., et al. Design, fabrication and characterization of Computer Generated Holograms for anti-counterfeiting applications using OAM beams as light decoders. Scientific Reports, 2017, vol. 7, no. 1, p. 1–13. DOI: 10.1038/s41598-017-18147-7
  13. YANG, H., YANG, F., CAO, X. Y., et al. A 1600-element dualfrequency electronically reconfigurable reflectarray at X/Ku bands. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 6, p. 3024–3032. DOI: 10.1109/TAP.2017.2694703
  14. ZHAO, Y., GAO, J., CAO, X., et al. In-band RCS reduction of waveguide slot array using metasurface bars. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 2, p. 943–947. DOI: 10.1109/tap.2016.2633951
  15. QIN, F., WAN, L., LI, L., et al. A transmitted metasurface for generating OAM beams. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, no. 10, p. 1793–1796. DOI: 10.1109/LAWP.2018.2867045
  16. YU, S., LI, L., KOU, N. Generation, reception and separation of mixed-state orbital angular momentum vortex beams using metasurfaces. Optical Materials Express, 2017, vol. 7, no. 9, p. 3312–3321. DOI: 10.1364/OME.7.003312
  17. LI, G., KANG, M., CHEN, S., et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Letters, 2013, vol. 13, no. 9, p. 4148–4151. DOI: 10.1021/nl401734r
  18. CHEN, C. F., KU, C. T., TAI, Y. H., et al. Creating optical nearfield orbital angular momentum in a gold metasurface. Nano Letters, 2015, vol. 15, no. 4, p. 2746–2750. DOI: 10.1021/acs.nanolett.5b00601
  19. XU, H. X., LIU, H., LING, X., et al. Broadband vortex beam generation using multimode Pancharatnam-Berry metasurface. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12, p. 7378–7382. DOI: 10.1109/TAP.2017.2761548
  20. ZHANG, D., CAO, X. Y., YANG, H., et al. Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface. Chinese Physics B, 2019, vol. 28, no. 3, p. 1–7. DOI: 10.1088/1674-1056/28/3/034204
  21. ZHANG, C., CHENG, Q., YANG, J., et al. Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017, vol. 110, no. 14, p. 1–5. DOI: 10.1063/1.4979543
  22. HAN, Y., CHE, W. Q. Low-profile broadband absorbers based on capacitive surfaces. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 16, p. 74–78. DOI: 10.1109/LAWP.2016.2556753
  23. DING, F., CUI, Y. X., GE, X. C., et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters, 2017, vol. 100, no. 10, p. 1–4. DOI: 10.1063/1.3692178
  24. ZHANG, D., CAO, X. Y., YANG, H., et al. Multiple OAM vortex beams generation using 1-bit metasurface. Optics Express, 2018, vol. 26, no. 19, p. 24804–24815. DOI: 10.1364/oe.26.024804

Keywords: Vortex electromagnetic wave, coded metasurface, genetic algorithm

M. G. Nguyen, C. T. N. Nguyen, T. H. Nguyen, H. Morishita [references] [full-text] [DOI: 10.13164/re.2023.0338] [Download Citations]
Design of a Dual-Band Three-Way Power Divider with Unequally High Power Split Ratio

In this paper, a dual-band three-way power divider with unequally high power split ratio is proposed. The dual-band operation is achieved by using a two-section impedance transformer, and to reach a high split ratio, transmission lines with impractical high characteristic impedances are replaced with dual–band T-shaped structures. The design is conducted with a thorough analysis and systematic design procedure for facilitating the rapid development of the prototypes. To verify the effectiveness of the proposed design method, an example of a power divider with a power split ratio of 7:5:1 is investigated, fabricated, and measured on a Rogers RO4003C substrate. Good agreements between the simulation and measurement results are obtained. Compared with several three-way unequal dual-band power dividers in previous works of the others, our proposed power divider delivered the highest power split ratio while still retaining good performance of insertion loss, return loss, and isolation between output ports.

  1. NATARAJAMANI, S., NAIR, R. G. Design theory of equal split dual-band power divider without reactive elements. Advanced Electromagnetics, 2022, vol 11, no 3, p. 78–83. DOI: 10.7716/aem.v11i3.1811
  2. PAKASIRI, C., WANG, S. Dual-band compact Wilkinson power divider using common inductor and complex load. IEEE Access, 2020, vol. 8, p. 97189–97195. DOI: 10.1109/ACCESS.2020.2995405
  3. XI, L., LIN, Y. A novel design of dual-band Wilkinson power divider with simple structure and wide band-ratios characteristics. Journal of Electromagnetic Waves and Applications, 2014, vol. 28, no. 13, p. 1635–1641. DOI: 10.1080/09205071.2014.938171
  4. WU, L., SUN, Z., YILMAZ, H., et al. A dual-frequency Wilkinson power divider. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 278–284. DOI: 10.1109/TMTT.2005.860300
  5. LI, B., WU, X., YANG, N., et al. Dual-band equal/unequal Wilkinson power dividers based on coupled-line section with short-circuited stub. Progress In Electromagnetics Research, 2011, vol. 111, p. 163–178. DOI: 10.2528/PIER10110108
  6. AHN, S.-H., LEE, J. W., CHO, C. S., et al. A dual-band unequal Wilkinson power divider with arbitrary frequency ratios. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 12, p. 783–785. DOI: 10.1109/lmwc.2009.2033503
  7. CHIU, L., XUE, Q. A parallel-strip ring power divider with high isolation and arbitrary power-dividing ratio. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 55, no. 11, p. 2419–2426. DOI: 10.1109/tmtt.2007.908669
  8. WANG, X., SAKAGAMI, I. Generalized dual-frequency Wilkinson power dividers with a series/parallel RLC circuit. In 2011 IEEE MTT-S International Microwave Symposium. Baltimore (MD, USA), 2011, p. 1–4. DOI: 10.1109/MWSYM.2011.5972671
  9. MONZON, C. A small dual-frequency transformer in two sections. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 4, p. 1157–1161. DOI: 10.1109/TMTT.2003.809675
  10. WU, Y., LIU, Y., ZHANG, Y., et al. A dual-band unequal Wilkinson power divider without reactive components. IEEE Transactions on Microwave Theory and Technique, 2009, vol. 57, no. 1, p. 216–222. DOI: 10.1109/TMTT.2008.2008981
  11. LI, Q., GONG, J.-G., LI, C.-L., et al. A compact dual-frequency three-way unequal power divider. Journal of Electromagnetic Waves and Applications, 2010, vol. 24, no. 2-3, p. 383–390. DOI: 10.1163/156939310790735714
  12. AL SHAMAILEH, K., DIB, N., ABUSHAMLEH, S. A dual-band 1:10 Wilkinson power divider based on multi-T-section characterization of high-impedance transmission lines. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 10, p. 897–899. DOI: 10.1109/LMWC.2017.2746665
  13. CHEN, H., ZHANG, T., CHE, W., et al. Compact unequal Wilkinson power divider with large power dividing ratio. In 2014 9th European Microwave Integrated Circuit Conference. Rome (Italy), 2014, p. 608–611. DOI: 10.1109/EUMIC.2014.6997930
  14. KOURA, M. A., AL-ZAYED, A. S., CHEHIMI, M. M. Equal and unequal dual-band six-way power divider with band-distinct power division ratios. Alexandria Engineering Journal, 2023, vol. 66, p. 433–449. DOI: 10.1016/j.aej.2022.11.017
  15. WU, H., SUN, S., WU, Y., et al. Dual-band Gysel power dividers with large frequency ratio and unequal power division. International Journal of RF and Microwave Computer-Aided Engineering, 2020, vol. 30, no. 7. DOI: 10.1002/mmce.22203
  16. WANG, X., WANG, J., CHOI, W.-W., et al. Dual-wideband filtering power divider based on coupled stepped-impedance resonators. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 10, p. 873–875. DOI: 10.1109/LMWC.2018.2861578
  17. SHAO, C., XU, K., ZHU, X. H., et al. Dual-band filtering power divider with unequal power division ratio and low-loss characteristic. International Journal of RF and Microwave Computer-Aided Engineering, 2020, vol. 30, no. 5. DOI: 10.1002/mmce.22149

Keywords: Wilkinson power divider, dual-band, high power split ratio, dual-band T-shaped structure, unequal division

H. Manai, L. Ben Hadj Slama, R. Bouallegue [references] [full-text] [DOI: 10.13164/re.2023.0345] [Download Citations]
A Hybrid Adaptive Beamforming Algorithm for SINR Enhancement in Massive MIMO Systems

With the extreme density of devices and fast change of their directions in massive MIMO networks, a fast adaptive beamforming algorithm is required to provide high directivity and an enhanced signal-to-interference and noise ratio (SINR). Blind adaptive beamforming is suitable but less efficient, while non-blind adaptive beamforming is more efficient but requires significant training time. This study proposes a hybrid adaptive beamforming algorithm that addresses these issues. The algorithm integrates an improved direction-finding method to estimate the directions of arrival (DoAs) of incident signals at the antenna array, even in coherent signals cases, and a cascading combination of a blind and non-blind algorithms. The proposed algorithm generates an accurate main beam toward the desired direction and deep nulls in the direction of interfering signals, resulting in enhanced SINR. Compared to other algorithms, our approach achieves better performance without requiring additional antenna elements.

