ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2019, Volume 28, Number 1 [DOI: 10.13164/re.2019-1]

Show all Hide all

V. Prajzler, M. Knietel, P. Jasek [references] [full-text] [DOI: 10.13164/re.2019.0001] [Download Citations]
Properties of Large Core Polymer Optical Bend Waveguides

We report about properties of large core plastic planar optical bend waveguides. The dimensions of the waveguides were to be compatible with the commonly used plastic optical fiber with diameter 750 µm and the bend radii of the waveguides varied from 30 to 1 mm. The waveguides were made by engraving of a U-groove by using CNC machining into poly(methyl methacrylate) substrate; the waveguide core layers were made of Norland Optical Adhesive UV photopolymer. We experimentally confirmed that fabricated bends may have the total bend losses A for radii 30 mm 4.1 dB/cm at 850 nm, 4.8 dB/cm at 650 nm and 5.63 dB/cm at 532 nm. These bend waveguides are viable for short reach visible and infrared optical communication with easy and low cost installations.

  1. MILLER, D. A. B. Physical reasons for optical interconnection. International Journal of Optoelectronics, 1997, vol. 11, no. 3, p. 155–168.
  2. MA, H., JEN, A. K. Y., DALTON, L. R. Polymer-based optical waveguides: Materials, processing, and devices. Advanced Materials, 2002, vol. 14, no. 19, p. 1339–1365. DOI: 10.1002/1521-4095(20021002)14:19<1339:AIDADMA1339>3.0.CO;2-O
  3. MARCATILI, E. A. Bends in optical dielectric guides. Bell System Technical Journal, 1969, vol. 48, no. 7, p. 2103–2132. DOI: 10.1002/j.1538-7305.1969.tb01167.x
  4. CHERCHI, M., YLINEN, S., HARJANNE, M., et al. Dramatic size reduction of waveguide bends on a micron-scale silicon photonic platform. Optics Express, 2013, vol. 21, no. 15, p. 17814–17823. DOI: 10.1364/OE.21.017814
  5. LI, G., YAO, J., LUO, Y., THACKER, H., et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Optics Express, 2012, vol. 20, no. 11, p. 12035–12039. DOI: 10.1364/OE.20.012035
  6. ISRAEL, D., BAETS, R. Study of multimode polymeric waveguide bends for backplane optical interconnect. In The 4th Microoptics Conference and The 1lth Topical Meeting on Gradient-Index Optical Systems (MOC/GRIN93). Kawasaki (Japan), 1993, No. B4, p. 26–29.
  7. MUSA, S., BORREMAN, A., KOK, A. A. M., et al. Experimental study of bent multimode optical waveguides. Applied Optics, 2004, vol. 43, no. 30, p. 5705–5707. DOI: 10.1364/AO.43.005705
  8. YANG, B., YANG, L., HU, R., et al. Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer. Journal of Lightwave Technology, 2009, vol. 27, no. 18, p. 4091–4096. DOI: 10.1109/JLT.2009.2022285
  9. REZEM, M., GUNTHER, A., ROTH, B., et al. Low-cost fabrication of all-polymer components for integrated photonics. Journal of Lightwave Technology, 2017, vol. 35, no. 2, p. 299–308. DOI: 10.1109/JLT.2016.2639740
  10. BAMIEDAKIS, N., PEMTY, R. V., WHITE, I. H. Compact multimode polymer waveguide bends for board-level optical interconnects. Journal of Lightwave Technology, 2013, vol. 31, no. 14, p. 2370–2375. DOI: 10.1109/JLT.2013.2265774
  11. BAMIEDAKIS, N., BEALS, J., PENTY, R. V., et al. Costeffective multimode polymer waveguides for high-speed on-board optical interconnects. IEEE Journal of Quantum Electronics, 2009, vol. 45, no. 4, p. 415–424. DOI: 10.1109/JQE.2009.2013111
  12. PAPAKONSTANTINOU, I., WANG, K., SELVIAH, D. R., et al. Transition, radiation and propagation loss in polymer multimode waveguide bends. Optics Express, 2007, vol. 15, no. 2, p. 669–679. DOI: 10.1364/OE.15.000669
  13. HASHIM, A., BAMIEDAKIS, N., PEMTY, R. V., et al. Multimode polymer waveguide components for complex on-board optical topologies. Journal of Lightwave Technology, 2013, vol. 31, no. 24, p. 3962–3969. DOI: 10.1109/JLT.2013.2278382
  14. HAMID, H. H., FICKENSCHER, T., THIEL, D. V. Experimental assessment of SU-8 optical waveguides buried in plastic substrate for optical interconnections. Applied Optics, 2015, vol. 54, no. 22, p. 6623–6631. DOI: 10.1364/AO.54.006623
  15. EHSAN, A. A., SHAARI, S., ABD RAHMAN, M. K. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region. Optical Review, 2011, vol. 18, no. 1, p. 80–85. DOI: 10.1007/s10043-011-0036-9
  16. PRAJZLER, V., MASTERA, R., SPIRKOVA, J. Large core three branch polymer power splitters. Radioengineering, 2015, vol. 24, no. 4, p. 885–891. DOI: 10.13164/re.2015.0885
  17. TAKEZAWA, Y., AKASAKA, S., OHARA, S., et al. Low excess losses in a Y-branching plastic optical waveguide formed through injection molding. Applied Optics, 1994, vol. 33, no. 12, p. 2307–2312. DOI: 10.1364/AO.33.002307
  18. PRAJZLER, V., MASTERA, R. Wavelength division multiplexing module with large core optical polymer planar splitter and multilayered dielectric filters. Optical and Quantum Electronics, 2017, vol. 49, no. 4, p. 1–11. DOI: 10.1007/s11082-017-0960-4
  19. PRAJZLER, V., KNIETEL, M., MASTERA, R. Large core optical planar splitter for visible and infrared region. Optical and Quantum Electronics, 2016, vol. 48, no. 2, p. 1–9. DOI: 10.1007/s11082-016-0444-y
  20. SENIOR, J. M. Optical Fiber Communications: Principles and Practice. 3rd ed., Prentice-Hall, 2008. ISBN: 978-0130326812
  21. PRAJZLER, V., NEKVINDOVA, P., HYPS, P. Properties of the optical planar polymer waveguides deposited on printed circuit boards. Radioengineering, 2015, vol. 24, no. 2, p. 442–448. DOI: 10.13164/re.2015.0442
  22. PRAJZLER, V., NEKVINDOVA, P., HYPS, P., et al. Flexible polymer planar optical waveguides. Radioengineering, 2014, vol. 23, no. 3, p. 776–782. ISSN: 1210-2512
  23. PRAJZLER, V., MASTERA, R., JERABEK, V. Large core planar 1 x 2 optical power splitter with acrylate and epoxy resin waveguides on polydimethylsiloxane substrate. Radioengineering, 2014, vol. 23, no. 1, p. 488–495. ISSN: 1210-2512
  24. PRAJZLER, V., NERUDA, M., SPIRKOVA, J. Planar large core polymer optical 1x2 and 1x4 splitters connectable to plastic optical fiber. Radioengineering, 2013, vol. 22, no. 3, p. 751–757. ISSN: 1210-2512

Keywords: Optical bend waveguides, multimode waveguides, pPolymer

M. Marek, P. Kadlec [references] [full-text] [DOI: 10.13164/re.2019.0009] [Download Citations]
Using a Tolerance-based Surrogate Method for Computer Resources Saving in Optimization

This paper presents a very simple surrogate optimization method - a Tolerance-based Surrogate Method. A surrogate optimization in general is essential to more and more frequently used optimization in the development process of new technologies. Fitness functions of such systems are often costly, therefore keeping a number of evaluations of the fitness functions at minimum is of a great importance in order to save computer and time resources, i.e. the overall cost of design. Unlike other complex surrogate optimization methods, the tolerance-based surrogate method does not require excessive computational resources, is easy to implement, and is flexible for all types of optimization algorithms. Behaviour of the tolerance-based surrogate method is demonstrated on several modified benchmark problems. Afterwards, our method is verified on a real-world time-demanding optimization task.

  1. SEDENKA, V., RAIDA, Z. Critical comparison of multi-objective optimization methods: genetic algorithms versus swarm intelligence. Radioengineering, 2010, vol. 19, no. 3, p. 369–377. ISSN: 1210-2512
  2. JONES, D. R., SCHONLAU, M., WELCH, W., J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, vol. 13, no. 4, p. 455–492. DOI: 10.1023/A:1008306431147
  3. YU, J.-C., et al. Evolutionary algorithm using progressive Kriging model and dynamic reliable region for expensive optimization problems. In International Conference on Systems, Man, and Cybernetics (SMC). Budapest (Hungary), 2016, p. 4383–4388. DOI: 10.1109/SMC.2016.7844920
  4. REGIS, R. G., SHOEMAKER, C. A. Local function approximation in evolutionary algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary Computation, 2004, vol. 8, no. 5, p. 490–505. DOI: 10.1109/TEVC.2004.835247
  5. WILD, S. M., REGIS, R. G., SHOEMAKER, C. A. ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM Journal on Scientific Computing, 2008, vol. 30, no. 6, p. 3197–3219. DOI: 10.1137/070691814
  6. JONES, D. R. A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 2001, vol. 21, no. 4, p. 345–383. DOI: 10.1023/A:1012771025575
  7. MAREK, M., KADLEC, P., CUPAL, M. FOPS - Fast Optimization Procedures. AToM - Antenna Toolbox for Matlab, http://antennatoolbox.com/fops-about.php, 2017, [Online; accessed 6-January-2019]
  8. REYES-SIERRA, M., COELLO, C., C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2006, vol. 2, no. 3, p. 287–308. DOI: 10.5019/j.ijcir.2006.68
  9. DEB, K., PRATAP, A., AGARWAL, S., et al. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, vol. 6, no. 2, p. 182–197. DOI: 10.1109/4235.996017
  10. KUKKONEN, S., LAMPINEN, J. GDE3: The third evolution step of generalized differential evolution. In Congress on Evolutionary Computation, 2005, vol. 1, p. 443–450. DOI: 10.1109/CEC.2005.1554717
  11. VELDHUIZEN, D. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. School of Engineering of the Air Force Institute of Technology, Dayton, Ohio, 1999. ISBN: 0-599-28316-5
  12. DEB, K. Multi-objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, 2001. ISBN: 047187339X
  13. MAREK, M., RAIDA, Z., KADLEC, P. Synthesis of electromagnetic equivalents of composite sheets by multi-objective optimization of anisotropic band-stop filters. In Proceedings of the 12th European Conference on Antennas and Propagation. London (UK), 2018, 4 p. DOI: 10.1049/cp.2018.1094

Keywords: Optimization, surrogate optimization, tolerance-based surrogate method, resources saving

U. Ullah, S. Koziel [references] [full-text] [DOI: 10.13164/re.2019.0019] [Download Citations]
Design and Optimization of a Novel Compact Broadband Linearly/Circularly Polarized Wide-Slot Antenna for WLAN and WiMAX Applications

A novel topologically modified structure of a compact low profile wide-slot antenna for broadband applications is presented. The antenna comprises a modified E-shaped slot with unequal arm lengths in the ground plane, and a parasitic quasi-rectangular loop placed coplanar with the feedline. For exciting orthogonal modes with equal amplitude, a single-point feeding technique with an asymmetrical geometry of the coplanar waveguide is used to feed the antenna. A multi-stage EM-driven optimization is used to rigorously optimize all the parameters for best impedance bandwidth and axial ratio bandwidth. The total footprint of the antenna is only 0.71 λg^2 and a 41% impedance bandwidth along with 33% axial ratio bandwidth has been achieved which covers several WLAN and WiMAX bands.

  1. MAHMOUD, K. R., MONTASER, A. M. Design of dual-band circularly polarised array antenna package for 5G mobile terminals with beam-steering capabilities. IET Microwave Antennas and Propagation, 2018, vol. 12, no. 1, p. 29–39. DOI: 10.1049/iet-map.2017.0412
  2. YANG, Z. J., XIAO, S. Q., ZHU, L., et al. A circularly polarized implantable antenna for 2.4-GHz ISM band biomedical applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, no. 1, p. 2554–2557. DOI: 10.1109/LAWP.2017.2732460
  3. ULLAH, U., AIN, M. F., OTHMAN, A., et al. A novel multipermittivity cylindrical dielectric resonator antenna for wideband applications. Radioengineering, 2014, vol. 23, no. 4, p. 1071–1076. ISSN: 1210-2512
  4. BANERJEE, S., RANA, B., PARUI, S. K. Gain augmentation of a HMSIW based equilateral triangular antenna using CRSF FSS superstrate. Radioengineering, 2018, vol. 27, no. 1, p. 47–53. DOI: 10.13164/re.2018.0047
  5. VASINA, P., LACIK, J. Circularly polarized rectangular ring-slot antenna with chamfered corners for off-body communication at 5.8 GHz ISM band. Radioengineering, 2017, vol. 26, no. 1, p. 85–90. DOI: 10.13164/re.2017.0085
  6. KUMAR, S., VISHWAKARMA, R. K., KUMAR, R. J., et al. Slotted circularly polarized microstrip antenna for RFID application. Radioengineering, 2017, vol. 26, no. 4, p. 1025–1032. DOI: 10.13164/re.2017.1025
  7. MADDIO, S. Parasitic-enhanced circularly polarised sequential antenna array for dedicated short-range communication applications at 5.8 GHz. Electronic Letters, 2017, vol. 53, no. 13, p. 824–826. DOI: 10.1049/el.2017.0679
  8. ULLAH, U., KOZIEL, S. Design and optimization of a novel miniaturized low-profile circularly polarized wide-slot antenna. Journal of Electromagnetic Waves and Applications, 2018, vol. 32, no. 16, p. 2099–2109. DOI: 10.1080/09205071.2018.1496039
  9. PAZOKI, R., KIAEE, A., NASERI, P., et al. Circularly polarized monopole L-shaped slot antenna with enhanced axial-ratio bandwidth. IEEE Antenna and Wireless Propagation Letters, 2016, vol. 15, p. 1073–1076. DOI: 10.1109/LAWP.2015.2492918
  10. LI, Y., ZHANG, Z., FENG, Z. A sequential-phase feed using a circularly polarized shorted loop structure. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 3, p. 1443–1447. DOI: 10.1109/TAP.2012.2227103
  11. KOZIEL, S., OGURTSOV, S. Model management for costefficient surrogate-based optimisation of antennas using variablefidelity electromagnetic simulations. IET Microwaves, Antennas and Propagation, 2012 vol. 6, no. 15, p. 1643–1650. DOI: 10.1049/iet-map.2012.0222
  12. BEKASIEWICZ, A., KOZIEL, S., Structure and computationallyefficient simulation-driven design of compact UWB monopole antenna. IEEE Antenna and Wireless Propagation Letters, 2015, vol. 14, no. 1, p. 1282−1285. DOI: 10.1109/LAWP.2015.2402282
  13. NOSRATI, M., TAVASSOLIAN, N. Miniaturized circularly polarized square slot antenna with enhanced axial-ratio bandwidth using an antipodal Y-strip. IEEE Antennas Wireless Propagation Letters, 2017, vol. 16, no. 1, p. 817–820. DOI: 10.1109/LAWP.2016.2605099
  14. KOZIEL, S., BANDLER, J. W., CHENG, Q. S. Robust trustregion space-mapping algorithms for microwave design optimization. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 8, p. 2166–2174. DOI: 10.1109/TMTT.2010.2052666
  15. JAN, J. Y., PAN, C. Y., CHIU, K. Y., et al. Broadband CPW-fed circularly-polarized slot antenna with an open slot. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 3, p. 1418–1422. DOI: 10.1109/TAP.2012.2231926
  16. BEIGMOHAMMADI, G., GHOBADI, C., NOURINIA, J., et al. Small square slot antenna with circular polarisation characteristics for WLAN/WiMAX applications. Electronic Letters, 2010, vol. 46, no. 10, p. 672–673. DOI: 10.1049/el.2010.0623
  17. CHOWDHURY, R., KUMAR, R., CHAUDHARY, R. K. A coaxial probe fed wideband circularly polarized antenna using unequal and adjacent-slided rectangular dielectric resonators for WLAN applications. International Journal of RF and Microwave Computer Aided Engineering, 2017, p. 1–9. DOI: 10.1002/mmce.21210
  18. OJAROUDI, Y., OJAROUDI, N., GHADIMI, N. Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications, Microwave and Optical. Technology Letters, 2015, vol. 57, p. 756–759. DOI: 10.1002/mop.28946
  19. TRIVESH, K., HARISH, A. R. Broadband circularly polarized printed slot-monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, no. 1, p. 1531–1534. DOI: 10.1109/LAWP.2013.2291436
  20. FAKHTE, S., ORAIZI, H., KARIMIAN, R., et al. A new wideband circularly polarized stair-shaped dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 4, p. 1828–1832. DOI: 10.1109/TAP.2015.2392131
  21. DU, M., XU, J., DONG, Y., et al. Low-cost and high-gain SIW circularly polarized circular-horn-loaded antenna for broadband millimeter-wave applications. Radioengineering, 2017, vol. 26, no. 3, p. 728–734. DOI: 10.13164/re.2017.0728

Keywords: Broadband antenna, wide-slot antenna, circular polarization, WLAN antenna, WiMAX antenna, EM-driven optimization

E. K. I. Hamad, G. Nady [references] [full-text] [DOI: 10.13164/re.2019.0025] [Download Citations]
Bandwidth Extension of Ultra-wideband Microstrip Antenna Using Metamaterial Double-side Planar Periodic Geometry

A compact extended bandwidth UWB microstrip antenna is designed utilizing metamaterial (MTM) double-side planar periodic structures. The proposed antenna comprises two MTM unit cells made by etching X-shaped slots on the main radiating patch, and four slots at the vertices of a square periodically repeated in two-dimensions on the ground plane. The proposed antenna fabricated on 1.6 mm low-cost FR4 substrate is compact, measuring 27.6 mm ×32 mm, with relative permittivity of 4.5 and loss tangent of 0.02. It has broad bandwidth covering 3.2 to 23.9 GHz, with a peak gain of 6.2 dB at 8.7 GHz. The antenna has good radiation characteristics for UWB applications. The measured return loss (S11) of the test antenna fabricated for this study was in good agreement with the simulated results.

  1. ELDEK, A. A., ELSHERBENI, A. Z., SMITH, C. E. Rectangular slot antenna with patch stub for ultra-wideband applications and phased array systems. Progress In Electromagnetic Research, 2005, vol. 53, p. 227–237. DOI: 10.2528/PIER04092701
  2. ALI, W., HAMAD, E. K. I., BASSIUNY, M. A., et al. Complementary split ring resonator based triple band microstrip antenna for WLAN/WiMAX applications. Radioengineering, 2017, vol. 26, no. 1, p. 78–84. DOI: 10.13164/re.2017.0078
  3. PUES, H. F., VAN DE CAPELLE, A. An impedance matching technique for increasing the bandwidth of microstrip antennas. IEEE Transactions on Antennas and Propagation, 1989, vol. 37, no. 11, p. 1345–1354. DOI: 10.1109/8.43553
  4. ALI, W., IBRAHIM, A. A., MACHAC, J. Compact size UWB monopole antenna with triple band-notches. Radioengineering, 2017, vol. 26, no. 1, p. 57–63. DOI: 10.13164/re.2017.0057
  5. PARAMESWARAN A., SHUKLA, S. B., MUKUNDAN, K. K., et al. Bandwidth enhancement of microstrip patch antenna using metamaterials. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), 2013, vol. 8, no. 4, p. 05–10. DOI: 10.9790/2834-0840510
  6. YABLONOVITCH, E. Inhibited spontaneous emission in solidstate physics and electronics. Physical Review Letters, 1987, vol. 58, no. 20, p. 2059–2062. DOI: 10.1103/PhysRevLett.58.2059
  7. JOHN, S. Strong localization of photons in certain disordered dielectric super-lattices. Physical Review Letters, 1987, vol. 58, no. 23, p. 2486–2489. DOI: 10.1103/PhysRevLett.58.2486
  8. YOUSEFI, L., MOHAJER-IRAVANI, B., RAMAHI, O. M. Enhanced bandwidth artificial magnetic ground plane for lowprofile antennas. IEEE Transaction Antennas and Wireless Propagation Letter, 2007, vol. 6, p. 289–292. DOI: 10.1109/LAWP.2007.895282
  9. COCCIOLI, R., YANG, F. R., MA, K. P., ITOH, T. Aperturecoupled patch antenna on UC-PBG substrate. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2123–2130. DOI: 10.1109/22.798008
  10. SIEVENPIPER, D. F. High-impedance electromagnetic surfaces. Ph.D. Dissertation, Dept. of Electrical Engineering University of California, Los Angeles, CA, 1999.
  11. BOUTAYE, H., DENIDNI, T. A. Gain enhancement of a microstrip patch antenna using a cylindrical electromagnetic crystal substrate. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 11, p. 3140–3135. DOI: 10.1109/TAP.2007.908818
  12. ELSHEAKH, D. M. N., ELSADEK, H. A., ABDALLAH, E. A., et al. Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures. Progress In Electromagnetics Research Letters, 2011, vol. 23, p. 109–118. DOI: 10.2528/PIERL11020805
  13. YANG, F., RAHMAT-SAMII, Y. Electromagnetic Band Gap Structures in Antenna Engineering. Cambridge University Press, 2008. DOI: 10.1017/CBO9780511754531
  14. DAI, Y., YUAN, B., LUO, G., ZHANG, X. Ultra-wideband patch antenna with metamaterial structures. In IEEE 16th International Conference on Communication Technology (ICCT). Hangzhou (China), Oct. 2015. DOI: 10.1109/ICCT.2015.7399868
  15. XIONG H., HONG, J. S., ZHU, Q. Y., et al. Compact ultrawideband microstrip antenna with metamaterials. Chinese Physics Letters, 2012, vol. 29, no. 11., p. 1–3 DOI: 10.1088/0256- 307X/29/11/114102
  16. PANDEY, G. K., SINGH, H. S., BHARTI, P. K., et al. Metamaterial based compact antenna design for UWB applications. In IEEE Region 10 Symposium. Kuala Lumpur (Malaysia), 2014. DOI: 10.1109/TENCONSpring.2014.6862989
  17. LAMARI, S., KUBACKI, R., CZYZEWSKI, M. Bandwidth enhancement of a microstrip patch antenna using the metamaterial planar periodic structure. In Progress in Electromagnetics Research Symposium. Prague (Czech Republic), 2015, p. 330. ISBN: 978-1-5108-1561-2
  18. NADY, G., HAMAD, E. K. I. Design of compact UWB microstrip antenna using double-layer 2D periodic structure. IOSR Journal of Electronics and Communication Engineering (IOSR-JECE). Jul.- Aug. 2018, vol. 13, no. 4, p. 76–84, Ver. I. DOI: 10.9790/2834- 1304017684
  19. BANDLOW, B., SCHUHMANN, R., LUBKOWSKI, G., et al. Analysis of single-cell modeling of periodic metamaterial structures. IEEE Transactions on Magnetics, June 2008, vol. 44, no. 6, p. 1662–1665. DOI: 10.1109/TMAG.2007.916037
  20. ZIOLKOWSKI, R. W. Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 7, p. 1516–1529. DOI: 10.1109/TAP.2003.813622
  21. BAVISKAR, J., SHAH, A., MULLA, A., et al. Design and analysis of metamaterial lens incorporated ultra wide band (UWB) antenna. In IEEE Aerospace Conference. Montana (USA), March 2017, p. 1–6. DOI: 10.1109/AERO.2017.7943718
  22. ISLAM, M. M., ISLAM, M. T., SAMSUZZAMAN, M., et al. Compact metamaterial antenna for UWB applications. Electronics Letters, 2015, vol. 51, no. 16, p. 1222–1224. DOI: 10.1049/el.2015.2131
  23. DAI, Y. L., YUAN, B., ZHANG, X. H., et al. A novel compact ultra-wideband metamaterial-based microstrip antenna. In IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWSAMP). Chengdu (China), July 2016, p. 1–3. DOI: 10.1109/IMWSAMP.2016.7588421
  24. ALLEN, B., DOHLER, M., OKON, E., et al. (Eds.) Ultra Wideband Antennas and Propagation for Communications, Radar and Imaging. Wiley-Blackwell, October 2006, p. 232. http://hdl.handle.net/10547/269813. ISBN: 9780470032558

Keywords: Antennas, metamaterial, microstrip Antenna, MTM, periodic structure, ultra-wideband, UWB

J. Acharjee, A. K. Singh, K. Mandal, S. K. Mandal [references] [full-text] [DOI: 10.13164/re.2019.0033] [Download Citations]
Defected Ground Structure toward Cross Polarization Reduction of Microstrip Patch Antenna with Improved Impedance Matching

A new approach based on the incorporation of Z-shaped defected ground structure (DGS) in microstrip antenna (MSA) for improving impedance matching and cross polarization (XP) performances is proposed in this paper. Through detail analysis of the surface current densities, and input impedance, the proposed DGS is integrated into a rectangular MSA (RMSA) to realize flat relative XP reduction of 22 dB in the H-plane around broadside angular range of ±60 degrees. Further, an equivalent circuit model (ECM) for the proposed antenna is introduced by considering the mutual coupling in between the DGS and patch and the model is verified using circuit-system-EM co-simulation software, Advanced Design System (ADS). A prototype has been fabricated and tested for the validation of simulated results and it shows good agreement with each other. The antenna operates over 2.32-2.58 GHz with good far-field radiation characteristics and a peak gain of 2.8 dBi at the resonating frequency 2.4 GHz. Hence, the proposed design can be useful for the IEEE 802.11b applications.

  1. BASILIO, L. I., KHAYAT, M. A., JEFFERY T. WILLIAMS, J. T., et al. The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas. IEEE Transactions on Antennas and Propagation, 2001, vol. 49, no. 1, p. 45–47. DOI: 10.1109/8.910528
  2. SAMARAS, T., KOULOGLOU, A., SAHALOS, J. N. A note on the impedance variation with feed position of a rectangular microstrip-patch antenna. IEEE Antennas and Propagation Magazine, 2004, vol. 46, no. 2, p. 90–92. DOI: 10.1109/MAP.2004.1305543
  3. HU, Y., JACKSON, D. R., WILLIAMS, J. T., et al. Characterization of the input impedance of the inset-fed rectangular microstrip antenna. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 10, p. 3314–3318. DOI: 10.1109/TAP.2008.929532
  4. ZHANG, X., ZHU, L. Patch antennas with loading of a pair of shorting pins toward flexible impedance matching and low cross polarization. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 4, p. 1226–1233. DOI: 10.1109/TAP.2016.2526079
  5. KANDWAL, A., SHARMA, R., KHAH, S. K. Bandwidth enhancement using Z-shaped defected ground structure for a microstrip antenna. Microwave and Optical Technology Letters, 2013, vol. 55, no. 10, p. 2251–2254. DOI: 10.1002/mop.27836
  6. KHANDELWAL, M. K., KANAUJIA, B. K., DWARI , S., et al. Bandwidth enhancement and cross-polarization suppression in ultrawide band microstrip antenna with defected ground plane. Microwave and Optical Technology Letters, 2014, vol. 56, no. 9, p. 2141–2146. DOI: 10.1002/mop.28499
  7. GUHA, D., KUMAR, C., PAL, S. Improved cross-polarization characteristics of circular microstrip antenna employing arc shaped defected ground structure (DGS). IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 367–1369. DOI: 10.1109/LAWP.2009.2039462
  8. KUMAR, C. GUHA, D. Asymmetric geometry of defected ground structure for rectangular microstrip: A new approach to reduce its cross-polarized fields. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2503–2506. DOI: 10.1109/TAP.2016.2537360
  9. PASHA, M. I., KUMAR, C., GUHA, D. Simultaneous compensation of microstrip feed and patch by defected ground structure for reduced cross-polarized radiation. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 7348–7352. DOI: 10.1109/TAP.2018.2869252
  10. GHOSH, A., CHAKRABORTY, S., CHATTOPADHYAY, S., et al. Rectangular microstrip antenna with dumbbell shaped defected ground structure for improved cross polarised radiation in wide elevation angle and its theoretical analysis. IET Microwaves, Antennas and Propagation, 2016, vol. 10, p. 68–78. DOI: 10.1049/iet-map.2015.0179
  11. CHATTOPADHYAY, S., BISWAS, M., SIDDIQUI, J. Y., et al. Rectangular microstrips with variable air gap and varying aspect ratio: Improved formulations and experiments. Microwave and Optical Technology Letters, 2009, vol. 51, no. 1, p. 169–173. DOI: 10.1002/mop.24025
  12. GARG, R., BHARTIA, P., BAHL, I., ITTIPIBOON, A. Microstrip Antenna Design Handbook. Boston - London: Artech House, 2001. ISBN-13: 978-0890065136
  13. HIRAYAMA, H. Equivalent circuit and calculation of its parameters of magnetic-coupled-resonant wireless power transfer. In KIM, K. I. (Ed.) Wireless Power Transfer – Principles and Engineering Explorations. InTech, 2012, p. 117–132. ISBN: 978- 953-307-874-8

Keywords: Impedance matching, cross-polarization, defected ground structure, microstrip patch antenna, equivalent circuit

K. Djafri, M. Challal, R. Aksas, F. Mouhouche, M. Dehmas [references] [full-text] [DOI: 10.13164/re.2019.0039] [Download Citations]
Miniaturized Concentric Hexagonal Fractal Rings Based Monopole Antenna for WLAN/WiMAX Application

In this paper a new antenna design technique is introduced in order to achieve tri-band operation as well as antenna miniaturization. The technique consists of using two concentric first-iterative hexagonal rings connected to each other as a radiating patch fed with a Y-shaped microstrip line. The proposed antenna operates at three frequency bands to cover 2.4/5.8 GHz WLAN and 3.5GHz WiMAX bands. The numerical analysis and simulation are carried out with CST MWS. The measured return losses of the proposed antenna show good performance and good agreement with the simulated results. Consequently the proposed antenna with compact size of 9.77 mm x 17 mm x 1.63 mm is well suited for wireless applications.

  1. FERTAS, K., KIMOUCHE, H., CHALLAL, M., et al. Design and optimization of a CPW-fed tri-band patch antenna using genetic algorithms. ACES Journal - Applied Computational Electromagnetics Society Journal, 2015, vol. 30, p. 754–759.
  2. FERTAS, K., KIMOUCHE, H., CHALLAL, M., et al. An optimized shaped antenna for multiband applications using Genetic Algorithm. In 2015 4th International Conference on Electrical Engineering (ICEE). Boumerdes (Algeria), 2015, p. 1–4. DOI: 10.1109/INTEE.2015.7416757
  3. DAI, X. W., LI, L., WANG, Z.-Y., et al. High isolation and compact MIMO antenna system with defected shorting wall. International Journal of Microwave and Wireless Technologies, 2015, vol. 7, p. 167–172. DOI: 10.1017/S1759078714000580
  4. TIRADO‐MENDEZ, J. A., JARDON‐AGUILAR, H., ITURBIDE‐SANCHEZ, F., et al. A proposed defected microstrip structure (DMS) behavior for reducing rectangular patch antenna size. Microwave and Optical Technology Letters, 2004, vol. 43, no. 6, p. 481–484. DOI: 10.1002/mop.20508
  5. ANSAL, K. A., SHANMUGANANTHAM, T. Compact ACS-fed antenna with DGS and DMS for WiMAX/WLAN applications. International Journal of Microwave and Wireless Technologies, 2016, vol. 8, no. 7, p. 1095–1100. DOI: 10.1017/S1759078715000537
  6. DJAFRI, K., CHALLAL, M., AKSAS, R., et al. A compact ACSfed tri-band microstrip monopole antenna for WLAN/WiMAX applications. Presented at the International Conference on Electronics and New Technologies. M’sila, Algeria, 2017.
  7. WANG, H., SI, L.-M., LV, X. A compact dual-band patch antenna using metamaterial structures. In Applied Computational Electromagnetics Society International Symposium (ACES). Suzhou (China), 2017, p. 1–2.
  8. GUPTA, A., JOSHI, H. D., KHANNA, R. An X-shaped fractal antenna with DGS for multiband applications. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 5, p. 1075–1083. DOI: 10.1017/S1759078716000994
  9. SINGHAL, S., GOEL, T., SINGH, A. K. Hexagonal tree shaped ultra–wideband fractal antenna. International Journal of Electronics Letters, 2017, vol. 5, no. 3, p. 335–348. DOI: 10.1080/21681724.2016.1218056
  10. CHOUKIKER, Y. K., SHARMA, S. K., BEHERA, S. K. Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 3, p. 1483–1488. DOI: 10.1109/TAP.2013.2295213
  11. SINGHAL, S., GOEL, T., KUMAR SINGH, A. Inner tapered tree‐shaped fractal antenna for UWB applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 3, p. 559–567. DOI: 10.1002/mop.28900
  12. VARAMINI, G., KESHTKAR, A., NASER-MOGHADASI, M. Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEUInternational Journal of Electronics and Communications, 2018, vol. 83, p. 213–221. DOI: 10.1016/j.aeue.2017.08.057
  13. ANGUERA, J., DANIEL, J. P., BORJA, C., et al. Metallized foams for antenna design: Application to fractal-shaped Sierpinskicarpet monopole. Progress In Electromagnetics Research, PIER 2010, vol. 104, p. 239–251. DOI: 10.2528/PIER10032003
  14. IQBAL, M. N., UR-RAHMAN, H., JILANI, S. F. An ultrawideband monopole fractal antenna with coplanar waveguide feed. International Journal of Antennas and Propagation, 2014, p. 1–7. DOI: 10.1155/2014/510913
  15. RADONIĆ, V., PALMER, K., STOJANOVIĆ, G., et al. Flexible Sierpinski carpet fractal antenna on a Hilbert slot patterned ground. International Journal of Antennas and Propagation, 2012, p. 1–7. DOI: 10.1155/2012/980916
  16. NAJI, D. K. Compact design of dual-band fractal ring antenna for WiMAX and WLAN applications. International Journal of Electromagnetics and Applications, 2016, vol. 6, no. 2, p. 42–50. DOI: 10.5923/j.ijea.20160602.03
  17. PUENTE, C., ROZAN, E., ANGUERA, J. Space-filling Miniature Antennas. US Pat. 7,202,822.
  18. RISCO, S., ANGUERA, J., ANDUJAR, A., et al. Coupled monopole antenna design for multiband handset devices. Microwave and Optical Technology Letters, 2010, vol. 52, no. 2, p. 359–364. DOI: 10.1002/mop.24893
  19. JUNG, J. H., CHOO, H. PARK, I. Design and performance of small electromagnetically coupled monopole antenna for broadband operation. IET Microwave, Antennas and Propagation, 2007, vol. 1, no. 2, p. 536–541. DOI: 10.1049/iet-map:20050065
  20. ALI, T., BIRADAR, R. C. A triple‐band highly miniaturized antenna for WiMAX/WLAN applications. Microwave and Optical Technology Letters, 2018, vol. 60, p. 466–471. DOI: 10.1002/mop.30993
  21. YUE, T., JIANG, Z. H., PANARETOS, A. H., et al. A compact dual-band antenna enabled by a complementary split-ring resonator-loaded metasurface. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 12, p. 6878–6888. DOI: 10.1109/TAP.2017.2758821
  22. MALIK, J., PATNAIK, A., KARTIKEYAN, M. A compact dualband antenna with omnidirectional radiation pattern. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 503–506. DOI: 10.1109/LAWP.2014.2370651
  23. LU, J.-H., HUANG, H.-S. Planar compact dual-band monopole antenna with circular polarization for WLAN applications. International Journal of Microwave and Wireless Technologies, 2016, vol. 8, no. 1, p. 81–87. DOI: 10.1017/S1759078714001329
  24. NAIDU, P. V. Printed V-shape ACS-fed compact dual band antenna for Bluetooth, LTE and WLAN/WiMAX applications. Microsystem Technologies, 2017, vol. 23, no. 4, p. 1005–1015. DOI: 10.1007/s00542-016-2939-7
  25. BEKASIEWICZ, A., KOZIEL, S. Miniaturized uniplanar triple‐band slot dipole antenna with folded radiator. Microwave and Optical Technology Letters, 2018, vol. 60, no. 2, p. 386–389. DOI: 10.1002/mop.30971
  26. LIU, L., WENG, Y., CHEUNG, S., et al. Modeling of cable for measurements of small monopole antennas. In Loughborough Antennas and Propagation Conference (LAPC). Loughborough (UK), 2011, p. 1–4. DOI: 10.1109/LAPC.2011.6114153

Keywords: Fractal antenna, tri-band, miniaturization, WLAN, WiMAX

Y. Ge, Y. J. Zhao, J. Q. Chen [references] [full-text] [DOI: 10.13164/re.2019.0045] [Download Citations]
Wideband RCS Reduction and Gain Enhancement for a Patch Antenna with Broadband AMC Structure

In this paper, a simultaneous improvement of radiating and scattering performance for a patch antenna is realized. For achieving the wideband low-scattering property, a broadband AMC structure with orthogonally slot-embedding is proposed and analyzed, which is arranged around the antenna with another square ring unit in a chessboard configuration for phase cancellation. Meanwhile, a gain increment is also achieved due to the coupling between the radiation patch and the broadband AMC structure. Measured results indicate that at least a 10 dB RCS reduction is obtained from 11 GHz to 17.8 GHz. Additionally, the gain of the antenna has also been increased for more than 2 dB between 12 GHz and 13 GHz.