  1. LARSSON, E. G., EDFORS, O., TUFVESSON, F., et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 186–195. DOI: 10.1109/MCOM.2014.6736761
  2. ABUALHAYJA’A, M., HUSSEIN, M. Comparative study of adaptive beamforming algorithms for smart antenna applications. In International Conference on Communications, Signal Processing, and their Applications (ICCSPA). Sharjah (United Arab Emirates), 2021, p. 1–5. DOI: 10.1109/ICCSPA49915.2021.9385725
  3. JERIPOTULA, P. R., RAJENDRA NAIK, B. Performance analysis of adaptive beamforming algorithms. In International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET). Kottayam (India), 2018, p. 1–4. DOI: 10.1109/ICCSDET.2018.8821132
  4. BANERJEE, S., DWIVEDI, V. V. Effect of signal to interference ratio on adaptive beamforming techniques. Journal of King Saud University - Engineering Sciences, 2018, vol. 30, no. 4, p. 313–319. DOI: 10.1016/j.jksues.2016.08.002
  5. ATZEMOURT, M., FARCHI, A., CHIHAB, Y., et al. Performance evaluation of LMS and CM algorithms for beamforming. Advances in Materials Science and Engineering, 2022, vol. 2022, p. 1–6. DOI: 10.1155/2022/7744625
  6. THAKUR, R., SINGH MOURYA, K. Performance comparison of blind and non blind adaptive beamforming algorithms in mobile communication. IOSR Journal of Electronics and Communication Engineering, 2017, vol. 12, no. 6, p. 51–57. DOI: 10.9790/2834-1206015157
  7. ZHAO, Y., AI, B., LIU, Y., et al. Semi-blind adaptive beamforming based on constant modulus algorithm for smart antennas. In 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS). Dalian (China), 2017, p. 286–289. DOI: 10.1109/ICCSS.2017.8091426
  8. ALI, E., ISMAIL, M., NORDIN, R., et al. Beamforming techniques for massive MIMO systems in 5G: Overview, classification, and trends for future research. Frontiers of Information Technology & Electronic Engineering, 2017, vol. 18, no. 6, p. 753–772. DOI: 10.1631/FITEE.1601817
  9. JIANG, J., KONG, D. Joint user scheduling and MU-MIMO hybrid beamforming algorithm formmWave FDMA massive MIMO system. International Journal of Antennas and Propagation, 2016, vol. 2016, p. 1–10. DOI: 10.1155/2016/4341068
  10. LIU, X., MEI, H., PENG, L. Adaptive beamforming planning for multicast mmWave communication. In International Conference on Networking and Network Applications (NaNA). Haikou City (China), 2020, p. 147–151. DOI: 10.1109/NaNA51271.2020.00033
  11. KUNDU, D. Modified MUSIC algorithm for estimating DOA of signals. Signal Processing, 1996, vol. 48, no. 1, p. 85–90. DOI: 10.1016/0165-1684(95)00126-3
  12. SHAGHAGHI, M., VOROBYOV S. A. Subspace leakage analysis and improved DOA estimation with small sample size. IEEE Transactions on Signal Processin, 2015, vol. 63, no. 12, p. 3251–3265. DOI: 10.1109/TSP.2015.2422675
  13. HUANG, L., ZHANG, B., YE, Z. Robust adaptive beamforming using a new projection approach. In IEEE International Conference on Digital Signal Processing (DSP). Singapore, 2015, p. 1181–1185. DOI: 10.1109/ICDSP.2015.7252066
  14. LI, Y., MA, H., CHENG, L. Iterative robust adaptive beamforming. EURASIP Journal on Advances in Signal Processing, 2017, vol. 2017, p. 58–69. DOI: 10.1186/s13634-017-0493-9
  15. ROSADO-SANZ, J., JARABO-AMORES, M. P., DE LA MATAMOYA, D., et al. Adaptive beamforming approaches to improve passive radar performance in sea and wind farms. Sensors, 2022, vol. 22, no. 18, p. 6865–6880. DOI: 10.3390/s22186865
  16. JAMEL, T. M. Performance enhancement of adaptive beamforming algorithms based on a combination method. In IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15). Mahdia (Tunisia), 2015, p. 1–6. DOI: 10.1109/SSD.2015.7348125
  17. LIU, J., LIU, W., LIU, H., et al. Average SINR calculation of a persymmetric sample matrix inversion beamformer. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 8, p. 2135–2145. DOI: 10.1109/TSP.2015.2512527
  18. PATRA, R. K., NAYAK, C. K. A comparison between different adaptive beamforming techniques. In International Conference on Range Technology (ICORT). Balasore (India), 2019, p. 1–4. DOI: 10.1109/ICORT46471.2019.9069636
  19. BHOTTO, M. Z. A., BAJIC, I. V. Constant modulus blind adaptive beamforming based on unscented Kalman filtering. IEEE Signal Processing Letters, 2015, vol. 22, no. 4, p. 474–478. DOI: 10.1109/LSP.2014.2362932
  20. HEATH, R. W., GONZALEZ-PRELCIC, N., RANGAN, S., et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2016, vol. 10, no. 3, p. 436–453. DOI: 10.1109/JSTSP.2016.2523924
  21. HEATH, T., WONDIE, Y., STEINBRUNN, J., et al. Precoding and beamforming techniques in mmwave-massive MIMO: Performance assessment. IEEE Access, 2022, vol. 10, p. 16365–16387. DOI: 10.1109/ACCESS.2022.3149301
  22. KUTTY, S., SEN, D. Beamforming for millimeter wave communications: An inclusive survey. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 2, p. 949–973. DOI: 10.1109/COMST.2015.2504600
  23. AI, B., CHENG, X., KURNER, T., et al. Challenges toward wireless communications for high-speed railway. IEEE Transactions on Intelligent Transportation Systems, 2014, vol. 15, no. 5, p. 2143–2158. DOI: 10.1109/TITS.2014.2310771
  24. GUO, R., MAO, X., LI, S., et al. A fast DOA estimation algorithm based on polarization MUSIC. Radioengineering, 2015, vol. 24, no. 1, p. 214–225. DOI: 10.13164/re.2015.0214
  25. KO, C.-B., LEE, J.-H. Performance of ESPRIT and root-MUSIC for angle-of-arrival (AOA) estimation. In IEEE World Symposium on Communication Engineering (WSCE). Singapore, 2018, p. 49–53. DOI: 10.1109/WSCE.2018.8690541
  26. GUO, X., CHU, L., LI, B. Robust adaptive LCMV beamformer based on an iterative suboptimal solution. Radioengineering, 2015, vol. 24, no. 2, p. 572–582. DOI: 10.13164/re.2015.0572
  27. HUANG, Y., ZHOU, M., VOROBYOV, S. A. New designs on MVDR robust adaptive beamforming based on optimal steering vector estimation. IEEE Transactions on Signal Processing, 2019, vol. 67, no. 14, p. 3624–3638. DOI: 10.1109/TSP.2019.2918997
  28. SCHMIDT, R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP.1986.1143830
  29. CHUKU, P., OLWAL, T., DJOUANI, K. Adaptive array beamforming using an enhanced RLS algorithm. International Journal on AdHoc Networking Systems, 2018, vol. 8, no. 1, p. 1–13. DOI: 10.5121/ijans.2018.8101
  30. DENG, C. Y. A generalization of the Sherman-Morrison-Woodbury formula. Applied Mathematics Letters, 2011, vol. 24, no. 9, p. 1561–1564. DOI: 10.1016/j.aml.2011.03.046

Keywords: Massive MIMO, adaptive beamforming, interference cancellation, direction-of-arrival estimation, SINR enhancement

X. Cheng, H. Ji, Y. Zhang [references] [full-text] [DOI: 10.13164/re.2023.0356] [Download Citations]
Extended Target Fast Labeled Multi-Bernoulli Filter

Focusing on the real-time tracking of the extended target labeled multi-Bernoulli (ET-LMB) filter, this paper proposes an extended target fast labeled multi-Bernoulli (ET-FLMB) filter based on beta gamma box particle (BGBP) and Gaussian process (GP), called ET-BGBP-GP-FLMB filter. First, a new ET-FLMB filter is derived to reduce the computational complexity of the ET-LMB filter. Then, by modeling the target state as an augmented state including detection probability, measurement rate, kinematic state and extension state, the BGBP-GP implementation of the ET-FLMB filter is presented. Compared with the traditional sequential Monte Carlo (SMC) implementation, the proposed implementation can not only greatly reduce the number of particles and the amount of computation, but also estimate the detection probabilities, measurement rates and extension states while estimating the number and kinematic states of extended targets. Finally, the simulation results show that the proposed filter can significantly reduce the computational burden and improve the real-time performance.

  1. SCHIKORA, M., GNING, A., MIHAYLOVA, L., et al. Box-particle probability hypothesis density filtering, IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 3, p. 1660–1672. DOI: 10.1109/TAES.2014.120238
  2. ZHAO, X., SONG, L. Box-particle cardinality balanced multi-target multi-Bernoulli filter. Radioengineering, 2014, vol. 23, no. 2, p. 609–617. ISSN: 1210-2512
  3. REUTER, S., VO, B. T., VO, B. N., et al. The labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 12, p. 3246–3260. DOI: 10.1109/TSP.2014.2323064
  4. VO, B. N., VO, B. T., HOANG, H. G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 8, p. 1975–1987. DOI: 10.1109/TSP.2016.2641392
  5. MAHLER, R. PHD filters for nonstandard targets, I: Extended targets. In Proceedings of the 12th International Conference on Information Fusion. Seattle (WA, USA), 2009, p. 915–921. ISBN: 978-0-9824-4380-4
  6. ORGUNER, U., LUNDQUIST, C., GRANSTROM, K. Extended target tracking with a cardinalized probability hypothesis density filter. In Proceedings of the 14th International Conference on Information Fusion. Chicago (IL, USA), 2011, p. 1–8.
  7. ZHANG, G., LIAN, F., HAN, C. CBMeMBer filters for nonstandard targets, I: Extended targets. In Proceedings of the 17th International Conference on Information Fusion. Salamanca (Spain), 2014, p. 1–6. ISBN: 978-8-4901-2355-3
  8. BEARD, M., REUTER, S., GRANSTROM, K., et al. Multiple extended target tracking with labelled random finite sets. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 7, p. 1638–1653. DOI: 10.1109/TSP.2015.2505683
  9. GRANSTROM, K., FATEMI, M., SVENSSON, L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering. IEEE Transactions on Aerospace and Electronic Systems, 2020, vol. 56, no. 1, p. 208–225. DOI: 10.1109/TAES.2019.2920220
  10. GRANSTROM, K., LUNDQUIST, C., ORGUNER, U. Extended target tracking using a Gaussian-Mixture PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 4, p. 3268–3286. DOI: 10.1109/TAES.2012.6324703
  11. ZHANG, G., LIAN, F., HAN, C., et al. A Gaussian mixture extended-target multi-Bernoulli filter (in Chinese). Journal of Xi’an Jiaotong University, 2014, vol. 48, no. 10, p. 9–14. DOI: 10.7652/xjtuxb201410002
  12. LI, Y., XIAO, H., SONG, Z., et al. A new multiple extended target tracking algorithm using PHD filter. Signal Processing, 2013, vol. 93, no. 12, p. 3578–3588. DOI: 10.1016/j.sigpro.2013.05.011
  13. MA, D., LIAN, F., LIU, J. Sequential Monte Carlo implementation of cardinality balanced multi-target multi-Bernoulli filter for extended target tracking. IET Radar, Sonar and Navigation, 2016, vol. 10, no. 2, p. 272–277. DOI: 10.1049/iet-rsn.2015.0081
  14. LUNDQUIST, C., GRANSTROM, K., ORGUNER, U. An ex-tended target CPHD filter and a gamma Gaussian inverse Wishart implementation. IEEE Journal of Selected Topics in Signal Pro-cessing, 2013, vol. 7, no. 3, p. 472–483. DOI: 10.1109/JSTSP.2013.2245632
  15. ZHANG, Y., JI, H., HU, Q. A fast ellipse extended target PHD filter using box-particle implementation. Mechanical Systems and Signal Processing, 2018, vol. 99, p. 57–72. DOI: 10.1016/j.ymssp.2017.05.044
  16. ZHANG, Y., JI, H., GAO, X., et al. An ellipse extended target CBMeMBer filter using gamma and box-particle implementation. Signal Processing, 2018, vol. 149, p. 88–102. DOI: 10.1016/j.sigpro.2018.03.002
  17. CHENG, X., JI, H., ZHANG, Y. Multiple extended target tracking based on gamma box particle and labeled random finite sets. Digital Signal Processing, 2023, vol. 134, p. 1–27. DOI: 10.1016/j.dsp.2022.103902
  18. LIANG, Z., LIU, F., LI, L., et al. Improved generalized labeled multi-Bernoulli filter for non-ellipsoidal extended targets or group targets tracking based on random sub-matrices. Digital Signal Processing, 2020, vol. 99, p. 1–25. DOI: 10.1016/j.dsp.2020.102669
  19. GONG, Y., CUI, C., WU, B. A GGIW-PHD filter for multiple non-ellipsoidal extended targets tracking with varying number of sub-objects. IEEE Access, 2021, vol. 9, p. 64719–64731. DOI: 10.1109/access.2021.3075941
  20. WANG, L., ZHAN, R., LIU, S., et al. Joint tracking and classification of multiple extended targets via the PHD filter and star-convex RHM. Digital Signal Processing, 2021, vol. 111, p. 1–24. DOI: 10.1016/j.dsp.2020.102961
  21. LIU, Y., JI, H., ZHANG, Y. A multiple extended target generalized labeled multi-Bernoulli filter based on joint likelihood function (in Chinese). Journal of Electronics & Information Technology, 2022, vol. 45, no. 4, p. 1303–1312. DOI: 10.11999/JEIT220213
  22. ZHANG, Y., JI, H., HU, Q. A box-particle implementation of standard PHD filter for extended target tracking. Information Fusion, 2017, vol. 34, p. 55–69. DOI: 10.1016/j.inffus.2016.06.007
  23. LI, M., LIN, Z., AN, W., et al. Box-particle labeled multi-Bernoulli filter for multiple extended target tracking. Radioengineering, 2016, vol. 25, no. 3, p. 527–535. DOI: 10.13164/re.2016.0527
  24. WAHLSTROM, N., OZKAN, E. Extended target tracking using Gaussian processes. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 16, p. 4165–4178. DOI: 10.1109/TSP.2015.2424194
  25. GRANSTROM, K., ORGUNER, U. Estimation and maintenance of measurement rates for multiple extended target tracking. In Proceeding of the 15th International Conference on Information Fusion. Singapore, 2012, p. 2170–2176.
  26. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 86, no. 8, p. 3447–3457. DOI: 10.1109/TSP.2008.920469

Keywords: Extended target tracking, fast labeled multi-Bernoulli filter, beta gamma box particle, Gaussian process

M. H. Liu, J. T. Shi, Y. Wang [references] [full-text] [DOI: 10.13164/re.2023.0371] [Download Citations]
Dual-Template Siamese Network with Attention Feature Fusion for Object Tracking

In order to alleviate the adverse effects resulted from complex scenes for object tracking, such as fast movement, mottled background, interference of similar objects, and occlusion etc., an algorithm using dual-template Siamese network with attention feature fusion, named SiamDT, is proposed in this paper. The main idea include that the original ResNet-50 network is improved to extract deep semantic information and shallow spatial information, which are effectively fused using the attention mechanism to achieve accurate feature representation of objects. In addition, a template branch is added to the traditional Siamese network in which a dynamic template is generated together with the first frame image to solve the problems of template failure and model drift. Experimental results on OTB100 dataset and VOT2018 dataset show that the proposed approach obtains the excellent performance compared with the state-of-the-art tracking algorithms, which verifies the feasibility and effectiveness of the proposed approach.

  1. LI, X., ZHA, Y. F., ZHANG, T. Z., et al. Survey of visual object tracking algorithms based on deep learning (in Chinese). Journal of Image and Graphics, 2019, vol. 24, no. 12, p. 2057–2080.
  2. MENG, L., YANG, X. A survey of object tracking algorithms (in Chinese). Acta Automatica Sinica, 2019, vol. 45, no. 7, p. 1244 to 1260.
  3. CHEN, Y. F., WU, Y., ZHANG, W. Survey of target tracking algorithm based on Siamese network structure (in Chinese). Computer Engineering and Applications, 2020, vol. 56, no. 6, p. 10–18. DOI: 10.3778/j.issn.1002-8331.1911-0127
  4. TAO, R., GAVVES, E., SMEULDERS, A. W. M. Siamese instance search for tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas (NV, USA), 2016, p. 1420–1429. DOI: 10.1109/CVPR.2016.158
  5. BERTINETTO, L., VALMADRE, J., HENRIQUES, J. F., et al. Fully-convolutional Siamese networks for object tracking. In Proceedings of European Conference on Computer Vision. Amsterdam (Netherlands), 2016, p. 850–865. DOI: 10.1007/978-3-319-48881-3_56
  6. LI, B., YAN, J. J., WU, W., et al. High performance visual tracking with Siamese region proposal network. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City (UT, USA), 2018, p. 8971–8980. DOI: 10.1109/CVPR.2018.00935
  7. LI, B., WU, W., WANG, Q., et al. SiamRPN++: Evolution of Siamese visual tracking with very deep networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Long Beach (CA, USA), 2019, p. 4277–4286. DOI: 10.1109/CVPR.2019.00441
  8. WANG, Q., ZHANG, L., BERTINETTO, L., et al. Fast online object tracking and segmentation: A unifying approach. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Long Beach (CA, USA), 2019, p. 1328–1338. DOI: 10.1109/CVPR.2019.00142
  9. ZHANG, Z. P., PENG, H. W. Deeper and wider Siamese networks for real-time visual tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Long Beach (CA, USA), 2019, p. 4586–4595. DOI: 10.1109/CVPR.2019.00472
  10. LONG, J., SHELHAMER, E., DARRELL, T. Fully convolutional networks for semantic segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston (MA, USA), 2015, p. 3431–3440. DOI: 10.1109/CVPR.2015.7298965
  11. VALMADRE, J., BERTINETTO, L., HENRIQUES, J., et al. End-to-end representation learning for Correlation Filter based tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu (HI, USA), 2017, p. 5000–5008. DOI: 10.1109/CVPR.2017.531
  12. YANG, Y., GAO, X., WANG. Y., et al. VAMYOLOX: An accurate and efficient object detection algorithm based on visual attention mechanism for UAV optical sensors. IEEE Sensors Journal, 2023, vol. 23, no. 11, p. 11139–11155. DOI: 10.1109/JSEN.2022.3219199
  13. HU, J., SHEN, L., SUN, G., et al. Squeeze-and-excitation network. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City (UT, USA), 2018, p. 7132 to 7141. DOI: 10.1109/CVPR.2018.00745
  14. WOO, S. H., PARK, J., LEE, J. Y., et al. CBAM: Convolutional Block Attention Module. In Proceedings of European Conference on Computer Vision. Munich (Germany), 2018, p. 3–19. DOI: 10.1007/978-3-030-01234-2_1
  15. BERTINETTO, L., VALMADRE, J., GOLODETZ, S., et al. Staple: Complementary learners for real-time tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas (NV, USA), 2016, p. 1401–1409. DOI: 10.1109/CVPR.2016.156
  16. DANELLJAN, M., HAGER, G., KHAN, F. S., et al. Learning spatially regularized correlation filters for visual tracking. In Proceedings of IEEE International Conference on Computer Vision. Santiago (Chile), 2015, p. 4310–4318. DOI: 10.1109/ICCV.2015.490
  17. DANELLJAN, M., HAGER, G., KHAN, F. S., et al. Discriminative scale space tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, vol. 39, no. 8, p. 1561 to 1575. DOI: 10.1109/TPAMI.2016.2609928
  18. KRISTAN, M., PFLUGFELDER, R., LEONARDIS, A., et al. The Visual Object Tracking VOT2013 challenge results. In Proceedings of IEEE International Conference on Computer Vision. Sydney (Australia), 2013, p. 98–111. DOI: 10.1109/ICCVW.2013.20
  19. DANELLJAN, M., BHAT, G., KHAN, F. S., et al. ECO: Efficient Convolution Operators for tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu (HI, USA), 2017, p. 6931–6939. DOI: 10.1109/CVPR.2017.733
  20. XU, Y., WANG, Z., LI, Z., et al. SiamFC++: Towards robust and accurate visual tracking with target estimation guidelines. In Proceedings of AAAI Conference on Artificial Intelligence. New York (USA), 2020, p. 12549–12556. DOI: 10.1609/aaai.v34i07.6944

Keywords: Object tracking, Siamese network, feature extraction, feature fusion, attention mechanism

M. Ilic, Z. Stankovic, N. Males-Ilic [references] [full-text] [DOI: 10.13164/re.2023.0381] [Download Citations]
Spatial Localization of Electromagnetic Radiation Sources by Cascade Neural Network Model with Noise Reduction

In this paper, the Direction of Arrival - DoA estimation for two mobile sources was performed by using the Single Multilayer Perceptron (MLP) neural network model (SMLP-DoA) and the Cascade MLP model(CMLP). The latter model consists of two neural networks connected in a cascade where the outputs of the first MLP that rejects noise represent the inputs to the second network in a cascade. The outputs of the neural network models determine the direction of arrival of the incoming signals. Two cases were considered, in the first case the neural networks were trained on the samples that were without noise, and in the second with samples containing noise. Both considered neural network models were tested with noisy samples. The results of these two neural models are compared to the results achieved by the RootMUSIC algorithm. The presented results show that the proposed CMLP model has a higher accuracy in determining the angular positions of sources compared to the classical SMLP-DoA model and the RootMUSIC algorithm. Moreover, the CMLP model executes significantly faster compared to the model based on the RootMUSIC algorithm.

  1. GODARA, L. C. Application of antenna arrays to mobile communications, part II: Beamforming and direction-of-arrival considerations. Proceedings of the IEEE, 1997, vol. 85, no. 8, p. 1195–1245. DOI: 10.1109/5.622504
  2. ZOUBIR, M. A., CHELLAPPA, R., THEODORIDIS, S. Array and Statistical Signal Processing. Academic Press, 2014. ISBN: 978-0-12-411597-2
  3. RAO, B. D., HARI, K. V. S. Performance analysis of root-MUSIC. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 12, p. 1939–1949. DOI: 10.1109/29.45540
  4. NI, Z., LUO, Y., MOTANI, M., et. al. DoA estimation for lens antenna array via Root-MUSIC, outlier detection, and clustering. IEEE Access, 2020, vol. 8, p. 199187–199196. DOI: 10.1109/ACCESS.2020.3034080
  5. HAYKIN, S. Neural Networks: Comprehensive Foundation. New York (USA): Macmillan, 1994. ISBN: 978-0023527616
  6. CHRISTODOULOU, C. G., GEORGIOPOULOS, M. Application of Neural Networks in Electromagnetics. Boston (USA): Artech House, 2001. ISBN: 978-0890068809
  7. ZHANG, Q. J., GUPTA, K. C. Neural Networks for RF and Microwave Design. Boston (USA): Artech House, 2000. ISBN: 978-1580531009
  8. CONG, J., WANG, X., HUANG, M., et. al. Robust DOA estimation method for MIMO radar via deep neural networks. IEEE Sensors Journal, 2021, vol. 21, no. 6, p. 7498–7507. DOI: 10.1109/JSEN.2020.3046291
  9. XIANG, H., CHEN, B., YANG, T., et. al. Improved de-multipath neural network models with self-paced feature-to-feature learning for DOA estimation in multipath environment. IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 5, p. 5068–5078. DOI: 10.1109/TVT.2020.2977894
  10. AGATONOVIĆ, M., STANKOVIĆ, Z., DONCOV, N., et al. Application of artificial neural networks for efficient high-resolution 2D DOA estimation. Radioengineering, 2012, vol. 21, no. 4, p. 1178–1186. ISSN: 1805-9600
  11. STANKOVIĆ, Z, DONCOV, N, MILOVANOVIĆ, I., et. al. Direction of arrival estimation of mobile stochastic electromagnetic sources with variable radiation powers using hierarchical neural model. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 10, p. 1–17. DOI: 10.1002/mmce.21901
  12. BARTHELME, A., UTSCHICK, W. DoA estimation using neural network-based covariance matrix reconstruction. IEEE Signal Processing Letters, 2021, vol. 28, p. 783–787. DOI: 10.1109/LSP.2021.3072564
  13. LI, Y., HUANG, Y., REN, J., et. al. Robust DOA estimation in satellite systems in presence of coherent signals subject to low SNR. IEEE Access, 2022, vol. 10, p. 109983–109993. DOI: 10.1109/ACCESS.2022.3213712
  14. PAPAGEORGIOU, G. K., SELLATHURAI, M., ELDAR, Y. C. Deep networks for direction-of-arrival estimation in low SNR. IEEE Transactions on Signal Processing, 2021, vol. 69, p. 3714 to 3729. DOI: 10.1109/TSP.2021.3089927
  15. GUO, B., ZHEN, J. Coherent signal direction finding with sensor array based on back propagation neural network. IEEE Access, 2019, vol. 7, p. 172709–172717. DOI: 10.1109/ACCESS.2019.2956555
  16. KUÇUK, A., GANGULY, A., HAO, Y., et. al. Real-time convolutional neural network-based speech source localization on smartphone. IEEE Access, 2019, vol. 7, p. 169969–169978. DOI: 10.1109/ACCESS.2019.2955049
  17. STOICA, P., NEHORAI, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. DOI: 10.1109/29.17564
  18. HUANG, J., WAN, Q. CRLB for DOA estimation in Gaussian and non-Gaussian mixed environments. Wireless Personal Communication, 2013, vol. 68, p. 1673–1688. DOI: 10.1007/s11277-012-0544-3
  19. CHEN, M., MAO, X., WANG, X. Performance analysis of deep neural networks for direction of arrival estimation of multiple sources. IET Signal Processing, 2023, p. 1–18. DOI: 10.1049/sil2.12178

Keywords: The direction of Arriva (DoA) estimation, artificial neural networks, Multilayer Perceptron (MLP), single MLP, cascade MLP, RootMUSIC algorithm

X. Guan, C. Lv, G. Zheng, Z. Pan, K. Cai [references] [full-text] [DOI: 10.13164/re.2023.0391] [Download Citations]
Software-Defined 1550-nm Full-Fiber Doppler Lidar for Contactless Vibration Measurement of High Voltage Power Equipment

In this work, a 1550-nm full-fiber Doppler lidar via software-defined platform is built to realize flexible and low-cost contactless vibration measurement of high-voltage power equipment. A 1550-nm fiber layout is designed to generate optical interference between vibration signal and carrier wave. The reflected vibration signal is collected by an optical transceiver and the carrier wave is generated by an acousto-optic modulator (AOM). The optical beat signal is collected by a balanced detector (BD) then sent into a general software defined radio (SDR) receiver. By GNU developing platform, the target mechanical vibration signal is demodulated and several flexible functions such as speed-acceleration trans, harmonic component analysis and fault diagnosis is realized. Performance of Doppler lidar is first verified on mechanical vibration source by PZT vibration actuator, results show that the designed lidar could retrieve 50 Hz–20 kHz mechanical vibration signals within the working distance is up to 20 m. Further case application scenarios on the power transformer and gas-insulated switchgear (GIS) are also conducted to verify the feasibility of proposed lidar.