  1. WEN, D. E., HUANG, X. M., REN, P., et al. Study on the properties of the two-dimensional curved surface metamaterial. International Journal of Electronics and Communications, 2018, vol. 83, p. 376–397. DOI: 10.1016/j.aeue.2017.10.009
  2. ALU, A., ENGHETA, N. Guided modes in a waveguide filled with a pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) layers. IEEE Transaction on Microwave and Theory Techniques, 2004, vol. 52, no. 1, p. 199–210. DOI: 10.1109/TMTT.2003.821274
  3. CHERIBI, H., GHANEM, F., KIMOUCHE, H. Metamaterialbased frequency reconfigurable antenna. Electronics Letters, 2013, vol. 49, no. 5, p. 315–316. DOI: 10.1049/EL.2012.3651
  4. JOSE, J. Frequency selective bistable switching in metamaterial based photonic bandgapmedium. Optics Communications, 2014, vol. 328, p. 116–120. DOI: 10.1016/J.OPTCOM.2014.04.043
  5. HU, F. R., ZOU, T. B., QUAN, B. G., et al. Polarizationdependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Optics Communications, 2014, vol. 332, p. 321–326. DOI: 10.1016/j.optcom.2014.06.017
  6. SIEVENPIPER, D., ZHANG, L. J., BROAS, R. F. J., et al. High impedance electromagnetic surfaces with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques, 1999, vol. 47, no. 11, p. 2059–2074. DOI: 10.1109/22.798001
  7. RAJAGOPAL, S., R., CHENNAKESAVAN, G., C., SUBBURAJ, D. R. P., et al. A dual polarized antenna on a novel broadband multilayer Artificial Magnetic Conductor backed surface for LTE/CDMA/GSM base station applications. International Journal of Electronics and Communications, 2017, vol. 80, p. 73–79. DOI: 10.1016/j.aeue.2017.06.028
  8. WU, J. L., YANG, S. W., CHEN, Y. K., et al. A low profile dualpolarized wideband omnidirectional antenna based on AMC reflector. IEEE Transactions on Antennas and Propagation, 2017, vol. 65, no. 1, p. 368–374. DOI: 10.1109/TAP.2016.2631147
  9. LIN, J. D., QIAN, Z. P., CAO, W. Q., et al. A low-profile dualband dual-mode and dual-polarized antenna based on AMC. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2473–2476. DOI: 10.1109/LAWP.2017.2724540
  10. ZHAI, H. Q., ZHANG, K. D., YANG, S., et al. A low-profile dual-band dual-polarized antenna with an AMC surface for WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2692–2695. DOI: 10.1109/LAWP.2017.2741465
  11. YANG, W. C., CHEN, D. X., CHE, W. Q. High-efficiency highisolation dual-orthogonally polarized patch antennas using nonperiodic RAMC structure. IEEE Transactions on Antennas and Propagation, 2017; vol. 65, no. 2, p. 887–892. DOI: 10.1109/TAP.2016.2632700
  12. THUMMALURU, S. R., KUMAR, R., CHAUDHARY, R. K. Isolation enhancement and radar cross section reduction of MIMO antenna with frequency selective surface. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 3, p. 1595–1600. DOI: 10.1109/TAP.2018.2794417
  13. NARAYAN, S., SANGEETHA, B., SRUTHI, T. V., et al. Design of low observable antenna using active hybrid-element FSS structure for stealth applications. International Journal of Electronics and Communications, 2017, vol. 80, p. 137–143. DOI: 10.1016/j.aeue.2017.06.038
  14. LIU, Y., LI, K., JIA, Y. T., et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 326–331. DOI: 10.1109/TAP.2015.2497352
  15. ZOU, S. X., WEI, J. L., MAN, X. Wideband RCS reduction of patch antenna using PRRS. Electronic Letters, 2017, vol. 53, no. 8, p. 522–524. DOI: 10.1049/el.2016.2640
  16. XUE, J. J., JIANG, W., GONG, S. X. Wideband RCS reduction of slot-coupled patch antenna by AMC structure. Electronic Letters, 2017, vol. 53, no. 22, p. 1454–1456. DOI: 10.1049/el.2017.2587
  17. LIU, X., GAO, J., CAO, X. Y., et al. A high-gain and lowscattering waveguide slot antenna of artificial magnetic conductor octagonal ring arrangement. Radioengineering, 2016, vol. 25, no. 1, p. 46–52. DOI: 10.13164/re.2016.0046
  18. ZHENG, Y. J., GAO, J., ZHOU, Y. L., et al. Metamaterial-based patch antenna with wideband RCS reduction and gain enhancement using improved loading method. IET Microwaves Antennas and Propagations, 2017, vol. 11, no. 9, p. 1183–1189. DOI: 10.1049/iet-map.2016.0746
  19. ZHAO, Y., CAO, X. Y., GAO, J., et al. Broadband radar absorbing material based on orthogonal arrangement of CSRR etched artificial magnetic conductor. Microwave and Optical Technology Letters, 2014, vol. 56, no. 1, p. 158–161. DOI: 10.1002/mop.28033
  20. PAQUAY, M., IRIARTE, J. C., EDERRA, I., et al. Thin AMC structure for radar cross-section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306

Keywords: Artificial Magnetic Conductor (AMC), gain, Radar Cross Section Reduction (RCSR)

X. W. Dai, G. Q. Luo, H. Y. Jin, Z. Liao, Z. C. Hao [references] [full-text] [DOI: 10.13164/re.2019.0053] [Download Citations]
A Novel Tri-Beam Antenna System Based on U-Shaped Dipole

Consisting of 6 radiating elements and a 3×3 Butler matrix, a novel tri-beam antenna system is proposed in this paper. The radiating element consists of two U-shaped arms and coupled strips, which shows a wide impedance characteristic. Three branch line couplers and four -90° phase shifters are combined into 3×3 Butler matrix as a beam-forming network (BFN). In order to avoid the crossover of transmission lines, one main line of a 1.76dB coupler is designed and located between two 3dB couplers. With this arrangement, the signal from one input port can be divided into three output signal with equal amplitude and specify phase differences of 0°, +120° and -120°. Furthermore, a 2×3 antenna array is connected with this BFN for three orthogonal beams. Measured results show that three beams at θ=0°, 40° and -40° are produced when different input ports are excited.

  1. LIAN, J. W., BAN, Y. L., XIAO, C., et al. Compact substrate integrated 4 × 8 Butler matrix with sidelobe suppression for millimeter-wave multibeam application. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, p. 928–932. DOI: 10.1109/LAWP.2018.2825367
  2. KAWDUNGTA, S., JAIBANAUEM, P., PONGGA, R., et al. Superstrate-integrated switchable beam rectangular microstrip antenna for gain enhancement. Radioengineering, 2017, vol. 26, no. 2, p. 430–437. DOI: 10.13164/re.2017.0430
  3. GANDINI, E., ETTORRE, M., SAULEAU, R., et al. A lumpedelement unit cell for beam-forming networks and its application to a miniaturized Butler matrix. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 4, p. 1477–1487. DOI: 10.1109/TMTT.2013.2248744
  4. HO, M. J., STUBER, G. L., AUSTIN, M. D. Performance of switched-beam smart antennas for cellular radio systems. IEEE Transactions on Vehicular Technology, 1998, vol. 47, no. 1, p. 10–19. DOI: 10.1109/25.661027
  5. KARAMZADEH, S., RAFII, V., KARTAL, M., et al. Compact and broadband 4 × 4 SIW Butler matrix with phase and magnitude error reduction. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 12, p. 772–774. DOI: 10.1109/LMWC.2015.2496785
  6. BUTLER, J., LOWE, R. Beam-forming matrix simplifies design of electronically scanned antennas. Electronic Design, 1961, vol. 9, p. 170–173.
  7. ZHENG, S., CHAN, W. S. Compact Butler matrix using size reduced elements. Microwave and Optical Technology Letters, 2007, vol. 49, no. 7, p. 1519–1521. DOI: 10.1002/mop.22489
  8. DE LILLO, R. A. A high performance 8-input, 8-output Butler matrix beamforming network for ultra-broadband applications. In Proceedings of IEEE Antennas and Propagation Society International Symposium. Ann Arbor (MI, USA), 1993, vol. 1, p. 474–477. DOI: 10.1109/APS.1993.385304
  9. DENIDNI, T. A., NEDIL, M. Experimental investigation of a new Butler matrix using slotline technology for beamforming antenna arrays. IET Microwave, Antennas and Propagation, 2008, vol. 2, p. 641–649. DOI: 10.1049/iet-map:20060199
  10. ZHONG, L. H., BAN, Y. L., LIAN, J. W., et al. Miniaturized SIW multibeam antenna array fed by dual-layer 8 × 8 Butler matrix. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 3018–3021. DOI: 10.1109/LAWP.2017.2758373
  11. LUO, G. Q., DAI, X. W., SUN, W., et al. Design of tri-beam antenna systems. In IEEE International Conference on Microwave and Millimeter Wave Technology. Being (China), 2016, p. 2–5. DOI: 10.1109/ICMMT.2016.7761659
  12. SUN, W., DAI, X. W., LUO, G. Q., et al. Design of X-band antenna system with three beams. In IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition. 2016, p. 1–2. DOI: 10.1109/iWEM.2016.7504970
  13. NEDIL, M., DENIDNI, T. A., TALBI, L. Novel Butler matrix using CPW multilayer technology. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 1, p. 499–507. DOI: 10.1109/TMTT.2005.860490
  14. TIAN, G., YANG, J. P., WU, W. A novel compact Butler matrix without phase shifter. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 5, p. 306–308. DOI: 10.1109/LMWC.2014.2306898
  15. NACHOUANE, H., NAJID, A., TRIBAK, A., et al. Wideband 3 × 4 Butler matrix using Wilkinson divider for MIMO applications. In Proceedings of the 5th International Conference on Next Generation Network &Services. Casablanca (Morocco), 2014, p. 101–105. DOI: 10.1109/NGNS.2014.6990236
  16. TORNIELLI DI CRESTVOLANT, V., IGLESIAS, P. M., LANCASTER, M. J. Advanced Butler matrices with integrated bandpass filter functions. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 10, p. 3433–3444. DOI: 10.1109/TMTT.2015.2460739
  17. GARCIA-GASCO TRUJILLO, J., SIERRA PEREZ, M., NOVO GARCIA, A., et al. 3 × 3 multibeam network for a triangular array of three radiating elements: design and measurement. In Proceedings of EUROCON 2011 - International Conference on Computer as a Tool. Lisbon (Portugal), 2011, p. 1–4. DOI: 10.1109/EUROCON.2011.5929412
  18. DING, K. J., FANG, X. X., WANG, Y., et al. Printed dual-layer three-way directional coupler utilized as 3 × 3 beamforming network for orthogonal three-beam antenna array. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 911–914. DOI: 10.1109/LAWP.2014.2321971
  19. CAO, Y., CHIN, K. S., CHE, W., et al. A compact 38-GHz multibeam antenna array with multi-folded Butler matrix for 5G applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2996–2999. DOI: 10.1109/LAWP.2017.2757045
  20. CHU, H. N., MA, T. G. An extended 4 × 4 Butler matrix with enhanced beam controllability and widened spatial coverage. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 3, p. 1301–1311. DOI: 10.1109/TMTT.2017.2772815

Keywords: U-shaped arm, Butler matrix, tri-beam antenna

L. S. Yang, M. Xu, C. Li [references] [full-text] [DOI: 10.13164/re.2019.0060] [Download Citations]
Four-Element MIMO Antenna System for UWB Applications

A four element multiple input multiple output (MIMO) antenna system for UWB applications is presented. The system consists of two identical slot dipoles and two identical planar monopoles. Polarization diversity between different kinds of antennas can realize lower coupling between antenna elements, and by using a couple of inverted L-shaped stubs and an inverted Z-shaped stub as decoupling structures, isolation can be further improved. For both simulation and measurement, higher than 17dB isolation between antenna elements can be obtained through the whole UWB band (3.1-10.6 GHz). The envelope correlation coefficient, antenna gain, efficiency and other performances are also provided.

  1. BEKASIEWICZ, A., KOZIEL, S. Compact UWB monopole antenna for internet of things applications. Electronics Letters, 2016, vol. 52, no. 7, p. 492–494. DOI: 10.1049/el.2015.4432
  2. LUO, C. M., HONG, J. S., ZHONG, L. L. Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1766–1769. DOI: 10.1109/LAWP.2015.2423318.
  3. YANG, L. S., FANG, J. P., LI, T. Compact dual-band MIMO antenna system for mobile handset application. IEICE Transactions on Communications, 2015, vol. E98.B, p. 2463–2469. DOI: 10.1587/transcom.E98.B.2463.
  4. CHANDEL, R., GAUTAM, A. K., RAMBABU, K. Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 4, p. 1677–1684. DOI: 10.1109/TAP.2018.2803134
  5. IBRAHIM, A. A., ABDALLA, M. A., HU, Z. R. Design of a compact MIMO antenna with asymmetric coplannar strip-fed for UWB applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 1, p. 31–36. DOI: 10.1002/mop.30208
  6. ZHANG, S., PEDERSEN, G. F. Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 166–169. DOI: 10.1109/LAWP.2015.2435992
  7. CHANDEL, R., GAUTAM, A. K. Compact MIMO/diversity slot antenna for UWB applications with band-notched Characteristic. Electronics Letters, 2016, vol. 52, no. 5, p. 336–338. DOI: 10.1049/el.2015.3889
  8. DENG, J. Y., GUO, L. X., LIU., X. L. An ultrawideband MIMO antenna with a high isolation. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 182–185. DOI: 10.1109/LAWP.2015.2437713
  9. LIU, Y. Y., TU, Z. H. Compact differential band-notched steppedslot UWB-MIMO antenna with common-mode suppression. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 593–596. DOI: 10.1109/LAWP.2016.2592179
  10. REN, J., HU, W., YIN, Y. Z., et al. Compact printed MIMO antenna for UWB applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1517–1520. DOI: 10.1109/LAWP.2014.2343454
  11. KHAN, M. S., CAPOBIANCO, A. D., ASIF, S., et al. Compact 4 × 4 UWB-MIMO antenna with WLAN band rejected operation. Electronics Letters, 2015, vol. 51, no. 14, p. 1048–1050. DOI: 10.1049/el.2015.1252
  12. KIEM, N. K., PHUONG, H. N. B., CHIEN, D. N. Design of compact 4×4 UWB-MIMO antenna with WLAN band rejection. International Journal of Antennas and Propagation, 2014, p. 1–11. DOI: 10.1155/2014/539094
  13. GURJAR, R., UPADHYAY, D. K., KANAUJIA, B. K. Compact four-element 8-shaped self-affine fractal UWB MIMO antenna. In 2018 3rd International Conference on Microwave and Photonics (ICMAP). Dhanbad (India), 2018, p. 1–2. DOI: 10.1109/ICMAP.2018.8354571
  14. AQUIL, J., SARKAR, D., SRIVASTAVA, K. V. A quasi selfcomplementary UWB MIMO antenna having WLAN-band notched characteristics. In 2017 IEEE Applied Electromagnetics Conference (AEMC)., Aurangabad (India), 2017, p. 1–2. DOI: 10.1109/AEMC.2017.8325722
  15. REDDY, P. N. K., ANURADHA, S. A compact four element UWB MIMO antenna. In 2017 International Conference on Trends in Electronics and Informatics (ICEI). Tirunelveli (India), 2017, p. 949–952. DOI: 10.1109/ICOEI.2017.8300847
  16. SIPAL, D., ABEGAONKAR, M. P., KOUL, S. K. Easily extendable compact planar UWB MIMO antenna array. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2328–2331. DOI: 10.1109/LAWP.2017.2717496
  17. ALI, W. A. E., IBRAHIM, A. A. A compact double-sided MIMO antenna with an improved isolation for UWB applications. International Journal of Electronics and Communications, 2017, vol. 82, p. 7–13. DOI: 10.1016/j.aeue.2017.07.031
  18. IBRAHIM, A. A., MACHAC, J., SHUBAIR, R. M. Compact UWB MIMO antenna with pattern diversity and band rejection characteristics. Microwave and Optical Technology Letters, 2017, vol. 59, no. 6, p. 1460–1464. DOI: 10.1002/mop.30564
  19. MAEDA, S., YAMAMOTO, M., NOJIMA, T. A wideband 4-port MIMO antenna using leaf-shaped bowtie radiating elements (in Japanese). IEICE Technical Report, 2015, vol. 114, no. 245, p. 886–895. ISSN: 0913-5685.
  20. ANSYS HFSS: High Frequency Simulator Based on the Finite Element Method, Version 15, ANSYS Corp.
  21. VAUGHAN, R. G., ANDERSEN J. B. Antenna diversity in mobile communications. IEEE Transactions on Vehicular Technology, 1987, vol. 36, no. 4, p. 149–172. DOI: 10.1109/TVT.1987.24115
  22. IQBAL, A., SARAEREH, O. A., AHMAD, A. W., et al. Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna. IEEE Access, 2018, vol. 6, p. 2755–2759. DOI: 10.1109/ ACCESS.2017.2785232
  23. ABDALLA, M. A., IBRAHIM, A. A. Simple mu-negative half mode CRLH antenna configuration for MIMO applications. Radioengineering, 2017, vol. 26, no. 1, p. 45–50. DOI: 10.13164/re.2017.0045

Keywords: MIMO, UWB, polarization diversity, planar monopole, slot dipole

L. Y. Chen, J. S. Hong, M. Amin [references] [full-text] [DOI: 10.13164/re.2019.0068] [Download Citations]
A Twelve-Ports Dual-Polarized MIMO Log-Periodic Dipole Array Antenna for UWB Applications

A twelve-port dual-polarized multiple-input–multiple-output (MIMO) log-periodic dipole array (LPDA) antenna for ultra-wideband (UWB) applications is proposed in this paper. In the MIMO antenna, there are 12 antennas, six for horizontal polarization and six for vertical polarization. In order to achieve dual linear polarizations and beam switching, six horizontal antennas are placed in a sequential, rotating arrangement on a horizontal substrate panel with an equal inclination angle of 60 to form a symmetrical structure, while the other six antennas for vertical polarization are inserted through slots made on the horizontal substrate panel. In addition, all twelve antennas share a hexagon common ground on the back of substrate and feed by micro-strip line. A prototype of the MIMO antenna is manufactured and the reflection coefficients, coupling isolation, radiation pattern and peak gain are measured. The MIMO performance of the MIMO LPDA antenna is predicted and evaluated by envelope correlation coefficient (ECC) and total active reflection coefficient (TARC).

  1. KAISER, T., ZHENG, F., DIMITROV, E. An overview of ultrawide-band systems with MIMO. Proceedings of the IEEE, 2009, vol. 97, no. 2, p. 285–312. DOI: 10.1109/JPROC.2008.2008784
  2. COULOMBE, M., FARZANEH, K. S., CALOZ, C. Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 4, p. 1076–1086. DOI: 10.1109/TAP.2010.2041152
  3. ZHANG, S., YING, Z., XIONG, J., et al. Ultrawide-band MIMO/diversity antennas with a tree-like structure to enhance wideband isolation. IEEE Antennas Wireless and Propagation Letters, 2009, vol. 8, p. 1279–1282. DOI: 10.1109/LAWP.2009.2037027
  4. LIU LI, CHEUNG, S. W., YUK, T. I. Compact MIMO antenna for portable UWB applications with band-notched characteristic. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 5, p. 1917–1924. DOI: 10.1109/TAP.2015.2406892
  5. KHAN, M. S., CAPOBIANCO, A. D., ASIF, S. M., et al. A compact CSRR enabled UWB MIMO antenna. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 16, p. 808–812. DOI: 10.1109/LAWP.2016.2604843
  6. LIU, X. L., WANG, Z. D., YIN, Y. Z., et al. A compact ultrawideband MIMO antenna using QSCA for high isolation. IEEE Antennas and Wireless Propagation Letters, 2014, no. 13, p. 1497–1500. DOI: 10.1109/LAWP.2014.2340395
  7. HONMA, N., SEKI, T., NISHIKAWA, K., et al. Compact sixsector antenna employing three intersecting dual-beam microstrip Yagi-Uda arrays with common director. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 11, p. 3055–3062. DOI: 10.1109/TAP.2006.883980
  8. HAN, W. W., ZHOU, X. P., OUYANG, J., et al. A six-port MIMO antenna system with high isolation for 5 GHz WLAN access points. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 880–883. DOI: 10.1109/LAWP.2014.2310739
  9. ZHENG, W. C., ZHANG, L., LI, Q. X., et al. Dual-band dualpolarized compact bowtie antenna array for anti-interference MIMO WALN. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 237–246. DOI: 10.1109/TAP.2013.2287287
  10. LIANG, J. J., HONG, J. S., ZHAO, J. B., et al. Dual-band dualpolarized compact log-periodic dipole array for MIMO WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 751–754. DOI: 10.1109/LAWP.2014.2378772
  11. HALLBJORNER, P. The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas. IEEE Antennas and Wireless Propagation Letters, 2005, vol. 4, no. 1, p. 97–99. DOI: 10.1109/LAWP.2005.845913
  12. GAO, Y., CHEN, X. D., YING, Z. N., et al. Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3433–3441. DOI: 10.1109/TAP.2007.910353

Keywords: UWB, MIMO, LPDA

A. Arce, E. Stevens-Navarro, M. Cardenas-Juarez, U. Pineda-Rico, D. H. Covarrubias [references] [full-text] [DOI: 10.13164/re.2019.0074] [Download Citations]
A Coherent Multiple Beamforming Network for a Non-uniform Circular Antenna Array

This work proposes and describes a modular and innovative beamforming network (BFN) to feed a nonequally spaced circular antenna array. The structure is based on a set of alternated power combiners and dividers that delivers a Gaussian-like amplitude distribution and coherent (in-phase) signals. A multiple beam antenna system to generate two main beams in the same aperture with a coherent network for a nonuniform array with beam shaping and beam steering properties is simulated and analyzed. Furthermore, a comparative analysis based on uniform and nonuniform circular antenna arrays fed by the proposed coherent network is conducted. The complex signals and the nonuniform circular aperture are optimized using the well known differential evolution technique. Numerical experiments show the efficiency and improvement of the coherent network with a nonuniform aperture over uniform, with an advantage in average equal to 1.8dB of directivity and -2dB of side lobe level. Moreover, the simulation results exhibit an aperture reuse and complexity reduction of the proposed coherent network configuration compared with a conventional antenna array with direct feeding, where each main beam is shaped and steered with the half of control signal inputs.

  1. BLAKE, J., NYGREN, E., SCHENNUM, G. Beamforming networks for spacecraft antennas. In Proceedings of 1984 Antennas and Propagation Society International Symposium. Boston (USA), 1984, vol. 22, p. 158–161. DOI: 10.1109/APS.1984.1149264
  2. ANGELETTI, P., LISI, M. Multimode beamforming networks for space applications. IEEE Antennas and Propagation Magazine, 2014, vol. 56, no. 1, p. 62–78. ISSN: 1045-9243. DOI: 10.1109/MAP.2014.6821760
  3. BLASS, J. Multidirectional antenna - A new approach to stacked beams. In Proceedings of 1958 IRE International Convention Record. New York (USA), 1958, vol. 8, p. 48–50. DOI: 10.1109/IRECON.1960.1150892
  4. BUTLER, J., LOWE, R. Beam-forming matrix simplifies design of electronically scanned antennas. Electronic Design, 1961, vol. 9, p. 170–173.
  5. NOLEN, J. Synthesis of multiple beam networks for arbitrary illuminations. Ph.D. Dissertation. Baltimore (USA): Radio Division, Bendix Corp., 1965.
  6. ALLEN, J. A theoretical limitation on the formation of lossless multiple beams in linear arrays. IRE Transactions on Antennas and Propagation, 1961, vol. 9, no. 4, p. 350–352. ISSN: 0096-1973. DOI: 10.1109/TAP.1961.1145014
  7. BETANCOURT, D., DEL RIO BOCIO, C. A Novel Methodology to Feed Phased Array Antennas. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 9, p. 2489–2494. ISSN: 0018-926X. DOI: 10.1109/TAP.2007.904133
  8. FERRANDO, N., FONSECA, N. J. G. Investigations on the efficiency of array fed coherently radiating periodic structure beam forming networks. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 2, p. 493–502. ISSN: 0018-926X. DOI: 10.1109/TAP.2010.2096392
  9. ARCE, A., PANDURO, M. A., COVARRUBIAS, D. H., et al. An approach for simplifying a multiple beam-forming network for concentric ring arrays using CORPS. Journal of Electromagnetic Waves and Applications, 2014, vol. 28, no. 4, p. 430–441. ISSN: 0920-5071. DOI: 10.1080/09205071.2013.870685
  10. ARCE, A., YEPES, L. F., COVARRUBIAS, D. H., et al. A new approach in the simplification of a multiple-beam forming network based on CORPS using compressive arrays. International Journal of Antennas and Propagation, 2012, vol. 2012, no. 251865, p. 8. DOI: 10.1155/2012/251865
  11. ARCE, A., CARDENAS-JUAREZ, M., PINEDA-RICO, U., et al. A multiple beamforming network for unequally spaced linear array based on CORPS. International Journal of Antennas and Propagation, 2014, vol. 2015, no. 757989, p. 7. DOI: 10.1155/2015/757989
  12. FONSECA, N. J. G. Design and implementation of a closed cylindrical BFN-fed circular array antenna for multiple-beam coverage in Azimuth. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 863–869. ISSN: 0018-926X. DOI: 10.1109/TAP.2011.2174956
  13. ZAKER, R., ABDIPOUR, A., TAVAKOLI, A. Full-wave simulation, design and implementation of a new combination of antenna array feed network integrated in low profile microstrip technology. Analog Integrated Circuits and Signal Processing, 2014, vol. 80, no. 3, p. 507–517. ISSN: 1573-1979. DOI: 10.1007/s10470-014-0325-x
  14. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed., rev. New York (USA): John Wiley & Sons, 2005. ISBN: 047166782X
  15. ENACHE, F., DEPARATEANU, D., POPESCU, F. Optimal design of circular antenna array using genetic algorithms. In Proceedings of the 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). Targoviste (Romania), 2017, p. 1–6. DOI: 10.1109/ECAI.2017.8166392
  16. ZHAO, X., YANG, Q., ZHANG, Y. Design of non-uniform circular antenna arrays by convex optimization. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP). Davos (Switzerland), 2016, p. 1–4. DOI: 10.1109/EuCAP.2016.7481628
  17. CHAKRAVARTHY VEDULA, V. S. S. S., CHOWDARY PALADUGA, S. R., RAO PRITHVI, M. Synthesis of Circular Array Antenna for Sidelobe Level and Aperture Size Control Using Flower Pollination Algorithm. International Journal of Antennas and Propagation, 2015, vol. 2015, no. 819712, 9 p. ISSN: 2210-6502. DOI: 10.1155/2015/819712
  18. DEB, A., ROY, J. S., GUPTA, B. A differential evolution performance comparison: Comparing how various differential evolution algorithms perform in designing microstrip antennas and arrays.IEEE Antennas and Propagation Magazine, 2018, vol. 60, no. 1, p. 51–61. ISSN: 1045-9243. DOI: 10.1109/MAP.2017.2774146
  19. GOUDOS, S. Antenna design using binary differential evolution: Application to discrete-valued design problems. IEEE Antennas and Propagation Magazine, 2017, vol. 59, no. 1, p. 74–93. ISSN: 1045-9243. DOI: 10.1109/MAP.2016.2630041
  20. YANG, H., YANG, S., NI, D., NIE, Z. Pattern synthesis approach for circularly polarised four-dimensional antenna arrays. IET Microwaves, Antennas Propagation, 2015, vol. 9, no. 10, p. 1004–1008. ISSN: 1751-8725. DOI: 10.1049/iet-map.2014.0544
  21. DAS, S., MULLICK, S. S., SUGANTHAN, P. N. Recent advances in differential evolution - An updated survey. Swarm and Evolutionary Computation, 2016, vol. 27, p. 1–30. ISSN: 2210-6502. DOI: 10.1016/j.swevo.2016.01.004
  22. ROCCA, P., OLIVERI, G., MASSA, A. Pattern synthesis approach for circularly polarised four-dimensional antenna arrays. IET Microwaves, Antennas Propagation, 2015, vol. 9, no. 10, p. 1004–1008. ISSN: 1751-8725. DOI: 10.1049/iet-map.2014.0544

Keywords: Multiple beamforming network, non-uniform circular array, differential evolution, coherent beamforming network, multiple beams

H. Aliakbarian, M. Khak, M. Shahpari, A. Nooraei Yeganeh, F. Mazlumi, S. H. Najmolhoda, R. Baghlani, R. Salimi Nejad [references] [full-text] [DOI: 10.13164/re.2019.0084] [Download Citations]
An Efficient Multi-Beam Array Architecture for L-Band Secondary Surveillance Radars

In this paper, the design and fabrication of a large array antenna with three required, Sum, Difference and Control beams for a monopulse Secondary Surveillance Radar (SSR) is presented. A special array element, which is a high gain dual dipole structure, is designed and tested. This element has 9.6 dB gain in 1060 MHz and does not need any balun. The main challenge of extracting three beams out of one beam feeding networks (BFN) has been resolved efficiently by maximum integration of all three in one network, reducing the number of required modules to one half. The complete 33-element array, working in 1030 MHz and 1090 MHz is designed based on the Taylor array factor. The complex feed network of this 6-meter long array has successfully been synthesized as modular as possible. Sum pattern was designed for 2.7o azimuth beam width and -20 dB side lobe level and Diff pattern with a deep null in the boresight of the Sum pattern. The Ctrl beam was also designed in order to cover the Sum beam except in the direction of the main lobe.

  1. STEVENS, M. C. New developments in secondary-surveillance radar. Electronics and Power, 1985, vol. 31, no. 6, p. 463-466. DOI: 10.1049/ep.1985.0286
  2. STEVENS, M.C. Secondary Surveillance Radar. Boston and London: Artech House, 1988. ISBN-13: 978-0890062920
  3. INTERNATIONAL CIVIL AVIATION ORGANIZATION. Aeronautical telecommunications, annex 10, vol. 4. International Standards and Recommended Practices and Procedures for Air Navigation Services. 5th ed., July 2014.
  4. WIRTH, W.D. Radar Techniques Using Array Antennas. 2nd ed. IET, 2001. ISBN: 978-1-84919-698-7. DOI: 10.1049/PBRA026E
  5. KIM, S. G., CHANG, K. Low-cost monopulse antenna using bidirectionally-fed microstrip patch array. Electronics Letters, 2003, vol. 39, no. 20, p. 1428-1429. DOI: 10.1049/el:20030963
  6. ABDOLAHI, M., ASKARI, G., SADEGHI, H. M. A new seriesfed printed dipole array antenna for SSR. In 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran (Iran), 2017, p. 1906–1910. DOI: 10.1109/IranianCEE.2017.7985366
  7. TEKKOUK, K., ETTORRE, M., LE COQ, L. et al. SIW pillbox antenna for monopulse radar applications. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 9, p. 3918–3927. DOI: 10.1109/TAP.2015.2446996
  8. ZHANG, H. Z., GRANET, C., SPREY, M. A. A compact Ku‐band monopulse horn. Microwave and Optical Technology Letters, 2002, vol. 34, no. 1, p. 9–13. DOI: 10.1002/mop.10357
  9. ELLIOTT, R. D., CLARRICOATS, P. J. B. Corrugated waveguide monopulse feed. Electronics Letters, 1980, vol. 16, no. 9, p. 324–325. DOI: 10.1049/el:19800232
  10. REZAZADEH, N., SHAFAI, L. Ultrawideband monopulse antenna with application as a reflector feed. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 4, p. 393–400. DOI: 10.1049/iet-map.2015.0437
  11. WANG, Y., DOU, W., BI, B. W-band axially displaced monopulse dual-reflector antenna for inter-satellite communications. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 7, p. 742–747. DOI:10.1049/iet-map.2015.0559
  12. VESELY, J. History of radar and surveillance technology in the Czech Republic. In 18th International Radar Symposium (IRS). Prague (Czech Republic), 2017. DOI: 10.23919/IRS.2017.8008086
  13. BEZOUSEK, P., CHYBA, M., SCHEJBAL, V., et al. Combined antenna array for primary and secondary surveillance radars. In 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). Palm Beach (Netherlands Antilles), 2014. DOI: 10.1109/APWC.2014.6905572
  14. JACOVITTI, C. Performance analysis of monopulse receivers for secondary surveillance radar. IEEE Transactions on Aerospace and Electronic Systems, 1983, vol. 19, no. 6, p. 884–897. DOI: 10.1109/TAES.1983.309400
  15. SCHEJBAL, V., BEZOUSEK, P., PIDANIC, J., et al. Secondary surveillance radar antenna [Antenna Designer's Notebook]. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 2, p. 164–170. DOI: 10.1109/MAP.2013.6578015
  16. NOORAEI YEGANEH, A., NAJMOLHODA, S. H., SEDIGHY, S. H., et al. New compact planar wideband antenna with flat gain and good pattern stability. Microwave and Optical Technology Letters, 2016, vol. 58, no. 11, p. 2548–2554. DOI: 10.1002/mop.30092
  17. TOHYA, K., URABE, M. Multibeam Radar System. U.S. Patent No. 6,137,434. 24 Oct. 2000.
  18. OLIVERI, G. Multibeam antenna arrays with common subarray layouts. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 1190–1193. DOI: 10.1109/LAWP.2010.2100073
  19. PEDERSEN, M. Ø., HANSEN, K., THOMSEN, A. K., et al. X-band surveillance radar antenna with integrated IFF antenna. In IEEE Radar Conference (RADAR). Kansas City (MO, USA), 2011, p. 172–174. DOI: 10.1109/RADAR.2011.5960522
  20. BEZOUSEK, P., CHYBA, M., SCHEJBAL, V., et al. Dual frequency band integrated antenna array. In 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg, (Sweden), 2013, p. 2137–2141.
  21. ELLIOT, R. S. Antenna Theory and Design. Rev ed. John Wiley & Sons, 2006. ISBN: 9788126508198
  22. POZAR, D. M. Microwave Engineering (Chapter: Transmission lines and waveguides, p. 143–149). 3 ed. Wiley, 2005. ISBN: 9780471644514

Keywords: Secondary Surveillance Radar, beam forming network, monopulse array, Taylor distribution

M. Biancheri-Astier, A. Diet, Y. le Bihan, M. Grzeskowiak [references] [full-text] [DOI: 10.13164/re.2019.0092] [Download Citations]
UWB Vivaldi Antenna Array Lower Band Improvement for Ground Penetrating Radar Applications

This paper concerns a ground penetrating radar system (GPR) presenting beam forming ability. This ability is due to a great flexibility in the emission of wavefronts. The innovative concept is to use an array of antennas which can reconfigure itself dynamically, in order to focus on a desired target. This antennas system can act as a new microwave sensor to detect and characterize buried targets in an inhomogeneous medium which is the case study in various application fields such as geophysics, medical, planetology… Its electronics are in development with the DORT (Time reversal technique) method integration for optimizing the localization of buried target. This paper aims are to present the antenna optimization used in the GPR applications. Typical antennas used in GPR are generally Vivaldi ones directly on the ground. Especially, in the context of the space mission ExoMars 2020, the radar antenna is set on a mobile station at a distance of about 30 cm from the ground to avoid any contact. However, they are limited by their important size, due to the lowest frequency of their bandwidth. Results of this work concern an increase of the antenna bandwidth by shifting the lower-band limit, making it a UWB type [500 MHz - 4 GHz] without changing its size. As low frequency waves can spread deeper into probed medium, this optimization can improve the radar data inversion performances.