  1. MARKS, J., VITOLINA, S., DIRBA, J. Magnetostrictive vibration model for evaluation of mechanical integrity of power transformer magnetic core. Latvian Journal of Physics and Technical Sciences, 2019, vol. 56, no. 3, p. 13–25. DOI: 10.2478/lpts-2019-0016
  2. HONG, K., HUANG, H., ZHOU, J. Winding condition assessment of power transformers based on vibration correlation. IEEE Transactions on Power Delivery, 2015, vol. 30, no. 4, p. 1735–1742. DOI: 10.1109/TPWRD.2014.2376033
  3. BIAN, C., ZHANG, Z., ZHAO, K., et al. Study on mechanical vibration characteristics of GIS bus misalignment based on FEM (in Chinese). High Voltage Apparatus, 2020, vol. 56, no. 6, p. 72 to 79. DOI: 10.13296/j.1001-1609.hva.2020.06.011
  4. ZHANG, S., ZHANG, K., YUE, B., et al. Analysis on abnormal vibration and its time-varying force of GIS (in Chinese). High Voltage Apparatus, 2020, vol. 56, p. 155–160, 167. DOI: 10.13296/j.1001-1609.hva.2020.10.025
  5. ZHENG, J., HUANG, H., PAN, J., et al. Feature extraction of mechanical faults from phase variation in transformer vibration. Applied Acoustics, 2022, vol. 185, p. 1–10. DOI: 10.1016/j.apacoust.2021.108440
  6. OHSHITA, Y., HASHIMOTO, A., KUROSAWA, Y. A diagnos-tic technique to detect abnormal conditions of contacts measuring vibrations in metal enclosures of gas insulated switchgear. IEEE Transactions on Power Delivery, 1989, vol. 4, no. 4, p. 2090–2094. DOI: 10.1109/61.35634
  7. MA, H., LIU, B., XU, H., et al. GIS mechanical state identification and defect diagnosis technology based on self-excited vibration of assembled circuit breaker. IET Science, Measurement and Technology, 2020, vol. 14, no. 1, p. 56–63. DOI: 10.1049/iet-smt.2018.5578
  8. FENG, Y., WU, J. Vibration feature analysis for gas-insulated switchgear mechanical fault detection under varying current. Applied Sciences, 2020, vol. 10, p. 1–14. DOI: 10.3390/app10030944
  9. XIONG, Q., ZHAO, J., GUO, Z., et al. Mechanical defects diagnosis for gas insulated switchgear using acoustic imaging approach. Applied Acoustics, 2021, vol. 174, no. 15, p. 1–9. DOI: 10.1016/j.apacoust.2020.107784
  10. CONNELLY, M. J., SZECOWKA, P. M., JALLAPURAM, R., et al. Multipoint laser Doppler vibrometry using holographic optical elements and a CMOS digital camera. Optics Letters, 2008, vol. 33, no. 4, p. 330–332. DOI: 10.1364/OL.33.000330
  11. JEGER-MADIOT, N., GATEAU, J., FINK, M., et al. Non-contact and through-clothing measurement of the heart rate using ultrasound vibrocardiography. Medical Engineering and Physics, 2017, vol. 50, p. 96–102. DOI: 10.1016/j.medengphy.2017.09.003
  12. HIRUTA, T., HOSAYA, N., MAEDA, S., et al. Experimental evaluation of frequency response and firmness of apples based on an excitation technique using a dielectric elastomer actuator. Sensors and Actuators A: Physical, 2021, vol. 330, p. 1–8. DOI: 10.1016/j.sna.2021.112830
  13. YILMAZ, O. Remote sensing of vibration on induction motor and spectral analysis. Journal of Vibroengineering, 2011, vol. 13, no. 4, p. 712–718. ISSN (Online): 2538-8460
  14. WANG, Y., DAI, K., XU, X., et al. Field testing of wind turbine towers with contact and noncontact vibration measurement methods. Journal of Performance of Constructed Facilities, 2020, vol. 34, no. 1. DOI: 10.1061/(ASCE)CF.1943-5509.0001366
  15. ZIEGER, T., NAGEL, S., LUTZMANN, P., et al. Simultaneous identification of wind turbine vibrations by using seismic data, elastic modeling and laser Doppler vibrometry. Wind Energy, 2020, vol. 23, no. 4, p. 1145–1153. DOI: 10.1002/we.2479
  16. ZHENG, J., PAN, J., HUANG, H. An experimental study of winding vibration of a single-phase power transformer using a laser Doppler vibrometer. Applied Acoustics, 2015, vol. 87, p. 30–37. DOI: 10.1016/j.apacoust.2014.06.012
  17. LUTZMANN, P., GOHLER, B., VAN PUTTEN, F., et al. Laser vibration sensing: Overview and applications. Proceedings of SPIE 8186, Electro-Optical Remote Sensing, Photonic Technologies, and Applications V, 2011, p. 1–16. DOI: 10.1117/12.903671
  18. RAFFO, A., COSTANZO, S., DI MASSA, G. Software defined Doppler radar as a contactless multipurpose microwave sensor for vibrations monitoring. Sensors, 2017, vol. 17, no. 1, p. 1–15. DOI: 10.3390/s17010115
  19. NGUYEN, P., TRUONG, H., RAVINDRANATHAN, M., et al. Cost-effective and passive RF-based drone presence detection and characterization. GetMobile: Mobile Computing and Communications, 2017, vol. 21, no. 4, p. 30–34. DOI: 10.1145/3191789.3191800
  20. ZHOU, Y., LIU, S., DAI, P., et al. Multilongitudinal mode fiber laser sensor using software radio demodulation. Proceedings of SPIE 11192, Real-time Photonic Measurements, Data Management, and Processing IV, 2019, p. 1–7. DOI: 10.1117/12.2537777
  21. POSADA-ROMAN, J. E., JACKSON, D. A., COLE, M. J., et al. Multichannel fiber laser Doppler vibrometer studies of low momentum and hypervelocity impacts. Optics and Lasers in Engineering, 2017, vol. 99, p. 39–45. DOI: 10.1016/j.optlaseng.2017.03.002
  22. SHANG, J., LIU, Y., SUN, J., et al. Five-channel fiber-based laser Doppler vibrometer for underwater acoustic field measurement. Applied Optics, 2020, vol. 59, no. 3, p. 676–682. DOI: 10.1364/AO.378788
  23. WAZ, A. T., KACZMAREK, P. R., ANTONCZAK, A. J., et al. WDM-vibrometry at 1550 nm. AIP Conference Proceedings, 2010, vol. 1253, no. 1, p. 249–253. DOI: 10.1063/1.3455464
  24. SARIJARI, M. A., MARWANTO, A., FISAL, N., et al. Energy detection sensing based on GNU radio and USRP: An analysis study. In 2009 IEEE 9th Malaysia International Conference on Communications (MICC). Kuala Lumpur (Malaysia), 2009, p. 338–342. DOI: 10.1109/MICC.2009.5431525
  25. FRIEDT, J. M. GNU Radio as a digital signal processing envi-ronment: Application to acoustic wireless sensor measurement and time & frequency analysis of periodic signals. In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). Prague (Czech Republic), 2013, p. 278–281. DOI: 10.1109/EFTF-IFC.2013.6702107
  26. RUNDE, M. Failure frequencies for high-voltage circuit breakers, disconnectors, earthing switches, instrument transformers, and gas-insulated switchgear. IEEE Transactions on Power Delivery, 2013, vol. 28, no. 1, p. 529–530. DOI: 10.1109/TPWRD.2012.2220638
  27. MARTIN, D., MARKS, J., SAHA, T. Survey of Australian power transformer failures and retirements. IEEE Electrical Insulation Magazine, 2017, vol. 33, no. 5, p. 16–22. DOI: 10.1109/MEI.2017.8014387

Keywords: Doppler, lidar, vibration detection, power equipment, software-defined

J. Acharjee, A. Pathak, G. S. Paul, K. Mandal [references] [full-text] [DOI: 10.13164/re.2023.0400] [Download Citations]
Polarization–Insensitive Angularly Stable Compact Triple Band Stop Frequency Selective Surface for Shielding Electromagnetic Radiations

A compact single-layer, polarization-insensitive, and angularly stable frequency selective surface (FSS) based multi-stop band filter is reported for shielding three useful frequency bands covering 1.82–2.86 GHz Industrial, scientific, and medical (ISM), 3.52–4.06 GHz Worldwide Interoperability for Microwave Access (WiMAX), and 7.42–8.72 GHz (satellite downlink), centered at 2.4 GHz, 3.6 GHz, and 8.1 GHz, respectively. The proposed unit cell (15 mm × 15 mm) contains four equal-sized square-headed dumbbell (SHD) shaped resonators surrounded by two square ring resonators. The outer and inner square rings offer the first and second stop bands, while the SHD resonators provide the third stop band. A highly polarization-insensitive response is realized owing to the four-fold symmetry in the proposed structure. The unique arrangements of the SHD resonators help to realize higher angular stability under transverse electric (TE), transverse magnetic (TM), and diagonally polarized incident electromagnetic (EM) waves for incidence angles up to 80°, 80°, and 70°, respectively. A detailed analysis in terms of equivalent circuit and parametric variation is carried out to illustrate the higher to lower frequency band ratio. A prototype is fabricated and tested through a proper measurement setup to validate its performance, and it shows good agreement with the simulated results. The proposed FSS unit cell offers better angular stability under diagonally polarised incident waves, attenuation level, minimum higher to lower frequency band ratio, good fractional bandwidth, and compactness. So the designed multi-stopband FSS can be considered a potential candidate for shielding EM radiation across the useful bands

  1. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. 1st ed. John Wiley & Sons, 2005. ISBN: 978-0471370475
  2. THUMMALURU, S. R., KUMAR, R., CHAUDHARY, R. K. Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1595–1600. DOI: 10.1109/TAP.2018.2794417
  3. GHOSH, S., SRIVASTAVA, K. V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding. IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, no. 1, p. 166–172. DOI: 10.1109/TEMC.2017.2706359
  4. DAS, P., MANDAL, K. Modelling of ultra‐wide stop‐band frequency‐selective surface to enhance the gain of a UWB antenna. IET Microwaves, Antennas & Propagation, 2019, vol. 13, no. 3, p. 269–277. DOI: 10.1049/iet-map.2018.5426
  5. YUAN, Y., XI, X., ZHAO, Y. Compact UWB FSS reflector for antenna gain enhancement. IET Microwaves, Antennas & Propagation, 2019, vol. 13, no. 10, p. 1749–1755. DOI: 10.1049/iet-map.2019.0083
  6. PAUL, G. S., MANDAL, K., ACHARJEE, J., et al. Reduction of mobile phone radiation exposure using multi-stopband frequency selective surface. Progress in Electromagnetic Research-M, 2019, vol. 83, p. 9–18. DOI: 10.2528/PIERM19041401
  7. PAUL, G. S., MANDAL, K., DAS, P. Low profile polariza-tion‐insensitive wide stop‐band frequency selective surface with effective electromagnetic shielding. International Journal of RF and Microwave Computer‐Aided Engineering, 2021, vol. 31, no. 3, p. 1–8. DOI: 10.1002/mmce.22527
  8. PAUL, G. S., MANDAL, K. Polarization-insensitive and angularly stable compact ultrawide stop-band frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 9, p. 1917–1921. DOI: 10.1109/LAWP.2019.2933545
  9. TANG, Z., ZHAN, J., ZHONG, B., et al. An ultrawideband frequency selective surface with high stability for electromagnetic stealth. Journal of Electromagnetic Waves and Applications, 2021, vol. 36, no. 1, p. 141–153. DOI: 10.1080/09205071.2021.1958703
  10. KANCHANA, D., RADHA, S., SREEJA, S. A single layer UWB frequency selective surface for shielding supplication. Journal of Electronic Materials, 2020, vol. 49, p. 4794–4800. DOI: 10.1007/s11664-020-08210-x
  11. KATOCH, K., JAGLAN, N., GUPTA, S. D., et al. Design of a triple band notched polarization independent compact FSS at UWB frequency range. International Journal of RF and Microwave Computer‐Aided Engineering, 2021, vol. 31, no. 6, p. 1–14. DOI: 10.1002/mmce.22631
  12. XU, X. M. A compact angularly‐stable frequency selective surface for GSM 900/1800‐MHz shielding using cascaded 2.5‐dimension structure. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 29, no. 6, p. 1–7. DOI: 10.1002/mmce.21682
  13. YANG, Y., LI, W., SALAMA, K. N., et al. Polarization insensitive and transparent frequency selective surface for dual band GSM shielding. IEEE Transactions on Antennas and Propagation, 2021, vol. 69, no. 5, p. 2779–2789. DOI: 10.1109/TAP.2020.3032827
  14. KANCHANA, D., RADHA, S., SREEJA, B. S., et al. A miniatur-ized flexible frequency selective surface for dual band response. International Journal of Microwave and Wireless Technologies, 2020, vol. 13, p. 810–816. DOI: 10.1017/S1759078720001506
  15. MAHAVEER, U., CHANDRASEKARAN, K. T., MOHAN, M. P., et al. A tri-band frequency-selective surface. Journal of Electromagnetic Waves and Applications, 2021, vol. 35, no. 7, p. 861–873. DOI: 10.1080/09205071.2020.1865206
  16. SHARMA, S. K., ZHOU, D., LUTTGEN, A. C., et al. A micro copper mesh-based optically transparent triple band frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 1, p. 202–206. DOI: 10.1109/LAWP.2018.2886305
  17. DEY, S., DEY, S. Conformal miniaturized angular stable triband frequency selective surface for EMI shielding. IEEE Transactions on Electromagnetic Compatibility, 2022, vol. 64, no. 4, p. 1031 to 1041. DOI: 10.1109/TEMC.2022.3153998
  18. BASHIRI, M., GHOBADI, C., NOURINIA, J., et al. WiMAX, WLAN, and X-band filtering mechanism: Simple-structured triple-band frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 3245–3248. DOI: 10.1109/lawp.2017.2771265
  19. GARG, S., YADAV, S., ASERI, K., et al. A novel reflective fre-quency selective surface for triple frequency applications. In International Conference on Computing, Communication and Automation (ICCCA). Greater Noida (India), 2017, p. 1522–1525. DOI: 10.1109/CCAA.2017.8230043
  20. YADAV, S., JAIN, C. P., SHARMA, M. M. Smartphone frequency shielding with penta-bandstop FSS for security and electromagnetic health applications. IEEE Transactions on Electromagnetic Compatibility, 2019, vol. 61, no. 3, p. 887–892. DOI: 10.1109/TEMC.2018.2839707
  21. GHOSH, A., KUMAR, M., ISLAM, S. N., et al. Design and analysis of a compact penta-band polarization-insensitive bandstop frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2020, vol. 19, no. 1, p. 59–63. DOI: 10.1109/LAWP.2019.2952689
  22. FAROOQ, U., IFTIKHAR, A., SHAFIQUE, M. F., et al. Polarization insensitive penta-bandstop frequency selective surface for closely placed bands. Microwave and Optical Technology Letters, 2021, vol. 63, no. 1, p. 271–278. DOI: 10.1002/mop.32571
  23. KUNDU, S., CHATTERJEE, A. A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface. AEU - International Journal of Electronics and Communications, 2022, vol. 150, p. 1–12. DOI: 10.1016/j.aeue.2022.154200
  24. KUNDU, S., CHATTERJEE, A. A new compact ultra-wideband frequency selective surface with angular stability and polarization independence for antenna radiation enhancement in microwave imaging application. AEU - International Journal of Electronics and Communications, 2022, vol. 155, p. 1–12. DOI: 10.1016/j.aeue.2022.154351

Keywords: Frequency selective surface (FSS), polarization-insensitive, angular stability, multi-stopband, square ring, ISM, WiMAX, X-band

P. S. Tomar, M. S. Parihar [references] [full-text] [DOI: 10.13164/re.2023.0408] [Download Citations]
A Miniaturized Low Pass Filter with Extended Stopband and High Passband Selectivity

In this work, an ultra-wide stopband low pass filter (LPF) with high selectivity is proposed using coupled stepped impedance resonators (SIRs), open shunt stubs and circular slots in the ground plane. The proposed LPF has been modeled using a lumped equivalent circuit which is extracted from the EM model. The design has been validated through the simulation and experimental results. The fabricated prototype has a 3-dB cutoff frequency (fc) of 2.44 GHz and an ultra-wide stopband extended up to 20.5 GHz (8.4 fc) with an attenuation level > 20 dB. The transition bandwidth (from 3 dB to 20 dB) is 0.09 GHz and the roll-off rate is 225 dB / GHz (reference to 30 dB). The passband insertion loss is 0.35 dB at 1.22 GHz and the normalized circuit size of the filter is 0.045.

  1. HONG, J. S. Microstrip Filters for RF/Microwave Application. 2nd ed., New York (USA): John Wiley & Sons, Inc., 2011. ISBN: 9780470408773
  2. WEI, F., CHEN, L., SHI, X. W. Compact lowpass filter based on coupled-line hairpin unit. Electronic Letters, 2012, vol. 48, no. 7, p. 379–381. DOI: 10.1049/el.2011.3811
  3. HAYATI, M., NADERI, S., JAFARI, F. Compact microstrip lowpass filter with sharp roll-off using radial resonator. Electronic Letters, 2014, vol. 50, no. 10, p. 761–762. DOI: 10.1049/el.2014.0648
  4. SHEIKHI, A., ALIPOUR, A., ABDIPOUR, A. Design of compact wide stopband microstrip low-pass filter using T-shaped resonator. IEEE Microwave Wireless Component Letters, 2017, vol. 27, no. 2, p. 111–113. DOI: 10.1109/LMWC.2017.2652862
  5. CHEN, F., LI, R., CHU, Q. Ultra-wide stopband low-pass filter using multiple transmission zeros. IEEE Access, 2017, vol. 5, p. 6437–6443. DOI: 10.1109/ACCESS.2017.2693344
  6. RAPHIKA, P. M., ABDULLA, P., JASMINE, P. M. Planar elliptic function lowpass filter with sharp roll-off and wide stopband. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p.133–136. DOI: 10.1002/mop.29520
  7. REKHA, T. K., ABDULLA, P., RAPHIKA, P. M., et al. Compact microstrip lowpass filter with ultra-wide stopband using patch res-onators and open stubs. Progress In Electromagnetics Research C, 2017, vol. 72, p. 15–28. DOI: 10.2528/PIERC16110202
  8. BELBACHIR, A. K., BOUSSOUIS, M., TOUHAMI, N. A. High-performance LPF using coupled C-shape DGS and radial stub resonators for microwave mixer. Progress In Electromagnetics Research Letters, 2016, vol. 58, p. 97–103. DOI: 10.2528/PIERL15090105
  9. HAYATI, M., EKHTERAEI, M., SHAMA, F. Compact lowpass filter with flat group delay using lattice-shaped resonator. Electronics Letters, 2017, vol. 53, no. 7, p. 475–476. DOI: 10.1049/el.2016.3431
  10. KUMAR, L., PARIHAR, M. S. Compact hexagonal shape elliptical low pass filter with wide stop band. IEEE Microwave Wireless Component Letters, 2016, vol. 26, no. 12, p. 978–980. DOI: 10.1109/LMWC.2016.2623246
  11. HOSEINABADI, A., TAVAKOLI, M. B., RASTEGAR FATEMI, M. J., et al. A new method for designing modified compact microstrip LPF with sharp roll-off and wide stopband. Radioengineering, 2021, vol. 30, no. 4, p. 662–669. DOI: 10.13164/re.2021.0662
  12. MOLOUDIAN, G., BAHRAMI, S., HASHMI, R. M. A microstrip lowpass filter with wide tuning range and sharp roll-off response. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, vol. 67, no. 12, p. 2953–2957. DOI: 10.1109/TCSII.2020.2985206
  13. TOMAR, P. S., PARIHAR, M. S. The design and investigation of the low-pass filter with high selectivity and ultra-wide stopband. IETE Journal of Research, 2023, p. 1–6. DOI: 10.1080/03772063.2023.2185303

Keywords: Ground slot with via, open shunt stubs, roll-off rate, step impedance resonator, ultra-wide stopband

J. Yang, C. Liu, J. Huang, D. Hu, C. Zhao [references] [full-text] [DOI: 10.13164/re.2023.0415] [Download Citations]
Overcoming Unknown Measurement Noise Powers in Multistatic Target Localization: A Cyclic Minimization and Joint Estimation Algorithm

This paper investigates the issue of multistatic target localization using measurements including angle of arrival (AOA), time delay (TD), and Doppler shift (DS). We delve into a practically driven nonideal localization scenario where the measurement noise powers remain unknown. An algorithm that jointly estimates target position-velocity and measurement noise powers is proposed. Initially, an optimization model for the joint estimation is developed following the maximum likelihood estimation criterion. Subsequently, we cyclically minimize the optimization model to yield estimates for target position-velocity and measurement noise powers. The Cramer-Rao lower bound (CRLB) for this joint estimation is also derived. Contrary to existing algorithms, our proposed method eliminates the need for prior knowledge of measurement noise powers, simultaneously estimating the target position-velocity and measurement noise powers. Simulation results indicate superior localization accuracy with our algorithm, particularly in scenarios with unknown measurement noise powers. Furthermore, at moderate noise levels, the algorithm's estimation accuracy for target position-velocity and measurement noise powers meets the CRLB.

  1. DONTAMSETTI, S. G., KUMAR, R. V. R. A distributed MIMO radar with joint optimal transmit and receive signal combining. IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, no. 1, p. 623–635. DOI: 10.1109/TAES.2020.3027103
  2. ZAIMBASHI, A. A unified framework for multistatic passive radar target detection under uncalibrated receivers. IEEE Transactions on Signal Processing, 2021, vol. 69, p. 695–708. DOI: 10.1109/TSP.2020.3048800
  3. FUGENSCHUH, A. R., CRAPARO, E. M., KARATAS, M., et al. Solving multistatic sonar location problems with mixed-integer programming. Optimization and Engineering, 2019, vol. 21, p. 273–303. DOI: 10.1007/s11081-019-09445-2
  4. SAHR, J. D., LIND, F. D. The Manastash Ridge radar: A passive bistatic radar for upper atmospheric radio science. Radio Science, 1997, vol. 32, no. 6, p. 2345–2358. DOI: 10.1029/97RS02454
  5. NOROOZI, A., SEBT, M. A. Target localization in multistatic passive radar using SVD approach for eliminating the nuisance parameters. IEEE Transactions on Aerospace & Electronic Systems, 2017, vol. 53, no. 4, p. 1660–1671. DOI: 10.1109/TAES.2017.2669558
  6. AMIRI, R., BEHNIA, F., ZAMANI, H. Asymptotically efficient target localization from bistatic range measurements in distributed MIMO radars. IEEE Signal Processing Letters, 2017, vol. 24, no. 3, p. 299–303. DOI: 10.1109/LSP.2017.2660545
  7. AMIRI, R., BEHNIA, F., SADR, M. A. M. Exact solution for elliptic localization in distributed MIMO radar systems. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 2, p. 1075–1086. DOI: 10.1109/TVT.2017.2762631
  8. PANWAR, K., BABU, P., STOICA, P. Maximum likelihood algorithm for time-delay based multistatic target localization. IEEE Signal Processing Letters, 2022, vol. 29, p. 847–851. DOI: 10.1109/LSP.2022.3158592
  9. NOROOZI, A., SEBT, M. A. Algebraic solution for threedimensional TDOA/AOA localisation in multiple-input–multipleoutput passive radar. IET Radar, Sonar & Navigation, 2018, vol. 12, no. 1, p. 21–29. DOI: 10.1049/iet-rsn.2017.0117
  10. AMIRI, R., BEHNIA, F., ZAMANI, H. Efficient 3-D positioning using time-delay and AOA measurements in MIMO radar systems. IEEE Communications Letters, 2017, vol. 21, no. 12, p. 2614 to 2617. DOI: 10.1109/LCOMM.2017.2742945
  11. KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. Efficient closed-form solution for 3-D hybrid localization in multistatic radars. IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, no. 6, p. 3886–3895. DOI: 10.1109/TAES.2021.3082664
  12. LIU, M. M., GAO, W., ZHAO, Y. An efficient estimator for source localization using TD and AOA measurements in MIMO radar systems. IEEE Sensors Letters, 2021, vol. 5, no. 3, p. 1–4. DOI: 10.1109/LSENS.2021.3057363
  13. KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. Efficient convex solution for 3-D localization in MIMO radars using delay and angle measurements. IEEE Communications Letters, 2019, vol. 23, no. 12, p. 2219–2223. DOI: 10.1109/LCOMM.2019.2948175
  14. ZHU, L., WE, G., SONG, H., et al. Robust moving target localization in distributed MIMO radars via iterative Lagrange programming neural network. IEEE Sensors Journal, 2020, vol. 20, no. 21, p. 13007–13017. DOI: 10.1109/JSEN.2020.3003349
  15. NOROOZI, A., AMIRI, R., NAYEBI, M. M., et al. Efficient closed-form solution for moving target localization in MIMO radars with minimum number of antennas. IEEE Transactions on Signal Processing, 2020, vol. 68, p. 2545–2557. DOI: 10.1109/TSP.2020.2986163
  16. ZHANG, F., SUN, Y., ZOU, J., et al. Closed-form localization method for moving target in passive multistatic radar network. IEEE Sensors Journal, 2020, vol. 20, no. 2, p. 980–990. DOI: 10.1109/JSEN.2019.2944957
  17. SONG, H., WEN, G., ZHU, L. An approximately efficient estimator for moving target localization in distributed MIMO radar systems in presence of sensor location errors. IEEE Sensors Journal, 2020, vol. 20, no. 2, p. 931–938. DOI: 10.1109/JSEN.2019.2943738
  18. KAZEMI, S. A. R., AMIRI, R., BEHNIA, F. An approximate ML estimator for moving target localization in distributed MIMO radars. IEEE Signal Processing Letters, 2020, vol. 27, p. 1595 to 1599. DOI: 10.1109/LSP.2020.3020505
  19. ZHAO, Y., ZHAO, C., LIANG, J. New algebraic algorithm for moving target localization in distributed MIMO radar systems. Journal of Electronics & Information Technology, 2018, vol. 40, no. 3, p. 548–556. DOI: 10.11999/JEIT170510
  20. JABBARI, M. R., TABAN, M. R., GAZOR, S. A robust TSWLS localization of moving target in widely separated MIMO radars. IEEE Transactions on Aerospace and Electronic Systems, 2023, vol. 59, no. 2, p. 897–906. DOI: 10.1109/TAES.2022.3194112
  21. LI, W., TANG, Q., HUANG, C., et al. Location algorithms for moving target in non-coherent distributed multiple-input multipleoutput radar systems. IET Signal Processing, 2017, vol. 11, no. 5, p. 503–514. DOI: 10.1049/iet-spr.2016.0323
  22. CHAN, Y. T., HO, K. C. A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 8, p. 1905–1915. DOI: 10.1109/78.301830
  23. YANG, L., YANG, L., HO, K. C. Moving target localization in multistatic sonar using time delays, Doppler shifts and arrival angles. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans (LA, USA), 2017, p. 3399–3403. DOI: 10.1109/ICASSP.2017.7952787
  24. WEI, Y., LI, W., TANG, Q., et al. A closed-form location algorithm without auxiliary variables for moving target in noncoherent multiple-input and multiple-output radar system. IEEE Access, 2020, vol. 8, p. 69496–69508. DOI: 10.1109/ACCESS.2020.2984825