  1. BIANCHERI-ASTIER, M. Study and Realization of a Mini Antenna Network in the Range UHF (1-3 GHz) - Electromagnetic Modeling of the Antenna with the Software FEKO and Magus Antenna. CNES Internal report - LATMOS-GEOPS 2013. (In French)
  2. CIARLETTI, V., CORBEL, C., PLETTEMEIER, D., et al. WISDOM GPR designed for shallow and high-resolution sounding of the Martian subsurface. Proceedings of the IEEE, 2011, vol. 99, no. 5, p. 824–836. DOI: 10.1109/JPROC.2010.2100790
  3. PRADA, C., MANNEVILLE, S., SPOLIANSKY, D., et al. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers. The Journal of the Acoustical Society of America, 1996, vol. 99, no. 4, p. 2067–2076. DOI: 10.1121/1.415393
  4. FINK, M. Time reversal of ultrasonic fields. I. Basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1992, vol. 39, no. 5, p. 555–566. DOI: 10.1109/58.156174
  5. BIANCHERI-ASTIER, M., CIARLETTI, V., REINEIX, A., et al. 3D characterization of the deep sub-surface by a bistatic HF GPR operating from the surface. In American Geophysical Union - Fall Meeting 2009, id. no. #P13B-1283.
  6. DECHAMBRE, M., SAINTENOY, A., CIARLETTI, V., et al. Wisdom GPR measurements in a cold artificial and controlled environment. In 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich (Germany), 2012, p. 606–609. DOI: 10.1109/IGARSS.2012.6351521
  7. GAZIT, E. Improved design of the Vivaldi antenna. IEE Proceedings H - Microwaves, Antennas and Propagation, 1988, vol. 135, no. 2, p. 89–92. DOI: 10.1049/ip-h-2.1988.0020
  8. DORIZON, S. Preparatory Study to Interpret WISDOM Radar Data for ExoMars 2018 Mission. PhD thesis. Universite ParisSaclay, France, 2016. (In French)
  9. MOOSAZADEH, M. High-gain antipodal Vivaldi antenna surrounded by dielectric for wideband applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 8, p. 4349–4352. DOI: 10.1109/TAP.2018.2840839
  10. NORNIKMAN, H., ABDULMALEK, M., AHMAD, B. H., et al. A modified antipodal Vivaldi antenna (AVA) with elliptical slotting edge (ESE) for ultra-wideband (UWB) applications. In 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). Singapore, 2017, p. 1194–1201. DOI: 10.1109/PIERS-FALL.2017.8293314
  11. WU, T., KING, R. The cylindrical antenna with nonreflecting resistive loading. IEEE Transactions on Antennas and Propagation, 1965, vol. 13, no. 3, p. 369–373. DOI: 10.1109/TAP.1965.1138429
  12. DESCHAMPS, G. Impedance of an antenna in a conducting medium. IRE Transactions on Antenna and Propagation, 1962, vol. 10, no. 5, p. 648–650. DOI: 10.1109/TAP.1962.1137923
  13. ZEMMOUR, H., BAUDOIN, G., DIET. A. Effect of depth and soil moisture on buried ultra-wideband antenna. IET Electronics Letters, 2016, vol. 52, no. 10, p. 792–794. DOI: 10.1049/el.2015.3521

Keywords: Ground Penetrating Radar (GPR), Ultra Wideband (UWB), Vivaldi antenna

X. W. Zhu, J. Gao, X. Y. Cao, T. Li, Y. J. Zheng, L. L. Cong, L. R. Ji-Di, B. W. Zhu [references] [full-text] [DOI: 10.13164/re.2019.0099] [Download Citations]
A Novel Low-RCS and Wideband Circularly Polarized Patch Array Based on Metasurface

In this paper, a novel circularly polarized (CP) array antenna based on metasurface (MS) is designed to realize wideband radar cross section (RCS) reduction, wideband operation and high gain. The MS is composed of compact polarization-dependent artificial magnetic conductors (PDAMCs), by regularly arranging the PDAMCs like chessboard directly on the top of the patch antenna, the MS can significantly bring RCS down. On the other hand, due to the compact structure of MS and the driven array patches, surface wave propagates on the MS and generates additional resonances to achieve wide operation band and high gain. Both the simulated and measured results indicate that the RCS at bore-sight is reduced more than 6dB from 5.08 GHz to 11.46 GHz (77.15%) except for some frequency points, The antenna yielded a good broadside left-hand CP radiation, the ǀS11ǀ<-10 dB impedance bandwidth is from 5.03 GHz to 7.4 GHz (38.13%) and the 1-dB axial ratio bandwidth is from 4GHz to 8GHz. Both the radiating and scattering performances have been obviously improved.

  1. YANG, F., RAHMAT-SAMII, Y. A low profile single dipole antenna radiating circularly polarized waves. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 9, p. 3083–3086. DOI: 10.1109/TAP.2005.854536
  2. YI, H., QU, S. A novel dual-band circularly polarized antenna based on electromagnetic band-gap structure. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1149–1252. DOI: 10.1109/LAWP.2013.2281060
  3. YANG, W., TAM, K., CHOI, W., et al. Novel polarization rotation technique based on an artificial magnetic conductor and its application in a low-profile circular polarization antenna. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 12, p. 6206–6216. DOI: 10.1109/TAP.2014.2361130
  4. CHUNG, K. High-performance circularly polarized antenna array using metamaterial-line based feed network. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6233–6237. DOI: 10.1109/TAP.2013.2282296
  5. CHUNG, K., CHAIMOOL, S., ZHANG, C. Wideband subwavelength-profile circularly polarised array antenna using anisotropic metasurface. Electronics Letters, 2015, vol. 51, no. 18, p. 1403–1405. DOI: 10.1049/el.2015.2255
  6. TA, S. X., PARK, I. Planar wideband circularly polarized metasurface-based antenna array. Journal of Electromagnetic Waves and Applications, 2016, vol. 30, no. 12, p. 1620–1630. DOI: 10.1080/09205071.2016.1210038
  7. ZHENG, Y., GAO, J., CAO, X., et al, A broad-band gain improvement and wideband, wide angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, vol. 63, no. 22. DOI: 10.7498/aps.63.224102 (in Chinese)
  8. CONG, L., FU, Q., CAO, X., et al. A novel circularly polarized patch antenna with low radar cross section and high-gain, Acta Physica Sinica, 2015, vol. 64, no. 22. DOI: 10.7498/aps.64.224219 (in Chinese)
  9. ZHENG, Y., CAO, J., XU, L., et al. Ultra-wideband and polarization independent radar cross section reduction with composite artificial magnetic conductor surface. IEEE Antenna and Wireless Propagation Letters, 2017, vol. 16, p. 1651–1654. DOI: 10.1109/LAWP.2017.2660878
  10. KANG, X., SU, J., ZHANG, H., et al. Ultra-wideband RCS reduction of microstrip antenna array by optimised multi-element metasurface. Electronics Letters, 2017, vol. 53, no. 8, p. 520–522. DOI: 10.1049/el.2017.0260
  11. PAQUAY, M., IRIARTE, J., EDERRA, I., et al. Thin AMC structure for radar cross section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306
  12. GAO, Q., YIN, Y, YAN, D., et al. Application of metamaterials to ultra-thin radar absorbing material design. Electronics Letters, 2005, vol. 41, no. 17, p. 936–937. DOI: 10.1049/el:20051239
  13. LI, Y., ZHANG, H., FU, Y., et al. RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material. IEEE Antennas and Wireless Propagation Letter, 2008, vol. 7, p. 473–476. DOI: 10.1109/LAWP.2008.2001548
  14. ZHOU, Y., CAO, X., GAO, J., et al. A C/X dual-band wide-angle reflective polarization rotation metasurface. Radioengineering, 2017, vol. 26, no. 3. p. 699–904. DOI: 10.13164/re.2017.0699
  15. LI, S., CAO, X., GAO, J., et al. Fractal metamaterial absorber with three-order oblique cross dipole slot structure and its application for in-band RCS reduction of array antennas. Radioengineering, 2014, vol. 23, no. 4, p. 1048–1054.
  16. LI, S., CAO, X., GAO, J., et al. Polarization-insensitive ultra-thin quasi-metasurface based on the spoof surface plasmon polaritons. Applied Physics A; Materials Science and Processing, 2016, vol. 122, no. 9, p. 1–9. DOI: 10.1007/s00339-016-0391-2
  17. ZHAO, Y., CAO, X., GAO, J., et al. Broadband low-RCS circularly polarized array using metasurface-based element. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1836-1839. DOI: 10.1109/LAWP.2017.2682848
  18. PANG, Y., CHENG, H., ZHOU, Y., et al. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates. Optics Express, 2012, vol. 20, no. 11, p. 12515–12520. DOI: 10.1364/OE.20.012515
  19. YANG, F., RAHMAT-SAMII, Y. Reflection phase characterization of the EBG ground plane for low profile wire antenna application. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2691–2703. DOI: 10.1109/TAP.2003.817559
  20. YANG, F., RAHMAT-SAMII, Y. Polarization-dependent electromagnetic band gap (PDEBG) structures: designs and applications. Microwave and Optical Technology Letters, 2004, vol. 41, no. 6, p. 439–444. DOI: 10.1002/mop.20164
  21. FOROOZESH, A., SHAFAI, L., NG MOU KEHN, M. Application of polarization and angular dependent artificial ground planes in compact planar high-gain antenna design. Radio Science, 2008, vol. 43, no. 6, p. 1–19. DOI: 10.1029/2007RS003795
  22. HOSSEINIPANAH, M., WU, Q. Polarization-dependent artificial magnetic conductor structures using asymmetrical frequency selective surface. In Proceedings of the 3rd IEEE International Symposium of Microwaves, Antennas, Propagation, EMC Technology, and Wireless Communication (MAPE). Oct. 2009, p. 707–710. DOI: 10.1109/MAPE.2009.5355646

Keywords: Low RCS, high-gain, wideband, metasurface antenna

H. P. Li , Y. Wang , Q. S. Cao [references] [full-text] [DOI: 10.13164/re.2019.0108] [Download Citations]
Late-time Instability for UPML and Periodic Boundary in Elongated Multilayer Thin Plate Simulations

In this article, we examine the late-time instability properties of hybrid boundary conditions in the discontinuous Galerkin time-domain (DGTD) simulations of an elongated multilayer thin plate. The hybrid boundary is combined by uniaxial perfectly matched layer (UPML) and periodic boundary condition (PBC). Herein, the PBC is employed to approximate an infinite long target. For the target studied, when implementing the UPML within the discrete DGTD domain, late-time instabilities would occur. These instable or spurious information can severely corrupt the solution of a physical problem in time domain. To suppress them, two effective ways are proposed, i.e., increasing the size of the air space (the distance away from the interface between the target studied and the UPML) and decreasing the conductivity of the UPML. The numerical experiments verify that the instability characteristics can be efficiently attenuated by proposed two methods in this paper.

  1. BERENGER, J. P. A perfectly matched layer for the absorption of electromagnetic waves. Physics of Plasmas, 1994, vol. 114, no. 2, p. 185–200. DOI: 10.1006/jcph.1994.1159
  2. TAFLOVE, A., HAGNESS, S. C. Computational Electromagnetics: The Finite-Difference Time-Domain Method. 3rd ed. Boston (USA): Artech House, 2005. ISBN: 1580538320
  3. SACKS, Z. S., KINGSLAND, D. M., LEE, R., et al. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 12, p. 1460–1463. DOI: 10.1109/8.477075
  4. LU, T., ZHANG, P., CAI, W. Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions. Journal of Computational Physics, 2004, vol. 200, no. 2, p. 549–580. DOI: 10.1016/j.jcp.2004.02.022
  5. TIAN, X., LIU, Q. H. Three-dimensional unstructured grid discontinuous Galerkin method for Maxwell's equations with wellposed perfectly matched layer. Microwave and Optical Technology Letters, 2005, vol. 46, no. 5, p. 459–463. DOI: 10.1002/mop.21016
  6. LEE, J. H., TASSOULAS, J. L. Absorbing boundary condition for scalar-wave propagation problems in infnite media based on a root-finding algorithm. Computer Methods in Applied Mechanics and Engineering, 2018, vol. 330, p. 207–219. DOI: 10.1016/j.cma.2017.10.024
  7. YU, W., MITTRA, R., LI, L. Stability issues in PML for large thin structures arising in the parallel FDTD method. In Antennas and Propagation Society International Symposium, (APSURSI’09). Charleston, (SC, USA), 2009, p. 1–5. DOI: 10.1109/APS.2009.5172209
  8. HESTHAVEN, J. S., WARBURTON, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. New York (USA): Springer, 2008. ISBN: 9780387720654
  9. JIN, J. M. The Finite Element Method in Electromagnetics. 3rd ed. New York (USA): Wiley-IEEE Press, 2014. ISBN: 1118571363
  10. YU, W. H., LI, W., X., ELSHERBENI, A. Advanced Computational Electromagnetic Methods and Applications. 2nd ed. Boston (USA): Artech House, 2015. ISBN: 1608078965
  11. PENG, D., CHEN, L., YIN, W, et al. An efficient DGTD implementation of the Uniaxial Perfectly Matched Layer. In Proceedings of the International Symposium on Antennas and Propagation. Orlando, Florida (USA), 2013, p. 1272–1275.
  12. YU, W. H, ZHAO, L., CHEN, G. A novel DGTD method and engineering applications. In 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA). Cairns (QLD, Australia), 2016, p. 324–327. DOI: 10.1109/ICEAA.2016.7731388
  13. DURU, K., KOZDON, J. E., KREISS, G. Boundary conditions and stability of a perfectly matched layer for the elastic wave equation in first order form. Journal of Computational Physics, 2015, vol. 303, p. 372–395. DOI: 10.1016/j.jcp.2015.09.048
  14. DEINEGA, A., VALUEV, I., POTAPKIN, B., et al. Antireflective properties of pyramidally textured surfaces, Optics Letters, 2010, vol. 35, no. 2, p. 106–108. DOI: 10.1364/OL.35.000106
  15. DEINEGA, A., VALUEV, I. Long-time behavior of PML absorbing boundaries for layered periodic structures. Computer Physics Communications, 2011, vol. 182, no. 1, p. 149–151. DOI: 10.1016/j.cpc.2010.06.006
  16. QASIMOV, H., TSYNKOV, S. Lacunae based stabilization of PMLs. Journal of Computational Physics, 2008, vol. 227, no. 15, p. 7322–7345. DOI: 10.1016/j.jcp.2008.04.018
  17. ABARBANEL, S., GOTTLIEB, D., HESTHAVEN, J. S. Longtime behavior of the perfectly matched layer equations in computational electromagnetics. Journal of Scientific Computing, 2002, vol. 17, no. 1–4, p. 405–422. DOI: 10.1023/A:1015141823608
  18. COHEN, G., FERRIERES, X., PERNET, S. A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell’s equations in time domain. Journal of Computational Physics, 2006, vol. 217, no. 2, p. 340–363. DOI: 10.1016/j.jcp.2006.01.004
  19. ABARBANEL, S., QASIMOV, H., TSYNKOV, S. Long-time performance of unsplit PMLs with explicit second order schemes. Journal of Scientific Computing, 2009, vol. 41, no. 1, p. 1–12. DOI: 10.1007/s10915-009-9282-4
  20. KONIG, M., PROHM, C., BUSCH, K., NIEGEMANN, J. Stretched-coordinate PMLs for Maxwell’s equations in the discontinuous Galerkin time-domain method. Optics Express, 2011 vol. 19, no. 5, p. 4618–4631. DOI: 10.1364/OE.19.004618
  21. LU, T., ZHANG, P, CAI, W. Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions. Journal of Computational Physics, 2004, vol. 200, no. 2, p. 549–580. DOI: 10.1016/j.jcp.2004.02.022
  22. DOSOPOULOS, S., LEE, J. F. Interior penalty discontinuous Galerkin finite element method for the time-dependent Maxwell's equations. IEEE Transactions on Magnetics, 2010, vol. 46, no. 8, p. 3512–3515. DOI: 10.1109/TAP.2010.2078445
  23. JOHNSON, C. R. JR., SETHARES, W. A., KLEIN, A. G. Software Receiver Design: Build Your Own Digital Communication System in Five Easy Steps. Cambridge University Press, 2011. ISBN: 11107007526

Keywords: Late-time instability, DGTD, elongated multilayer thin plate, hybrid boundary conditions

B. Doken, M. Kartal [references] [full-text] [DOI: 10.13164/re.2019.0114] [Download Citations]
An Active Frequency Selective Surface Design Having Four Different Switchable Frequency Characteristics

Mutual interference between indoor adjacent wireless networks is becoming an important issue due to reducing the communication speed significantly. Controlling the isolation of wireless networks by using frequency selective surfaces (FSSs) can be an efficient solution for such interference problems. Therefore, a switchable band-stop FSS design is presented in this work for unlicensed 2.4 and 5.8 GHz ISM (Industrial, Scientific and Medical) bands. In order to achieve desired frequency switch performance, a new theory is proposed in this paper by using PIN diodes. According to the proposed theory, PIN diodes should be placed in positions where high current densities are observed or where charges are collected. By using the proposed theory, a new FSS geometry design was carried out to control the targeted ISM bands. According to our best knowledge, there is no similar FSS work in the literature with four different frequency responses for 2.4 and 5.8 GHz ISM bands.

  1. MUNK, B. A. Frequency Selective Surfaces - Theory and Design. New York: John Wiley and Sons. Inc., 2000
  2. WU, T. K. Frequency Selective Surface and Grid Array: Wiley Interscience Publication, 1995
  3. OMAR, A. A., SHEN, Z. Multiband high-order bandstop 3-D frequency-selective structures. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 6, p. 2217–2226. DOI: 10.1109/tap.2016.2546967
  4. FERREIRA, D., FERNANDES, T. R., CUIÑAS, I., et al. Dualband single-layer quarter ring frequency selective surface for WiFi applications. IET Microwaves, Antennas and Propagation, 2016, vol. 10, no. 4, p. 435–441. DOI: 10.1049/iet-map.2015.0641
  5. RAHMATI, B., HASSANI, H. R. Multiband metallic frequency selective surface with wide range of band ratio. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3747–3753. DOI: 10.1109/tap.2015.2438340
  6. DOKEN, B., KARTAL, M. Switchable frequency selective surface design for 2.45 GHz ISM band. In 8th International Conference on Recent Advances in Space Technologies (RAST). 2017, p. 473–476. DOI: 10.1109/RAST.2017.8002969
  7. YANG, C. C., LI, H. Y., CAO, Q. S., et al. Switchable electromagnetic shield by active frequency selective surface for LTE-2.1 GHz. Microwave and Optical Technology Letters, 2016, vol. 58, no. 3, p. 535–540. DOI: 10.1002/mop.29617
  8. ZAHRA, H., RAFIQUE, S., SHAFIQUE, M. F., et al. A switchable frequency selective surface based on a modified Jerusalem-cross unit cell. In 2015 9th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015, p. 1–2
  9. MAHMOOD, S. M., T. A. DENIDNI, T. A. Switchable square loop frequency selective surface. Progress In Electromagnetics Research Letters, 2015, vol. 57, p. 61–64. DOI: 10.2528/PIERL15090402
  10. KONG, P., YU, X. W., ZHAO, M. Y., et al. Switchable frequency selective surfaces absorber/reflector for wideband applications. Journal of Electromagnetic Waves and Applications, 2015, vol. 29, no. 11, p. 1473–1485. DOI: 10.1080/09205071.2015.1049713
  11. FABIAN-GONGORA, H., MARTYNYUK, A. E., RODRIGUEZCUEVAS, J., et al. Active dual-band frequency selective surfaces with close band spacing based on switchable ring slots. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 9, p. 606–608. DOI: 10.1109/LMWC.2015.2451358
  12. LIN BAO-QIN, QU SHAO-BO, TONG CHUANG-MING, et al. Varactor-tunable frequency selective surface with an embedded bias network. Chinese Physics B, 2013, vol. 22, no. 9, p. 1–4.
  13. BAYATPUR, F., SARABANDI, K. Tuning performance of metamaterial-based frequency selective surfaces. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 2, p. 590–592. DOI: 10.1109/tap.2008.2011404
  14. BOCCIA, L., RUSSO, I., AMENDOLA, G., et al. Tunable frequency-selective surfaces for beam-steering applications. Electronics Letters, 2009, vol. 45, no. 24, p. 1213–1215. DOI: 10.1049/el.2009.2577
  15. BUCHWALD, W. R., HENDRICKSON, J., CLEARY, J. V., et al. Active frequency selective surfaces. In SPIE Defense, Security, and Sensing. Baltimore (Maryland, USA), 2013, SPIE Proceedings vol. 8725. DOI: 10.1117/12.2016081
  16. SAFARI, M., SHAFAI, C., SHAFAI, L. X-band tunable frequency selective surface using MEMS capacitive loads. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 3, p. 1014–1021. DOI: 10.1109/tap.2014.2386304
  17. SANZ-IZQUIERDO, B., PARKER, E. A., ROBERTSON, J. B., et al. Tuning technique for active FSS arrays. Electronics Letters, 2009, vol. 45, no. 22, p. 1107–1109. DOI: 10.1049/el.2009.2264
  18. ZHOU, H., WANG, X., QU, S., et al. Dual-polarized FSS with wide frequency tunability and simple bias network. PIERS Proceedings, Session 1P0, 2014, p. 109–112.
  19. HU, W. F., DICKIE, R., CAHILL, R., et al. Liquid crystal tunable mm wave frequency selective surface. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 9, p. 667–669. DOI: 10.1109/LMWC.2007.903455
  20. PARKER, E. A., SAVIA, S. B. Active frequency selective surfaces with ferroelectric substrates. IEE ProceedingsMicrowaves Antennas and Propagation, 2001, vol. 148, no. 2, p. 103-108. DOI: 10.1049/ip-map:20010306
  21. LIMA, A. C. D., PARKER, E. A., LANGLEY, R. J. Tunable frequency-selective surface using liquid substrates. Electronics Letters, 1994, vol. 30, no. 4, p. 281–282. DOI: 10.1049/el:19940232
  22. CHANG, T., LANGLEY, R. J., PARKER, E. A. Frequency selective surfaces on biased ferrite substrates. Electronics Letters, 1994, vol. 30, no. 15, p. 1193–1194. DOI 10.1049/el:19940823
  23. LI, M., BEHDAD, N. Fluidically tunable frequency selective/phase shifting surfaces for high-power microwave applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 6, p. 2748–2759. DOI: 10.1109/Tap.2012.2194645
  24. LI, M., YU, B., BEHDAD, N. Liquid-tunable frequency selective surfaces. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 8, p. 423–425. DOI: 10.1109/Lmwc.2010.2049257
  25. MA, D., ZHANG, W. X. Mechanically tunable frequency selective surface with square-loop-slot elements. Journal of Electromagnetic Waves and Applications, 2007, vol. 21, no. 15, p. 2267–2276. DOI: 10.1163/156939307783134407
  26. FUCHI, K., T. JUNYAN, T., CROWGEY, B., et al. Origami tunable frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 473–475. DOI: 10.1109/lawp.2012.2196489
  27. TAYLOR, P. S., PARKER, E. A., BATCHELOR, J. C. An active annular ring frequency selective surface. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 9, p. 3265–3271. DOI: 10.1109/Tap.2011.2161555
  28. MIAS, C., YAP, J. H. A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 7, p. 1955–1962. DOI: 10.1109/Tap.2007.900228
  29. LI, H. Y., YANG, C. C., CAO, Q. S., et al. A novel active frequency selective surface with switching performance for 2.45 GHz WLAN band. Microwave and Optical Technology Letters, 2016, vol. 58, no. 7, p. 1586–1590. DOI: 10.1002/mop.29855
  30. KENT, F. E., DOKEN, B., KARTAL, M. A new equivalent circuit based FSS design method by using Genetic Algoritm. In 2nd International Conference on Engineering Optimization, ENGOPT 2010. Portugal, 2010
  31. CAVERLY, R. H., HILLER, G. Establishing the minimum reverse bias for a pin diode in a high-power switch. IEEE Transactions on Microwave Theory and Techniques, 1990, vol. 38, no. 12, p. 1938–1943. DOI: 10.1109/22.64577
  32. CHEN, M., WANG, S. N.., CHEN, R. S., et al. Electromagnetic analysis of electrically large and finite periodic frequency selective surfaces. In Asia-Pacific Microwave Conference APMC. 2008, p. 1–4.

Keywords: Frequency selective surface (FSS), periodic structures, wireless communication, wireless local area network (WLAN), indoor propagation, interference, active FSS

P. Sittithai, K. Phaebua, T. Lertwiriyaprapa, P. Akkaraekthalin [references] [full-text] [DOI: 10.13164/re.2019.0121] [Download Citations]
Magnetic Field Shaping Technique for HF-RFID and NFC Systems

In this paper, magnetic field shaping technique designed for antenna in high frequency radio frequency identification (HF-RFID) system and near-field communications (NFCs) system is proposed. This research aims to improve the communication area on the market passive HF-RFID and NFC reader antennas by employing the proposed magnetic field repeater. The multiple rectangular loop resonators cooperating with low loss air variable capacitors are employed to construct the magnetic field repeater. The proposed magnetic field repeater is installed on top of the off-the-shelf HF-RFID reader antenna without any direct connection to shape the magnetic field distribution of original reader antenna. The HF-RFID reader for laundry application is chosen to verify the performance of the proposed magnetic field repeater. We found that the communication area between tag and off-the-shelf HF-RFID reader antenna is improved. The proposed technique is suitable for improving off-the-shelf HF-RFID antenna in many applications such as laundry application, product tacking, etc. where a short range with wide detected area are required.

  1. DOBKIN, D. M. The RF in RFID. Oxford, U.K.: Elsevier, 2008. ISBN: 9780080554020
  2. AL-OFEISHAT, H. A., RABABAH, M. A. A. A. Near field communication (NFC). International Journal of Computer Science and Network Security, 2012, vol. 12, no. 2, p. 97–99.
  3. LITEPOINT, A TERADYNE COMPANY. Test considerations for NFC enabled devices in manufacturing. White paper, 2016, p. 1–12. [Online] Available at: http://litepoint.com/wpcontent/uploads/2016/09/NFC-Whitepaper-090116.pdf
  4. NIKITIN, P. V., RAO, K. V. S., LAZAR, S. An overview of near field UHF-RFID. In Proc. of IEEE International Conference on RFID. Grapevine (TX, USA), 2007, p. 167–174. DOI: 10.1109/RFID.2007.346165
  5. WAFFENSCHMIDT, E. Wireless power for mobile devices. In 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC). Amsterdam (Netherlands), 2011, p. 1–9. DOI: 10.1109/INTLEC.2011.6099840
  6. Delphi Wireless Charging System. [Online]. Available at: http://delphi.com/
  7. UMENEI, A. E., SCHWANNECKE, J., VELPULA, S., et al. Novel method for selective nonlinear flux guide switching for contactless inductive power transfer. IEEE Transactions on Magnetics, 2012, vol. 48, no. 7, p. 2192–2195. DOI: 10.1109/TMAG.2012.2185246
  8. HUI, S. Y. R., HO, W. C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment. In IEEE 35th Annual Power Electronics Specialists Conference. Aachen (Germany), 2004, p. 638–644. DOI: 10.1109/PESC.2004.1355823
  9. HUI, S. Y. R. Planar Inductive Battery Charger. UK patent application (GB2389720) and PCT patent application, Sep 2005.
  10. KIM, C. G., SEO, D.-H., YOU, J.-S., et al. Design of a contactless battery charger for cellular phone. IEEE Transactions on Industrial Electronics, 2001, vol. 48, no. 6, p. 1238–1247. DOI: 10.1109/41.969404
  11. BUDHIA, M. COVIC, G. A., BOYS, J. T. Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Transactions on Power Electronics, 2011, vol. 26, no. 11, p. 3096–3108. DOI: 10.1109/TPEL.2011.2143730
  12. AHN, D., HONG, S. A study on magnetic field repeater in wireless power transfer. IEEE Transactions on Industrial Electronics, 2013, vol. 60, no. 1, p. 360–371. DOI: 10.1109/TIE.2012.2188254
  13. PHAEBUA, K., LERTWIRIYAPRAPA, T., CHALERMWISUTKUL, S., et al. Area extension of a wireless battery charging system using multiple power repeater coil antennas. In 2nd International Conference on Intelligent Green Building and Smart Grid (IGBSG). Prague (Czechia), 2016, p. 1–4. DOI: 10.1109/IGBSG.2016.7539438
  14. SAGHLATOON, H., MIRZAVAND, R., HONARI, M. M., et al. Investigation on passive booster for improving magnetic coupling of metal mounted proximity range HF-RFIDs. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 9, p. 3401–3408. DOI: 10.1109/TMTT.2017.2676095
  15. SITTITHAI, P., LERTWIRIYAPRAPA, T., PHAEBUA, K. Study of multiple repeater antennas for high frequency (HF) RFID reader. In 2017 International Symposium on Antennas and Propagation (ISAP). Phuket (Thailand), 2017, p. 1–2. DOI: 10.1109/ISANP.2017.8229027
  16. SILICON CRAFT TECHNOLOGY Module Datasheet Pi-931- XA5. [Online] Available at: http//:www.sic.co.th/product.php?product =152&category=10
  17. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. New York: Wiley, 2005. ISBN: 978-0471667827
  18. SITTITHAI, P. Development of RFID system for industrial laundry business. Master Degree Thesis. King Mongkut’s University of Technology North Bangkok, Thailand. 2017
  19. CST Microwave Studio, User's Manual, 2007.

Keywords: High frequency (HF) radio frequency identification (RFID), magnetic field repeater, HF-RFID reader antenna, magnetic resonance technique

S. Tantiviwat, S. Z. Ibrahim, M. S. Razalli [references] [full-text] [DOI: 10.13164/re.2019.0129] [Download Citations]
Design of Quad-Channel Diplexer and Tri-band Bandpass Filter Based on Multiple-Mode Stub-Loaded Resonators

Multiple-mode stub-loaded resonator with quad channel diplexer and tri-band bandpass filter are presented and analyzed theoretically in this paper. The multi-mode stub-loaded resonator employs the basic structure of a triple mode resonator. Herein, the triple-mode resonator is modified by introducing a mid-coupled line between the odd mode resonances to produce a quad-mode resonator. The proposed resonator is applied in the quad-channel diplexer design, composing of two independent dual-band bandpass filters. In turn, the triple-band bandpass filter based on a parallel quad-mode and a dual-mode stub-loaded resonator is developed. To validate the performance of the proposed resonators, two experimental examples, including a quad-channel diplexer and a triple-band bandpass filter are fabricated and measured. Each of the designed circuits occupies small area i.e. about 0.32lambda*0.22lambda and 0.18lambda*0.20lambda respectively. Good agreements between simulated and measured results are achieved.

  1. ZHANG, L. Z., WU, B., QIU, F. Compact six-band triplexer using stub-loaded stepped impedance resonators. Electronics Letters, 2014, vol. 50, no. 16, p. 1143–1145. DOI: 10.1049/el.2014.1320
  2. CHEN, Y. W., WU, H. W., DAI, Z. J., SU, Y. K. Design of compact six-channel diplexer. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 10, p. 792–794. DOI: 10.1109/LMWC.2016.2604868
  3. JIANG, W., HUANG, Y., WANG, T., PENG, Y., WANG, G. Microstrip balanced quad-channel diplexer using dual-open/short-stub loaded resonator. In Proceedings of IEEE MTT-S International Microwave Symposium Digest (IMS). San Francisco (USA), 2016, p. 1–3. DOI: 10.1109/MWSYM.2016.7540232
  4. LEE, J., LIM, Y. Compact dual-band bandpass filter with good frequency selectivity. Electronics Letters, 2011, vol. 47, no. 25, p. 1376–1377. DOI: 10.1049/el.2011.2702
  5. CHEN, F. C., CHU, Q. X., LI, Z. H., WU, X. H. Compact dualband bandpass filter with controllable bandwidths using stub-loaded multiple-mode resonator. IET Microwaves Antennas & Propagation, 2012, vol. 6, no. 10, p. 1172–1178. DOI: 10.1049/iet-map.2011.0523
  6. JIANG, W., SHEN, W., WANG, T., et al. Compact dualband filter using open/short stub loaded stepped impedance resonators (OSLSIRs/SSLSIRs). IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 9, p. 672–674. DOI: 10.1109/LMWC.2016.2597179
  7. LAN, S. W., WENG, M. H., CHANG, S. J., et al. A tri-band bandpass filter with wide stopband using asymmetric stub-loaded resonators. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 1, p. 19–21. DOI: 10.1109/LMWC.2014.2365739
  8. WEI, F., GUO, Y. J., QIN, P. Y., SHI, X. W. Compact balanced dualand tri-band bandpass filters based on stub loaded resonators. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 2, p. 76–78. DOI: 10.1109/LMWC.2014.2370233
  9. ZHANG, X. Y., XUE, Q., HU, B. J. Planar tri-band bandpass filter with compact size. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 5, p. 262–264. DOI: 10.1109/LMWC.2010.2045583
  10. CHU, Q. X., WU, X. H., CHEN, F. C. Novel compact tri-band bandpass filter with controllable bandwidths. IEEE Microwave and Wireless Components Letters, 2011, vol. 21, no. 12, p. 655–657. DOI: 10.1109/LMWC.2011.2172593
  11. WEI, X., WANG, P., GAO, P., et al. Compact tri-band bandpass filter using open stub loaded tri-section λ/4 stepped impedance resonator. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 8, p. 512–514. DOI: 10.1109/LMWC.2014.2318899
  12. XU, J., WU, W., MIAO, C. Compact microstrip dual-/tri-/quadband bandpass filter using open stubs loaded shorted steppedimpedance resonator. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 9, p. 3187–3199. DOI: 10.1109/TMTT.2013.2273759
  13. GAO, L., ZHANG, X. Y. High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 9, p. 474–476. DOI: 10.1109/LMWC.2013.2274995
  14. GAO, L., ZHANG, X. Y., HU, B. J., XUE, Q. Novel multi-stub loaded resonators and their applications to various bandpass filters. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 5, p. 1162–1172. DOI: 10.1109/TMTT.2014.2314680
  15. CHEN, C. F., HUANG, T. Y., CHOU, C. P., WU, R. B. Microstrip diplexers design with common resonator sections for compact size, but high isolation. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 1945–1952. DOI: 10.1109/TMTT.2006.873613
  16. CHEN, C. F., SHEN, T. M., HUANG, T. Y., WU, R. B. Design of multimode net-type resonators and their applications to filters and multiplexers. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 4, p. 848–856. DOI: 10.1109/TMTT.2011.2109392
  17. WU, H. W., HUANG, S. H., CHEN, Y. F. Design of new quadchannel diplexer with compact circuit size. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 5, p. 240–242. DOI: 10.1109/LMWC.2013.2253314
  18. CHEN, C. F., LIN, C. Y., TSENG, B. H., CHANG, S. F. A compact microstrip quad-channel diplexer with high-selectivity and highisolation performances. In Proceedings of IEEE MTT-S International Microwave Symposium Digest (IMS). Tampa (USA), 2014, p. 1–3. DOI: 10.1109/MWSYM.2014.6848271
  19. LUO, D., CHEN, F. C., QIU, J. M., CHU, Q. X. Design of quadchannel diplexer using short stub loaded resonator. In Proceedings of IEEE International Wireless Symposium (IWS 2015). Shenzhen (China), 2015, p. 1–4. DOI: 10.1109/IEEE-IWS.2015.7164533

Keywords: Stub-loadedresonator, multi-moderesonator, diplexer, multi-band BPF

Y.H. Ma , Y. Yuan , W. Yuan , W. Wu, N. Yuan [references] [full-text] [DOI: 10.13164/re.2019.0136] [Download Citations]
A Novel Method to Design Stub-loaded Microstrip Filters with Arbitrary Passband Based on the Reflection Theory and Monte Carlo Method

In this paper, a novel method for microstrip filters with arbitrary passband design is proposed. A kind of stub-loaded microstrip filter with asymmetric structure is proposed. The mathematic function of total reflection coefficient at the input port of the filter is derived based on the reflection theory, an ultra-wide-band (UWB) filter which can work from 11GHz to 39GHz is fabricated and measured to verify that our function can calculate the reflection coefficient precisely. The procedure to design stub-loaded microstrip filters with arbitrary passbands is given in this paper, this design procedure is based on the Monte Carlo method. A bandpass filter (BPF) which can work on 7--9.5GHz is designed and measured as an example. The comparison between calculated dimensions and practical dimensions of this filter shows a satisfactory fitting degree. A low-pass filter (LPF) which can work below 4GHz is designed and compared with some prior arts in order to show that our proposed filter is simple in structure and small in size. By using our proposed method, the stub-loaded microstrip filter can be designed quickly and easily. Based on the results mentioned above, we can count that the method proposed in this paper has a good application in microstrip filter design.

  1. ANGUERA, J., ANDUJAR, A., HUYNH, M., et al. Advances in antenna technology for wireless handheld devices. International Journal on Antenna and Propagation, 2013, vol. 1921, p. 388–391. DOI:10.1155/2013/838364
  2. MA, P., WEI, B., HONG, J., et al. A design method of multimode multiband bandpass filters. IEEE Transactions on Microwave Theory & Techniques, 2018, vol. 99, p. 2791–2799. DOI:10.1109/TMTT.2018.2815682
  3. CHEN, C.Y., HSU, C.Y. A simple and effective method for microstrip dual-band filters design. IEEE Microwave & Wireless Components Letters, 2006, vol. 16, p. 246–248. DOI:10.1109/LMWC.2006.873584
  4. VAGNER, P., KASAL, M. A novel microstrip low-pass filter design method using square-shaped defected ground structure. Microwave & Optical Technology Letters, 2010, vol. 50, p. 2458–2462.
  5. POZAR, D. M. Impedance matching and tuning. Microwave Engineering. 4th ed. New Jersey, USA: John Wiley and Sons Inc., 2012, Ch. 5, Sec. 5, p. 250–252. ISBN:8126510498
  6. HENDIJANI, N., KHALAJ-AMIRHOSEINI, M., SHARGHI, V. K., et al. Design, simulation, and fabrication of tapered microstrip filters by applying the method of small reflections. In International Symposium on Telecommunications. Tehran (Iran), 2008, p. 133–137. DOI: 10.1109/ISTEL.2008.4651287
  7. POURMOHAMMADI, F., HAKKAK, M. Adaptive matching of antenna input impedance. In IEEE International Workshop Antenna Technology Small Antennas and Novel Metamaterials. White Plains (USA), 2006. DOI:10.1109/IWAT.2006.1609053
  8. SILVA, F. G. S., DE LIMA, R. N., FREIRE, R. C. S., et al. A switchless multiband impedance matching technique based on multirseonant circuits. IEEE Transactions on Circuits and System, 2017, vol. 59, no. 8, p. 1791–1800. DOI:10.1109/TCSII.2013.2261176.
  9. OLOKEDE, S. S., PAUL, B. S. A novel microstrip feed based on the theory of small reflection. In IEEE Radio and Antenna Days of the India Ocean. St. Gilles-les-Bains (Reunion), 2016. DOI:10.1109/RADIO.2016.7772018
  10. MARTINS, G. S., SERDIJN, W. A. Multistage complex-impedance matching network analysis and optimization. IEEE Transactions on Circuits and System II-Express Briefs, 2016, vol. 63, no. 9, p. 833–837. DOI:10.1109/TCSII.2016.2534738
  11. ZENTNER, R., BARTOLIC, J., ZENTNER, E. Broadband matching of stacked patch antennas using a single line-transformer technique. Microwave and Optical Technology Lettters, 2003, vol. 39, no. 3, p. 178–183. DOI:10.1002/mop.11162
  12. EL-HALABI, H., ISSA, H., PISTONO, E., et al. Compact lowpass stepped impedance filters wih enhanced out of band response. Microwave and Optical Technology Letters, 2017, vol. 59, no. 8, p. 1791–1800. DOI:10.1002/mop.30635
  13. GAN, D. C., HE, S. B., DAI, Z. J., et al. A quad-band bandpass filter using split-ring based on T-shaped stub-loaded stepped-impedance resonators. Microwave and Optical Technology Letters, 2017, vol. 59, no. 8, p. 2098–2104. DOI:10.1002/mop.30684
  14. CHIOU, Y. C., KUO, J. T. Compact UWB bandpass filter using stub-loaded multiple-mode resonator. IEEE Microwave and Wireless Components Letters, 2007, vol. 17, no. 11, p. 811–811. DOI:10.1109/LMWC.2007.908062
  15. KUO, J. T., SHIH, E. Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth. IEEE Transactions on Microwave Theory and Techniques, 2007, vol. 51, no. 5, p. 1554–1559. DOI:10.1109/TMTT.2003.810138
  16. DING, L., WANG, X. Z., ANG, N. S. S., et al. Ultrathin film broadband terahertz antireflection coating based on impedance matching method. IEEE Journal of Selected Topics in Quantum Electronics, 2017, vol. 23, no. 4, p. 1–8. DOI:10.1109/JSTQE.2016.2629666
  17. TORRUNGRUENG, D., THIMAPORN, C., LAMULTREE, S., et al. Theory of small reflections for conjugately characteristicimpedance transmission lines. IEEE Microwave and Wireless Components Lettters, 2008, vol. 18, no. 10, p. 659–661. DOI:10.1109/LMWC.2008.2003450
  18. KIM, C., SHRESTHA, B., SON, K.C. Wideband bandstop filter using an SIR based interdigital capacitor. Microwave and Optical Technology Letters, 2018, vol. 60, no. 10, p. 2530–2534. DOI: 10.1002/mop.31385
  19. WANG, X., WANG, J., CHOI, W., et al. Dual-wideband filtering power divider based on coupled stepped-impedance resonators. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 10, p. 873–875. DOI:10.1109/LMWC.2018.2861578
  20. CAI, J., YANG, Y., QIN, W., et al. Wideband tunable differential bandstop filter based on double-sided parallel-strip line. IEEE Transactions on Components, Packaging and Manufacturing Technology , 2018, vol. 8, no. 10, p. 1815–1822. DOI: 10.1109/TCPMT.2018.2794993
  21. KUMAR, L., PARIHAR, M. A wide stopband low-pass filter with high roll-off using stepped impedance resonators. IEEE Microwave and Wireless Components Letters , 2018, vol. 28, no. 5, p. 404–406. DOI: 10.1109/LMWC.2018.2816520
  22. LIU, H., LIU, F., GUANG, H., et al. Wide-stopband superconducting bandpass filter using slitted stepped-impedance resonator and composite spurline structure. IEEE Transactions on Applied Superconductivity, 2018, vol. 28, no. 8, DOI: 10.1109/TASC.2018.2858757
  23. LIU, H., SONG, Y., REN, B., et al. Balanced tri-band bandpass filter design using octo-section stepped-impedance ring resonator with open stubs. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 10, p. 404–406. DOI: 10.1109/LMWC.2017.2748340
  24. MAITY, B. Stepped impedance low pass filter using microstrip line for C-band wireless communication. In International Conference on Computer Communication and Informatics, Coimbatore (India), 2016, 4 p. DOI: 10.1002/mop.31385
  25. DE ALENCAR, D. C., MENEZES, R.A.X. Direct synthesis of microwave filters using modified small reflection theory. International Microwave and Optoelectronics Conference, Rio de Janeiro (Brazil), 1999, p. 183–186. DOI:10.1109/IMOC.1999.867085
  26. YUAN, Y., WU, W., YUAN, W., et al. A method based on the theory of small reflections to design arbitrary passband microstrip filters. Radioengineering, 2018, vol. 27, no. 1, p. 214–220. DOI:10.13164/re.2018.0214
  27. MORIN, R. L. Monte Carlo simulation: A ubiquitous tool. Journal of the American College of Radiology, 2017, vol. 14, no. 3, p. 416–417. DOI:10.1016/j.jacr.2016.12.014
  28. BRAZALEZ, A. A., FLYGARE, J., YANG, J., et al. Design of F-band transition from microstrip to ridge gap waveguide including monte carlo assembly tolerance analysis. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 4, p. 1245–1254. DOI:10.1109/TMTT.2016.2535334
  29. HAYATI, M., SHEIKHI, A. Compact lowpass filter with ultrawide stopband using novel sprial compact microstrip resonant cell. IEICE Electronics Express, 2011, vol. 8, no. 13, p. 1028–1033. DOI:10.1587/elex.8.1028
  30. DONG, X. M., ZHOU, D. X. Learning gradients by a gradient descent algorithm. Journal of Mathematical Analysis and Applications, 2008, vol. 341, no. 2, p. 1018–1027. DOI:10.1016/j.jmaa.2007.10.044

Keywords: Electromagnetic reflection, microstrip filters, Monte Carlo methods, reflection coefficient

A. Kocakaya, S. Çimen, G. Çakır [references] [full-text] [DOI: 10.13164/re.2019.0147] [Download Citations]
Novel Angular and Polarization Independent Band-Stop Frequency Selective Surface for Ultra-Wide Band Applications

A novel compact band-stop frequency selective surface (FSS) with angular and polarization stability performance for ultra-wide band (UWB) applications is presented in this paper. The presented FSS consists of square loop element and a crossed dipole with ring aperture element. The novel unit cell size is miniaturized to 0.047λ × 0.047λ, where λ is free-space wavelength corresponding to the lowest frequency of the UWB band. The -3dB bandwidth of the proposed FSS is between 3.05 GHz and 10.73 GHz frequencies which are cover the whole UWB band that is defined by FCC. Due to compact size of unit cell, the presented FSS has good angular stability up to 60° incident angles both perpendicular (TE) and parallel (TM) polarization. The resonance frequency deviation is maximum 1.75% for TE polarization. In addition, proposed FSS has excellent stable resonant frequency. The designed FSS is fabricated and experimental measurements are done. There is consistency between numerical simulations with measurement results.

  1. MUNK, B. A. Frequency Selective Surfaces: Theory and Design. New York: John Wiley & Sons; 2000. ISBN: 978-0-471-37047-5
  2. FEDERAL COMMUNICATIONS COMMISSION. First Report and Order. Revision of Part 15 of the Commission’s Rule Regarding Ultra-Wideband Transmission Systems. Washington (DC). ET Docket 98153, FCC 02-48, Feb. 2002.
  3. ZABRI, N., CAHILL, R., SCHUCHINSKY, A. Polarisation independent resistively loaded frequency selective surface absorber with optimum oblique incidence performance. IET Microwaves, Antennas and Propagation, 2014, vol. 8, no 14, p. 1198–1203. DOI: 10.1049/iet-map.2014.0124
  4. RASPOPOULOS, M., STAVROU, S. Frequency selective buildings through frequency selective surfaces. IEEE Transaction on Antennas and Propagation, 2011, vol. 59, no. 8, p. 2998–3005. DOI: 10.1109/TAP.2011.2158779
  5. SYED, I. S., RANGA, Y., MATEKOVITS, L., et al. A singlelayer frequency-selective surface for ultrawideband electromagnetic shielding. IEEE Transactions on Electromagnetic Compatibility, 2014, vol. 56, no. 6, p. 1404–1411. DOI: 10.1109/TEMC.2014.2316288
  6. ZHOU, H., QU, S., LIN, B., et al. Filter-antenna consisting of conical FSS radome and monopole antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, p. 3040–3045. DOI: 10.1109/TAP.2012.2194648
  7. KUSHWAHA, N., KUMAR, R. Design of slotted ground hexagonal microstrip patch antenna and gain improvement with FSS screen. Progress In Electromagnetics Research B, 2013, vol. 51, p. 177–199. DOI: 10.2528/PIERB13031604
  8. RAM KRISHNA, R. V. S., KUMAR, R. Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation. Electronics Letters, 2015, vol. 51, p. 599–600. DOI: 10.1049/el.2015.0339
  9. KUMAR, R., KUSHWAHA, N., RAM KRISHNA, R. V. S. Design of ultra wideband hexagonal patch slot antenna for highgain wireless applications. Journal of Electromagnetic Waves and Applications, 2014, vol. 28, no. 16, p. 2034–2048. DOI: 10.1080/09205071.2014.954678
  10. YANG, Y., ZHOU, H., WANG, X. H., et al. Low-pass frequency selective surface with wideband high-stop response for shipboard radar. Journal of Electromagnetic Waves and Applications, 2013, vol. 27, no. 1, p. 117–122. DOI: 10.1080/09205071.2013.739547
  11. WANG, W. T., GONG, S. X., WANG, X., et al. RCS reduction of array antenna by using bandstop FSS reflector. Journal of Electromagnetic Waves and Applications, 2009, vol. 23, p. 1505–1514. DOI: 10.1163/156939309789476473
  12. RANGA, Y., MATEKOVIS, L., WEILY, A. R., et al. A lowprofile dual-layer ultra-wideband frequency selective surface reflector. Microwave and Optical Technology Letters, 2013, vol. 55, p. 1223–1227. DOI: 10.1002/mop.27583
  13. RADONIĆ, V., CRNOJEVIĆ-BENGIN, V., SCHOEMAN, D., et al. Multi-layer frequency selective surfaces with wideband response and their modelling. In 22nd Telecommunication Forum TELFOR. 2014, p. 757–7560. DOI: 10.1109/TELFOR.2014.7034517
  14. YAHYA, R., NAKAMURA, A., ITAMI, M. UWB frequency selective surfaces with angular stability and notched band at 5.5 GHz. In IEEE International Conference on Ubiquitous Wireless Broadband. Nanjing (China), 2016, p. 1–3. DOI: 10.1109/ICUWB.2016.7790451
  15. SOHAIL, I., RANGA, Y., ESSELLE, K. P., et al. Effective electromagnetic shielding over an ultra-wide bandwidth using a frequency selective surface. In Asia-Pacific Symposium on Electromagnetic Compatibility. Melbourne (VIC, Australia), 2013, p. 284–287. DOI: 10.1109/APEMC.2013.7360634
  16. CRUZ, R. S. M., D’ASSUNÇÃO, A. G., SILVA, P. H. F. A new FSS design proposal for UWB applications. In International Workshop on Antenna Technology. Lisbon (Portugal), 2010, p. 1–4. DOI: 10.1109/IWAT.2010.5464645
  17. LI, W. L., ZHANG, T., YANGI, G. H., et al. Novel frequency selective surfaces with compact structure and ultra-wideband response. In Asia-Pacific Symposium on Electromagnetic Compatibility. Singapore, 2012, p. 557–590. DOI: 10.1109/APEMC.2012.6238018
  18. BAISAKHIYA, S., SIVASAMY, R., KANAGASABAI, M., et al. Novel compact uwb frequency selective surface for angular and polarization independent operation. Progress In Electromagnetics Research Letters, 2013, vol. 40, p. 71–79. DOI: 10.2528/PIERL13022707
  19. AZEMI, S. N., GHORBANI, K., ROWE, W. S. T. Angularly stable frequency selective surface with miniaturized unit cell. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 7, p. 454–456. DOI: 10.1109/LMWC.2015.2429126
  20. BAYATPUR, F., SARABANDI, K. Single-layer high-order miniaturized-element frequency-selective surfaces. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 4, p. 774–781. DOI: 10.1109/TMTT.2008.919654
  21. CHIU, C.-N., CHANG, K.-P. A novel single-metal-layer miniaturized element frequency selective surface: concept and design. Journal of Electromagnetic Waves and Applications, 2010, vol. 24, p. 1545–1552. DOI: 10.1163/156939310792149579

Keywords: Angular stability; frequency selective surface; ultra-wide band; miniaturization.

G. W. Zhang, J. Gao, X. Y. Cao, S. J. Li, H. H. Yang [references] [full-text] [DOI: 10.13164/re.2019.0154] [Download Citations]
Wideband Miniaturized Metamaterial Absorber Covering L-Frequency Range

Using a metallic incurved structure, a wideband miniaturized metamaterial absorber (MMA) covering L-ferquency range (1-2GHz) is proposed in this paper. Simulated results show that the bandwidth of the MMA with absorptivity more than 90% is 1–2.74 GHz, and its relative bandwidth is over 93%. The size of the unit cell is miniaturized to 20 mm × 20 mm, and the profile is only 0.078λ (at the lower frequency of 1 GHz). Both simulated and experimental results show that high absorptivity for TE and TM polarization over a certain range of incident angles can be gained. By analyzing the effective impedance and the current distribution, the mechanism of the proposed MMA to attain broadband absorption is analyzed. The proposed MMA has a good application on UHF-RFID systems and 4G communications.

  1. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. Perfect metamaterial absorber. Physical Review Letters, 2008, vol. 100, article no. 207402. DOI: 10.1103/PhysRevLett.100.207402
  2. HAN, Y., CHE, W. Q. Low-profile broadband absorbers based on capacitive surfaces. IEEE Antennas and Wireless Propagation Letters 2017, vol. 16, no. 8 p. 74–78. DOI: 10.1109/LAWP.2016.2556753
  3. DING, F., CUI, Y. X., GE, X. C., et al. Ultra-broadband microwave metamaterial absorber. Applied Physics Letters 2017, vol. 100, no. 10, p. 1–4. DOI: 10.1063/1.3692178
  4. ZHANG, C., CHENG, Q., YANG, J., et al. Broadband metamaterial for optical transparency and microwave absorption. Applied Physics Letters, 2017, vol. 100, no. 10, p. 1–5. DOI: 10.1063/1.4979543
  5. FAN, Y., ZHANG, H. C., YIN, J. Y., et al. An active wideband and wide-angle electromagnetic absorber at microwave frequencies. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1913–1916. DOI: 10.1109/LAWP.2016.2544399
  6. KUNDU, D., MOHAN, A., CHAKRABARTY, A. Single layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1589–1592. DOI: 10.1109/LAWP.2016.2517663
  7. LI, H., YUAN, L. H., ZHOU, B., et al. Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 2011, vol. 110, no. 2, p. 1–8. DOI: 10.1063/1.3608246
  8. SHANG, S., YANG, S. Z., TAO, L., et al. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber. AIP Advances, 2016, vol. 6, no. 7, p. 1–8. DOI: 10.1063/1.4958660
  9. ZHONG, H. T., YANG, X. X., TAN, C., et al. Triple-band polarization-insensitive and wide-angle metamaterial array for electromagnetic energy harvesting. Applied Physics Letters, 2016, vol. 109, no. 6, p. 1–4. DOI: 10.1063/1.4973282
  10. YANG, W. C., WANG, H., CHE, W. Q., et al. A wideband and high-gain edge-fed patch antenna and array using artificial magnetic conductor structures. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 769–772. DOI: 10.1109/LAWP.2013.2270943
  11. ZUO, W., YANG, Y., HE, X., et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 10, p. 329–332. DOI: 10.1109/LAWP.2016.2574885
  12. ZUO, W., YANG, Y., HE, X., et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 928–931. DOI: 10.1109/LAWP.2016.2614703
  13. SIM, D., KWON, J., CHONG, Y. J., PARK, S. Design of electromagnetic wave absorber using periodic structure and method to broaden its bandwidth based on effective circuit based analysis. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 2, p. 142–150. DOI: 10.1049/iet-map.2013.0487
  14. CHEN, Q., BAI, J., CHEN, L., et al. A miniaturized absorptive frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 80–83. DOI: 10.1109/LAWP.2014.2355252
  15. LI, H., YANG, C., CAO, Q., et al. An ultrathin band-pass frequency selective surface with miniaturized element. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 8, p. 341–344. DOI: 10.1109/LAWP.2016.2575919
  16. LEE, J., LIM, S. Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electronics Letters, 2011, vol. 47, no. 1, p. 8–9. DOI: 10.1049/el.2010.2770
  17. LIU, S., CHEN, H. B., CUI, T. J. A broadband terahertz absorber using multi-layer stacked bars. Applied Physics Letters, 2015, vol. 106, no. 15. p. 1–5. DOI: 10.1063/1.4918289
  18. YOO, M., KIM, H. K., LIM, S. Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 414–417. DOI: 10.1109/LAWP.2015.2448720
  19. BANADAKI, M. D., HEIDARI, A. A., NAKHKASH, M. A metamaterial absorber with a new compact unit cell. IEEE Antennas and Wireless Propagation Letters, 2018 vol. 17, no. 2, p. 205–208. DOI: 10.1109/LAWP.2017.2780231
  20. LI, S. J., WU, P. J., XU, H. X., et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metematerials, lumped resistors, and strong coupling effects. Nanoscale Research Letters, 2018, vol. 13, p. 1–13. DOI: 10.1186/s11671-018-2810-0
  21. SMITH, D. R., VIER, D. C., KOSCHNY, T., et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 2005, vol. 71, no. 3, p. 1–11. DOI: 10.1103/PhysRevE.71.036617
  22. SZABO, Z., PARK, G.-H., HEDGE, R., et al. A unique extraction of metamaterial parameters based on Kramers–Kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 10, p. 2646–2653. DOI: 10.1109/TMTT.2010.2065310

Keywords: Miniaturized metamaterial absorber, wideband, L-frequency

K. Rajagopal, C. Li, F. Nazarimehr, A. Karthikeyan, P. Duraisamy, S. Jafari [references] [full-text] [DOI: 10.13164/re.2019.0165] [Download Citations]
Chaotic Dynamics of Modified Wien Bridge Oscillator with Fractional Order Memristor

In this paper a modified third order Wien bridge oscillator with fractional order memristor is proposed. Various dynamical properties of the proposed oscillator are investigated such as equilibrium points, Eigenvalues, Lyapunov exponents and bifurcation diagrams. The Lyapunov spectrum of the system for various values of fractional order is derived. Using forward and backward continuation methods of plotting bifurcation diagram, the multistability of the oscillator is investigated. The proposed oscillator is realized using Field Programmable Gate Arrays and the experiment is conducted using hardware-software co-simulation.

  1. NAZARIMEHR, F., JAFARI, S., CHEN, G., et al. A tribute to J.C. Sprott. International Journal of Bifurcation and Chaos, 2017, vol. 27, no. 14, p. 1–14. DOI: 10.1142/S0218127417502212
  2. GOTTHANS, T., SPROTT, J. C., PETRZELA, J. Simple chaotic flow with circle and square equilibrium. International Journal of Bifurcation and Chaos, 2016, vol. 26, no. 08, p. 1–8. DOI: 10.1142/S0218127416501376
  3. PHAM, V.-T., JAFARI, S., VOLOS, C., et al. A chaotic system with rounded square equilibrium and with no-equilibrium. OptikInternational Journal for Light and Electron Optics, 2017, vol. 130, p. 365–371. DOI: 10.1016/j.ijleo.2016.10.100
  4. KVARDA, P. Identifying the deterministic chaos by using the Lorenz maps. Radioengineering, 2000, vol. 9, no. 4, p. 32–33.
  5. LORENZ, E. The butterfly effect. World Scientific Series on Nonolinear Science Series A, 2001, vol. 39, p. 91–94. DOI: 10.1142/9789812386472_0007
  6. DUDKOWSKI, D., PRASAD, A., KAPITANIAK, T. Perpetual points and hidden attractors in dynamical systems. Physics Letters A, 2015, vol. 379, no. 40–41, p. 2591–2596. DOI: 10.1016/j.physleta.2015.06.002
  7. NAZARIMEHR, F., SAEDI, B., JAFARI, S., et al. Are perpetual points sufficient for locating hidden attractors? International Journal of Bifurcation and Chaos, 2017, vol. 27, no. 3, p. 1–7. DOI: 10.1142/S0218127417500377
  8. LI, C., SPROTT, J. C., THIO, W. Linearization of the Lorenz system. Physics Letters A, 2015, vol. 379, no. 10, p. 888–893. DOI: 10.1016/j.physleta.2015.01.003
  9. CHEN, G., UETA, T. Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 1999, vol. 9, no. 7, p. 1465–1466. DOI: 10.1142/S0218127499001024
  10. LORENZ, E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, vol. 20, no. 2, p. 130–141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  11. WANG, X., CHEN, G. A chaotic system with only one stable equilibrium. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, no. 3, p. 1264–1272. DOI: 10.1016/j.cnsns.2011.07.017
  12. WANG, X., CHEN, G. Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics, 2013, vol. 71, no. 3, p. 429–436. DOI: 10.1007/s11071-012-0669-7
  13. WEI, Z. Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 2011, vol. 376, no. 2, p. 102–108. DOI: 10.1016/j.physleta.2011.10.040
  14. GOTTHANS, T., PETRZELA, J. New class of chaotic systems with circular equilibrium. Nonlinear Dynamics, 2015, vol. 81, no. 3, p. 1143–1149. DOI: 10.1007/s11071-015-2056-7
  15. JAFARI, S., SPROTT, J., GOLPAYEGANI, S. M. R. H. Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 2013, vol. 377, no. 9, p. 699–702. DOI: 10.1016/j.physleta.2013.01.009
  16. ABDOLMOHAMMADI, H. R., KHALAF, A. J. M., PANAHI, S., et al. A new 4D chaotic system with hidden attractor and its engineering applications: Analog circuit design and field programmable gate array implementation. Pramana, 2018, vol. 90, no. 6, p. 7. DOI: 10.1007/s12043-018-1569-2
  17. BAO, B., BAO, H., WANG, N., et al. Hidden extreme multistability in memristive hyperchaotic system. Chaos, Solitons & Fractals, 2017, vol. 94, p. 102–111. DOI: 10.1016/j.chaos.2016.11.016
  18. BUSCARINO, A., FORTUNA, L., FRASCA, M., et al. A chaotic circuit based on Hewlett-Packard memristor. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2012, vol. 22, no. 2, p. 1–9. DOI: 10.1063/1.4729135
  19. PETRZELA, J., HRUBOS, Z., GOTTHANS, T. Modeling deterministic chaos using electronic circuits. Radioengineering, 2011, vol. 20, no. 2, p. 438–444. ISSN 1210-2512
  20. CHUA, L. Memristor - the missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. DOI: 10.1109/TCT.1971.1083337
  21. CHUA, L. O. The fourth element. Proceedings of the IEEE, 2012, vol. 100, no. 6, p. 1920–1927. DOI: 10.1109/JPROC.2012.2190814
  22. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., et al. The missing memristor found. Nature, 2008, vol. 453, no. 7191, p. 80–83. DOI: 10.1038/nature06932
  23. BAO, B.-C., XU, Q., BAO, H., et al. Extreme multistability in a memristive circuit. Electronics Letters, 2016, vol. 52, no. 12, p. 1008–1010. DOI: 10.1049/el.2016.0563
  24. BAO, B., JIANG, T., XU, Q., et al. Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dynamics, 2016, vol. 86, no. 3, p. 1711–1723. DOI: 10.1007/s11071-016-2988-6
  25. CORINTO, F., FORTI, M. Memristor circuits: Flux-charge analysis method. IEEE Transactions on Circuits and Systems, 2016, vol. 63, no. 11, p. 1997–2009. DOI: 10.1109/TCSI.2016.2590948
  26. LI, C., THIO, W. J.-C., IU, H. H.-C., et al. A memristive chaotic oscillator with increasing amplitude and frequency. IEEE Access, 2018, vol. 6, p. 12945–12950. DOI: 10.1109/ACCESS.2017.2788408
  27. SANCHEZ-LOPEZ, C., CARBAJAL-GOMEZ, V. H., CARRASCO-AGUILAR, M., et al. Fractional-order memristor emulator circuits. Complexity, 2018, p. 1–10. DOI: 10.1155/2018/2806976
  28. WANG, F. Z., SHI, L., WU, H., et al. Fractional memristor. Applied Physics Letters, 2017, vol. 111, no. 24, p. 1–5. DOI: 10.1063/1.5000919
  29. FOUDA, M., RADWAN, A. On the fractional-order memristor model. Journal of Fractional Calculus and Applications, 2013, vol. 4, no. 1, p. 1–7. ISSN: 2090-585
  30. TENG, L., IU, H. H., WANG, X., et al. Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics, 2014, vol. 77, no. 1-2, p. 231–241. DOI: 10.1007/s11071-014-1286-4
  31. TALUKDAR, A., RADWAN, A. G., SALAMA, K. N. Generalized model for memristor-based Wien family oscillators. Microelectronics Journal, 2011, vol. 42, no. 9, p. 1032–1038. DOI: 10.1016/j.mejo.2011.07.001
  32. XU, Q., LIN, Y., BAO, B., et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit. Chaos, Solitons & Fractals, 2016, vol. 83, p. 186–200. DOI: 10.1016/j.chaos.2015.12.007
  33. XU, Q., ZHANG, Q., BAO, B., et al. Non-autonomous secondorder memristive chaotic circuit. IEEE Access, 2017, vol. 5, p. 21039–21045. DOI: 10.1109/ACCESS.2017.2727522
  34. KHALAF, A. J. M., KAPITANIAK, T., RAJAGOPAL, K., et al. A new three-dimensional chaotic flow with one stable equilibrium: dynamical properties and complexity analysis. Open Physics, vol. 16, no. 1, p. 260–265. DOI: 10.1515/phys-2018-0037
  35. LI, C., SPROTT, J. C. Multistability in the Lorenz system: a broken butterfly. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 10, p. 1–7. DOI: 10.1142/S0218127414501314
  36. LI, C., HU, W., SPROTT, J. C., et al. Multistability in symmetric chaotic systems. The European Physical Journal Special Topics, 2015, vol. 224, no. 8, p. 1493–1506. DOI: 10.1140/epjst/e2015- 02475-x
  37. BAO, H., WANG, N., WU, H., et al. Bi-stability in an improved memristor-based third-order Wien-bridge oscillator. IETE Technical Review, 2018, p. 1–8. DOI: 10.1080/02564602.2017.1422395
  38. BALEANU, D., DIETHELM, K., SCALAS, E., et al. Fractional Calculus: Models and Numerical Methods. World Scientific Pub Co, 2016. ISBN: 9813140054
  39. LAKSHMIKANTHAM, V., VATSALA, A. Basic theory of fractional differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2008, vol. 69, no. 8, p. 2677–2682. DOI: 10.1016/j.na.2007.08.042
  40. DIETHELM, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, 2010. ISBN: 3642145744
  41. PETRAS, I. Method for simulation of the fractional order chaotic systems. Acta Montanistica Slovaca, 2006, vol. 11, no. 4, p. 273–277. ISSN: 1335-1788
  42. TRZASKA, Z. Matlab solutions of chaotic fractional order circuits. Chapter 19 in: Assi, A. (ed.) Engineering Education and Research Using MATLAB, 2011. DOI: 10.5772/23144
  43. RAJAGOPAL, K., AKGUL, A., JAFARI, S., et al. Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos, Solitons & Fractals, 2017, vol. 103, p. 476–487. DOI: 10.1016/j.chaos.2017.07.007
  44. RAJAGOPAL, K., KARTHIKEYAN, A., SRINIVASAN, A. Dynamical analysis and FPGA implementation of a chaotic oscillator with fractional-order memristor components. Nonlinear Dynamics, 2018, vol. 91, no. 3, p. 1491–1512. DOI: 10.1007/s11071-017-3960-9
  45. TLELO-CUAUTLE, E., DE LA FRAGA, L. G., PHAM, V.-T., et al. Dynamics, FPGA realization and application of a chaotic system with an infinite number of equilibrium points. Nonlinear Dynamics, 2017, vol. 89, no. 2, p. 1129–1139. DOI: 10.1007/s11071-017-3505-2
  46. CHUA, L. O., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  47. ABDELOUAHAB, M.-S., LOZI, R. Hopf bifurcation and chaos in simplest fractional-order memristor-based electrical circuit. Indian Journal of Industrial and Applied Mathematics, 2015, vol. 6, no. 2, p. 105–119. DOI: 10.5958/1945-919X.2015.00009.2
  48. ZHANG, Y., XIE, X., LUO, G. Multiple nested basin boundaries in nonlinear driven oscillators. Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 44, p. 220–228. DOI: 10.1016/j.cnsns.2016.08.010
  49. RAJAGOPAL, K., KARTHIKEYAN, A., DURAISAMY, P., et al. Bifurcation, chaos and its control in a fractional order power system model with uncertainties. Asian Journal of Control, 2019, vol. 21, no. 1, p. 184–193. DOI: 10.1002/asjc.1826
  50. DIETHELM, K. An algorithm for the numerical solution of differential equations of fractional order. Electronic Transactions on Numerical Analysis, 1997, vol. 5, p. 1–6.
  51. DIETHELM, K., FORD, N. J. Analysis of fractional differential equations. Journal of Mathematical Analysis and Applications, 2002, vol. 265, no. 2, p. 229–248. DOI: 10.1006/jmaa.2000.7194
  52. SUN, H., ABDELWAHAB, A., ONARAL, B. Linear approximation of transfer function with a pole of fractional power. IEEE Transactions on Automatic Control, 1984, vol. 29, no. 5, p. 441–444. DOI: 10.1109/TAC.1984.1103551
  53. DIETHELM, K., FREED, A. D. The FracPECE subroutine for the numerical solution of differential equations of fractional order. In Heinzel, S., Plesser, T. (eds.), Forschung und wissenschaftliches Rechnen, 1998, p. 57–71.
  54. DIETHELM, K., FORD, N. J., FREED, A. D. Detailed error analysis for a fractional Adams method. Numerical Algorithms, 2004, vol. 36, no. 1, p. 31–52. DOI: 10.1023/B:NUMA.0000027736.85078.be
  55. KVARDA, P. Identifying the deterministic chaos by using the Lyapunov exponents. Radioengineering, 2001, vol. 10, no. 2, p. 38–40. ISSN: 1210-2512
  56. WOLF, A., SWIFT, J. B., SWINNEY, H. L., et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, vol. 16, no. 3, p. 285–317. DOI: 10.1016/0167- 2789(85)90011-9
  57. GARRAPPA, R. Predictor-corrector PECE method for fractional differential equations. MATLAB Central File Exchange [File ID: 32918], 2011.
  58. DANCA, M.-F. Lyapunov exponents of a class of piecewise continuous systems of fractional order. Nonlinear Dynamics, 2015, vol. 81, no. 1–2, p. 227–37. DOI: 10.1007/s11071-015-1984-6
  59. RAJAGOPAL, K., KARTHIKEYAN, A., SRINIVASAN, A. K. FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dynamics, 2017, vol. 87, no. 4, p. 2281–2304. DOI: 10.1007/s11071-016-3189-z
  60. ADOMIAN, G. A review of the decomposition method and some recent results for nonlinear equations. Mathematical and Computer Modelling, 1990, vol. 13, no. 7, p. 17–43. DOI: 10.1016/0895- 7177(90)90125-7
  61. HE, S. B., SUN, K. H., WANG, H. H. Solution of the fractionalorder chaotic system based on Adomian decomposition algorithm and its complexity analysis. Acta Physica Sinica, 2014, vol. 63, no. 3, p. 1–8. DOI: 10.7498/aps.63.030502 (in Chinese)
  62. CAPONETTO, R., FAZZINO, S. An application of Adomian decomposition for analysis of fractional-order chaotic systems. International Journal of Bifurcation and Chaos, 2013, vol. 23, no. 3, p. 1–7. DOI: 10.1142/S0218127413500508

Keywords: Wien bridge oscillator, memristor, bifurcation, multistability, fractional order

P. Galajda , S. Slovak, M. Sokol, M. Pecovsky, M. Kmec [references] [full-text] [DOI: 10.13164/re.2019.0175] [Download Citations]
Integrated M-Sequence Based Transceiver for UWB Sensor Networks

This paper deals with the realization, measure- mentsandtestingofanintegratedUWBradarheadoperating in the continuously transmitted stimulation signal mode. The term UWB is derived from the exploited system bandwidth. Practically, the frequency bands nearly from DC to 14 GHz or those specified by the Electronic Communication Committee (ECC) or the Federal Communications Commission (FCC) regulations are used. The stimulation signal is generated by modulation of the carrier by a binary sequence which spreads the frequency spectrum of the signal. Thanks to the parameters of the resulting signal, it is not the source of interference for other radio services, but it can be observed only as an increase in noise. In the context of the UWB radars emitting the spread-spectrum signal, the term noise radar is often used, where the generated spreading signal is the result of generation of a pseudorandom noise modulation signal. Theprincipleofgenerationofsuchasignalaswellas the description of the transmitter is described in this article in more details. The reception of the UWB signals is not a trivial task. Hence in this paper, we deal with the topic of the UWB radar transceiver, relying on the equivalent time sampling approach, with attention to the receiver section. The measurements focused on qualitative parameters of the given UWB radar are evaluated as well, concentrating on the innovative integrated front-end. The main tested parameters include reliability across the whole frequency range, dynamic range, as well as crosstalk in the proposed structure.