Keywords: Multistatic target localization, angle of arrival, time delay, Doppler shift, measurement noise power

H. M. Shwetha, S. Anuradha [references] [full-text] [DOI: 10.13164/re.2023.0425] [Download Citations]
Performance Analysis of Novel Index Modulation-Based Non-Orthogonal Multiple Access Systems over Nakagami-m Fading Channels with Imperfect CSI

In this paper, a novel index modulation-based non-orthogonal multiple access (IM-NOMA) system is proposed and investigated for both perfect and imperfect channel state information (CSI) uncertainty over Nakagami-m fading channel. The proposed system has added advantages of NOMA and IM systems. NOMA supports more users by allowing all users to utilize the same resources simultaneously whereas IM boosts spectral efficiency by conveying information to the users through both constellation domain and index domain symbols. Maximum likelihood (ML) and successive interference cancellation (SIC) detectors are used at the receiver side to detect index and data symbols. The proposed system is analyzed for different values of Nakagami-m channel parameters as well as for three different CSI conditions - perfect, fixed, and MMSE-based variable CSI uncertainty. The simulation results for the bit error rate and spectral efficiency parameters show that the proposed system outperforms the existing NOMA and OMA schemes.

  1. CAI, Y., QIN, Z., CUI, F., et al. Modulation and multiple access for 5G networks. IEEE Communications Surveys and Tutorials, 2018, vol. 20, no. 1, p. 629–646. DOI: 10.1109/COMST.2017.2766698
  2. SAEED, N., BADER, A., AL NAFFOURI, T. Y., et al. When wireless communication responds to COVID-19: Combating the pandemic and saving the economy. Frontiers in Communications and Networks, 2020, vol. 1, p. 1–11. DOI: 10.3389/frcmn.2020.566853
  3. ZHANG, Z., XIAO, Y., MA, Z., et al. 6G wireless networks: Vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 2019, vol. 14, no. 3, p. 28–41. DOI: 10.1109/MVT.2019.2921208
  4. DAI, L., WANG, B., DING, Z., et al. A survey of nonorthogonal multiple access for 5G. IEEE Communications Surveys and Tutorials, 2018, vol. 20, no. 3, p. 2294–2323. DOI: 10.1109/COMST.2018.2835558
  5. KARA, F., KAYA, H. BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Communications, 2018, vol. 12, no. 15, p. 1834–1844. DOI: 10.1049/iet-com.2018.5278
  6. AGARWAL, A., CHAURASIYA, R., RAI, S., et al. Outage probability analysis for NOMA downlink and uplink communication systems with generalized fading channels. IEEE Access, 2020, vol. 8, p. 461–220. DOI: 10.1109/ACCESS.2020.3042993
  7. ISLAM, S. M., AVAZOV, N., DOBRE, O. A., et al. Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 2017, vol. 19, no. 2, p. 721–742. DOI: 10.1109/COMST.2016.2621116
  8. ALDABABSA, M., TOKA, M., GOKÇELI, S., et al. A tutorial on nonorthogonal multiple access for 5G and beyond. Wireless Communications and Mobile Computing, 2018, vol. 2018, p. 1–25. DOI: 10.1155/2018/9713450
  9. BASAR, E. Index modulation techniques for 5G wireless networks. IEEE Communications Magazine, 2016, vol. 54, no. 7, p. 168–175. DOI: 10.1109/MCOM.2016.7509396
  10. BASAR, E., WEN, M., MESLEH, R., et al. Index modulation techniques for next-generation wireless networks. IEEE Access, 2017, vol. 5, p. 16693–16746. DOI: 10.1109/ACCESS.2017.2737528
  11. KARA, F., KAYA, H. Spatial multiple access (SMA): Enhancing performances of MIMO-NOMA systems. In International Conference on Telecommunications and Signal Processing (TSP). Budapest (Hungary), 2019, p. 466–471. DOI: 10.1109/TSP.2019.8768828
  12. WANG, X., WANG, J., HE, L., et al. Spectral efficiency analysis for downlink NOMA aided spatial modulation with finite alphabet inputs. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 11, p. 10562–10566. DOI: 10.1109/TVT.2017.2737327
  13. TUSHA, A., DOGAN, S., ARSLAN, H. A hybrid downlink NOMA with OFDM and OFDM-IM for beyond 5G wireless networks. IEEE Signal Processing Letters, 2020, vol. 27, p. 491–495. DOI: 10.1109/LSP.2020.2979059
  14. MESLEH, R. Y., HAAS, H., SINANOVIĆ, S., et al. Spatial modulation. IEEE Transactions on Vehicular Technology, 2008, vol. 57, no. 4, p. 2228–2241. DOI: 10.1109/TVT.2007.912136
  15. YANG, P., XIAO, Y., GUAN, Y. L., et al. Single-carrier SMMIMO: A promising design for broadband large-scale antenna systems. IEEE Communications Surveys and Tutorials, 2016, vol. 18, no. 3, p. 1687–1716. DOI: 10.1109/COMST.2016.2533580
  16. ZHU, X., WANG, Z., CAO, J. NOMA-based spatial modulation. IEEE Access, 2017, vol. 5, p. 3790–3800. DOI: 10.1109/ACCESS.2017.2688019
  17. SUN, Y., WANG, J., SHI, L., et al. On RF-chain limited spatial modulation aided NOMA: Spectral efficiency analysis. In IEEE Globecom Workshops (GC Wkshps). Waikoloa (HI, USA), 2019, p. 1–5. DOI: 10.1109/GCWkshps45667.2019.9024646
  18. YOUNIS, A., SERAFIMOVSKI, N., MESLEH, R., et al. Generalised spatial modulation. In Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. Pacific Grove (CA, USA), 2010, p. 1498–1502. DOI: 10.1109/ACSSC.2010.5757786
  19. KADDOUM, G., AHMED, M. F., NIJSURE, Y. Code index modulation: A high data rate and energy efficient communication system. IEEE Communications Letters, 2015, vol. 19, no. 2, p. 175–178. DOI: 10.1109/LCOMM.2014.2385054
  20. KADDOUM, G., NIJSURE, Y., TRAN, H. Generalized code index modulation technique for high-data-rate communication systems. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 9, p. 7000–7009. DOI: 10.1109/TVT.2015.2498040
  21. KADDOUM, G., SOUJERI, E. On the comparison between codeindex modulation and spatial modulation techniques. In International Conference on Information and Communication Technology Research (ICTRC). Abu Dhabi (UAE), 2015, p. 24–27. DOI: 10.1109/ICTRC.2015.7156412
  22. ABU ALHIGA, R., HAAS, H. Subcarrier-index modulation OFDM. In IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Tokyo (Japan), 2009, p. 177–181. DOI: 10.1109/PIMRC.2009.5449882
  23. BASAR, E., AYGOLU, U., PANAYIRCI, E., et al. Orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 22, p. 5536–5549. DOI: 10.1109/TSP.2013.2279771
  24. CRAWFORD, J., CHATZIANTONIOU, E., KO, Y. On the SEP analysis of OFDM index modulation with hybrid low complexity greedy detection and diversity reception. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 9, p. 8103–8118. DOI: 10.1109/TVT.2017.2691778
  25. VAN LUONG, T., KO, Y. Impact of CSI uncertainty on MCIKOFDM: Tight closed-form symbol error probability analysis. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 2, p. 1272–1279. DOI: 10.1109/TVT.2017.2753402
  26. FAN, R., YU, Y. J., GUAN, Y. L. Generalization of orthogonal frequency division multiplexing with index modulation. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 10, p. 5350–5359. DOI: 10.1109/TWC.2015.2436925
  27. SHWETHA, H. M., ANURADHA, S. Analysis of downlink and uplink non-orthogonal multiple access (NOMA) for 5G. In Proceedings of Third International Conference on Sustainable Computing (SUSCOM). Jaipur (India), 2022, p. 385–395. DOI: 10.1007/978-981-16-4538-9_38
  28. DAI, L., WANG, B., YUAN, Y., et al. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 2015, vol. 53, no. 9, p. 74–81. DOI: 10.1109/MCOM.2015.7263349
  29. ALTHUNIBAT, S., MESLEH, R., QARAQE, K. IM-OFDMA: A novel spectral efficient uplink multiple access based on index modulation. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 10, p. 10315–10319. DOI: 10.1109/TVT.2019.2937080
  30. ALTHUNIBAT, S., MESLEH, R., QARAQE, K. Quadrature index modulation based multiple access scheme for 5G and beyond. IEEE Communications Letters, 2019, vol. 23, no. 12, p. 2257–2261. DOI: 10.1109/LCOMM.2019.2938505
  31. ALMOHAMAD, A., ALTHUNIBAT, S., HASNA, M., et al. A downlink index-modulation based nonorthogonal multiple access scheme. In IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). London (UK), 2020, p. 27–32. DOI: 10.1109/PIMRC48278.2020.9217284
  32. DOGAN, S., TUSHA, A., ARSLAN, H. NOMA with index modulation for uplink URLLC through grant-free access. IEEE Journal of Selected Topics in Signal Processing, 2019, vol. 13, no. 6, p. 1249–1257. DOI: 10.1109/JSTSP.2019.2913981
  33. CHEN, X., WEN, M., DANG, S. On the performance of cooperative OFDM-NOMA system with index modulation. IEEE Wireless Communications Letters, 2020, vol. 9, no. 9, p. 1346–1350. DOI: 10.1109/LWC.2020.2990159
  34. SHAHAB, M. B., JOHNSON, S. J., SHIRVANIMOGHADDAM, M., et al. Index modulation aided uplink NOMA for massive machine type communications. IEEE Wireless Communications Letters, 2020, vol. 9, no. 12, p. 2159–2162. DOI: 10.1109/LWC.2020.3015920
  35. ASSAF, T., AL DWEIK, A., MOURSI, M. E., et al. Exact BER performance analysis for downlink NOMA systems over Nakagamim fading channels. IEEE Access, 2019, vol. 7, p. 134539–134555. DOI: 10.1109/ACCESS.2019.2942113
  36. GONG, X., YUE, X., LIU, F. Performance analysis of cooperative NOMA networks with imperfect CSI over Nakagami-m fading channels. Sensors, 2020, vol. 20, no. 2, p. 1–18. DOI: 10.3390/s20020424
  37. BARIAH, L., MUHAIDAT, S., AL DWEIK, A. Error probability analysis of non-orthogonal multiple access over Nakagami-m fading channels. IEEE Transactions on Communications, 2019, vol. 67, no. 2, p. 1586–1599. DOI: 10.1109/TCOMM.2018.2876867
  38. YACOUB, M. D., FRAIDENRAICH, G., FILHO, J. C. S. Nakagami-m phase-envelope joint distribution. Electronics Letters, 2005, vol. 41, no. 2, p. 259–261. DOI: 10.1049/el:20057014
  39. PROAKIS, J. Digital Communications. McGraw-Hill Education, 2007. ISBN: 978-0072957167
  40. JASIULEWICZ, H., KORDECKI, W. Convolutions of Erlang and of Pascal distributions with applications to reliability. Demonstratio Mathematica, 2003, vol. 36, no. 1, p. 231–238. DOI: 10.1515/dema-2003-0125
  41. CHEN, X., WEN, M., MAO, T., et al. Spectrum resource allocation based on cooperative NOMA with index modulation. IEEE Transactions on Cognitive Communications and Networking, 2020, vol. 6, no. 3, p. 946–958. DOI: 10.1109/TCCN.2020.2991426
  42. NGO, V.-D., LUONG, T. V., LUONG, N. C., et al. Generalized BER of MCIK-OFDM with imperfect CSI: Selection combining GD versus ML receivers. Wireless Networks, 2023, vol. 29, p. 843–855. DOI: 10.1007/s11276-022-03178-4
  43. LUONG, T. V., KO, Y. A tight bound on BER of MCIKOFDM with greedy detection and imperfect CSI. IEEE Communications Letters, 2017, vol. 21, no. 12, p. 2594–2597. DOI: 10.1109/LCOMM.2017.2747549
  44. LUONG, T. V., KO, Y. The BER analysis of MRC-aided greedy detection for OFDM-IM in presence of uncertain CSI. IEEE Wireless Communications Letters, 2018, vol. 7, no. 4, p. 566–569. DOI: 10.1109/LWC.2018.2797066

Keywords: Non-orthogonal multiple access, index modulation, Nakagami-m fading channel, imperfect CSI, bit error rate, spectral efficiency

G. Baruffa, L. Rugini [references] [full-text] [DOI: 10.13164/re.2023.0438] [Download Citations]
Improved Channel Estimation and Equalization for Single-Carrier IEEE 802.11ad Receivers

IEEE 802.11ad uses mmWave technology for multi-gigabit wireless access networks. Multipath with large delay spread severely reduces performance due to insufficient guard interval. In this paper, we improve single-carrier IEEE 802.11ad receivers by proposing channel estimation and equalization methods for a frequency domain equalizer. Channel estimation is improved by leveraging on sparsity of the channel impulse response, while equalization is combined with an interference cancellation algorithm. The log-likelihood ratio demapper is also improved by correct power estimation of signal, interference, and noise. Simulation results show that the proposed methods are effective on channels whose length exceeds the guard interval.