  1. SACHS, J. Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications. John Wiley & Sons, 2013. ISBN: 9783527408535
  2. SACHS, J., HELBIG, M., HERRMANN, R., et al. Remote vital sign detection for rescue, security, and medical care by ultra-wideband pseudo-noise radar. Ad Hoc Networks, 2014, vol. 13, p. 42–53. DOI: 10.1016/j.adhoc.2012.07.002
  3. DRUTAROVSKY, M., KOCUR, D., SVECOVA, M., et al. Real-time wireless UWB sensor network for person monitoring. In Proceedings of the International Conference on Telecommunications (ConTEL). Zagreb (Croatia), 2017, p. 19–26. DOI: 10.23919/ConTEL.2017.8000034
  4. NOVAK, D., SCHNEIDER, J., KOCUR, D. Static person detection and localization based on their respiratory motion using various antenna types. Acta Electrotechnica et Informatica, 2016, vol. 16, no. 3, p. 54–59. DOI: 10.15546/aeei-2016-0024
  5. ECKERSTORFER, M., BUHLER, Y., FRAUENFELDER, R., et al. Remote sensing of snow avalanches: Recent advances, potential, and limitations. Cold Regions Science and Technology, 2016, vol. 121, p. 126–140. DOI: 10.1016/j.coldregions.2015.11.001
  6. NOVAK, D., SVECOVA, M., KOCUR, D. Multiple person localization based on their vital sign detection using UWB sensor. Microwave Systems and Applications, 2017, p. 399–422. DOI: 10.5772/66361
  7. ZETIK, R., DEL GALDO, G. UWB M-sequence based radar technology for localization of first responders. In 18th International Radar Symposium (IRS). Prague, Czech Republic, 2017, p. 1–9. DOI: 10.23919/IRS.2017.8008218
  8. KAZIMIR, P., KOCUR, D. Simple method of ucoop-erative human beings localisation in 3D space by UWB radar. Acta Electrotechnica et Informatica, 2014, vol. 14, no. 4, p. 8–12. DOI: 10.15546/aeei-2014-0033
  9. GARCIA, A. P., THOMA, R. S. Polarimetric ultrawideband MIMO radar for security check points: Detecting and classifying suspects carrying wires. In Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP). Prague (Czech Republic), 2012, p. 1733–1736. DOI: 10.1109/EuCAP.2012.6206553
  10. MEHTA, A. B. ASIC/SoC Functional Design Verification. Springer, 2018, p. 255–271. ISBN 978-3-319-59417-0
  11. GONG, S., HENTZELL, H., PERSSON, S.-T., et al. Techniques for reducing switching noise in high speed digital systems. In Proceedings of Eighth International Application Specific Integrated Circuits Conference. Austin (USA), 1995, p. 21–24. DOI: 10.1109/ASIC.1995.580673
  12. FATTAH, G., MASOUMI, N. Comprehensive evaluation of crosstalk and delay profiles in VLSI interconnect structures with partially coupled lines. Journal of Iranian Association of Electrical and Electronics Engineers, 2018, vol. 14, no. 4, p. 41–54.
  13. KMEC, M., HELBIG, M., HERRMANN, R., et al. M-SequenceBased Single-Chip UWB-Radar Sensor. In Ultra-Wideband, Short-Pulse Electromagnetics 10. Springer, 2014, p. 453–461. ISBN 978-1-4614-9499-7
  14. PECOVSKY, M., GALAJDA, P., SLOVAK, S., et al. M-sequence ground-penetrating radar with novel front-end concept. Acta Electrotechnica et Informatica, 2018, vol. 18, no. 2, p. 11–18, DOI:10.15546/aeei-2018-0011
  15. GALAJDA, P., GALAJDOVA, A., SLOVAK, S., et al. Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments. International Journal of Advanced Robotic Systems, 2018, vol. 15, no. 4, 12 p. DOI: 10.1177/1729881418795767
  16. CHERRY, E., HOOPER, D. The design of wide-band transistor feedback amplifiers. Proceedings of the Institution of Electrical Engineers, 1963, vol. 110, no. 2, p. 375–389. DOI: 10.1049/piee.1963.0050
  17. KOCUR, D., ROVNAKOVA, J., SVECOVA, M. Through wall tracking of moving targets by M-sequence UWB radar. In Towards Intelligent Engineering and Information Technology. Springer, 2009, p. 349–364. ISBN 978-3-642-03736-8
  18. PIETRIKOVA, A., RUMAN, K., ROVENSKY, T., et al. Impact analysis of LTCC materials on microstrip filters’ behaviour up to 13 GHz. Microelectronics International, 2015, vol. 32, no. 3, p. 122–125. DOI: 10.1108/MI-01-2015-0003
  19. ZUK, S., PIETRIKOVA, A., VEHEC, I. Possibilities of planar capacitive rain sensor manufacturing by thick film technology. Acta Electrotechnica et Informatica, 2018, vol. 18, p. 11–16. DOI:10.15546/aeei-2018-0027

Keywords: UWB Radar, M-Sequence, transceiver, ASIC

D. Krolak, P. Horsky [references] [full-text] [DOI: 10.13164/re.2019.0183] [Download Citations]
A Passive Network Synthesis from Two-Terminal Measured Impedance Characteristic

A linear high-frequency lumped-element model extraction from a two-terminal measured impedance by an improved element-by-element extraction method is described. This extraction method is extended to series and shunt resistors extraction as lossy elements of passive (linear) circuit network. The extracted linear circuit models from the two-terminal impedance of ideal and realistic passive networks is validated by SPICE simulations in a frequency domain. The extracted model can be used for more accurate electrical environment modeling and SPICE simulations of integrated circuits including external passive networks. An example of passive network synthesis from the two-terminal measured impedance by a proposed software is also presented.

  1. IEC. IEC62132-4: Integrated Circuits – Measurement of Electromagnetic Immunity 150 kHz to 1 GHz – Part 4: Direct RF Power Injection Method. 2006.
  2. BOTT, R., DUFFIN, R. J. Impedance synthesis without use of transformers. Journal of Applied Physics, 1949, vol. 20, no. 8, p. 816–816. DOI: 10.1063/1.1698532
  3. KELLY, P. M. A unified approach to two-terminal network synthesis. IRE Transactions on Circuit Theory, 1961, vol. 8, no. 2, p. 153–164. DOI: 10.1109/TCT.1961.1086763
  4. LEE, J. A., KIM, D., EO, Y. Circuit modelling of multi-layer ceramic capacitors using S-parameter measurements. In International SoC Design Conference. Busan (South Korea), 2008, vol. 1, p. I-358–I-361. DOI: 10.1109/SOCDC.2008.4815646
  5. BACMAGA, J., BLECIĆ, R., GILLON, R., BRIĆ, A. Highfrequency model of a setup for time-domain inductor characterization. In 2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE). 2018, p. 590–595. DOI: 10.1109/EMCEurope.2018.8485154
  6. AVULA, V., ZADEHGOL, A. A novel method for equivalent circuit synthesis from frequency response of multiport network. In Proc. of the 2016 International Symposium on Electromagnetic Compatibility – EMC EUROPE 2016. Wroclaw (Poland), 2016. DOI: 10.1109/EMCEurope.2016.7739270
  7. MOHAMED, S., SALAMA, M. M. A., MANSOUR, R. Automated network synthesis utilizing MAPLE. In The 46th Midwest Symposium on Circuits and Systems. 2003, vol. 3, p. 1179–1184. DOI: 10.1109/MWSCAS.2003.1562504
  8. KEYSIGHT TECHNOLOGIES, USA. Impedance Measurement Handbook: A Guide to Measurement Technology and Techniques. 6th ed. (application note). 140 pages. [Online] Cited 2018-09-08. Available at: https://literature.cdn.keysight.com/litweb/pdf/5950-3000.pdf
  9. PIROLA, M., TEPPATI, V., CAMARCHIA, V. Microwave measurements. Part I: Linear measurements. IEEE Instrumentation and Measurement Magazine, 2007, vol. 10, no. 2, p. 14–19. DOI: 10.1109/MIM.2007.364959
  10. MORCHED, A. S., KUNDUR, P., Identification and modelling of load characteristics at high frequencies. IEEE Transactions on Power Systems, 1987, vol. 2, no. 1, p. 153–159. DOI: 10.1109/TPWRS.1987.4335091
  11. WILLIAMS, A. B., TAYLOR, F. J. Electronic Filter Design Handbook. Chapter 1: Introduction to modern network theory, p. 1–8. 4th ed. London: McGraw-Hill, 2006. ISBN: 0-07-147171-5
  12. NEWCOMB, R. W. Analysis in the time domain. Chapter 25 in CHEN, W. K. (ed.) The Circuits and Filters Handbook, p. 783–799. 2nd ed. Boca Raton, FL: CRC Press, 2003. ISBN: 0- 8493-0912-3
  13. ANTONIOU, A. General characteristics of filters. Chapter 69 in CHEN, W. K. (ed.) The Circuits and Filters Handbook, p. 2199– 2226. 2nd ed. Boca Raton, FL: CRC Press, 2003. ISBN: 0-8493- 0912-3
  14. SU, K. Analog Filters. (Chapter 4: Frequency transformation, p. 77–88.) 2nd ed. Norwell: Kluwer Academic Publishers, 2002. ISBN: 0-4020-7033-0
  15. SU, K. Analog Filters. (Chapter 1.6: Normalization and denormalization - scaling, p. 13–16.) 2nd ed. Norwell: Kluwer Academic Publishers, 2002. ISBN: 0-4020-7033-0
  16. CORMEN, T. H., LEISERSON, CH. E., RIVEST, R. L., STEIN, C. Introduction to Algorithms. (Chapter 30: Polynomials and the FFT, p. 898–925.) 3rd ed. Cambridge, Mass.: MIT Press, 2009. ISBN: 978-0-262-53305-8
  17. CHEN, W. K. Synthesis of LCM and RC one-port networks. Chapter 75 in CHEN, W. K. (ed.) The Circuits and Filters Handbook, p. 2327–2337. 2nd ed., Boca Raton, FL: CRC Press, 2003. ISBN: 0-8493-0912-3
  18. CALLEGARO, L. Traceable measurements of electrical impedance. IEEE Instrumentation and Measurement Magazine, 2015, vol. 18, no. 6, p. 42–46. DOI: 10.1109/MIM.2015.7335839
  19. DAVIS, M. A. Approximation. Chapter 70 in CHEN, W. K. (ed.) The Circuits and Filters Handbook, p. 2227–2257. 2nd ed., Boca Raton, FL: CRC Press, 2003. ISBN: 0-8493-0912-3

Keywords: Element-by-element extraction, EMC, impedance measurement, lumped-element model, passive network synthesis, transmission line

Z. Z. Su, H. B. Ji, Y. Q. Zhang [references] [full-text] [DOI: 10.13164/re.2019.0191] [Download Citations]
An Improved Measurement-Oriented Marginal Multi-Bernoulli/Poisson Filter

The measurement-oriented marginal multi-Ber-noulli/Poisson (MOMB/P) filter is an attractive approach for multi-target tracking. However, the effect of measure¬ment on predicted target states may be weakened when the hypothesized tracks are separated, even if the measurement is close to the predicted target state. This is due to the inaccuracy of the missed detection hypothesis probabilities in the marginal association probabilities. To solve this problem, an improved MOMB/P (IMOMB/P) filter is pro¬posed in this paper, by considering the measurement infor¬mation in the missed detection hypotheses. Simulation results reveal a favorable comparison to the MOMB/P filter in terms of the Optimal Subpattern assignment (OSPA) distance and cardinality estimation.

  1. MAHLER, R. P. S. Statistical Multisource-Multitarget Information Fusion. Boston (USA): Artech House, 2007. ISBN: 1596930926 9781596930926
  2. MAHLER, R. P. S. Advances in Statistical MultisourceMultitarget Information Fusion. Boston (USA): Artech House, 2014. ISBN: 9781608077984
  3. MAHLER, R. P. S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, vol. 39, no. 4, p. 1152–1178. DOI: 10.1109/TAES.2003.1261119
  4. MAHLER, R. P. S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 4, p. 1523–1543. DOI: 10.1109/TAES.2007.4441756
  5. VO, B. T., VO, B. N., CANTONI, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 2, p. 409–423. DOI: 10.1109/TSP.2008.2007924
  6. VO, B. N., SINGH, S., DOUCET, A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, no. 4, p. 1224–1245. DOI: 10.1109/TAES.2005.1561884
  7. VO, B. T., VO, B. N., CANTONI, A. Analytic implementations of the cardinalized probability hypothesis density filter. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 7, p. 3553–3567. DOI: 10.1109/TSP.2007.894241
  8. WILLIAMS, J. L. Experiments with graphical model implementations of multiple target multiple Bernoulli filters. In Proceedings of the 11th Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). Adelaide (Australia), 2011, p. 532–537. DOI: 10.1109/ISSNIP.2011.6146620
  9. VO, B. T., VO, B. N. Labeled random finite sets and multi-object conjugate priors. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 13, p. 3460–3475. DOI: 10.1109/TSP.2013.2259822
  10. VO, B. T., VO, B. N., PHUNG, D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 24, p. 6554–6567. DOI: 10.1109/TSP.2014.2364014
  11. REUTER, S., VO, B. T., VO, B. N., et al. The labeled multiBernoulli filter. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 12, p. 3246–3260. DOI: 10.1109/TSP.2014.2323064
  12. WILLIAMS, J. L. Marginal multi-Bernoulli filters: RFS derivation of MHT, JIPDA, and association-based MeMBer. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 3, p. 1664–1687. DOI: 10.1109/TAES.2015.130550
  13. WILLIAMS, J. L. An efficient, variational approximation of the best fitting multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 1, p. 258–273. DOI: 10.1109/TSP.2014.2370946
  14. KROPFREITER, T., MEYER, F., HLAWATSCH, F. Sequential Monte Carlo implementation of the track-oriented marginal multiBernoulli/Poisson filter. In Proceedings of the 16th Information Fusion (FUSION). Heidelberg (Germany), 2016, p. 972–979. ISBN: 9780996452748
  15. GRANSTROM, K., FATEMI, M., SVENSSON, L. Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking. In Proceedings of the 16th Information Fusion (FUSION). Heidelberg (Germany), 2016, p. 513–520. ISBN: 9780996452748
  16. WILLIAMS, J. L., LAU, R. Approximate evaluation of marginal association probabilities with belief propagation. IEEE Transactions on Aerospace and Electronic Systems, 2014, vol. 50, no. 4, p. 2942–2959. DOI: 10.1109/TAES.2014.120568
  17. SCHUHMACHER, D., VO, B. T., VO, B. N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, vol. 56, no. 8, p. 3447–3457. DOI: 10.1109/TSP.2008.920469

Keywords: Multi-target tracking, random finite set, MOMB/P filter, missed detection hypothesis

N. Daneshmandpour, H. Danyali, M. S. Helfroush [references] [full-text] [DOI: 10.13164/re.2019.0199] [Download Citations]
Scalable Image Self-Embedding Based on Dual-Rate SPIHT-LDPC Reference Generation Scheme

Image Self-Embedding is a method of embedding two sets of data into the original image, authentication data for tamper detection and reference data for image recovery. In this paper, a scalable self-embedding method is proposed based on dual-rate source-channel coding for reference data generation. The proposed method uses Set Partitioning in Hierarchical Tree (SPIHT) algorithm for source coding and Low-Density Parity Check (LDPC) for channel coding. Accordingly, the proposed recovery system provides higher reconstruction quality at low tampering rates, while it can handle higher tampering rates with less reconstruction quality. Therefore, the proposed method has the ability of both preserving the image quality and recovering higher tampering rates. Simulation results show noticeable improvements compared with the related self-embedding methods in the literature.

  1. WANG, H., WANG, H-X., SUN, X-M., et al. A passive authentication scheme for copy-move forgery based on package clustering algorithm. Multimedia Tools and Applications, 2017, vol. 76, no. 10, p. 12627–12644. DOI: 10.1007/s11042-016-3687-5
  2. ULUTAS, G., USTUBIOGLU, A., USTUBIOGLU, B., et al. Medical image tamper detection based on passive image authentication. Journal of Digital Imaging, 2017, vol. 30, no. 6, p. 695–709. DOI: 10.1007/s10278-017-9961-x
  3. QIN, C., JI, P., WANG, J., et al. Fragile image watermarking scheme based on VQ index sharing and self-embedding. Multimedia Tools and Applications, 2017, vol. 76, no. 2, p. 2267–2287. DOI: 10.1007/s11042-015-3218-9
  4. KHOR, H. L., LIEW, S. C., ZAIN, J. M. Region of interest-based tamper detection and lossless recovery watermarking scheme (ROI-DR) on ultrasound medical images. Journal of Digital Imaging, 2017, vol. 30, no. 3, p. 328–349. DOI: 10.1007/s10278- 016-9930-9
  5. AGARWAL, S., CHAND, S. Image forgery detection using co-occurrence-based texture operator in frequency domain. In Progress in Intelligent Computing Techniques: Theory, Practice, and Applications: Proceedings of ICACNI 2016. 2017, p. 117–122. DOI: 10.1007/978-981-10-3373-5_10
  6. SINGH, A. K., KUMAR, B., SINGH, S. K., et al. Guest editorial: Robust and secure data hiding techniques for telemedicine applications. Multimedia Tools and Applications, 2017, vol. 76, no. 5, p. 7563–7573. DOI: 10.1007/s11042-017-4507-2
  7. LIU, X. L., LIN, C. C., YUAN, S. M. Blind dual watermarking for color images’ authentication and copyright protection. IEEE Transactions on Circuits and Systems for Video Technology, 2016, vol. 28, no. 5, p. 1047–1055. DOI: 10.1109/TCSVT.2016.2633878
  8. FARFOURA, M. E., HORNG, S. J., GUO, J. M., et al. Low complexity semi-fragile watermarking scheme for H.264/AVC authentication. Multimedia Tools and Applications, 2016, vol. 75, no. 13, p. 7465–7493. DOI: 10.1007/s11042-015-2672-8
  9. BADSHAH, G., LIEW, S. C., ZAIN, J. M., et al. Watermark compression in medical image watermarking using Lempel-ZivWelch (LZW) lossless compression technique. Journal of Digital Imaging, 2016, vol. 29, no. 2, p. 216–225. DOI: 10.1007/s10278- 015-9822-4
  10. QAZI, T., HAYAT, K., KHAN, S. U., et al. Survey on blind image forgery detection. IET Image Processing, 2013, vol. 7, no. 7, p. 660–670. DOI: 10.1049/iet-ipr.2012.0388
  11. UTKU CELIK, M., SHARMA, G., SABER, E., et al. Hierarchical watermarking for secure image authentication with localization. IEEE Transactions on Image Processing, 2002, vol. 11, no. 6, p. 585–595. DOI: 10.1109/TIP.2002.1014990
  12. LIEW, S. C., LIEW, S. W., ZAIN, J. M. Tamper localization and lossless recovery watermarking scheme with ROI segmentation and multilevel authentication. Journal of Digital Imaging, 2013, vol. 26, no. 2, p. 316–325. DOI: 10.1007/s10278-012-9484-4
  13. TAGLIASACCHI, M., VALENZISE, G., TUBARO, S. Hashbased identification of sparse image tampering. IEEE Transactions on Image Processing, 2009, vol. 18, no. 11, p. 2491–2504. DOI: 10.1109/TIP.2009.2028251
  14. LEE, T. Y., LIN, S. D. Dual watermark for image tamper detection and recovery. Pattern Recognition, 2008, vol. 41, no. 11, p. 3497–3506. DOI: 10.1016/j.patcog.2008.05.003
  15. KORUS, P., BIALAS, J., DZIECH, A. Towards practical selfembedding for JPEG-compressed digital images. IEEE Transactions on Multimedia, 2015, vol. 17, no. 2, p. 157–170. DOI: 10.1109/TMM.2014.2368696
  16. SARRESHTEDARI, S., ABBASFAR, A., AKHAEE, M. A. A joint source-channel coding approach to digital image selfrecovery. Signal, Image and Video Processing, 2017, vol. 11, no. 7, p. 1371–1378. DOI: 10.1007/s11760-017-1095-6
  17. QIN, C., WANG, H., ZHANG, X., et al. Self-embedding fragile watermarking based on reference-data interleaving and adaptive selection of embedding mode. Information Sciences, 2016, vol. 373, p. 233–250. DOI: 10.1016/j.ins.2016.09.001
  18. SINGH, D., SINGH, S. K. DCT based efficient fragile watermarking scheme for image authentication and restoration. Multimedia Tools and Applications, 2017, vol. 76, no. 1, p. 953–977. DOI: 10.1007/s11042-015-3010-x
  19. ANSARI, I. A., PANT, M., AHN, C. W. SVD based fragile watermarking scheme for tamper localization and self-recovery. International Journal of Machine Learning and Cybernetics, 2016, vol. 7, no. 6, p. 1225–1239. DOI: 10.1007/s13042-015-0455-1
  20. WANG, H., HO, A. T. S., ZHAO, X. A novel fast self-restoration semi-fragile watermarking algorithm for image content authentication resistant to JPEG compression. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2012, vol. 7128 LNCS, p. 72–85. DOI: 10.1007/978-3-642-32205-1_8
  21. HE, H., CHEN, F., TAI, H., et al. Performance analysis of a blockneighborhood-based self-recovery fragile watermarking scheme. IEEE Transactions on Information Forensics and Security, 2012, vol. 7, no. 1, p. 185–196. DOI: 10.1109/TIFS.2011.2162950
  22. FRIDRICH, J. Security of fragile authentication watermarks with localization. Proceedings of SPIE- Security and Watermarking of Multimedia Contents, 2002 vol. 4675, p. 691–700. DOI: 10.1117/12.465330
  23. KORUS, P., DZIECH, A. Efficient method for content reconstruction with self-embedding. IEEE Transactions on Image Processing, 2013, vol. 22, no. 3, p. 1134–1147. DOI: 10.1109/TIP.2012.2227769
  24. FRIDRICH, J., GOLJAN, M. Images with self-correcting capabilities. In Proceedings of 1999 International Conference on Image Processing. Kobe (Japan), 1999, p. 792–796. DOI: 10.1109/ICIP.1999.817228
  25. LIN, P. L., HSIEH, C. K., HUANG, P. W. A hierarchical digital watermarking method for image tamper detection and recovery. Pattern Recognition, 2005, vol. 38, no. 12, p. 2519–2529. DOI: 10.1016/j.patcog.2005.02.007
  26. ZHANG, X., QIAN, Z., REN, Y., et al. Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Transactions on Information Forensics and Security, 2011, vol. 6, no. 4, p. 1223–1232. DOI: 10.1109/TIFS.2011.2159208
  27. YANG, C. W., SHEN, J. J. Recover the tampered image based on VQ indexing. Signal Processing, 2010, vol. 90, no. 1, p. 331–343. DOI: 10.1016/j.sigpro.2009.07.007
  28. LEE, J., WON, C. S. Authentication and correction of digital watermarking images. Electronics Letters, 1999, vol. 35, no. 11, p. 886–887. DOI: 10.1049/el:19990642
  29. SARRESHTEDARI, S., AKHAEE, M. A. A source-channel coding approach to digital image protection and self-recovery. IEEE Transactions on Image Processing, 2015, vol. 24, no. 7, p. 2266–2277. DOI: 10.1109/TIP.2015.2414878
  30. QIN, C., JI, P., ZHANG, X., et al. Fragile image watermarking with pixel-wise recovery based on overlapping embedding strategy. Signal Processing, 2017, vol. 138, p. 280–293. DOI: 10.1016/j.sigpro.2017.03.033
  31. SAID, A., PEARLMAN, W. A. A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology, 1996, vol. 6, no. 3, p. 243–250. DOI: 10.1109/76.499834
  32. MAC KAY, D. J. C., NEAL, R. M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, vol. 32, no. 18, p. 1645–1646. DOI: 10.1049/el:19961141
  33. LI PING, LEUNG, W. K., PHAMDO, N. Low density parity check codes with semi-random parity check matrix. IEE Electronics Letters, 1999, vol. 35, no. 1, p. 38–39. DOI: 10.1049/el:19990065
  34. TAKI, M., OROOJI, M. A simple algorithm to design irregular LDPC codes for finite length. In Proceeding of the 10th IEEE Singapore International Conference on Communication Systems. Singapore, 2006, p. 1–6. DOI: 10.1109/ICCS.2006.301433
  35. JIANG, Y. A Practical Guide to Error-Control Coding Using Matlab. Artech House, 2010. ISBN: 9781608070886

Keywords: Tamper Detection, Image Recovery, Self-Embedding, Source-channel Coding, SPIHT, LDPC

J. Kufa, O. Kaller, O. Zach, L. Polak, T. Kratochvil [references] [full-text] [DOI: 10.13164/re.2019.0207] [Download Citations]
Objective Models for Performance Comparison of Compression Algorithms for 3DTV

Efficient video compression algorithms in advanced multimedia broadcasting systems are in high demand. In the last decades, different video compression tools have been developed which can influence the final Quality of Experience in different ways. This paper has two goals. The first goal is to present a study of different compression algorithms available for stereoscopic 3D videos. The second goal is to present the possibilities in the creation of new stereoscopic models. The well-established video codecs (AVC, MVC, HEVC and MV-HEVC) are considered as encoders. Generic objective video quality metrics are used to analyze the compression efficiencies of the considered codecs, extended with results from subjective tests. The correlations between the objective and subjective scores are analyzed statistically. Due to unsatisfactory results of generic 2D metrics for the stereoscopic sequences used in the test, new objective models are presented. Such models show improved correlation with subjective stereoscopic video quality. The validation, verification and a description of models are presented in detail.

  1. ZACH, O., SLANINA, M. A Matlab-based tool for video quality evaluation without reference. Radioengineering, 2014, vol. 23, no. 1, p. 405–411. ISSN: 1210-2512
  2. WANG, A., et al. QoE-oriented resource allocation for DASH-based video transmission over LTE systems. In Proceedings of IEEE Vehicular Technology Conference (VTC Spring). Sydney (Australia), 2017, p. 1–5. DOI: 10.1109/VTCSpring.2017.8108535
  3. KALLER, O. Advanced Methods for 3D Video Capturing and Evaluation. Dissertation thesis, Brno, 2018
  4. ASSUNCAO, P. A., et al. 3D visual Content Creation, Coding and Delivery. Cham: Springer International Publishing, 2019. Signals and Communication Technology. ISBN: 978-3-319-77842-6. DOI: 10.1109/ICIP.2007.4379956
  5. ITU-T Rec. H.264. Advanced Video Coding for Generic Audiovisual Services. ITU, Geneva (Switzerland), 2014.
  6. Fraunhofer HHI. High Efficiency Video Coding (HEVC). [Online] Cited 2017-03-04. Available from: https://hevc.hhi.fraunhofer.de
  7. Fraunhofer HHI. Multiview High Efficiency Video Coding (MV-HEVC). [Online] Cited 2017-03-04. Available from: https://hevc.hhi.fraunhofer.de/mvhevc
  8. POLAK, L., et al. Study of advanced compression tools for stereoscopic video by objective metrics. In Proceedings of the 26th International Conference on Radioelektronika. Kosice (Slovak Republic), 2016, p. 268–272. DOI: 10.1109/RADIOELEK.2016.7477357
  9. HANNUKSELA, M. M., et al. Overview of the multiview high efficiency video coding (MV-HEVC) standard. In Proceedings of the IEEE International Conference on Image Processing (ICIP). Quebec City (Canada), 2015, p. 2154–2158. DOI: 10.1109/ICIP.2015.7351182
  10. BALOTA, G., et al. Overview and quality analysis in 3D-HEVC emergent video coding standard. In Proceedings of the 5th International Conference on LASCAS. Santiago (Chile), 2014, p. 1–4. DOI: 10.1109/LASCAS.2014.6820260
  11. STANKOWSKI, J., et al. 3D-HEVC extension for circular camera arrangements. In 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video. Lisbon (Spain), 2015, p. 1–4. DOI: 10.1109/3DTV.2015.7169371
  12. WANG. K., et al. Stereoscopic 3D video coding quality evaluation with 2D objective metrics. SPIE Stereoscopic Displays and Applications XXIV, 2013, vol. 8648, p. 86481L–86481L-7. DOI: 10.1117/12.2003664
  13. YASAKETHU, S.L.P., et al. Quality analysis for 3D video using 2D video quality models. IEEE Transaction on Consumer Electronics, 2008, vol. 54, no. 4, p. 1969–1976. ISSN: 0098-3063. DOI: 10.1109/TCE.2008.4711260
  14. BOSC, E., et al. Reliability of 2D quality assessment methods for synthesized views evaluation in stereoscopic viewing conditions. In 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video. Zurich (Switzerland), 2012, p. 1–4. DOI: 10.1109/3DTV.2012.6365457
  15. JOVELURO, P., et al.Perceptual video quality metric for 3D video quality assessment. In 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video. Tampere (Finland), 2010, p. 1–4. DOI: 10.1109/3DTV.2010.5506331
  16. HAN, Y., YUAN, Z., MUNTEAN, G. M. Extended no reference objective quality metric for stereoscopic 3D video. In Proceedings of the IEEE International Conference on Communication Workshop (ICCW). London (UK), 2015, p. 1729–1734. DOI: 10.1109/ICCW.2015.7247430
  17. LI, J., BARKOWSKI, M., LE CALLET, P. Validation of reliable 3DTV subjective assessment methodology - Establishing a ground truth database. VQEG eLetter, 2014, vol. 1, no. 2, p. 33–35.
  18. TAVAKOLI, S., et al. Subjective quality study of adaptive streaming of monoscopic and stereoscopic video. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 4, p. 684–692. DOI: 10.1109/JSAC.2014.140402
  19. PALANIAPPAN, R., JAYANT, N., MANE, P. Visual quality in stereoscopic 3DTV. In Proceedings of the Conference on Signals, Systems and Computers (ASILOMAR). Pacific Grove (USA), 2012, p. 726–728. DOI: 10.1109/ACSSC.2012.6489107
  20. DOMANSKI, M., et al. Poznan multiview video test sequences and camera parameters. ISO/IEC JTC1/SC29/WG11 MPEG 2009/M17050, 2009.
  21. CHENG, E., et al. RMIT3DV: Pre-announcement of a creative commons uncompressed HD 3D video database. In Proceedings of the International Workshop QoMEX. Yarra Valley (Australia), 2012, p. 212–217. DOI: 10.1109/QoMEX.2012.6263873
  22. ITU-T Rec. P.910. Subjective Video Quality Assessment Methods for Multimedia Applications. ITU, Geneva, (Switzerland), 2008.
  23. WANG, Z., BOVIK, A. C., SHEIKH, H. R., SIMONCELLI, E. P. Image quality assessment: From error visibility to structural similarity. IEEE Transaction on Image Processing, 2004, vol. 13, no. 4, p. 600–612. ISSN: 1057-7149. DOI: 10.1109/TIP.2003.819861
  24. PINSON, M. H., WOLF, S., A new standardized method for objectively measuring video quality. IEEE Transaction on Broadcasting, 2004, vol. 50, no. 3, p. 312–322. DOI: 10.1109/TBC.2004.834028
  25. ITU-R BT.500-13. Methodology for the Subjective Assessment of the Quality of Television Pictures. ITU, Geneva, (Switzerland), 2012.
  26. ITU-R BT.2022. General Viewing Conditions for Subjective Assessment of Quality of SDTV and HDTV Television Pictures on Flat Panel Displays. ITU, Geneva, (Switzerland), 2012.
  27. SLANINA, M., et al. Testing QoE in different 3D HDTV technologies. Radioengineering, 2012, vol. 21, no. 1, p. 445–454.
  28. WOOLSON, R. F. Wilcoxon signed-rank test. Wiley Encyclopedia of Clinical Trials, 2007. DOI: 10.1002/9780471462422.eoct979
  29. KRASULA, L., et al. On the accuracy of objective image and video quality models: New methodology for performance evaluation. In Proceedings of the International Conference on Quality of Multimedia Experience (QoMEX). Lisbon (Spain), 2016, p. 1–6. DOI: 10.1109/QoMEX.2016.7498936
  30. NARWARIA, M., et al. Data analysis in multimedia quality assessment: Revisiting the statistical tests. IEEE Transactions on Multimedia, 2018, vol. 20, no. 8, p. 2063–2072. DOI: 10.1109/TMM.2018.2794266
  31. MATLAB Documentation. [Online] Cited 2017-03-04. Available from: http://www.mathworks.com/help/matlab/
  32. LEMESHKO, S. B., Distribution of statistics of Chi-square goodness-of-fit tests for small samples. In Proceedings of the International Conference on Actual Problems of Electronic Instrument Engineering. Novosibirsk (Russia), 2006, p. 287–287. DOI: 10.1109/APEIE.2006.4292559
  33. ITU-T Rec. P.1401. Methods, Metrics and Procedures for Statistical Evaluation, Qualification and Comparison of Objective Quality Prediction Models. ITU, 2012.
  34. OBERTI, F. , et al. ROC curves for performance evaluation of video sequences processing systems for surveillance applications. In Proceedings of the International Conference on Image Processing. Kobe (Japan), 1999, p. 949–953. DOI: 0.1109/ICIP.1999.823038
  35. BAY, H., TUYTELAARS, T., VAN COOL, L. SURF: Speeded up robust features. In Proceedings of the European Conference on Computer Vision. Graz (Austria), 2006, p. 404–417. DOI: 10.1007/11744023_32
  36. HOLCIK, J., KOMENDA, M., at al. Mathematics Biology: E-learning Textbook (Matematicka Biologie: E-learningova Ucebnice). 1. ed. Brno: Masarykova univerzita, 2015. ISBN 978-80-210-8095-9
  37. HARRELL, F., E. Regression Modeling Strategies with Applications to Linear Models, in Logistic and Ordinal Regression, and Survival Analysis. Nashville: Springer, 2001. 571 pages. ISBN 978-3-319-19424-0 DOI: 10.1007/978-3-319-19425-7
  38. AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, vol. 19, no. 6, p. 716–723. DOI: 10.1109/TAC.1974.1100705.
  39. WANG, Y. Survey of objective video quality measurements. 2006. [Online], Available at: http://digitalcommons.wpi.edu/computerscience-pubs/42
  40. MILOVANOVIC, D., MILICEVIC, Z., BOJKOVIC, Z. MPEG video deployment in digital television: HEVC vs. AVC codec performance study. In Proceedings of the International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS). Nis (France), 2013, p.101–104. DOI: 10.1109/TELSKS.2013.6704900
  41. SULLIVAN, G. J., et al. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 2012, vol. 22, no. 12, p. 1649–1668. DOI: 10.1109/TCSVT.2012.2221191

Keywords: 3D video coding, AVC, MVC, HEVC, MV-HEVC, objective and subjective video quality metrics, MOS, Spearman and Pearson rank correlation

K. Wang, L. Wang, J. Xie, M. Tao [references] [full-text] [DOI: 10.13164/re.2019.0220] [Download Citations]
Classification and Localization of Mixed Sources Using Uniform Circular Array under Unknown Mutual Coupling

In this paper, the authors propose an effective classification and localization algorithm of mixed far-field and near-field sources using a uniform circular array under the unknown mutual coupling. In practice, the assumption of an ideal receiving sensor array is rarely satisfied. The effects of unknown mutual coupling would degrade the performance of most high resolution algorithms. Firstly, according to rank reduction type method, the direction of arrival of far-field sources is estimated directly without mutual coupling elimination. Then, these estimates are adopted to reconstruct the mutual coupling matrix. Finally, both direction and range parameters of near-field sources are obtained through MUSIC search after mutual coupling effects and far-field components elimination. The proposed algorithm only requires the second order cumulant and any three dimensional spectrum search is circumvented. Some simulation results would prove that the proposed algorithm can reduce more than eighty percent estimating error of mixed sources localization compared to those algorithms without mutual coupling compensation.

  1. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, vol. 37, no. 7, p. 984–995. DOI: 10.1109/29.32276
  2. CAO, M. Y., HUANG, L., QIAN, C., et al. Underdetermined DOA estimation of quasi-stationary signals via Khatri–Rao structure for uniform circular array. Signal Processing, 2015, vol. 106, p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012
  3. SCHMIDT, R. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/TAP.1986.1143830
  4. QIAN, C., HUANG, L., SO, H. C. Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nystrom method. Signal Processing, 2014, vol. 94, no. 1, p. 74–80. DOI: 10.1016/j.sigpro.2013.05.007
  5. WANG, Y., TRINKLE, M., NG, B. W.-H. DOA estimation under unknown mutual coupling and multipath with improved effective array aperture. Sensors, 2015, vol. 15, no. 12, p. 30856–30869. DOI: 10.3390/s151229832
  6. HUANG, Y., BARKAT, M. Near-field multiple source localization by passive sensor array. IEEE Transactions on Antennas and Propagation, 1991, vol. 39, no. 7, p. 968–975. DOI: 10.1109/8.86917
  7. ZHI, W., CHIA, M. Y. W. Near-field source localization via symmetric subarrays. IEEE Signal Processing Letters, 2007, vol. 14, p. 409–412. DOI: 10.1109/LSP.2006.888390
  8. HE, J., AHMAD, M. O., SWAMY, M. Near-field localization of partially polarized sources with a cross-dipole array. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 2, p. 857–870. DOI: 10.1109/TAES.2013.6494385
  9. TAO, J., LIU, L., LIN, Z. Joint DOA, range, and polarization estimation in the Fresnel region. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 4, p. 2657–2672. DOI: 10.1109/TAES.2011.6034657
  10. XIE, J., TAO, H., RAO, X., et al. Efficient method of passive localization for near-field noncircular sources. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1223–1226. DOI: 10.1109/LAWP.2015.2399534
  11. XIE, J., TAO, H., RAO, X., et al. Real-valued localisation algorithm for near-field non-circular sources. Electronics Letters, 2015, vol. 51, no. 17, p. 1330–1331. DOI: 10.1049/el.2015.0454
  12. LEE, J., CHEN, Y., YEH, C. Covariance approximation method for near-field direction-finding using a uniform linear array. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 5, p. 1293–1298. DOI: 10.1109/78.382421
  13. NOH, H., LEE, C. A covariance approximation method for nearfield coherent sources localization using uniform linear array. IEEE Journal of Oceanic Engineering, 2015, vol. 40, no. 1, p. 187–195. DOI: 10.1109/JOE.2013.2249872
  14. GROSICKI, E., ABED-MERAIM, K., HUA, Y. A weighted linear prediction method for near-field source localization. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 10, p. 3651–3660. DOI: 10.1109/TSP.2005.855100
  15. LIANG, J., LIU, D. Passive localization of near-field sources using cumulant. IEEE Sensors Journal, 2009, vol. 9, no. 8, p. 953–960. DOI: 10.1109/JSEN.2009.2025580
  16. LIANG J., LIU, D. Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 1, p. 108–120. DOI: 10.1109/TSP.2009.2029723
  17. HE, J., SWAMY, M. N. S., AHMAD, M. O. Efficient application of MUSIC algorithm under the coexistence of far-field and nearfield sources. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 4, p. 2066–2070. DOI: 10.1109/TSP.2011.2180902
  18. WANG, B., LIU, J., SUN, X. Mixed sources localization based on sparse signal reconstruction. IEEE Signal Processing Letters, 2012, vol. 19, no. 8, p. 487–490. DOI: 10.1109/LSP.2012.2204248
  19. WANG, B., ZHAO, Y., LIU, J. Mixed-order MUSIC algorithm for localization of far-field and near-field sources. IEEE Signal Processing Letters, 2013, vol. 20, no. 4, p. 311–314. DOI: 10.1109/LSP.2013.2245503
  20. LIU, G., SUN, X. Two-stage matrix differencing algorithm for mixed far-field and near-field sources classification and localization. IEEE Sensors Journal, 2014, vol. 14, no. 6, p. 1957–1965. DOI: 10.1109/JSEN.2014.2307060
  21. LIU, G., SUN, X., LIU, Y., et al. Low-complexity estimation of signal parameters via rotational invariance techniques algorithm for mixed far-field and near-field cyclostationary sources localization. IET Signal Processing, 2013, vol. 7, no. 5, p. 382–388. DOI: 10.1049/iet-spr.2012.0394
  22. JIANG, J., DUAN, F., CHEN, J., et al. Mixed near-field and farfield sources localization using the uniform linear sensor array. IEEE Sensors Journal, 2013, vol. 13, no. 8, p. 3136–3143. DOI: 10.1109/JSEN.2013.2257735
  23. YE, Z., DAI, J., XU, X., et al. DOA estimation for uniform linear array with mutual coupling. IEEE Transactions on Aerospace and Electronic Systems, 2009, vol. 45, no. 1, p. 280–288. DOI: 10.1109/TAES.2009.4805279
  24. XU, X., YE, Z., ZHANG, Y. DOA estimation for mixed signals in the presence of mutual coupling. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 9, p. 3523–3532. DOI: 10.1109/TSP.2009.2021919
  25. LIU, C., YE, Z., ZHANG, Y. DOA estimation based on fourthorder cumulants with unknown mutual coupling. Signal Processing, 2009, vol. 89, no. 9, p. 1819–1843. DOI: 10.1016/j.sigpro.2009.03.035
  26. GOOSSENS, R., ROGIER, H. A hybrid UCA-RARE/root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 841–849. DOI: 10.1109/TAP.2007.891848
  27. QI, C., WANG, Y., ZHANG, Y., et al. DOA estimation and selfcalibration algorithm for uniform circular array. Electronics Letters, 2009, vol. 41, no. 20, p. 1092–1094. DOI: 10.1049/el:20051577
  28. LIN, M., YANG, L. Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling. IEEE Antennas and Wireless Propagation Letters, 2006, vol. 5, no. 1, p. 315–318. DOI: 10.1109/LAWP.2006.878898
  29. XIE, J., TAO, H., RAO, X., et al. Localization of mixed far-field and near-field sources under unknown mutual coupling. IEEE Transactions on Signal Processing, 2016, vol. 50, p. 229–239. DOI: 10.1016/j.dsp.2015.10.012
  30. WU, Y., SO, H. C. Simple and accurate two-dimensional angle estimation for a single source with uniform circular array. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 78–80. DOI: 10.1109/LAWP.2008.916687
  31. WU, Y., WANG, H., ZHANG Y., et al. Multiple near-field source localisation with uniform circular array. Electronics Letters, 2013, vol. 49, no. 24, p. 1509–1510. DOI: 10.1049/el.2013.2012
  32. XUE, B., FANG, G., JI, Y. Passive localisation of mixed far-field and near-field sources using uniform circular array. Electronics Letters, 2016, vol. 52, no. 20, p. 1690–1692. DOI: 10.1049/el.2016.2091

Keywords: Uniform circular array, direction of arrival, far-field, near-field, mutual coupling

N. Rabiee, H. Azad, N. Parhizgar [references] [full-text] [DOI: 10.13164/re.2019.0230] [Download Citations]
Enhancement DPT Method in Terms of Estimation Chirp Rate and Central Frequency Parameters of the LFM Signal

The discrete polynomial-phase transform (DPT) method estimate chirp rate and central frequency of LFM signal based on sequential estimation of polynomial phase parameters. This method uses Nonlinear Least Squares (NLS) technique (based on FFT) to estimate phase parameters of the LFM signal. Although NLS enjoys a high level of statistical accuracy, it entails a lot of calculations. In this paper, in order to enhance the precision of estimation and also to reduce the calculations in DPT method, a technique called "combined" is proposed and used in DPT method in order to estimate chirp rate and central frequency of LFM signal .The combined technique firstly provides an initial estimate of frequency interval based on NLS criterion in single-exponential mode, then using initial estimation and Random Basis Functions method (RBF). Simulation results are presented to demonstrate better performance of DPT method by combined technique in order to estimate phase parameters of LFM signal as compared with the existing techniques.

  1. CHAN, Y. K., CHUA, M. Y., KOO, V. C. Side lobe reduction using simple two and tri stages non-linear frequency modulation (NLFM). Progress in Electromagnetic Research, 2009, vol. 98, p. 33–52. DOI: 10.2528/PIER09073004
  2. ATKINS, P. R., COLLINS, T., FOOTE, K. G. Transmit-signal design and processing strategies for sonar target phase measurement. IEEE Journal of Selected Topics in Signal Processing, 2007, vol. 1, no. 1, p. 91–104. DOI: 10.1109/JSTSP.2007.897051
  3. XING, M.,WU, R., LI, Y., et al. New ISAR imaging algorithm based on modified Wigner-Ville distribution. IET Radar, Sonar and Navigation, 2009, vol. 3, no. 1, p. 70–80. DOI: 10.1049/ietrsn:20080003
  4. LV, X. L., XING, M. D., WAN, C. R., et al. ISAR imaging of maneuvering targets based on the range centroid Doppler technique. IEEE Transactions on Image Processing, 2010, vol. 19, no. 1, p. 141–153. DOI: 10.1109/TIP.2009.2032892
  5. MARTONE, M. A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Transactions on Communications, 2001, vol. 49, no. 6, p. 1011–1020. DOI: 10.1109/26.930631
  6. MISARIDIS, T., JENSEN, J. A. Use of modulated excitation signals in medical ultrasound. Part I: Basic concepts and expected benefits. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, vol. 52, no. 2, p. 177–191. DOI: 10.1109/TUFFC.2005.1406545
  7. XIA, Y. Synthetic aperture radar interferometry. Chapter in Sciences of Geodesy-I. Ed. XU, G. Springer Berlin Heidelberg, 2010, p. 415–474. DOI: 10.1007/978-3-642-11741-1
  8. CUMMING, I. G., WONG, F. H. Digital Processing of Synthetic Aperture Radar Data. Norwood: Artech House, 2005. ISBN-13: 978-1580530583
  9. BARBAROSSA, S. Detection and imaging of moving objects with synthetic aperture radar. Part 1: Optimal detection and parameter estimation theory. IEE Proceedings F: Radar and Signal Processing, 1992, vol. 139, no. 1, p. 79–88. DOI: 10.1049/ip-f2.1992.0010
  10. YANG, L., ZHAO, L., BI , G., ZHANG, L. SAR ground moving target imaging algorithm based on parametric and dynamic sparse Bayesian learning. IEEE Transactions on Geosciences and Remote Sensing, 2016, vol. 54, no. 4, p. 2254–2267. DOI: 10.1109/TGRS.2015.2498158
  11. BARBAROSSA, S., Di LORENZO, P., VECCHIARELLI, P. Parameter estimation of 2D multi-component polynomial phase signals: An application to SAR-imaging of moving targets. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 17, p. 4375–4389. DOI: 10.1109/TSP.2014.2333553
  12. ABATZOGLOU, T. J. Fast maximum likelihood joint estimation of frequency and frequency rate. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’86). Tokyo (Japan), 1986, vol. 11, p. 1409–1412. DOI: 10.1109/ICASSP.1986.1168717
  13. O'SHEA, P. Improving polynomial phase parameter estimation by using nonuniformly spaced signal sample method. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 7, p. 3405–3414. DOI: 10.1109/TSP.2012.2191546
  14. DJURIC, P. M., KAY, S. M. Parameter estimation of chirp signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, vol. 38, no. 12, p. 2118–2126. DOI: 10.1109/29.61538
  15. KUMARESAN, R., VERMA, S. On estimating the parameters of chirp signals using rank reduction techniques. In Proceedings of the 21st Asilomar Conference on Signals, Systems and Computers. 1987, p. 555–558.
  16. SHAMSUNDER, S., GIANNAKIS, G. B., FRIEDLANDER, B. Estimating random amplitude polynomial phase signals: A cyclostationary approach. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 2, p. 492–505. DOI: 10.1109/78.348131
  17. ZHENG, J., REN, A. F., SU, T., et al. An algorithm for phase parameters estimation of multi-chirp signals. Journal of Xi’an Jiaotong University, 2013, vol. 47, no. 2, p. 69–74. (In Chinese)
  18. PELEG, S., PORAT, B. Estimation and classification of polynomial-phase signals. IEEE Transactions on Information Theory, 1991, vol. 37, no. 2, p. 422–430. DOI: 10.1109/18.75269
  19. PELEG, S., FRIEDLANDER, B. The discrete polynomial-phase transform. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 8, p. 1901–1914. DOI: 10.1109/78.403349
  20. KAY, S. Signal fitting with uncertain basis functions. IEEE Signal Processing Letters, 2001, vol. 6, no. 18, p. 383–386. DOI: 10.1109/LSP.2011.2140397
  21. KAY, S. M. Fundamentals of Signal Processing-Estimation Theory. Englandwood Cliffs. NJ: Prentice Hall, 1993. ISBN-13: 978-0133457117
  22. KAY, S. M. Fundamentals of Statistical Signal Processing: Practical Algorithm Development. Vol. 3. 1st ed. Prentice Hall, 2013. ISBN-13: 978-0132808033
  23. KAY, S. A computationally efficient nonlinear least squares method using random basis functions. IEEE Signal Processing Letters, 2013, vol. 20, no. 7, p. 721–724. DOI: 10.1109/LSP.2013.2264808
  24. STOICA, P., MOSES, R. L. Spectral Analysis of Signals. 1st ed. Upper Saddle River (NJ): Prentice Hall, 2005. ISBN: 0131139568

Keywords: Discrete Polynomial Phase Transform (DPT), Nonlinear Least Square (NLS), Synthetic Aperture Radar (SAR), Linear Frequency Modulation (LFM)

R. Yao, L. Yao, J. Xu, X. Zuo, H. Liu [references] [full-text] [DOI: 10.13164/re.2019.0238] [Download Citations]
Optimized Time Splitting to Maximize the Lower Bound of Rate with Channel Estimation in An Interference Alignment Based Network

In this paper, for an interference alignment (IA) based network, a time splitting scheme for transmitting training and data symbols is optimized. The time allocated for transmitting training symbol will affect the precision of channel estimation (CE) and thus the achievable rate as well as the duration for data symbol transmission. With the least square (LS) and relaxed minimum mean square error (RMMSE) CE algorithm, the lower bounds of achievable rate are carefully derived, respectively. Then we formulate an optimization problem to maximize the lower bounds of achievable rate by optimizing the time splitting factor (TSF). The existence of optimum is first proved. Then, regarding the complexity of solution, Taylor expansion is adopted to find the approximated optimal TSF. Numerical results are presented to show the optimal TSF can achieve larger lower bound of achievable rate over other fixed TSFs due to its adaptivity to the channel characteristics and its statistics of CE errors. Numerical results also validate that the approximation just brings out some small and acceptable errors on the system rate. In addition, RMMSE CE algorithm shows better performance than LS CE because RMMSE considers noise statistics as modification.

  1. JAFAR, S. A., SHAMAI, S. Degrees of freedom region for the MIMO X channel. IEEE Transactions on Information Theory, 2007, vol. 54, no. 1, p. 151–170. ISSN: 0018-9448. DOI: 10.1109/TIT.2007.911262
  2. CADAMBE, V. R., JAFAR, S. A. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 2008, vol. 54, no. 8, p. 3425–3441. ISSN: 0018-9448. DOI: 10.1109/TIT.2008.926344
  3. YAO, R., LIU, Y., LU, L., et al. Cooperative precoding for cognitive transmission in two-tier networks. IEEE Transactions on Communications, 2016, vol. 64, no. 4, p. 1423–1436. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2016.2536027
  4. GOMADAM, K., CADAMBE, V. R., JAFAR, S. A. A distributed numerical approach to interference alignment and applications to wireless interference networks. IEEE Transactions on Information Theory, 2011, vol. 57, no. 6, p. 3309–3322. ISSN: 0018-9448. DOI: 10.1109/TIT.2011.21422
  5. NOSRAT-MAKOUEI, B., ANDREWS, J. G., HEATH, R. W. MIMO interference alignment over correlated channels with imperfect CSI. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 6, p. 2783–2794. ISSN: 1053-587X. DOI: 10.1109/TSP.2011.2124458
  6. LI, X., ZHAO, N., SUN, Y., et al. Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 7, p. 5497–5511. ISSN: 0018-9545. DOI: 10.1109/TVT.2015.2439300
  7. AQUILINA, P., RATNARAJAH, T. Linear interference alignment in full-duplex MIMO networks with imperfect CSI. IEEE Transactions on Communications, 2017, vol. 65, no. 12, p. 5226–5243. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2017.2744647
  8. AYACH, O. E., LOZANO, A., HEATH, R. W. On the overhead of interference alignment: Training, feedback, and cooperation. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 11, p. 4192–4203. ISSN: 1536-1276. DOI: 10.1109/TWC.2012.092412120588
  9. GUIAZON, R. F., WONG, K. K., WISELY, D. Capacity analysis of interference alignment with bounded CSI uncertainty. IEEE Wireless Communications Letters, 2014, vol. 3, no. 5, p. 505–508. ISSN: 2162-2337. DOI: 10.1109/LWC.2014.2344656
  10. GUIAZON, R. F., WONG, K. K., FITCH, M. Capacity distribution for interference alignment with CSI errors and its applications. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 1, p. 1–10. ISSN: 1536-1276. DOI: 10.1109/TWC.2015.2477298
  11. KHAN, M. N., GILANI, S. O., JAMIL, M., et al. Maximizing Throughput of Hybrid FSO-RF Communication System: An Algorithm. IEEE Access, 2018, vol. 6, p. 30039–30048. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2840535
  12. HASSAN, H., KHAN, M. N., GILANI, S. O., et al. H.264 Encoder Parameter Optimization for Encoded Wireless Multimedia Transmissions. IEEE Access, 2018, vol. 6, p. 22046–22053. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2824835
  13. MALIK, M. H., JAMIL, M., KHAN, M. N., et al. Formal modelling of TCP congestion control mechanisms ECN/RED and SAP-LAW in the presence of UDP traffic. EURASIP Journal on Wireless Communications and Networking, 2016, vol. 2016, no. 1, p.22046–22053. ISSN: 1687-1499. DOI: 10.1186/s13638-016-0646-9
  14. YAO, R., LU, Y., TSIFTSIS, T. A., et al. Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 2018, vol. 6, p. 19238–19246. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2819639
  15. WU, Y., WANG, T., SUN, Y., et al. Time allocation optimisation for multi-antenna wireless information and power transfer with training and feedback. IET Communications, 2017, vol. 11, no. 3, p. 414–420. ISSN: 1751-8628. DOI: 10.1049/iet-com.2016.0425
  16. YAO, R., GAO, Y., XU, J., et al. Impact of channel estimation error on upper bound of rate loss for macro cell in a VFDM system. In Proceedings of the 26th Wireless and Optical Communications Conference (WOCC). Newark (USA), 2017, p. 1–5. ISSN: 2379-1276. DOI: 10.1109/WOCC.2017.7928999
  17. ZHENG, G., WONG, K. K., OTTERSTEN, B. Robust cognitive beamforming with bounded channel uncertainties. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 12, p. 4871–4881. ISSN: 1053-587X. DOI: 10.1109/TSP.2009.2027462
  18. MEKKAWY, T., YAO, R., XU, F., et al. Optimal power allocation in an amplify-and-forward untrusted relay network with imperfect channel state information. Wireless Personal Communications, 2018, vol. 101, no. 3, p. 1281–1293. ISSN: 09296212. DOI: 10.1007/s11277-018-5762-x
  19. SAHU, A., KHARE, A. A Comparative analysis of LS and MMSE channel estimation, techniques for MIMO-OFDM system. International Journal of Engineering Research and Applications, 2014, vol. 4, no. 6, p. 162–167. ISSN: 2248-9622
  20. BIGUESH, M., GERSHMAN, A. B. Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 884–893. ISSN: 1053-587X. DOI: 10.1109/TSP.2005.863008
  21. GUIAZON, R. F., WONG, K. K., FITCH M. Evolution of capacity lower bound of interference alignment with leastsquare channel estimation. In Proceedings of the 3th IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). Chengdu (China), 2015, p. 582–585. DOI: 10.1109/ChinaSIP.2015.7230470
  22. SBOUI, L., REZKI, Z., ALOUINI, M. S. Energy-efficient power allocation for MIMO-SVD systems. IEEE Access, 2017, vol. 5, p. 9774–9784. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2707550
  23. LEI, W. J., JIANG, X., ZUO, L. J., et al. A secure transmission scheme for wireless energy harvesting aystems via energy cooperation and cooperative jamming. Acta Electronica Sinica, 2017, vol. 45, no. 1, p. 67–73. DOI: 10.3969/j.issn.0372-2112.2017.01.010
  24. YAO, R., LI, T., LIU, Y., et al. Analytical approximation of the channel rate for massive MIMO system with large but finite number of antennas. IEEE Access, 2018, vol. 6, no. 99, p. 6496–6504. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2787668
  25. YAO, R., MEKKAWY, T., XU, F. Optimal power allocation to increase secure energy efficiency in a two-way relay network. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Toronto (Canada), 2017, p. 1–5. DOI: 10.1109/VTCFall.2017.8288198

Keywords: Time splitting, lower bound, interference alignment, Taylor expansion

F. Li, H. Li, S. Li [references] [full-text] [DOI: 10.13164/re.2019.0247] [Download Citations]
Sparse Channel Estimation for Large-Scale MISO-OFDM System - a Bayesian VMP Approach

The problem of channel estimation, in large-scale multiple input single output orthogonal frequency division multiplexing (MISO-OFDM) systems, is studied in this paper. In order to take full advantage of the sparse property, an intermediate random vector is introduced to control the sparsity of the estimation of the channel state information (CSI) based on the maximum a posteriori estimator. After carefully designing the prior probability density function (PDF) of the intermediate random vector and the unknown CSI conditioned on it, the sparse optimization problem over the CSI is constructed. The Bayesian inference theory is applied to relax the optimization problem by calculating an approximated PDF with simpler form. After that, variational message-passing (VMP) is used to obtain the solution in iterative analytical form. Furthermore, block sparse structure is implemented to improve the performance. Simulation results demonstrate the merit of proposed algorithm over the traditional ones.

  1. NOSRAT-MAKOUEI, B., ANDREWS, J. G., HEATH, R. W. MIMO interference alignment over correlated channels with imperfect CSI. IEEE Transactions on Signal Processing, 2011, vol. 59, no. 6, p. 2783–2794. ISSN: 1053-587X. DOI: 10.1109/TSP.2011.2124458
  2. LI, X., ZHAO, N., SUN, Y., et al. Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 7, p. 5497–5511. ISSN: 0018-9545. DOI: 10.1109/TVT.2015.2439300
  3. AQUILINA, P., RATNARAJAH, T. Linear interference alignment in full-duplex MIMO networks with imperfect CSI. IEEE Transactions on Communications, 2017, vol. 65, no. 12, p. 5226–5243. ISSN: 0090-6778. DOI: 10.1109/TCOMM.2017.2744647
  4. AYACH, O. E., LOZANO, A., HEATH, R. W. On the overhead of interference alignment: Training, feedback, and cooperation. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 11, p. 4192–4203. ISSN: 1536-1276. DOI: 10.1109/TWC.2012.092412120588
  5. GUIAZON, R. F., WONG, K. K., WISELY, D. Capacity analysis of interference alignment with bounded CSI uncertainty. IEEE Wireless Communications Letters, 2014, vol. 3, no. 5, p. 505–508. ISSN: 2162-2337. DOI: 10.1109/LWC.2014.2344656
  6. GUIAZON, R. F., WONG, K. K., FITCH, M. Capacity distribution for interference alignment with CSI errors and its applications. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 1, p. 1–10. ISSN: 1536-1276. DOI: 10.1109/TWC.2015.2477298
  7. KHAN, M. N., GILANI, S. O., JAMIL, M., et al. Maximizing Throughput of Hybrid FSO-RF Communication System: An Algorithm. IEEE Access, 2018, vol. 6, p. 30039–30048. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2840535
  8. HASSAN, H., KHAN, M. N., GILANI, S. O., et al. H.264 Encoder Parameter Optimization for Encoded Wireless Multimedia Transmissions. IEEE Access, 2018, vol. 6, p. 22046–22053. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2824835
  9. MALIK, M. H., JAMIL, M., KHAN, M. N., et al. Formal modelling of TCP congestion control mechanisms ECN/RED and SAP-LAW in the presence of UDP traffic. EURASIP Journal on Wireless Communications and Networking, 2016, vol. 2016, no. 1, p.22046–22053. ISSN: 1687-1499. DOI: 10.1186/s13638-016-0646-9
  10. YAO, R., LU, Y., TSIFTSIS, T. A., et al. Secrecy rate-optimum energy splitting for an untrusted and energy harvesting relay network. IEEE Access, 2018, vol. 6, p. 19238–19246. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2018.2819639
  11. WU, Y., WANG, T., SUN, Y., et al. Time allocation optimisation for multi-antenna wireless information and power transfer with training and feedback. IET Communications, 2017, vol. 11, no. 3, p. 414–420. ISSN: 1751-8628. DOI: 10.1049/iet-com.2016.0425
  12. YAO, R., GAO, Y., XU, J., et al. Impact of channel estimation error on upper bound of rate loss for macro cell in a VFDM system. In Proceedings of the 26th Wireless and Optical Communications Conference (WOCC). Newark (USA), 2017, p. 1–5. ISSN: 2379-1276. DOI: 10.1109/WOCC.2017.7928999
  13. ZHENG, G., WONG, K. K., OTTERSTEN, B. Robust cognitive beamforming with bounded channel uncertainties. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 12, p. 4871–4881. ISSN: 1053-587X. DOI: 10.1109/TSP.2009.2027462
  14. MEKKAWY, T., YAO, R., XU, F., et al. Optimal power allocation in an amplify-and-forward untrusted relay network with imperfect channel state information. Wireless Personal Communications, 2018, vol. 101, no. 3, p. 1281–1293. ISSN: 09296212. DOI: 10.1007/s11277-018-5762-x
  15. SAHU, A., KHARE, A. A Comparative analysis of LS and MMSE channel estimation, techniques for MIMO-OFDM system. International Journal of Engineering Research and Applications, 2014, vol. 4, no. 6, p. 162–167. ISSN: 2248-9622
  16. BIGUESH, M., GERSHMAN, A. B. Training-based MIMO channel estimation: a study of estimator tradeoffs and optimal training signals. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 884–893. ISSN: 1053-587X. DOI: 10.1109/TSP.2005.863008
  17. GUIAZON, R. F., WONG, K. K., FITCH M. Evolution of capacity lower bound of interference alignment with leastsquare channel estimation. In Proceedings of the 3th IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). Chengdu (China), 2015, p. 582–585. DOI: 10.1109/ChinaSIP.2015.7230470
  18. SBOUI, L., REZKI, Z., ALOUINI, M. S. Energy-efficient power allocation for MIMO-SVD systems. IEEE Access, 2017, vol. 5, p. 9774–9784. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2707550
  19. LEI, W. J., JIANG, X., ZUO, L. J., et al. A secure transmission scheme for wireless energy harvesting aystems via energy cooperation and cooperative jamming. Acta Electronica Sinica, 2017, vol. 45, no. 1, p. 67–73. DOI: 10.3969/j.issn.0372-2112.2017.01.010
  20. YAO, R., LI, T., LIU, Y., et al. Analytical approximation of the channel rate for massive MIMO system with large but finite number of antennas. IEEE Access, 2018, vol. 6, no. 99, p. 6496–6504. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2017.2787668
  21. YAO, R., MEKKAWY, T., XU, F. Optimal power allocation to increase secure energy efficiency in a two-way relay network. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Toronto (Canada), 2017, p. 1–5. DOI: 10.1109/VTCFall.2017.8288198

Keywords: Channel estimation, multiple-input-single-output (MISO), OFDM, variational Bayesian inference, variational message-passing (VMP)

X. F. Chi, M. H. Zhang, L. L. Zhao, L. Qian [references] [full-text] [DOI: 10.13164/re.2019.0254] [Download Citations]
Analysis of Access Delay and Delay Jitter for the CSMA/CA Mechanism with Inactive Period

Owing to the distributed features and flexibility, carrier sense multiple access with collision avoidance (CSMA/CA) mechanisms have been widely adopted in wireless networks. Considering energy consumption, we devote to explore an energy efficient carrier sense multiple access with collision avoidance (EE-CSMA/CA) mechanism. The access delay and delay jitter are two of most important quality of service (QoS) metrics. EE-CSMA/CA inevitably experiences the tortures bred from its delay and delay jitter performance, because its frame structure with inactive period brings delay. In this paper, we aim to analyze the access delay and delay jitter of packets for the CSMA/CA with inactive period under the unsaturated conditions. Based on the Markov theory, we model the mechanism of EE-CSMA/CA as a four- dimensional Markov chain, and the fourth variable of Markov chain differentiates the active period and the inactive period of EE-CSMA/CA. Then, deriving in probability generation domain, we get the probability distribution of service time and obtain the access delay. Finally, the queue in a node is decoupled, and two queues with different states of empty and non-empty are configured logically, which helps to enable the complex analysis of delay jitter. Based on the whole probability analysis, the probability distribution of delay jitter is obtained. We show that the active ratio (active time over whole frame time) affects the access delay and delay jitter. When the active ratio is constant, the duration of active period has less effect on the access delay while it deteriorates delay jitter performance.

  1. HASSAN, H., KHAN, M. N., GILANI, S. O., et al. H.264 encoder parameter optimization for encoded wireless multimedia transmissions. IEEE Access, 2018, vol. 6, p. 22046–22053. DOI: 10.1109/ACCESS.2018.2824835
  2. KYRBASHOV, B., BARONAK, I., KOVACIK, M., et al. Evaluation and investigation of the delay in VoIP networks. Radioengineering, 2011, vol. 20, no. 2, p. 540–547.
  3. CHEN, K. T., HUANG, C. Y., HUANG, P., et al. Quantifying Skype user satisfaction. ACM Sigcomm Computer Communication Review, 2006, vol. 36, no. 4, p. 399–410. DOI: 10.1145/1151659.1159959
  4. ZHAO, N., CHI, X. F., ZHAO, L. L., et al. A spectrum efficient self-admission framework for coexisting IEEE 802.15.4 networks under heterogeneous traffics. Radioengineering, 2018, vol. 27, no. 1, p. 326–334. DOI: 10.13164/re.2018.0326
  5. KO, Y. M., PENDER, J. Strong approximations for time-varying infinite-server queues with non-renewal arrival and service processes. Stochastic Models, 2018, vol. 34, no. 2, p. 186–206. DOI: 10.1080/15326349.2018.1425886
  6. WU, Y., MIN, G., WANG, G., et al. Modelling of heterogeneous wireless networks under batch arrival traffic with communication locality. In IEEE Wireless Communications and Networking Conference (WCNC). Nevada, 2009, p. 2798–2803. DOI: 10.1109/WCNC.2009.4917810
  7. CHYDZINSKI, A., SAMOCIUK, D., ADAMCZYK, B. Burst ratio in the finite-buffer queue with batch Poisson arrivals. Applied Mathematics and Computation, 2018, vol. 330, p. 225–238. DOI: 10.1016/j.amc.2018.02.021
  8. BIANCHI, G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 2000, vol. 18, no. 3, p. 535–547. DOI: 10.1109/49.840210
  9. DAI, L., SUN, X. H. A unified analysis of IEEE 802.11 DCF networks: stability, throughput, and delay. IEEE Transactions on Mobile Computing, 2013, vol. 12, no. 8, p. 1558–1572. DOI: 10.1109/TMC.2012.128
  10. CHANDRA, K., PRASAD, V., NIEMEGEERS, I. Performance analysis of IEEE 802.11ad MAC Protocol. IEEE Communications Letters, 2017, vol. 21, no. 7, p. 1513–1516. DOI: 10.1109/LCOMM.2017.2677924
  11. BANERJEE, B., MUKHERJEE, A., NASKAR, M. K., et al. BSMAC: A hybrid MAC protocol for IoT systems. In IEEE Global Communications Conference (IEEE GLOBECOM). Washington, 2017, p. 1–7. DOI: 10.1109/GLOCOM.2016.7841643
  12. MALIK, M. H., JAMIL, M., KHAN, M. N., et al. Formal modelling of TCP congestion control mechanisms ECN/RED and SAP-LAW in the presence of UDP traffic. EURASIP Journal on Wireless Communications and Networking, 2016, vol. 156, p. 1–12. DOI: 10.1186/s13638-016-0646-9
  13. XIAO, Z. L., ZHOU, J., YAN, J.J., et al. Performance evaluation of IEEE 802.15.4 with real time queueing analysis. Ad Hoc Networks, 2018, vol. 73, p. 80–94. DOI: 10.1016/j.adhoc.2018.01.006
  14. PORETSKY, S., PERSER, J., ERRAMILLI, S., et al. Terminology for benchmarking network-layer traffic control mechanisms. Internet Engineering Task Force (IETF). DOI: 10.17487/RFC4689
  15. DAHMOUNI, H., GIRARD, A., OUZINEB, M., et al. The impact of jitter on traffic flow optimization in communication networks. IEEE Transactions on Network and Service Management, 2012, vol. 9, no. 3, p. 279–292. DOI: 10.1109/TNSM.2012.051712.110148
  16. GELEJI, G., PERROS, H. Jitter analysis of an MMPP-2 tagged stream in the presence of an MMPP-2 background stream. Applied Mathematical Modelling, 2014, vol. 38, no. 14, p. 3380–3400. DOI: 10.1016/j.apm.2013.11.055
  17. DBIRA, H., GIRARD, A., SANSO, B. Calculation of packet jitter for non-Poisson traffic. Annals of Telecommunications, 2016, vol. 71, no. 5-6, p. 223–237. DOI: 10.1007/s12243-016-0492-0
  18. BRUN, O., BOCKSTAL, C., GARCIA, J. M. Analytic approximation of the jitter incurred by CBR traffics in IP networks. Telecommunication Systems, 2006, vol. 33, no. 1-3, p. 23–45. DOI: 10.1007/s11235-006-9005-1
  19. DONG, W., CHI, X. F., LIU, Z. C., et al. Queuing theory based analysis for packet jitter of mixed services. The Journal of China Universities of Posts and Telecommunications, 2014, vol. 21, no. 3, p. 71–76. DOI: 10.1016/S1005-8885(14)60303-4
  20. HAMMAD, K., MOUBAYED, A., SHAMI, A., et al. Analytical approximation of packet delay jitter in simple queues. IEEE Wireless Communications Letters, 2016, vol. 5, no. 6, p. 564–567. DOI: 10.1109/LWC.2016.2601609
  21. NA, F., CHI, X. F., DONG, W., et al. Jitter analysis of real-time services in IEEE 802.15.4 WSNs and wired IP concatenated networks. The Journal of China Universities of Posts and Telecommunications, 2016, vol. 23, no. 4, p. 1–8. DOI: 10.1016/S1005-8885(16)60039-0
  22. ZHENG, Y., LU, K. J., WU, D. P., et al. Performance analysis of IEEE 802.11 DCF in imperfect channels. IEEE Transactions on Vehicular Technology, 2006, vol. 55, no. 5, p. 1648–1656. DOI: 10.1109/TVT.2006.878606

Keywords: CSMA/CA mechanism, inactive period, unsaturated conditions, Markov chain, access delay, delay jitter

W. K. Zhang, K. B. Cui, W. W. Wu, T. Xie, N. C. Yuan [references] [full-text] [DOI: 10.13164/re.2019.0265] [Download Citations]
DOA Estimation of LFM Signal Based on Single-Source Time-Frequency Points Selection Algorithm by Using the Hough Transform

Direction of arrival (DOA) estimation performance may degrade substantially when linear frequency modulation (LFM) signals are spectrally-overlapped in time-frequency (TF) domain. In order to solve this problem, the single-source TF points selection algorithm based on Wigner-Ville distribution (WVD) and Hough transform is studied in this paper. Firstly, the signal intersections in TF domain can be solved based on the Hough transform. Secondly, by removing multiple-source TF points at intersections according to the empirical threshold value which is calculated by using the statistical experiment method, we can get single-source TF points set. Then, based on the Euclidean distance operator, single-source TF points set belonging to each signal can be obtained according to the property that TF points of the same signal have the same eigenvector. Finally, the averaged spatial TF distribution matrix is constructed and DOA estimation is realized based on the multiple signal classification (MUSIC) algorithm. In this way, the proposed algorithm can resolve the TF non-disjoint LFM signals because it can automatically select single-source TF points set of each signal. Simulation results illustrate that the proposed algorithm possesses higher angular resolution and has pretty good DOA estimation precision compared with existing algorithms.