  1. NITSCHE, T., CORDEIRO, C., FLORES, A. B., et al. IEEE 802.11ad: Directional 60 GHz communication for multi-gigabitper-second Wi-Fi. IEEE Communications Magazine, 2014, vol. 52, no. 12, p. 132–141. DOI: 10.1109/MCOM.2014.6979964
  2. CORDEIRO, C., AKHMETOV, D., PARK, M. IEEE 802.11ad: Introduction and performance evaluation of the first multi-gbps WiFi technology. In Proceedings of the 2010 ACM International Workshop on mmWave Communications (mmCom). Chicago (USA), 2010, p. 3–8. DOI: 10.1145/1859964.1859968
  3. IEEE COMPUTER SOCIETY. Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band (Standard). IEEE Std. 802.11ad. 628 pages. 2012. DOI: 10.1109/IEEESTD.2012.6392842
  4. AGGARWAL, S., GHOSHAL, M., BANERJEE, P., et al. An experimental study of the performance of IEEE 802.11ad in smartphones. Computer Communications, 2021, vol. 169, p. 220–231. DOI: 10.1016/j.comcom.2021.01.006
  5. METROLINQ. 60GHz Wireless PTP/PTMP – IgniteNet. [Online] Cited 2023-06-13. Available at: https://www.ignitenet.com/technology/metrolinq/
  6. MIKROTIK. Routers and Wireless – 60 GHz Products. [Online] Cited 2023-06-13. Available at: https://mikrotik.com/products/group/60-ghz-products
  7. QUALCOMM. QCA6335 – 802.11ad MAC Baseband Transceiver. [Online] Cited 2023-06-13. Available at: https://www.qualcomm.com/products/technology/wi-fi/qca6335
  8. GAO, B., ZHANG, C., Z., JIN, D., et al. Compressed SNRand-channel estimation for beam tracking in 60-GHz WLAN. China Communications, 2015, vol. 12, no. 6, p. 46–58. DOI: 10.1109/CC.2015.7122480
  9. SHAHAM, S., DING, M., KOKSHOORN, M., et al. Fast channel estimation and beam tracking for millimeter wave vehicular communications. IEEE Access, 2019, vol. 7, p. 141104–141118. DOI: 10.1109/ACCESS.2019.2944308
  10. YE, B., ZHANG, Z. Improved pilot design and channel estimation for 60GHz OFDM based on IEEE 802.11.ad. In Proceedings of 2013 IEEE Wireless Communications Networks Conference (WCNC). Shanghai (China), 2013, p. 4129–4133. DOI: 10.1109/WCNC.2013.6555239
  11. LIU, C.-Y., SIE, M.-S., LEONG, E. W. J., et al. Dual-mode all-digital baseband receiver with a feed-forward and shared-memory architecture for dual-standard over 60 GHz NLOS channel. IEEE Transactions on Circuits and Systems I, 2017, vol. 64, no. 3, p. 608–618. DOI: 10.1109/TCSI.2016.2615084
  12. WU, C.-F., LIU W.-C., TSUI, C.-C., et al. Golay-correlator windowbased noise cancellation equalization technique for 60-GHz wireless OFDM/SC receiver. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2016, vol. 24, no. 11, p. 3323–3333. DOI: 10.1109/TVLSI.2016.2544884
  13. LIU, W.-C., WEI, T.-C., HUANG, Y.-S., et al. All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad. IEEE Transactions on Circuits and Systems I, 2015, vol. 62, no. 2, p. 545–553. DOI: 10.1109/TCSI.2014.2361035
  14. GUAN, X., ZHANG, C., JIN, D. High-speed structure of channel estimation and equalization for 60 GHz SC-FDE transmission. In Proceedings of International Conference on Computational Problem-Solving (ICCP). Jiuzhai (China), 2013, p. 211–214. DOI: 10.1109/ICCPS.2013.6893577
  15. BLUMENSTEIN, J., MILOS, J., POLAK, L., et al. IEEE 802.11ad SC-PHY layer simulator: Performance in real-world 60 GHz indoor channels. In Proceedings of 2019 IEEE Nordic Circuits and Systems Conference (NORCAS). Helsinki (Finland), 2019, p. 1–4. DOI: 10.1109/NORCHIP.2019.8906960
  16. LIU, P., BLUMENSTEIN, J., PEROVIĆ, N. S., et al. Performance of generalized spatial modulation MIMO over measured 60GHz indoor channels. IEEE Transactions on Communications, 2018, vol. 66, no. 1, p. 133–148. DOI: 10.1109/TCOMM.2017.2754280
  17. POLAK, L., MILOS, J., ZEDKA, R., et al. BER and throughput performances of IEEE 802.11ay SC-PHY over measured 60 GHz indoor channels. Telecommunication Systems, 2022, vol. 80, p. 573–587. DOI: 10.1007/s11235-022-00928-9
  18. RENDEVSKI, N., CASSIOLI, D. BER of IEEE 802.11ad OFDM radios vs. carrier frequency in real 60 GHz indoor channels. In Proceedings of 2014 IEEE International Conference on Communications (ICC). Sydney (Australia), 2014, p. 5878–5883. DOI: 10.1109/ICC.2014.6884260
  19. HWANG, T., LI, Y. Iterative cyclic prefix reconstruction for coded single-carrier systems with frequency-domain equalization (SCFDE). InProceedings of 57th IEEE Semiannual Vehicular Technology Conference (VTC Spring). Jeju (Korea), 2003, vol. 3, p. 1841–1845. DOI: 10.1109/VETECS.2003.1207142
  20. HAYASHI, K., SAKAI, H. Interference cancellation schemes for single-carrier block transmission with insufficient cyclic prefix. EURASIP Journal on Wireless Communications and Networking, 2007, vol. 2008, p. 1–12. DOI: 10.1155/2008/130747
  21. KUMARI, P., GONZALEZ-PRELCIC, N., HEATH, R. W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar. In Proceedings of IEEE 82nd Vehicular Technology Conference (VTC Fall). Boston (USA), 2015, p. 1–5. DOI: 10.1109/VTCFall.2015.7390996
  22. GROSSI, E., LOPS, M., VENTURINO, L. An iterative interference cancellation algorithm for opportunistic sensing in IEEE 802.11ad networks. In Proceedings of IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). Guadeloupe (France), 2019, p. 141–145. DOI: 10.1109/CAMSAP45676.2019.9022460
  23. LI,W., JAGANNATH, R., GUAN, Y. L., et al. A novel design of multiuser sequence set for joint vehicular radar-communication based on Oppermann family. Digital Signal Processing, 2023, vol. 141, p. 1–11. DOI: 10.1016/j.dsp.2023.104119
  24. CHENG, S., PAHLAVAN, K., WEI, H., et al. A study of interference analysis between mmWave radars and IEEE 802.11ad at 60 GHz bands. International Journal of Wireless Information Networks, 2022, vol. 29, no. 3, p. 222–231. DOI: 10.1007/s10776-022-00564-9
  25. SUMEN, G., GORÇIN, A., QARAQE, K. A. Measurement-based modulation classification in unlicensed millimeter-wave bands. In Proceedings of 2023 IEEE Wireless Communications and Networking Conference (WCNC). Glasgow (UK), 2023, p. 1–6. DOI: 10.1109/WCNC55385.2023.10119008
  26. ZHAO, S., LIU, W., LEI, J., et al. An approach of measuring velocity based on auto-correlation in a single frame for IEEE 802.11ad. Electronics Letters, 2022, vol. 58, no. 25, p. 1019–1021. DOI: 10.1049/ell2.12670
  27. ABD, R. I., KIM, K. S. Protocol solutions for IEEE 802.11bd by enhancing IEEE 802.11ad to address common technical challenges associated with mmWave-based V2X. IEEE Access, 2022, vol. 10, p. 100646–100664. DOI: 10.1109/ACCESS.2022.3208235
  28. CHATTOPADHYAY, A., CHANDRA, A. IEEE 802.11ac vs 802.11ad for V2X: How many frames can we aggregate? In Proceedings of 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Kyoto (Japan), 2022, p. 913–918. DOI: 10.1109/PIMRC54779.2022.9977545
  29. MARTIN, R. K., DING, M., EVANS, B. L., et al. Efficient channel shortening equalizer design. EURASIP Journal on Applied Signal Processing, 2003, vol. 2003, no. 13, p. 1–12. DOI: 10.1155/S1110865703307024
  30. DARSENA, D., VERDE, F. Minimum-mean-output-energy blind adaptive channel shortening for multicarrier SIMO transceivers. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5755–5771. DOI: 10.1109/TSP.2007.900087
  31. BENOTMANE, N. B., ELAHMAR, S. A., DAYOUB, I., et al. Improved eigenfilter design method for channel shortening equalizer in TH-UWB. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 8, p. 7749–7753. DOI: 10.1109/TVT.2018.2822178
  32. DJEBBARI, A., ELAHMAR, S. A. Improved CSE with DLSMMSE criteria in TH-UWB system. Journal of Telecommunications and Information Technology, 2022, vol. 1, p. 93–98. DOI: 10.26636/jtit.2022.151421
  33. ZHANG, C., XIAO, Z., WU, H. et al. Performance analysis on the OFDM PHY of IEEE 802.11ad standard. In Proceedings of 2011 International Conference on Computational Problem-Solving (ICCP). Chengdu (China), 2011, p. 708–713. DOI: 10.1109/ICCPS.2011.6089947
  34. KIMURA, R., FUNADA, R., NISHIGUCHI, Y., et al. Golay sequence aided channel estimation for millimeter-wave WPAN systems. In Proceedings of 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). Cannes (France), 2008, p. 1–5. DOI: 10.1109/PIMRC.2008.4699819
  35. DE CARVALHO, E., SLOCK, D. Cramer-Rao bounds for semi-blind, blind and training sequence based channel estimation. In Proceedings of 1997 1st IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Paris (France), 1997, p. 129–132. DOI: 10.1109/SPAWC.1997.630172
  36. COON, J., BEACH, M., MCGEEHAN, J. Optimal training sequences for channel estimation in cyclic-prefix-based single-carrier systems with transmit diversity. IEEE Signal Processing Letters, 2004, vol. 11, no. 9, p. 729–732. DOI: 10.1109/LSP.2004.833485
  37. ALKHATEEB, A., EL AYACH, O., LEUS, G., et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE Journal on Selected Topics in Signal Processing, 2014, vol. 8, no. 5, p. 831–846. DOI: 10.1109/JSTSP.2014.2334278
  38. HENDERSON, H. V., SEARLE, S. R. On deriving the inverse of a sum of matrices. SIAM Review, 1981, vol. 23, no. 1, p. 53–60. DOI: 10.1137/1023004
  39. ZHOU, P., CHENG, K., HAN, X., et al. IEEE 802.11ay-based mmWave WLANs: Design challenges and solutions. IEEE Communications Surveys and Tutorials, 2018, vol. 20, no. 3, p. 1654–1681. DOI: 10.1109/COMST.2018.2816920

Keywords: 802.11ad, MMSE equalization, sparse channel estimation, channel shortening, interference cancellation

R. Feng, H. Ji, Z. Zhu, L. Wang [references] [full-text] [DOI: 10.13164/re.2023.0451] [Download Citations]
A Wasserstein Distance-Based Cost-Sensitive Framework for Imbalanced Data Classification

Class imbalance is a prevalent problem in many real-world applications, and imbalanced data distribution can dramatically skew the performance of classifiers. In general, the higher the imbalance ratio of a dataset, the more difficult it is to classify. However, it is found that standard classifiers can still achieve good classification results on some highly imbalanced datasets. Obviously, the class imbalance is only a superficial characteristic of the data, and the underlying structural information is often the key factor affecting the classification performance. As implicit prior knowledge, structural information has been validated to be crucial for designing a good classifier. This paper proposes a Wasserstein-based cost-sensitive support vector machine (CS-WSVM) for class imbalance learning, incorporating prior structural information and a cost-sensitive strategy. The Wasserstein distance is introduced to model the distribution of majority and minority samples to capture the structural information, which is employed to weight the majority and minority samples. Comprehensive experiments on synthetic and real-world datasets, especially on the radar emitter signal dataset, demonstrated that CS-WSVM can achieve outstanding performance in imbalanced scenarios.