  1. SCHMIDT, R. O. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 1986, vol. 34, no. 3, p. 276–280. DOI: 10.1109/tap.1986.1143830
  2. ROY, R., PAULRAJ, A., KAILATH, T. Direction-of-arrival estimation by subspace rotation methods-ESPRIT. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Tokyo (Japan), 1986, p. 2495–2498. DOI: 10.1109/icassp.1986.1168673
  3. CUI, K., WU, W., CHEN, X., et al. 2-D DOA estimation of LFM signals based on dechirping algorithm and uniform circle array. Radioengineering, 2017, vol. 26, no. 1, p. 299–308. DOI: 10.13164/re.2017.0299
  4. CHEN, H., WAN, Q., FAN, R., et al. Direction-of-arrival estimation based on sparse recovery with second-order statistics. Radioengineering, 2015, vol. 24, no. 1, p. 208–213. DOI: 10.13164/re.2015.0208
  5. GUO, M., MAO, X., LI, S., et al. A fast DOA estimation algorithm based on polarization MUSIC. Radioengineering, 2015, vol. 24, no. 1, p. 214–225. DOI: 10.13164/re.2015.0214
  6. BELOUCHRANI, A., AMIN, M. G., THIRION-MOREAU, N., et al. Source separation and localization using time-frequency distributions: an overview. IEEE Signal Processing Magazine, 2013, vol. 30, no. 6, p. 97–107. DOI: 10.1109/msp.2013.2265315
  7. BELOUCHRANI, A., AMIN, M. G. Blind source separation based on time–frequency signal representations. IEEE Transactions on Signal Processing, 1998, vol. 46, no. 11, p. 2888–2897. DOI: 10.1109/78.726803
  8. BELOUCHRANI, A., AMIN, M. G. Time-frequency MUSIC. IEEE Signal Processing Letters, 1999, vol. 6, no. 5, p. 109–110. DOI: 10.1109/97.755429
  9. AMIN, M. G., ZHANG, Y. Direction finding based on spatial time-frequency distribution matrices. Digital Signal Processing, 2000, vol. 10, no. 4, p. 325–339. DOI: 10.1006/dspr.2000.0374
  10. ZHANG, Y., MU, W., AMIN, M. G. Subspace analysis of spatial time–frequency distribution matrices. IEEE Transactions on Signal Processing, 2001, vol. 49, no. 4, p. 747–759. DOI: 10.1109/78.912919
  11. YILMAZ, O., RICKARD, S. Blind separation of speech mixtures via time-frequency masking. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 7, p. 1830–1847. DOI: 10.1109/tsp.2004.828896
  12. GERSHMAN, A. B., PESAVENTO, M., AMIN, M. G. Estimating parameters of multiple wideband polynomial-phase sources in sensor arrays. IEEE Transactions on Signal Processing, 2001, vol. 49, no. 12, p. 2924–2934. DOI: 10.1109/78.969501
  13. GERSHMAN, A. B., AMIN, M. G. Coherent wideband DOA estimation of multiple FM signals using spatial time-frequency distributions. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Istanbul (Turkey), 2000, p. 3065–3068. DOI: 10.1109/ icassp.2000.861184
  14. LINH-TRUNG, N., BELOUCHRANI, A., ABED-MERAIM, K., et al. Separating more sources than sensors using time-frequency distributions. EURASIP Journal on Applied Signal Processing, 2005, vol. 17, p. 2828–2847. DOI: 10.1155/ASP.2005.2828
  15. HEIDENREICH, P., CIRILLO, L. A., ZOUBIR, A. M. Morphological image processing for FM source detection and localization. Signal Processing, 2009, vol. 89, no. 6, p. 1070–1080. DOI: 10.1016/j.sigpro.2008.12.011
  16. JOURJINE, A., RICKARD, S., YILMAZ, O. Blind separation of disjoint orthogonal signals: Demixing N sources from 2 mixtures. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Istanbul (Turkey), 2000, p. 2985–2988. DOI: 10.1109/icassp.2000.861162
  17. KIM, S. G., YOO, C. D. Underdetermined blind source separation based on subspace representation. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 7, p. 2604–2614. DOI: 10.1109/tsp.2009.2017570
  18. ZHANG, H., BI, G., CAI, Y., et al. DOA estimation of closelyspaced and spectrally-overlapped sources using a STFT-based MUSIC algorithm. Digital Signal Processing, 2016, vol. 52, no. C, p. 25–34. DOI: 10.1016/j.dsp.2016.01.015
  19. CUI, K., CHEN, X., HUANG, J., et al. DOA estimation of multiple LFM sources using a STFT-based and FBSS-based MUSIC algorithm. Radioengineering, 2017, vol. 26, no. 4, p. 1126–1137. DOI: 10.13164/re.2017.1126
  20. ZHANG, Y., AMIN, M. G. Blind separations of nonstationary sources based on spatial time-frequency distributions. EURASIP Journal on Advances in Signal Processing, 2006, p. 1–13. DOI: 10.1155/asp/2006/64785
  21. FADAILI, E. M., MOREAU, N. T., MOREAU, E. Nonorthogonal joint diagonalization/zero diagonalization for source separation based on time-frequency distributions. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 5, p. 1673–1687. DOI: 10.1109/tsp.2006.889469
  22. AISSA EL-BEY, A., LINH-TRUNG, N., ABED-MERAIM, K., et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 3, p. 897–907. DOI: 10.1109/tsp.2006.888877
  23. BELOUCHRANI, A., ABED-MERAIM, K., AMIN, M. G., et al. Joint anti-diagonalization for blind source separation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Salt Lake City (USA), 2001, vol. 5, p. 2789–2792. DOI: 10.1109/icassp.2001.940225
  24. WIGNER, E. P. On the quantum correction for thermodynamic equilibrium. Physical. Review, 1932, vol. 40, no. 5, p. 749–759. DOI: 10.1103/physrev.40.749
  25. BABAROSSA, S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transaction on Signal Processing, 1995, vol. 43, no. 6, p. 1511–1515. DOI: 10.1109/78.388866
  26. CHAMBERS, C., TOZER, T. C., SHARMAN, K. C., et al. Temporal and spatial sampling influence on the estimates of superimposed narrowband signals: when less can mean more. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 12, p. 3085–3098. DOI: 10.1109/78.553482

Keywords: LFM signal, DOA estimation, time-frequency analysis, single-source time-frequency point, Hough transform; WVD

Z. Huang, W. Wang [references] [full-text] [DOI: 10.13164/re.2019.0276] [Download Citations]
Robust Measurement Matrix Design Based on Compressed Sensing for DOA Estimation

It has been well known that Massive multiple-input-multiple-output (MIMO) radar can provide an excellent performance in direction of arrival (DOA) estimation. However, the significant increasing data size will seriously reduce the computational efficiency in practical application. Although compressed measurement can reduce data size and computational complexities, improper compression will enhance the environment noise. In this paper, a robust measurement matrix is designed to reduce data size and environment noise. Different from the general compressed sensing (CS) schemes, the optimization function is established by considering the overall mutual coherence of dictionary and the energy of measurement matrix, which is more suitable for noisy environment. The optimization function is highly non-convex due to the rank shrinkage of measurement matrix. To solve this problem, an alternating minimization scheme based on matrix factorization and Principal Component Analysis (PCA) is proposed. Moreover, the structure of measurement matrix is designed for massive MIMO receiver. Furthermore, numerous results demonstrate this scheme has a better estimation performance than random measurement method and general CS schemes in the noisy environment.

  1. KRIM, H., VIBERG, M. Two decades of array signal processing research: the parametric approach. IEEE Signal Processing Magazine, 1996, vol. 13, p. 67–94. DOI: 10.1109/79.526899
  2. LU, L., LI, G. Y., SWINDLEHURST, A. L., et al. An overview of massive MIMO: Benefits and challenges. IEEE Journal on Selected Topics in Signal Processing, 2014, vol. 8, no. 5, p. 742–758. DOI: 10.1109/JSTSP.2014.2317671
  3. JIANG, F., CHEN, J., SWINDLEHURST, A. L., et al. Massive MIMO for wireless sensing with a coherent multiple access channel. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 12, p. 3005–3017. DOI: 10.1109/TSP.2015.2417508
  4. LARSSON, E. G., EDFORS, O., TUFVESSON, F., et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 186–195. DOI: 10.1109/MCOM.2014.6736761
  5. HOCTOR, R. T., KASSAM, S. A. The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proceedings of the IEEE, 1990 , vol. 78, no. 4, p. 735–752. DOI: 10.1109/5.54811
  6. MOFFET, A. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, p. 172–175. DOI: 10.1109/TAP.1968.1139138
  7. BLOOM, G. S., GOLOMB, S. W. Applications of Numbered Undirected Graphs. Proceedings of the IEEE, 1977, vol. 65, no. 4, p. 562–570. DOI: 10.1109/PROC.1977.10517
  8. PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4167–4181. DOI: 10.1109/TSP.2010.2049264
  9. AHMED, A., ZHANG, Y. D., HIMED, B. Effective nested array design for fourth-order cumulant-based DOA estimation. In Proceedings of the IEEE Radar Conference (RadarConf). Seattle (USA), 2017, p. 998–1002. DOI: 10.1109/RADAR.2017.7944349
  10. VAIDYANATHAN, P. P., PAL, P. Sparse sensing with co-prime samplers and arrays. IEEE Transactions on Signal Processing, 2010 vol. 59, no. 2, p. 1405–1409. DOI: 10.1109/TSP.2010.2089682
  11. ROEMER, F., IBRAHIM, M., FRANKE, N., et al. Measurement matrix design for compressed sensing based time delay estimation. In Proceedings of the European Signal Processing Conference (EUSIP). Budapest (Hungary), 2016, p. 458–462. DOI: 10.1109/EUSIPCO.2016.7760290
  12. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  13. WANG, Y., LEUS, G., PANDHARIPANDE, A. Direction estimation using compressive sampling array processing. In IEEE/SP Workshop on Statistical Signal Processing. Cardiff (UK), 2009, p. 626–629. DOI: 10.1109/SSP.2009.5278497
  14. ELAD, M. Optimized projections for compressed sensing. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5695–5702. DOI: 10.1109/TSP.2007.900760
  15. CHEN, W., RODRIGUES, M. R., WASSELL, I. J. On the use of unit-norm tight frames to improve the average mse performance in compressive sensing applications. IEEE Signal Processing Letters, 2012, vol. 19, no. 1, p. 8–11. DOI: 10.1109/LSP.2011.2173675
  16. DUARTE-CARVAJALINO, J. M., SAPIRO, G. Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, vol. 18, no. 7, p. 1395–1408. DOI: 10.1109/TIP.2009.2022459
  17. ENTEZARI, R., RASHIDI, A. Measurement matrix optimization based on incoherent unit norm tight frame. AEU-International Journal of Electronics and Communications, 2017, vol. 82, p. 321–326. DOI: 10.1016/J.AEUE.2017.09.015
  18. LI, G., ZHU, Z., YANG, D., et al. On projection matrix optimization for compressive sensing systems. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 11, p. 2887–2898. DOI: 10.1109/TSP.2013.2253776
  19. IBRAHIM, M., RAMIREDDY, V., LAVRENKO, A., et al. Design and analysis of compressive antenna arrays for direction of arrival estimation. Signal Processing, 2016, vol. 138, p. 1–14. DOI: 10.1016/j.sigpro.2017.03.013
  20. GU, Y., ZHANG, Y. D., GOODMAN, N. A. Optimized compressive sensing-based direction-of-arrival estimation in massive MIMO. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings (ICASSP). New Orleans (USA), 2017, p. 3181–3185. DOI: 10.1109/ICASSP.2017.7952743
  21. HONG, T., ZHU, Z. An efficient method for robust projection matrix design. Signal Processing, 2018, vol. 143, p. 200–210. DOI: 10.1016/j.sigpro.2017.09.007.
  22. TROPP, J. A., DHILLON, I. S., HEARTH, R. W., et al. Constructing packings in Grassmannian manifolds via alternating projection. Experimental Mathematics, 2008, vol. 17, no. 1, p. 9–35. DOI: 10.1080/10586458.2008.10129018
  23. TROPP, J. A., DHILLON, I. S., HEARTH, R. W., et al. Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory, 2005, vol. 51, no. 1, p. 188–209. DOI: 10.1109/TIT.2004.839492.

Keywords: compressed sensing, robust measurement design, DOA estimation, sparse representation, massive MIMO

Y. Pan, J. Zhang, Z. Qi [references] [full-text] [DOI: 10.13164/re.2019.0283] [Download Citations]
Direction-of-Arrival Estimation for Arbitrary Array: Combining Spatial Annihilating and Manifold Separation

In this paper, we address the problem of direction-of-arrival (DOA) estimation with the arbitrary array. The manifold separation technique (MST) is employed to transform the arbitrary array into a virtual array with Vandermonde manifold on which the spatial annihilating filter reconstruction method can be applied. When building the optimization problem for annihilating filter reconstruction, we propose the general solution modeling which can reduce the truncation error in MST to a negligible level. Finally, the spatial annihilating filter is reconstructed under the structural total least square (STLS) framework with the multiple measurement vectors structural total least norm (MMV-STLN) approach and the DOAs are estimated from the filter coefficients. Numerical simulations have verified the new proposed method adapts well to the low signal-to-noise ratio (SNR), limited snapshots and closely-spaced sources scenarios and can handle the coherent signals.

  1. JOHNSON, D. H., DUDGEON, D.E. Array Signal Processing: Concepts and Techniques. New York, USA: Simon & Schuster, 1992. ISBN: 0130485136
  2. BARABELL, A. Improving the resolution performance of eigenstructure-based direction-finding algorithms. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Boston (USA), 1983, vol. 8, p. 336–339. DOI:10.1109/ICASSP.1983.1172124
  3. ROY, R., KAILATH, T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 7, p. 984-995. ISSN: 0096–3518. DOI:10.1109/29.32276
  4. STOICA, P., SHARMAN, K.C. Novel eigenanalysis method for direction estimation. IEE Proceedings F (Radar and Signal Processing), 1990, vol. 137, no. 1, p. 19–26. ISSN: 0956-375X. DOI:10.1049/ip-f-2.1990.0004
  5. TREES, H.L.V. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. New Jersey, USA: John Wiley & Sons, 2002.
  6. BRESLER, Y., MACOVSKI, A. Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, vol. 34, no. 5, p. 1081–1089. ISSN: 0096-3518. DOI:10.1109/TASSP.1986.1164949
  7. LIU, Z., ZHOU, Y. A unified framework and sparse bayesian perspective for direction-of-arrival estimation in the presence of array imperfections. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 15, p. 3786–3798. ISSN: 1053-587X. DOI:10.1109/TSP.2013.2262682
  8. MATHEWS, C.P., ZOLTOWSKI, M.D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 9, p. 2395–2407. ISSN: 1053-587X. DOI:10.1109/78.317861
  9. DAVIES, D.E.N. The Handbook of Antenna Design vol. 2. London, UK: Peter Peregrinus, 1983. ISBN: 0906048877
  10. FRIEDLANDER, B. The root-music algorithm for direction finding with interpolated arrays. Signal Processing, 1993, vol. 30, no. 1, p. 15–29. ISSN: 0165-1684. DOI:10.1016/0165-1684(93)90048-F
  11. HYBERG, P., JANSSON, M., OTTERSTEN, B. Array interpolation and DOA MSE reduction. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 12, p. 4464–4471. ISSN: 1053-587X. DOI: 10.1109/TSP.2005.859341
  12. PESAVENTO, M., GERSHMAN, A.B., LUO, Z.Q. Robust array interpolation using second-order cone programming. IEEE Signal Processing Letters, 2002, vol. 9, no. 1, p. 8–11. ISSN: 1070-9908. DOI:10.1109/97.988716
  13. DORON, M.A., DORON, E. Wavefield modeling and array processing. I. Spatial sampling. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 10, p. 2549–2559. ISSN: 1053-587X. DOI:10.1109/78.324722
  14. DORON, M.A., DORON, E. Wavefield modeling and array processing. II. Algorithms. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 10, p. 2560–2570. ISSN: 1053-587X. DOI:10.1109/78.324723
  15. DORON, M.A., DORON, E. Wavefield modeling and array processing. III. Resolution capacity. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 10, p. 2571–2580. ISSN: 1053-587X. DOI:10.1109/78.324724
  16. BELLONI, F., RICHTER, A., KOIVUNEN, V. Doa estimation via manifold separation for arbitrary array structures. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 10, p. 4800–4810. ISSN: 1053-587X. DOI:10.1109/TSP.2007.896115
  17. RUBSAMEN, M., GERSHMAN, A.B. Direction-of-arrival estimation for nonuniform sensor arrays: From manifold separation to Fourier domain music methods. IEEE Transactions on Signal Processing, 2009, vol. 57, no. 2, p. 588–599. ISSN: 1053-587X. DOI:10.1109/TSP.2008.2008560
  18. SHAN, T.J., WAX, M., KAILATH, T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, vol. 33, no. 4, p. 806–811. ISSN: 0096-3518. DOI:10.1109/TASSP.1985.1164649
  19. LAU, B.K. Applications of Antenna Arrays in Third-Generation Mobile Communications. Ph.D. thesis, Curtin University of Technology, 2002
  20. STOICA, P., NEHORAI, A. Music, maximum likelihood, and cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. ISSN: 0096-3518. DOI:10.1109/29.17564
  21. PAN, Y., LUO, G.Q. JIN, H., et al., Direction-of-arrival estimation with ula: A spatial annihilating filter reconstruction perspective. IEEE Access, 2018, vol. 6, p. 23172–23179. ISSN: 2169-3536. DOI:10.1109/ACCESS.2018.2828799
  22. LANDMANN, M., GALDO, G.D. Efficient antenna description for MIMO channel modelling and estimation. In Proceedinds of the 7th European Conference on Wireless Technology. Amsterdam (The Netherlands), 2004, p. 217–220.
  23. VETTERLI, M., MARZILIANO, P., BLU, T. Sampling signals with finite rate of innovation. IEEE Transactions on Signal Processing, 2002, vol. 50, no. 6, p. 1417–1428. ISSN: 1053-587X. DOI:10.1109/TSP.2002.1003065
  24. MARKOVSKY, I., VAN HUFFEL, S. Overview of total least-squares methods. Signal Processing, 2007, vol. 87, no. 10, p. 2283–2302. DOI:10.1016/j.sigpro.2007.04.004
  25. ROSEN, J.B., PARK, H., GLICK, J. Total least norm formulation and solution for structured problems. SIAM Journal on Matrix Analysis and Applications, 1996, vol. 17, no. 1, p. 110–126. DOI:10.1137/S0895479893258802
  26. HUFFEL, S.V., PARK, H. ROSEN, J.B. Formulation and solution of structured total least norm problems for parameter estimation. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 10, p. 2464–2474. ISSN: 1053-587X. DOI:10.1109/78.539031
  27. LEMMERLING, P., VAN HUFFEL, S. Analysis of the structured total least squares problem for hankel/toeplitz matrices. Numerical Algorithms, 2001, vol. 27, no. 1, p. 89–114. ISSN: 1572-9265. DOI: 10.1023/A:1016775707686
  28. CAPON, J. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 1969, vol. 57, no. 8, p. 1408–1418. ISSN: 0018-9219. DOI:10.1109/PROC.1969.7278
  29. AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, vol. 19, no. 6, p. 716–723. ISSN: 0018-9286. DOI:10.1109/TAC.1974.1100705
  30. WAX, M., KAILATH, T. Detection of signals by information theoretic criteria. IEEE Transactions on Acoustics, Speech and Signal Processing, 1985, vol. 33, no. 2, p.387–392. ISSN: 0096-3518. DOI:10.1109/TASSP.1985.1164557
  31. HUNG, H., KAVEH, M. Focussing matrices for coherent signalsubspace processing. IEEE Transactions on Acoustics, Speech and Signal Processing, 1988, vol. 36, no. 8, p. 1272–1281. ISSN: 0096-3518. DOI:10.1109/29.1655
  32. FLETCHER, R. Practical Methods of Optimization. 2nd ed., New York, USA: Wiley Interscience, 1987. ISBN: 0-471-91547-5
  33. FERREIRA, O., GONCALVES, M., OLIVEIRA, P. Local convergence analysis of the gauss-newton method under a majorant condition. Journal of Complexity, 2011, vol. 27, no. 1, p. 111–125. ISSN: 0885-064X. DOI:https://doi.org/10.1016/j.jco.2010.09.001
  34. MALIOUTOV, D., CETIN, M., WILLSKY, A.S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. ISSN: 1053-587X. DOI:10.1109/TSP.2005.850882
  35. SCHMIDT, R.O. Multiple emitter location and signal parameter estimation, In Proceedings of RADC Spectrum Estimation Workshop. 1979, p. 243–258
  36. STOICA, P., NEHORAI, A. Music, maximum likelihood, and Cramer-Rao bound. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, vol. 37, no. 5, p. 720–741. ISSN: 0096-3518. DOI:10.1109/29.17564

Keywords: Direction-of-arrival estimation, manifold separation technique, spatial annihilating, general solution modeling, structural total least square

J. Ahmed, S. Wyne [references] [full-text] [DOI: 10.13164/re.2019.0292] [Download Citations]
Ergodic Capacity of D2D Underlay Communication using MC-CDMA

Device to device (D2D) communication that underlay conventional cellular networks can increase their spectrum utilization. However, since D2D users share the frequency band with cellular users, interference between these two network tiers can become a major performance bottleneck. In this scenario, use of a spread spectrum technique can be a good choice for D2D communication, due to its inherent interference mitigation capability. In this work, we analyze the achievable ergodic capacity for a D2D user pair that uses multi-carrier code division multiple access (MC-CDMA). Interference from both cellular users and other D2D users is considered under Rayleigh faded links and carrier frequency offset. Our derived expression requires a single integration and gives a tight lower bound to achievable ergodic capacity.

  1. TEHRANI, M. N., UYSAL, M., YANIKOMEROGLU, H. Deviceto-device communication in 5G cellular networks: challenges, solutions, and future directions. IEEE Communications Magazine, 2014, vol. 52, no. 5, p. 86–92. DOI: 10.1109/MCOM.2014.6815897
  2. LIEN, S. Y., CHIEN, C. C., TSENG, F. M., HO, T. C. 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Communications Magazine, 2016, vol. 54, no. 3, p. 29–35. DOI: 10.1109/MCOM.2016.7432168
  3. ASADI, A., WANG, Q., MANCUSO, V. A survey on deviceto-device communication in cellular networks. IEEE Communications Surveys Tutorials, 2014, vol. 16, no. 4, p. 1801–1819. DOI: 10.1109/COMST.2014.2319555
  4. CAO, Y., JIANG, T., WANG, C. Cooperative device-to-device communications in cellular networks. IEEE Wireless Communications, 2015, vol. 22, no. 3, p. 124–129. DOI: 10.1109/MWC.2015.7143335
  5. MESHGI, H., ZHAO, D., ZHENG, R. Optimal resource allocation in multicast device-to-device communications underlaying LTE networks. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 9, p. 8357–8371. DOI: 10.1109/TVT.2017.2691470
  6. MIN, H., LEE, J., PARK, S., HONG, D. Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Transactions on Wireless Communications, 2011, vol. 10, no. 12, p. 3995–4000. DOI: 10.1109/TWC.2011.100611.101684
  7. KWON, H., LEE, J., KANG, I. Interference-aware interference mitigation for device-to-device communications. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring). Seoul (South Korea), 2014, p. 1–5. DOI: 10.1109/VTCSpring.2014.7022956
  8. LEE, D., KIM, S.-I., LEE, J., HEO, J. Power allocation and transmission period selection for device-to-device communication as an underlay to cellular networks. Wireless Personal Communications, 2014, vol. 79, no. 1, p. 1–20. DOI: 10.1007/s11277-014-1837-5
  9. YIN, R., YU, G., ZHONG, C., ZHANG, Z. Distributed resource allocation for D2D communication underlaying cellular networks. In Proceedings of the IEEE International Conference on Communications Workshops (ICC). Budapest (Hungary), 2013, p. 138–143. DOI: 10.1109/ICCW.2013.6649216
  10. LEE, D. H., CHOI, K. W., JEON, W. S., JEONG, D. G. Two-stage semi-distributed resource management for device-todevice communication in cellular networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 4, p. 1908–1920. DOI: 10.1109/TWC.2014.022014.130480
  11. SONG, L., NIYATO, D., HAN, Z., HOSSAIN, E. Game-theoretic resource allocation methods for device-to-device communication. IEEE Wireless Communications, 2014, vol. 21, no. 3, p. 136–144. DOI: 10.1109/MWC.2014.6845058
  12. XING, H., RENFORS, M. Multi-carrier CDMA for network assisted device-to-device communications for an integrated OFDMA cellular system. In Proceedings of the IEEE Vehicular Technology Conference (VTC Spring). Nanjing (China), 2016, p. 1–6. DOI: 10.1109/VTCSpring.2016.7504354
  13. AHMED, J., HAMDI, K. Spectral efficiency degradation of multicarrier CDMA due to carrier frequency offset. In Proceedings of the IEEE International Conference on Communications (ICC). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5963490
  14. AHMED, J. Spectral efficiency comparison of OFDM and MC-CDMA with carrier frequency offset. Radioengineering, 2017, vol. 26, no. 1, p. 221–226. DOI: 10.13164/re.2017.0221
  15. AHMED, J., TIWANA, M. I., AHMED, O., SOHAIB, S. Energy and area spectral efficiency trade-off for mc-cdma with carrier frequency offset. Turkish Journal of Electrical Engineering & Computer Sciences, 2017, vol. 25, no. 4, p. 3052–3060. DOI: 10.3906/elk-1608-285
  16. XING, H., RENFORS, M. Link level performance of a multicarrier CDMA based device-to-device integrated OFDMA cellular system. In Proceedings of the European European Wireless Conference. Oulu (Finland), 2016, p. 1–6.
  17. LIU, C., NATARAJAN, B. Power-aware maximization of ergodic capacity in D2D underlay networks. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 3, p. 2727–2739. DOI: 10.1109/TVT.2016.2583960
  18. LIANG, L., LI, G. Y., XU, W. Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 2017, vol. 65, no. 7, p. 3186–3197. DOI: 10.1109/TCOMM.2017.2699194
  19. AHMED, J., HAMDI, K. Spectral efficiency of asynchronous MC-CDMA with frequency offset over correlated fading.IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 7, p. 3423–3429. DOI: 10.1109/TVT.2013.2253339
  20. HAMDI, K. A useful lemma for capacity analysis of fading interference channels. IEEE Transactions on Communications, 2010, vol. 58, no. 2, p. 411–416. DOI: 10.1109/TCOMM.2010.02.080117
  21. TURIN, G. L. The characteristic function of Hermitian quadratic forms in complex normal variables. Biometrika, 1960, vol. 47, p. 199–201. DOI: 10.2307/2332977

Keywords: D2D Communication, ergodic capacity, MC-CDMA, spread spectrum communication, underlay communication

G. R. George, S. C. Prema, [references] [full-text] [DOI: 10.13164/re.2019.0298] [Download Citations]
Cyclostationary Feature Detection Based Blind Approach for Spectrum Sensing and Classification

A Spectrum Sensing (SS) device, regardless of its location, should be able to detect the presence of signal over noise. In certain applications, SS should be able to correctly identify and classify the received signal. These functions are to be performed with little or no prior information about the incoming signal or channel noise. Cyclostationary Feature Detection (CFD) can be used to detect primary users (PU) using periodicity in autocorrelation of the modulated signals. These algorithms attempt to differentiate signal from noise based on the uncorrelated nature of noise. CFD is often considered as a semi-blind approach, since it requires prior information about the PU signal for detection. For identification and classification of PU signal, existing algorithms make use of CFD and neural networks. This paper proposes a novel algorithm to obtain completely blind detection performance based on CFD. Classification of PU signals is based on the basic statistics regarding cyclic spectrum. Further, an algorithm is formulated to identify modulation scheme of the signal and classify it without making use of any training algorithms. The proposed approach is capable of detecting PU reliably for SNR as low as –8 dB with no prior information about PU or noise in the channel.

  1. KHAN, M. N., GILANI, S. O., JAMIL, M., et al. Maximizing throughput of hybrid FSO-RF communication system: An algorithm. IEEE Access, 2018, vol. 6, p. 30039–30048. DOI: 10.1109/Access.2018.2840535
  2. HAYKIN, S. Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, vol. 23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  3. ZENG, Y., LIANG, Y.-C. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Transactions on Communications, 2009, vol. 57, no. 6, p. 1784–1793. DOI: 10.1109/TCOMM.2009.06.070402,
  4. ZENG, Y., LIANG, Y.-C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 4, p. 1804–1815. DOI: 10.1109/TVT.2008.2005267
  5. GARDNER, W. A. Cyclostationarity in Communications and Signal Processing. Piscataway, NJ: IEEE Press, sponsored by IEEE Communications Society, 1994. ISBN: 0780310233
  6. ZHANG, J., ZHANG, L., HUANG, H., JING, X. J. Improved cyclostationary feature detection based on correlation between the signal and noise. In Proceedings of the International Symposium on Communications and Information Technologies (ISCIT). Qingdao (China), 2016, p. 611–614. DOI: 10.1109/ISCIT.2016.7751705
  7. SEBESTA, V., MARSALEK, R., FEDRA, Z. OFDM signal detector based on cyclic autocorrelation function and its properties. Radioengineering, 2011, vol. 20, no. 4, p. 926–931.
  8. PREMA, G., GAYATRI, P. Blind spectrum sensing method for OFDM signal detection in cognitive radio communications. In Proceedings of the International Conference on Communication and Network Technologies (ICCNT). Sivakasi (India), 2014, p. 42–47. DOI: 10.1109/CNT.2014.7062722
  9. LUNDEN, J., KOIVUNEN, V., HUTTUNEN, A., POOR, H. V. Spectrum sensing in cognitive radios based on multiple cyclic frequencies. In Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications. Orlando (USA), 2007, p. 37–43. DOI: 10.1109/CROWNCOM.2007.4549769
  10. KIM, K., AKBAR, I. A., BAE, K. K., et al. Cyclostationary approaches to signal detection and classification in cognitive radio. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). Dublin (Ireland), 2007, p. 212–215. DOI: 10.1109/DYSPAN.2007.35
  11. TURUNEN, V., KOSUNEN, M., HUTTUNEN, A., et al. Implementation of cyclostationary feature detector for cognitive radios. In Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM). Hannover (Germany), 2009, p. 1–4. DOI: 10.1109/ISSPIT.2016.7886025
  12. SAGGAR, H., MEHRA, D. Cyclostationary spectrum sensing in cognitive radios using fresh filters. arXiv:1312.5257, 2013, 6 p.
  13. SATIJA, U., MANIKANDAN, M., RAMKUMAR, B. Performance study of cyclostationary based digital modulation classification schemes. In Proceedings of the International Conference on Industrial and Information Systems (ICIIS). Gwalior (India), 2014, p. 1–5. DOI: 10.1109/ICIINFS.2014.7036609
  14. KADJO, J.-M., YAO, K. C., MANSOUR, A. Blind detection of cyclostationary features in the context of cognitive radio. In Proceedings of the International Symposium on Signal Processing and Information Technology (ISSPIT). Limassol (Cyprus), 2016, p. 150–155. DOI: 10.1109/ISSPIT.2016.7886025
  15. GATO, L. M., MARTINEZ, L., TORRES, J. Blind spectrum sensing based on cyclostationary feature detection. In Proceedings of the Iberoamerican Congress on Pattern Recognition. Montevideo (Uruguay), 2015, p. 535–542. DOI: 10.1007/978-3-319-25751-8/64
  16. ROBERTS, R. S., BROWN, W. A., LOOMIS, H. H. Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 1991, vol. 8, no. 2, p. 38–49. DOI: 10.1109/79.81008
  17. SEBESTA, V. Estimating a spectral correlation function under the conditions of imperfect relation between signal frequencies and a sampling frequency. Radioengineering, 2010, vol. 19, no. 1, p. 1–5.
  18. DA COSTA, E. L. Detection and Identification of Cyclostationary Signals. Ph.D. thesis, 1996. Naval Postgraduate School, Monterey (USA)

Keywords: Spectrum Sensing (SS), Cyclostationary Feature Detection (CFD), Spectral Correlation Density function (SCD)

Q. Yuan, Y. Hu, C. Wang, X. Ma [references] [full-text] [DOI: 10.13164/re.2019.0304] [Download Citations]
3D Beamforming for Improving the Security of UAV-Enabled Mobile Relaying System

In this paper, we consider an unmanned aerial vehicle (UAV)-enabled mobile relaying system consists of a ground control station (GCS), a high-mobility UAV for relaying, a destination, and an eavesdropper. To improve the security of the three-dimension (3D) mobile relaying system with delayed channel state information (CSI), we propose a destination-specific (DS) 3D beamforming scheme and an eavesdropper-null (EN) 3D beamforming scheme, in both the horizontal angle and the vertical angle of antenna pattern are adapted instantaneously. In particular, we study the secrecy rate maximization problem via trajectory planning. However, this problem with mobility constraint and location constraint is a non-convex optimization problem. To solve it, we propose a successive trajectory planning algorithm by optimizing the incremental in each time-slot. Simulation results verify that the 3D beamforming schemes can greatly improve the security of UAV-enabled mobile relaying system and the proposed trajectory planning algorithm is also proven become effective.

  1. HAYAT, S., YANMAZ, E., MUZAFFAR, R. Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint. IEEE Communication Surveys & Tutorials, 2016, vol. 18, no. 4, p. 2624–2661. DOI: 10.1109/COMST.2016.2560343
  2. ZENG, Y., ZHANG, R., LIM, T. J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Communication Magazine, 2016, vol. 54, no. 5, p. 36–42. DOI: 10.1109/MCOM.2016.7470933
  3. HASSAN, H., KHAN, M. N., GILANI, S. O., et al. H.264 encoder parameter optimization for encoded wireless multimedia transmissions. IEEE Access, 2018, vol. 6, p. 22046–22053. DOI: 10.1109/ACCESS.2018.2824835
  4. CHAMSEDDINE, A., AKHRIF, O., CHARLAND-ARCAND, G., et al. Communication relay for multiground units with unmanned aerial vehicle using only signal strength and angle of arrival. IEEE Transactions on Control Systems Technology, 2017, vol. 25, no. 1, p. 286–293. DOI: 10.1109/TCST.2016.2552461
  5. ZHAN, P., YU, K., LEE SWINDLEHURST, A. Wireless relay communications with unmanned aerial vehicles: performance and optimization. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 3, p. 2068–2085. DOI: 10.1109/TAES.2011.5937283
  6. ZHANG, S., FAN, L., PENG, M., et al. Near-optimal modulo-andforward scheme for the untrusted relay channel. IEEE Transactions on Information Theory, 2016, vol. 62, no. 5, p. 2545–2556. DOI: 10.1109/TIT.2016.2530080
  7. WANG, Q., CHEN, Z., MEI, W., et al. Improving physical layer security using UAV-enabled mobile relaying. IEEE Wireless Communication Letters, 2017, vol. 6, no. 3, p. 310–313. DOI: 10.1109/LWC.2017.2680449
  8. WYNER, A. D. The wire-tap channel. Bell System Technical Journal, 1975, vol. 54, no. 8, p. 1355–1387. DOI: 10.1002/j.1538- 7305.1975.tb02040.x
  9. OUYANG, N., JIANG, X., BAI, E., et al. Destination assisted jamming and beamforming for improving the security of AF relay systems. IEEE Access, 2017, vol. 5, p. 4125–4131. DOI: 10.1109/ACCESS.2017.2682838
  10. LIU, L., ZHANG, R., CHUA, K. Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 7, p. 1850–1863. DOI: 10.1109/TSP.2014.2303422
  11. WING KWAN NG, D., LO, E. S., SCHOBER, R. Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 8, p. 4599–4615. DOI: 10.1109/TWC.2014.2314654
  12. KHAN,·M. N., RIZVI, U. H. Antenna beam-forming for a 60 GHz transceiver system. Arabian Journal for Science and Engineering, 2013, vol. 38, p. 2451–2464. DOI: 10.1007/s13369-013-0555-8
  13. HALBAUER, H., SAUR, S., KOPPENBORG, J., et al. 3D beamforming: performance improvement for cellular networks. Bell Labs Technical Journal, 2013, vol. 18, no. 2, p. 37–56. DOI: 10.1002/bltj.21604
  14. SEIFI, N., ZHANG, J., HEATH, R. W., et al. Coordinated 3D beamforming for interference management in cellular networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 10, p. 5396–5410. DOI: 10.1109/TWC.2014.2349981
  15. NIU, J., LI, G. Y., LI, Y., et al. Joint 3D beamforming and resource allocation for small cell wireless backhaul in HetNets. IEEE Communication Letters, 2017, vol. 21, no. 10, p. 2286–2289. DOI: 10.1109/LCOMM.2017.2723008
  16. ZENG, Y., ZHANG, R., LIM, T. J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Transactions on Communications, 2016, vol. 64, no. 12, p. 4983–4996. DOI: 10.1109/TCOMM.2016.2611512
  17. ZENG, Y., XU, X., ZHANG, R., Y. Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Transactions on Wireless Communications, 2018, vol. 17, no. 4, p. 2233–2246. DOI: 10.1109/TWC.2018.2790401
  18. 3rd Generation Partnership Project. Further Advancements for EUTRA Physical Layer Aspects (3GPP, TR 36.814 V9.2.0). 105 pages. [Online] Cited 2017-03. Available at: http://www.techinvite.com/3m36/tinv-3gpp-36-814.html#toc
  19. FRIEDLANDER, B., PORAT, B. Performance analysis of a nullsteering algorithm based on direction-of-arrival estimation. IEEE Transactions on Signal Processing, 1989, vol. 37, no. 4, p. 461–466. DOI: 10.1109/29.17526
  20. DONG, L., HAN, Z., PETROPULU, A. P., et al. Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 3, p. 1875–1888. DOI: 10.1109/TSP.2009.2038412
  21. MA, Y., ZHANG, D., LEITH, A., et al. Error performance of transmit beamforming with delayed and limited feedback. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 3, p. 1164–1170. DOI: 10.1109/TWC.2008.080570
  22. CLARKE, R. H. A statistical theory of mobile-radio reception. Bell System Technical Journal, 1968, vol. 47, no. 6, p. 957–1000. DOI: 10.1002/j.1538-7305.1968.tb00069.x
  23. TAN, C. C., BEAULIEU, N. C. On first-order Markov modeling for the Rayleigh fading channel. IEEE Transactions on Communications, 2000, vol. 48, no. 12, p. 2032–2040. DOI: 10.1109/26.891214
  24. HUANG, Y., WANG, J., ZHONG, C. et al. Secure transmission in cooperative relaying networks with multiple antennas. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 10, p. 6483–6856. DOI: 10.1109/TWC.2016.2591940

Keywords: Unmanned aerial vehicle, physical layer security, 3D beamforming, secrecy rate, trajectory planning.