  1. HE, H., GARCIA, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, vol. 21, no. 9, p. 1263–1284. DOI: 10.1109/TKDE.2008.239
  2. SVYD, I., OBOD, I., MALTSEV, O., et al. Method of increasing the identification friend or foe systems information security. In 3rd International Conference on Advanced Information and Communications Technologies (AICT). Lviv (Ukraine), 2019, p. 434–438. DOI: 10.1109/AIACT.2019.8847853
  3. LI, Z., HUANG, M., LIU, G., et al. A hybrid method with dynamic weighted entropy for handling the problem of class imbalance with overlap in credit card fraud detection. Expert Systems with Applications, 2021, vol. 175, p. 1–10. DOI: 10.1016/j.eswa.2021.114750
  4. TAN, K., ZHANG, L., YAN, W., et al. A semi-supervised emitter identification method for imbalanced category (in Chinese). Journal of Radars, 2022, vol. 11, no. 4, p. 713–727.
  5. BAGUI, S., LI, K. Resampling imbalanced data for network intrusion detection datasets. Journal of Big Data, 2021, vol. 8, no. 1, p. 1–41. DOI: 10.1186/s40537-020-00390-x
  6. PAN, T., CHEN, J., XIE, J., et al. Deep feature generating network: A new method for intelligent fault detection of mechanical systems under class imbalance. IEEE Transactions on Industrial Informatics, 2021, vol. 17, no. 9, p. 6282–6293. DOI: 10.1109/TII.2020.3030967
  7. KOZIARSKI, M., WOŹNIAK, M., KRAWCZYK, B. Combined cleaning and resampling algorithm for multi-class imbalanced data with label noise. Knowledge-Based Systems, 2020, vol. 204, p. 1 to 16. DOI: 10.1016/j.knosys.2020.106223
  8. LI, M., XIONG, A., WANG, L., et al. ACO resampling: Enhancing the performance of oversampling methods for class imbalance classification. Knowledge-Based Systems, 2020, vol. 196, p. 1–17. DOI: 10.1016/j.knosys.2020.105818
  9. CHARTE, F., RIVERA, A. J., DEL JESUS, M. J., et al. REMEDIAL-HwR: Tackling multilabel imbalance through label decoupling and data resampling hybridization. Neurocomputing, 2019, vol. 326–327, p. 110–122. DOI: 10.1016/j.neucom.2017.01.118
  10. YAN, J., HAN, S. Classifying imbalanced data sets by a novel resample and cost-sensitive stacked generalization method. Mathematical Problems in Engineering, 2018, vol. 2018, p. 1–13. DOI: 10.1155/2018/5036710
  11. ZHANG, C., TAN, K. C., LI, H., et al. A cost-sensitive deep belief network for imbalanced classification. IEEE Transactions on Neural Networks and Learning Systems, 2019, vol. 30, no. 1, p. 109–122. DOI: 10.1109/TNNLS.2018.2832648
  12. BI, J., ZHANG, C. An empirical comparison on state-of-the-art multi-class imbalance learning algorithms and a new diversified ensemble learning scheme. Knowledge-Based Systems, 2018, vol. 158, p. 81–93. DOI: 10.1016/j.knosys.2018.05.037
  13. TAO, X., LI, Q., GUO, W., et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification. Information Sciences, 2019, vol. 487, p. 31–56. DOI: 10.1016/j.ins.2019.02.062
  14. BOONCHUAY, K., SINAPIROMSARAN, K., LURSINSAP, C. Decision tree induction based on minority entropy for the class imbalance problem. Pattern Analysis and Applications, 2017, vol. 20, no. 3, p. 769–782. DOI: 10.1007/s10044-016-0533-3
  15. ZHANG, S. Cost-sensitive KNN classification. Neurocomputing, 2020, vol. 391, p. 234–242. DOI: 10.1016/j.neucom.2018.11.101
  16. ZERAATKAR, S., AFSARI, F. Interval–valued fuzzy and intuitionistic fuzzy–KNN for imbalanced data classification. Expert Systems with Applications, 2021, vol. 184, p. 1–16. DOI: 10.1016/j.eswa.2021.115510
  17. RICHHARIYA, B., TANVEER, M. A reduced universum twin support vector machine for class imbalance learning. Pattern Recognition, 2020, vol. 102, p. 1–19. DOI: 10.1016/j.patcog.2019.107150
  18. HOU, X., ZHANG, T., JI, L., et al. Combating highly imbalanced steganalysis with small training samples using feature selection. Journal of Visual Communication and Image Representation, 2017, vol. 49, p. 243–256. DOI: 10.1016/j.jvcir.2017.09.016
  19. CHAWLA, N. V. Data mining for imbalanced datasets: An overview. In MAIMON, O., ROKACH, L. (eds.) Data Mining and Knowledge Discovery Handbook. Boston (MA, USA): Springer, 2009, p. 875–886. DOI: 10.1007/978-0-387-09823-4_45
  20. BUDA, M., MAKI, A., MAZUROWSKI, M. A. A systematic study of the class imbalance problem in convolutional neural networks. Neural Networks, 2018, vol. 106, p. 249–259. DOI: 10.1016/j.neunet.2018.07.011
  21. FERNANDEZ, A., GARCIA, S., GALAR, M., et al. Learning from Imbalanced Data Sets. Cham: Springer, 2018, ch. 11, p. 279 to 303. DOI: 10.1007/978-3-319-98074-4_11
  22. THABTAH, F., HAMMOUD, S., KAMALOV, F., et al. Data imbalance in classification: Experimental evaluation. Information Sciences, 2020, vol. 513, p. 429–441. DOI: 10.1016/j.ins.2019.11.004
  23. VAN HULSE, J., KHOSHGOFTAAR, T. Knowledge discovery from imbalanced and noisy data. Data & Knowledge Engineering, 2009, vol. 68, no. 12, p. 1513–1542. DOI: 10.1016/j.datak.2009.08.005
  24. CERF, L., GAY, D., SELMAOUI-FOLCHER, N., et al. Parameter-free classification in multi-class imbalanced data sets. Data & Knowledge Engineering, 2013, vol. 87, p. 109–129. DOI: 10.1016/j.datak.2013.06.001
  25. WANG, W., WANG, J. N., HU, F. L., et al. SCA-CGAN: A new side-channel attack method for imbalanced small samples. Radioengineering, 2023, vol. 32, no. 1, p. 124–135. DOI: 10.13164/re.2023.0124
  26. DOMINGOS, P. MetaCost: A general method for making classifiers cost-sensitive. In Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego (CA, USA), 1999, p. 155–164.
  27. LI, F., ZHANG, X., ZHANG, X., et al. Cost-sensitive and hybridattribute measure multi-decision tree over imbalanced data sets. Information Science, 2018, vol. 422, p. 242–256. DOI: 10.1016/j.ins.2017.09.013
  28. LOYOLA-GONZALEZ, O., MARTINEZ-TRINIDAD, J. F. C. O., CARRASCO-OCHOA, J. A., et al. Cost-sensitive pattern-based classification for class imbalance problems. IEEE Access, 2019, vol. 7, p. 60411–60427. DOI: 10.1109/ACCESS.2019.2913982
  29. JIA, J., ZHAI, L., REN, W., et al. An effective imbalanced jpeg steganalysis scheme based on adaptive cost-sensitive feature learning. IEEE Transactions on Knowledge and Data Engineering, 2022, vol. 34, no. 3, p. 1038–1052. DOI: 10.1109/tkde.2020.2995070
  30. LEE, H. K., KIM, S. B. An overlap-sensitive margin classifier for imbalanced and overlapping data. Expert Systems with Applications, 2018, vol. 98, p. 72–83. DOI: 10.1016/j.eswa.2018.01.008
  31. NIRANJAN, M. Support vector machines: A tutorial overview and critical appraisal. In IEE Colloquium on Applied Statistical Pattern Recognition. Birmingham (UK), 1999. DOI: 10.1049/ic:19990359
  32. HOU, S., ZHOU, Y., LIU, H., et al. Wavelet support vector machine algorithm in power analysis attacks. Radioengineering, 2017, vol. 26, no. 3, p. 890–902. DOI: 10.13164/re.2017.0890
  33. MUSHTAQ, M. T., KHAN, I., KHAN, M. S., et al. Signal detection for QPSK based cognitive radio systems using support vector machines. Radioengineering, 2015, vol. 24, no. 1, p. 192–198. DOI: 10.13164/re.2015.0192
  34. LUO, Z., WANG, X., WANG, L., et al. Hydrometeor classification for dual polarization radar based on multi-sample fusion SVM. Radioengineering, 2023, vol. 32, no. 1, p. 151–159. DOI: 10.13164/re.2023.0151
  35. XIE, Z., XU, Y., HU, Q. Uncertain data classification with additive kernel support vector machine. Data & Knowledge Engineering, 2018, vol. 117, p. 87–97. DOI: 10.1016/j.datak.2018.07.004
  36. DEVI, D., BISWAS, S. K., PURKAYASTHA, B. Learning in presence of class imbalance and class overlapping by using oneclass SVM and undersampling technique. Connection Science, 2019, vol. 31, no. 2, p. 105–142. DOI: 10.1080/09540091.2018.1560394
  37. IRANMEHR, A., MASNADI-SHIRAZI, H., VASCONCELOS, N. Cost-sensitive support vector machines. Neurocomputing, 2019, vol. 343, p. 50–64. DOI: 10.1016/j.neucom.2018.11.099
  38. LI, Y., KWOK, J. T., ZHOU, Z. Cost-sensitive semi-supervised support vector machine. Proceedings of the AAAI Conference on Artificial Intelligence, 2010, vol. 24, no. 1, p. 500–505. DOI: 10.1609/aaai.v24i1.7661
  39. KARAKOULAS, G., SHAWE-TAYLOR, J. Optimizing classifiers for imbalanced training sets. Advances in Neural Information Processing Systems, 1999, vol. 11, 253–259.
  40. QI, Z., TIAN, Y., SHI, Y., et al. Cost-sensitive support vector machine for semi-supervised learning. Procedia Computer Science, 2013, vol. 18, p. 1684–1689. DOI: 10.1016/j.procs.2013.05.336
  41. RUBNER, Y., TOMASI, C., GUIBAS, L. J. The earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision, 2000, vol. 40, p. 99–121. DOI: 10.1023/A:1026543900054
  42. SHIVASWAMY, P. K., JEBARA, J. Ellipsoidal kernel machines. In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics. San Juan (Puerto Rico), 2007, vol. 2, p. 484–491.
  43. JOHNSON, S. C. Hierarchical clustering schemes. Psychometrika, 1967, vol. 32, no. 3, p. 241–254. DOI: 10.1007/BF02289588
  44. CHAWLA, N. V., BOWYER, K. W., HALL, L. O., et al. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, vol. 16, p. 321–357. DOI: 10.1613/jair.953
  45. ALCALA-FDEZ, J., SANCHEZ, L., GARCIA, S., et al. KEEL: A software tool to assess evolutionary algorithms to data mining problems. Soft Computing, 2009, vol. 13, p. 307–318. DOI: 10.1007/s00500-008-0323-y
  46. Machine Learning Repository UCI. [Online] Available at: http://archive.ics.uci.edu/ml/datasets.html
  47. WOODBURY, M A. Inverting Modified Matrices. Statistical Research Group, Memo. Rep. no. 42, 1950, p. 1–4.
  48. HE, H., BAI, Y., GARCIA, E. A., et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In IEEE International Joint Conference on Neural Networks. Hong Kong, 2008, p. 1322–1328. DOI: 10.1109/ijcnn.2008.4633969
  49. SALAZAR, A., VERGARA, L., SAFONT, G. Generative adversarial networks and Markov random fields for oversampling very small training sets. Expert Systems with Applications, 2021, vol. 163, p. 1–12. DOI: 10.1016/j.eswa.2020.113819

Keywords: Imbalanced classification, cost-sensitive, structural information, Wasserstein distance, radar emitter signal