Z. Liu, X. H. Chen, Q. Liu [references] [full-text] [DOI: 10.13164/re.2019.0312] [Download Citations]
Research on Passive Troposcatter Location System

Electromagnetic (EM) wave of enemy radar propagated by troposcatter can be utilized for beyond line-of-sight (b-LoS) location. To provide theoretical basis for passive troposcatter location system, channel characteristics including propagation loss, refraction effect and multipath fading are analyzed. Ray tracing method improved by tropospheric model is employed to describe the refraction effect. Correlation coefficient on the basis of transfer function is deduced to evaluate multipath fading. According to troposcatter characteristics, maximum operating range is estimated, cooperative energy detection is introduced to copy with the received signal without priori knowledge. The principle and accuracy of location algorithm based on azimuth is researched. Spatial smoothing is introduced under the situation that uncorrelated and coherent signals coexist. Through analyzing consequences, future directions for developing are suggested.

  1. YANG, F., XU, Q., LI, B. Ship detection from optical satellite image based on saliency segmentation and structure-LBP feature. IEEE Geoscience and Remote Sensing Letters, 2017, vol. l4, no. 5, p. 602–606. DOI: 10.1109/LGRS.2017.2664118
  2. DINC, E., AKAN, O. B. More than the eye can see: coherence time and coherence bandwidth of troposcatter links for mobile receivers. IEEE Vehicular Technology Magazine, 2015, vol. 10, no. 2, p. 86–92. DOI: 10.1109/mvt.2015.2410786
  3. ZHUANG WANG, MENGNAN WANG, QI WANG, et al. Receiving antenna mode of troposcatter passive ranging based on the signal group delay. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 1, p. 121–128. DOI: 10.1049/iet-map.2016.0242
  4. MENGNAN WANG, ZHUANG WANG, JING WANG, et al. Fading correlation modelling for troposcatter microwave propagation in array antenna detection applications. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 6, p. 833–843. DOI: 10.1049/iet-map. 2016.0229
  5. MENGNAN WANG, ZHUANG WANG, ZHU CHENG, et al. Target detection for a kind of troposcatter over-the-horizon passive radar based on channel fading information. IET Radar, Sonar & Navigation, 2018, vol. 12, no. 4, p. 407–416. DOI: 10.1049/ietrsn.2017.0435
  6. QI WANG, ZHU CHENG, ZHUANG WANG, et al. The troposcatter array signal receiving model and processing algorithm. In 12th International Conference on Signal Processing (ICSP2014). Hangzhou (China), 2014, p. 283–287. DOI: 10.1109/ICOSP.2014.7015013
  7. JING WANG, ZHUANG WANG, MENGNAN WANG, et al. Time-frequency diffusion analysis for DOA estimation of tropospheric scatter signal. In 2016 Progress In Electromagnetic Research Symposium (PIERS). Shanghai (China), 2016, p. 3547–3552. DOI: 10.1109/piers.2016.7735369
  8. MINGGAO ZHANG. Troposcatter Propagation. Beijing: Publishing House of Electronic Industry, 2004.
  9. LEI LI, ZHENSEN WU, LEKE LIN, et al. Study on the prediction of troposcatter transmission loss. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 3, p. 1071–1079. DOI: 10.1109/TAP.2016.2515125
  10. QINGLIN ZHU, ZHENWEI ZHAO, LEKE LIN. Real time estimation of slant path tropospheric delay at very low elevation based on singular ground-based global positioning system station. IET Radar, Sonar and Navigation, 2013, vol. 7, no. 7, p. 808–814. DOI: 10.1049/iet-rsn.2012.0235
  11. SHUHONG GONG, DAOPU YAN, XUAN WANG. A novel idea of purposefully affecting radio wave propagation by coherent acoustic source-induced atmospheric refractivity fluctuation. Radio Science, 2016, vol. 50 no. 10, p. 983–996. DOI: 10.1002/2015rs005660
  12. HOPFIELD, H. S. Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 1969, vol. 74, no. 18, p. 4487–4499. DOI: 10.1029/JC074i018p04487
  13. DINC, E., AKAN, O. B. Fading correlation analysis in MIMOOFDM troposcatter communications: space, frequency, angle and space-frequency diversity. IEEE Transactions on Communications, 2015, vol. 63, no. 2, p. 476–486. DOI: 10.1109/TCOMM.2014.2387159
  14. CHENGLONG LI, XIHONG CHEN, ZEDONG XIE. A closedform expression of coherence bandwidth for troposcatter links. IEEE Communications Letters, 2018, vol. 22, no. 3, p. 646–649. DOI: 10.1109/LCOMM. 2017.2785850
  15. International Telecommunication Union (ITU) Recommendation P.835-5. Reference Standard Atmospheres. Geneva, Switzerland, 2012.
  16. CHENGLONG LI, XIHONG CHEN, XIAOPENG LIU. Cognitive tropospheric scatter communication. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 2, p. 1482–1491. DOI: 10.1109/TVT.2017.2761440
  17. DINC, E., AKAN, O. B. A non-uniform spatial rain attenuation model for troposcatter communication links. IEEE Wireless Communications Letters, 2015, vol. 4, no. 4, p. 441–444. DOI: 10.1109/LWC.2015.2433261
  18. HACHEMI, M. H., FEHAM, M., ADARDOUR, H. E. Predicting the probability of spectrum sensing with LMS process in heterogeneous LTE networks. Radioengineering, 2016, vol. 25, no. 4, p. 808–820. DOI: 10.13164/re.2016.0808
  19. BAE, S., SO, J., KIM, H. On optimal cooperative sensing with energy detection in cognitive radio. Sensors, 2017, vol. 17, no. 9, p. 1–15. DOI: 10.3390/s17092111
  20. WEBJING YUE, BAOYU ZHENG, QIINGMIN MENG, et al. Robust cooperative spectrum sensing schemes for fading channels in cognitive radio networks. Science China (Information Sciences), 2011, vol. 54, no. 2, p. 348–359. DOI: 10.1007/s11432-010-4147-x
  21. XIN LIU, CHENGWEN, ZHANG, XUEZHI TAN. Doublethreshold cooperative detection for cognitive radio based on weighing. Wireless Communications and Mobile Computing, 2015, vol. 14, no. 13, p. 1231–1243. DOI: 10.1002/wcm.2219
  22. SHIQI LIU, CHONGQIAN CHEN, HAIHONG LI, et al. Double thresholds energy detection based cooperative spectrum sensing for cognitive radios. Chinese Journal of Radio Science, 2013, vol. 28, no. 3, p. 420–424. (In Chinese)
  23. JIANG ZHU, ZHENGGUANG XU, FURONG WANG, et al. Double threshold energy detection of cooperative spectrum sensing in cognitive radio. In 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CrownCom 2008). Singapore, May, 2008. DOI: 10.1109/CROWNCOM.2008.4562451
  24. PANKAJ VERMA, BRAHMJIT SINGH. Overcoming sensing failure problem in double threshold based cooperative spectrum sensing. Optik-International Journal for Light and Electron Optics, 2016, vol. 127, p. 4200–4204. DOI: 10.1016/j.ijleo.2016.01.108
  25. SHIQI LIU, BINJIE HU, XIANYI WANG. Hierarchical cooperative spectrum sensing based on double thresholds energy detection. IEEE Communications Letters, 2012, vol. 16, no. 7, p. 1096–1099. DOI: 10.1109/LCOMM.2012.050112.120765
  26. ZAN LIU, XIHONG CHEN, JIN LIU, et al. High precision clock bias prediction model in clock synchronization system. Mathematical Problems in Engineering, 2016, Article ID 1813403, p. 1–6. DOI: 10.1155/2016/1813403
  27. BI LIU, YUNLONG TENG, QI HUANG. GDOP minimum with satellites in the single-point positioning. Advances in Space Research, 2017, vol. 60, no. 7, p. 1400–1403. DOI: 10.1016/j.asr.2017.06.049
  28. HUAXIN YU, XIAOFEI ZHANG, XUEQIANG CHEN, et al. Computationally efficient DOA tracking algorithm in monostatic MIMO radar with automatic association. International Journal of Antennas and Propagation, 2014, Article ID 501478, p. 1–10. DOI: 10.1155/2014/501478
  29. KAIBO CUI, XI CHEN, JINGIAN HUANG, et al. DOA estimation of multiple LFM sources using a STFT-based and FBSS-based MUSIC algorithm. Radioengineering, 2017, vol. 26, no. 4, p. 1126–1137. DOI: 10.13164/re.2017.1126
  30. SHAIKH, S. A., TONELLO, A. M. DOA estimation in EM lens assisted massive antenna system using subsets based antenna selection and high resolution algorithms. Radioengineering, 2018, vol. 27, no. 1, p. 159–168. DOI: 10.13164/re.2018.0159

Keywords: Passive troposcatter location system, channel characteristics, signal detection, location algorithm, direction-of-arrival (DOA).

W. Wang, J. Huang, S. Cai, J. Yang [references] [full-text] [DOI: 10.13164/re.2019.0320] [Download Citations]
Design and Implementation of Synchronization-free TDOA Localization System Based on UWB

At present, indoor localization system based on ultra wideband(UWB) has attracted more and more attention. In UWB system, Time Difference of Arrival (TDOA) and Two-Way Ranging (TWR) are widely used. However, TDOA requires high-accuracy time synchronization between all anchor nodes and even slight noise can cause large localization error. In TWR localization scheme, although two-way communication between anchor nodes and blind nodes can avoid the time synchronization issue effectively, the clock drift and the number of blind nodes will affect the system performance. To overcome these problems, a new synchronizationfree TDOA location algorithm is proposed. Firstly,the clock model is established and the influence of antenna delay is considered. Then, the system signal exchange mechanism and localization model are proposed. In the system, the blind nodes just receive the ranging signals from anchor nodes so that the system has no limit on the number of blind nodes. Finally,the major factor affecting the accuracy of ranging - clock drift, is discussed, and then a clock frequency offset compensation algorithm is proposed. The indoor localization experiment results show that the indoor localization system designed in this paper can achieve 3-D localization.

  1. SHEN, J., MOLISCH, A., SALMI, J. Accurate passive location estimation using TOA measurements. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 6, p. 2182–2192. ISSN: 1536-1276. DOI: 10.1109/TWC.2012.040412.110697
  2. LI, D., ZHANG, B., LI, C. A feature-scaling-based k-nearest neighbour algorithm for indoor positioning systems. IEEE Internet of Things Journal, 2016, vol. 3, no. 4, p. 590–597. ISSN: 2327–4662. DOI: 10.1109/JIOT.2015.2495229
  3. MARDENI, R., OTHMAN, S. Efficient mobile asset tracking and localization in ZigBee wireless network. Journal of Advances in Computer Networks, 2015, vol. 3, no. 1, p. 1–6. ISSN: 1793-8244. DOI: 10.7763/JACN.2015.V3.132
  4. XU, H., DING, Y., LI, P., et al. An RFID indoor positioning algorithm based on bayesian probability and K-nearest neighbor. Sensors, 2017, vol. 17, no. 8, 17 p. ISSN: 1424-8220. DOI: 10.3390/s17081806
  5. YANG, C., SHAO, H. WiFi-based indoor positioning. IEEE Communications Magazine, 2015, vol. 53, no. 3, p. 150–157. ISSN: 0163-6804. DOI: 10.1109/MCOM.2015.7060497
  6. HUH, J.H., SEO, K. An indoor location-based control system using Bluetooth beacons for IoT systems. Sensors, 2017, vol. 17, no. 12, 22 p. ISSN: 1424-8220. DOI: 10.3390/s17122917
  7. WANG, Y.K., FAN, H., CHEN, R.Z., et al. Positioning locality using cognitive directions based on indoor landmark reference system. Sensors, 2018, vol. 18, no. 4, 20 p. ISSN: 1424-8220. DOI: 10.3390/s18041049
  8. NARDIS, L., FIORINA, J., PANAITOPOL, D., BENEDETT, M. Combining UWB with time reversal for improved communication and positioning. Telecommunication Systems, 2013, vol. 52, no. 2, p. 1145–1158. ISSN: 1018-4864. DOI: 10.1007/s11235-011-9630-1
  9. MEISSNER, P., LEITINGER, E., WITRISAL, K. UWB for robust indoor tracking: Weighting of multipath components for efficient estimation. IEEE Wireless Communications Letters, 2014, vol. 3, no. 5, p. 501–504. ISSN: 2162-2337. DOI: 10.1109/LWC.2014.2341636
  10. SILVA, B., HANCKE, G. IR-UWB-based non-line-of-sight identification in harsh environments: principles and challenges. IEEE Transactions on Industrial Informatics, 2016, vol. 12, no. 3, p. 1188–1195. ISSN: 1551-3203. DOI: 10.1109/TII.2016.2554522
  11. GARCIA, E., POUDEREUX, P., et al. A robust UWB indoor positioning system for highly complex environments. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT). Seville (Spain), 2015, p. 3386–3391. ISBN: 978-1-4799-7800-7. DOI: 10.1109/ICIT.2015.7125601
  12. SHEN, Y., WIN, M. Fundamental limits of wideband localization:Part I: A general framework. IEEE Transactions on Information Theory, 2010, vol. 56, no. 10, p. 4956–4980. ISSN: 0018-9448. DOI: 10.1109/TIT.2010.2060110
  13. BOGDANI, E., VOUYIOUKAS, D., NOMIKOS, N. Localization error modelling of hybrid fingerprint-based techniques for indoor ultrawideband systems. Telecommunication Systems, 2016, vol. 63, no. 2, p. 223–241. ISSN: 1018-4864. DOI: 10.1007/s11235-015-0116-4
  14. MEGHANI, S., ASIF, M. Localization of WSN node based on RTT ToA using ultra wide band 802.15.4a channel. In Proceedings of the IEEE International Conference on Networking, Sensing and Control. Miami (USA), 2014, p. 380–385. DOI: 10.1109/ICNSC.2014.6819656
  15. WANG, T., CHENT, X., GE, N., PEI, Y. Error analysis and experimental study on indoor UWB TDoA localization with reference tag. In Proceedings of the Asia-Pacific Conference on Communications (APCC). Denpasar (Indonesia), 2013, p. 505–508. DOI: 10.1109/APCC.2013.6766000
  16. BIN, X., RAN, Y. et al. Whistle: Synchronization-free TDOA for localization. In Proceedings of the International Conference on Distributed Computing Systems. Minneapolis (USA), 2011, p. 760–769. ISBN: 978-0-7695-4364-2. DOI: 10.1109/ICDCS.2011.30
  17. LEE, J.X., LIN, Z.W., et al. A scheme to compensate time drift in time difference of arrival localization among non-synchronized sensor nodes. In Proceedings of the IEEE Vehicular Technology Conference. Barcelona (Spain), 2009, p. 1–4. ISSN: 15502252. DOI: 10.1109/VETECS.2009.5073339
  18. MATHIAS, P., HORST, H. S-TDoA-Sequential time difference of arrival a scalable and synchronization free approach for positioning. In Proceedings of the IEEE Wireless Communications and Networking Conference. Doha (Qatar), 2016, p. 1–6. ISSN: 15253511. DOI: 10.1109/WCNC.2016.7565024
  19. NAM, Y.-S., et al. Wirelessly synchronized one-way ranging algorithm with active mobile nodes. ETRI Journal, 2009, vol. 31, no. 4, p. 466–468. ISSN: 1225-6463. DOI: 10.4218/etrij.09.0208.0305
  20. ANGELIS, G., MOSCHITTA, A., CARBONE, P. Positioning techniques in indoor environments based on stochastic modelling of UWB Round-Trip-Time measurements. IEEE Transactions on Intelligent Transportation Systems, 2016, vol. 17, no. 8, p. 2272–2281. ISSN: 1524-9050. DOI: 10.1109/TITS.2016.2516822
  21. DW1000 USER MANUAL (datasheet). p. 206– 208. [Online] Cited Version 2.12 Available at: https://www.decawave.com/product-documentation
  22. NX2016AB-38.4MHZ ST4 (datasheet). Available at: http://www.21icsearch.com/datasheet/NX2016AB-38-4MHZST4/ZGtpb2mUYQ==.html
  23. CHUI, C. K., CHEN, G. Kalman Filtering with Real-Time Applications. 4th ed. Springer-Verlag Berlin Heidelberg, 2009. p. 77–96. ISBN: 9783540878483. DOI: 10.1007/978-3-540-87849-0
  24. FOY, W. H. Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems, 1976, vol. AES-12, no. 2, p. 187–194. ISSN: 00189251. DOI: 10.1109/TAES.1976.308294
  25. PROROK, A., ARIFIRE, A., BAHR, A., et al. Indoor navigation research with the Khepera III mobile robot: An experimental baseline with a case-study on ultra-wideband positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN). Zurich (Switzerland), 2010, p. 1–9. ISBN: 9781424458646. DOI: 10.1109/IPIN.2010.5647880
  26. CETIN, O., et al. An experimental study of high precision TOA based UWB positioning systems. In Proceedings of the IEEE International Conference on Ultra-Wideband (ICUWB). Syracuse (USA), 2012, p. 357–361. ISSN: 21626588. DOI: 10.1109/ICUWB.2012.6340508
  27. SATHYAN, T., HUMPHREY, D., HEDLEY, M. WASP: A system and algorithms for accurate radio localization using lowcost hardware. IEEE Transactions on Systems, Man, and Cybernetics, 2011, vol. 41, no. 2, p. 211–222. ISSN: 1094-6977. DOI: 10.1109/TSMCC.2010.2051027
  28. DE ANELIS, A., DWIVEDI, S., HANDEL, P. Characterization of a flexible UWB sensor for indoor localization. IEEE Transactions on Instrumentation and Measurement, 2013, vol. 62, no. 5, p. 905–913. ISSN: 0018-9456. DOI: 10.1109/TIM.2013.2243501
  29. HE, S., DONG, X. High-accuracy localization platform using asynchronous time difference of arrival technology. IEEE Transactions on Instrumentation and Measurement, 2017, vol. 66, no. 7, p. 1728–1742. ISSN: 0018-9456. DOI: 10.1109/TIM.2017.2666278
  30. CHEN, Y., FRANCISCO, J.A., TRAPPE, W., et al. A practical approach to landmark deployment for indoor localization. In Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON). Reston (USA), 2006, vol. 1, p. 365–373. ISBN: 9781424406265. DOI: 10.1109/SAHCN.2006.288441

Keywords: Indoor localization, Two-Way Ranging (TWR), Time Difference of Arrival (TDOA), time synchronization

T. N. Ha, H. H. Kha [references] [full-text] [DOI: 10.13164/re.2019.0331] [Download Citations]
Harvested Energy and Spectral Efficiency Trade-offs in Multicell MIMO Wireless Networks

The paper focuses on designing precoding matrices in multi-cell multiple-input multiple-output (MIMO) simultaneous wireless information and power transfer networks (SWIPT) where the sets of users are selected for data transmission in each time slot and the unselected users are dedicated to energy harvesting. The precoding design for the SWIPT problem is formulated as a general multi-objective maximization problem, in which the sum-rate (SR) and sum harvested energy (SHE) are maximized simultaneously under the transmit power constraints. Since the objective function of the maximization problem is not concave in the design matrix variables, it is difficult to directly obtain the optimal solutions. To tackle this challenge, we recast the SR function into one more amenable by applying the connection between the minimum mean square error and achievable data rate. In addition, to deal with the non-concavity of the harvested energy function, we derive its concave minorant. Then, we develop an efficient iterative algorithm based on alternating optimization (AO) to obtain the optimal precoders. We also analyze the convergence and computational complexity of the proposed algorithm. Finally, by numerical simulation results we investigate the trade-offs between the SR and SHE.

  1. GUPTA, A., JHA, R. K. A survey of 5G network: architecture and emerging technolgies. IEEE Access, 2015, vol. 3, p. 1206–1232. DOI: 10.1109/ACCESS.2015.2461602
  2. VU, T. T., KHA, H, H, DUONG, T. Q., et al. Particle swarm optimization for weighted sum rate maximization in MIMO broadcast channels. Wireless Personal COmmunications, 2017, vol. 96, no. 3, p. 2907–3921. DOI: 10.1007/s11277-017-4357-2
  3. TAM, H. H. M., TUAN, H. D., NGO, D. T. Successive convex quadratic programming for quality of service management in full-duplex MU-MIMO multicell networks. IEEE Transactions on Communications, 2016, vol. 64, no. 6, p. 2340–2353. DOI: 10.1109/TCOMM.2016.2550440
  4. KHA, H. H. Interference mitigation and sum rate optimization for MIMO downlink small cells. Radioengineering, 2016, vol. 25, no. 4, p. 721–729. DOI: 10.13164/re.2016.0721
  5. TANG, J., SO, D. K. C., ZHAO, N., et al. Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of things. IEEE Internet of Things Journal, 2018, vol. 5, no. 4, p. 2605–2619. DOI: 10.1109/JIOT.2017.2785861
  6. KHA, H. H., TUNG, T. V., DO-HONG, T. Energy-efficient transceiver designs for multiuser MIMO cognitive radio networks via interference alignment. Telecommunication Systems, 2017, vol. 66, no. 3, p. 469–480. DOI: 10.1007/s11235-017-0300-9
  7. VARSHNEY, L. R. Transporting information and energy simultaneously. In Proceedings of the IEEE International Symposium on Information Theory. Toronto (Canada), 2008, p. 1612–1616. DOI: 10.1109/ISIT.2008.4595260
  8. XU, J., LIU, L., ZHANG, R. Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 18, p. 4754–4758. 10.1109/TSP.2014.2340817
  9. ZHOU, X., ZHANG, R., HO, C. K. Wireless information and power transfer in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 4, p. 2282–2294. DOI: 10.1109/TWC.2014.030514.131479
  10. KHANDAKER, M. R. A., WONG, K.-K. SWIPT in MISO multicasting systems. IEEE Wireless Communications Letters, 2014, vol. 3, no. 3, p. 277–280. DOI: 10.1109/WCL.2014.030514.140057
  11. SON, H., CLERCKX, B. Joint beamforming design for multi-user wireless information and power transfer. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 11, p. 6397–6409. DOI: 10.1109/TWC.2014.2349511
  12. ZHANG, R., HO, C. K. MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 2013, vol. 12, no. 5, p. 781–2001. DOI: 10.1109/TWC.2013.031813.120224
  13. NG, D. W. K., LO, E. S., SCHOBER, R. Multiobjective resource allocation for secure communication in cognitive radio networks with wireless information and power transfer. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 6, p. 3166–3184. DOI: 10.1109/TVT.2015.2436334
  14. ZONG, Z., FENG, H., YU, F. R., et al. Optimal transceiver design for SWIPT in K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 1, p. 430–455. DOI: 10.1109/TWC.2015.2474857
  15. PARK, J., CLERCKX, B. Joint wireless information and energy transfer in a K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 10, p. 5781–5796. DOI: 10.1109/TWC.2014.2341233
  16. NASIR, A. A., TUAN, H. D., DUONG, T. Q., POOR, H. V. Secure and energy efficient beamforming for simultaneous information and energy transfer. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 11, p. 7523–7537. DOI: 10.1109/TWC.2017.2749568
  17. SHI, Q., XU, W., WU, J., SONG, E., WANG, Y. Secure beamforming for MIMO broadcasting with wireless information and power transfer. IEEE Transactions on Wireless Communications, 2015, vol. 14, no. 5, p. 2841–2853. DOI: 10.1109/TWC.2015.2395414
  18. REN, Y., LV, T., GAO, H., YANG, S. Wireless information and energy transfer in multi-cluster MIMO uplink networks through opportunistic interference alignment. IEEE Access, 2016, vol. 4, p. 3100–3111. DOI: 10.1109/ACCESS.2016.2580681
  19. BANG, I., KIM, S. M., SUNG, D. K. Adaptive multiuser scheduling for simultaneous wireless information and power transfer in a multicell environment. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 11, p. 7460–7474. DOI: 10.1109/TWC.2017.2748942
  20. RUBIO, J., PASCUAL-ISERTE, A., PALOMAR, D. P., et al. Joint optimization of power and data transfer in multiuser MIMO systems. IEEE Transactions on Signal Processing, 2017, vol. 65, no. 1, p. 212–227. DOI: 10.1109/TSP.2016.2614794
  21. AMIN, O., BEDEER, E., AHMED, M. H., et al. Energy efficiencyspectral efficiency trade-off: a multiobjective optimization approach. IEEE Transactions on Vehicular Technology, 2016, vol. 65, no. 4, p. 1975–1981. DOI: 10.1109/TVT.2015.2425934
  22. TAM, H.H.M., TUAN, H.D., et al. MIMO energy harvesting in full-duplex multi-user networks. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 5, p. 3282–3297. DOI: 10.1109/TWC.2017.2679055
  23. SHI, Q., RAZAVIVAVN, M., LUO, Z., HE, C. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel. IEEE Transaction on Signal Processing, 2011, p. 4331–4340. DOI: 10.1109/TSP.2011.2147784
  24. KHA, H.H., TUAN, H.D., NGUYEN, H. H. Fast global optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 2, p. 510–515. DOI: 10.1109/TWC.2011.120911.110139
  25. NGUYEN, D. H. N, LE-NGOC, T. Joint beamforming design and base-station assignment in a coordinated multicell system. IET Communications, 2013, vol. 7, no. 10, p. 942–949. DOI: 10.1049/iet-com.2012.0603
  26. CASTANEDA, E., SILVA, A., SAMANO-ROBLES, R. Distributed linear precoding and user selection in coordinated multicell systems. EEE Transactions on Vehicular Technology, 2015, vol. 65, no. 7, p. 4887–4899. DOI: 10.1109/TVT.2015.2455596
  27. GRANT, M., BOYD, S., YE, Y. CVX: Matlab software for disciplined convex programming, 2014. Available at: http://cvxr.com/cvx

Keywords: Multicell MU-MIMO, SWIPT, spectral efficiency, precoding design

P. D. Selvam, K. S. Vishvaksenan [references] [full-text] [DOI: 10.13164/re.2019.0340] [Download Citations]
Antenna Selection and Power Allocation in Massive MIMO

This paper explores the massive multiple-input multiple-output (Ma-MIMO) communication system possessing large number of antennas at the basestation (BS) serving multiple user terminal (UT) in single cell configuration. Due the large number of antennas at the BS, the RF chains used is also increasing with the increase in the total power consumption of the system such as circuit power consumption, filter, mixer and digital to analog converter power consumption. The main aim of this paper is to reduce the transmit power consumption with the proposed antenna selection and power allocation approach. Initially, the equal power is allocated to users to find the optimal number of antenna selection. Then for the number of antennas selected the optimal power allocation is derived to users. An algorithm is proposed to iteratively find the antenna selection and power allocation. The simulation is done to evaluate the average data rate and to find the optimal transmit power of the system.

  1. LIU, Z., DU, W., SUN, D. Energy and spectral efficiency trade-off for Massive MIMO systems with transmit antenna selection. IEEE Transactions on Vehicular Technology, 2017, vol. 66, no. 5, p. 4453–4457. DOI: 10.1109/TVT.2016.2598842
  2. HUANG, Y., HE, S., WANG, J., et al. Spectral and energy efficiency trade-off for Massive MIMO systems. IEEE Transactions on Vehicular Technology, 2018, vol. 67 , no. 8, p. 6991 – 7002. DOI: 10.1109/TVT.2018.2824311
  3. GAO, X., EDFORS, O., LIU, J., et al. Antenna selection in measured Massive MIMO channels using convex optimization. IEEE Globecom Workshops (GC Wkshps), 2013, p. 129–134. DOI: 10.1109/GLOCOMW.2013.6824974
  4. HANIF, M., YANG, H. C., BOUDREAU, G., et al. Antenna subset selection for Massive MIMO systems: A trace-based sequential approach for sum rate maximization. Journal of Communications and Networks, 2018, vol. 20, no. 2, p. 144–155. DOI: 10.1109/JCN.2018.000022
  5. LI, H., GUO, J., WANG, Y., et al. Energy efficient antenna selection scheme for downlink Massive MIMO systems. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Florence (Italy), 2018, p. 1–4. DOI: 10.1109/ISCAS.2018.8351286
  6. QIAN, K., WANG, W. Q., SHAO, H. Low-complexity transmit antenna selection and beamforming for large-scale MIMO communications. International Journal of Antennas and Propagation, 2014, vol. 2014, 11 p. DOI: 10.1155/2014/159375
  7. HU, B. B., LIU, Y. A., et al. Energy efficiency of Massive MIMO wireless communication systems with antenna selection. The Journal of China Universities of Posts and Telecommunications, 2014, vol. 21, no. 6, p. 1–8. DOI: 10.1016/S1005-8885(14)60338-1
  8. ARASH, M., YAZDIAN, E., FAZEL, M. S., et al. Employing antenna selection to improve energy efficiency in Massive MIMO systems. Transactions on Emerging Telecommunications Technologies, 2017, vol. 28, no. 12. DOI: 10.1002/ett.3212
  9. ASAAD, S., BEREYHI, A., RABIEI, A. M., et al. Optimal transmit antenna selection for Massive MIMO wiretap channels. IEEE Journal on Selected Areas in Communications, 2018, vol. 36, no. 4, p. 817–828. DOI: 10.1109/JSAC.2018.2825159
  10. DONG, Y., TANG, Y., SHENZHEN, K. Z. Improved joint antenna selection and user scheduling for Massive MIMO systems. In Proceedings of the IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). Wuhan (China), 2017, p. 69–74. DOI: 10.1109/ICIS.2017.7959971
  11. ZHANG, J., WANG, J., WANG, Y. Antenna selection in Massive MIMO systems utilizing the submodular function. In Proceedings of the IEEE 9th International Conference on Wireless Communications and Signal Processing (WCSP). Nanjing (China), 2017, p. 1–6. DOI: 10.1109/WCSP.2017.8171056
  12. BENMIMOUNE, M., DRIOUCH, E., AJIB, W., et al. Novel transmit antenna selection strategy for Massive MIMO downlink channel. Wireless Networks, 2017, vol. 23, no. 8, 2473–2484. DOI: 10.1007/s11276-016-1297-9
  13. LEE, B., NGO, L., SHIM, B. Antenna group selection based user scheduling for Massive MIMO systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). Austin (USA), 2014, p. 3302–3307. DOI: 10.1109/GLOCOM.2014.7037316
  14. CASTANEDA, O., GOLDSTEIN, T., STUDER, C. POKEMON: A non-linear beamforming algorithm for 1-bit Massive MIMO. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans (USA), 2017, p. 3464–3468. DOI: 10.1109/ICASSP.2017.7952800
  15. GAO, Y., VINCK, H., KAISER, T. Massive MIMO antenna selection: Switching architectures, capacity bounds, and optimal antenna selection algorithms. IEEE Transactions on Signal Processing, 2018, vol. 66, no. 5, p. 1346–1360. DOI: 10.1109/TSP.2017.2786220
  16. DU, L., LI, L., XU, Y. A genetic antenna selection algorithm with heuristic beamforming for Massive MIMO systems. In Proceedings of the IEEE 19th International Symposium on Wireless Personal Multimedia Communications (WPMC). Shenzhen (China), 2016, p. 49–52. DOI: 10.1109/RTUWO.2015.7365707
  17. SAKI, H., BAHAE, M. S. On the SINR distribution of SWIPT MUMIMO with antenna selection. arXiv preprint arXiv:1805.09463, 2018.
  18. BENMIMOUNE, M., DRIOUCH, E., AJIB, W., et al. Joint transmit antenna selection and user scheduling for Massive MIMO systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). New Orleans (USA), 2015, p. 381–386. DOI: 10.1109/WCNC.2015.7127500
  19. KONAR, A., SIDIROPOULOS, N. D. Greed is good: Leveraging submodularity for antenna selection in Massive MIMO. In Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers. Pacific Grove (USA), 2017, p. 1522–1526. DOI: 10.1109/ACSSC.2017.8335611
  20. LEE, B. J., JU, S. L., KIM, N. I., et al. Enhanced transmit-antenna selection schemes for multiuser Massive MIMO systems. Wireless Communications and Mobile Computing, 2017, vol. 2017, p. 1–6. DOI: 10.1155/2017/3463950
  21. FANG, B., QIAN, Z., SHAO, W., et al. RAISE: A new fast transmit antenna selection algorithm for Massive MIMO systems. Wireless Personal Communications, 2015, vol. 80, no. 3, p. 1147–1157. DOI: 10.1007/s11277-014-2077-4
  22. BEREYHI, A., ASAAD, S., SCHAEFER, R. F., et al. Iterative antenna selection for secrecy enhancement in Massive MIMO wiretap channels. In Proceedings of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Kalamata (Greece), 2018. DOI: 10.1109/SPAWC.2018.8445912
  23. ABDULLAH, Z., TSIMENIDIS, C. C., JOHNSTON, M. Quantuminspired Tabu search algorithm for antenna selection in Massive MIMO systems. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Barcelona (Spain), 2018, p. 1–6. DOI: 10.1109/WCNC.2018.8377099
  24. HUSBANDS, R., AHMED, Q., WANG, J. Transmit antenna selection for Massive MIMO: A Knapsack problem formulation. In Proceedings of the IEEE International Conference on Communications (ICC). Paris (France), 2017, p. 1–6. DOI: 10.1109/ICC.2017.7996694
  25. PARK, D. Transmit antenna selection in Massive MIMO systems. In Proceedings of the IEEE International Conference on Information and Communication Technology Convergence (ICTC). Jeju (South Korea), 2017, p. 542–544. DOI: 10.1109/ICTC.2017.8191036
  26. HAMDI, R., AJIB, W. Joint optimal number of RF chains and power allocation for downlink Massive MIMO systems. In Proceedings of the 82nd Vehicular Technology Conference (VTC Fall). Boston (USA), 2015, p. 1–5. DOI: 10.1109/VTCFall.2015.7391002
  27. TAI, T. H., CHUNG, W. H., LEE, T. S. A low complexity antenna selection algorithm for energy efficiency in Massive MIMO systems. In Proceedings of the IEEE International Conference on Data Science and Data Intensive Systems (DSDIS). Sydney (Australia), 2015, p. 284–289. DOI: 10.1109/DSDIS.2015.39

Keywords: Massive MIMO, antenna selection, power allocation

L. H. A. Lolis, P. N. Stroski, E. G. Lima [references] [full-text] [DOI: 10.13164/re.2019.0347] [Download Citations]
System Level Design of RF Receivers Based on Non Linear Optimization and Power Consumption Models

This work presents a method to optimally distribute the block specifications in an RF receiver in order to reduce power consumption. The parameters are Gain (G), Noise Figure (NF) and Input Third Order Intercept Point (IIP3). The method is based on setting the signal quality per block at the output; Signal to Noise Ratio (SNR) for noise and Signal to Noise plus Distortion Ration (SNDR) for linearity. Both are limited in order to fulfill the sensitivity and intermodulation tests of a given standard. Non linear power models can be used as the method is based on heuristics associated with non linear optimization. First, random valid sets are tested "A" times, while the best candidate is chosen as starting point for a non linear optimization with bounds based on interior point algorithm. The process is repeated "B" times, and the best candidate is chosen. To validate the method, a direct-conversion receiver was dimensioned for the Long Term Evolution (LTE) and Bluetooth Low Energy (B-LE) standards. Two power models were used, labeled PM1 and PM2. First the LTE is considered. When compared to predetermined signal quality distributions, the method reduced the power consumption by 65% and 41%, considering PM1 and PM2, respectively. Then the B-LE is chosen with power PM2. This model is linear and has an analytical minimum derived in the literature. The optimization achieved a precision of 0.2% to the analytical minimum using A=1000 and B=15.

  1. FRIIS, H.T. Noise figures of radio receivers. Proceedings of the IRE, 1944, vol. 32, no. 7, p. 419–422. DOI: 10.1109/JRPROC.1944.232049
  2. WAMBACQ, P., VANDERSTEEN, G., DONNAY, S., et al. High-level simulation and power modelling of mixed-signal frontends for digital telecommunications. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS). Pafos (Cyprus), 1999, p. 525–528. ISBN: 0-7803-5682-9. DOI: 10.1109/ICECS.1999.812338
  3. BREDERLOW, R., WEBER, W., SAUERER, J., et al. A mixed-signal design roadmap. IEEE Design & Test of Computers, 2001, vol. 18, no. 6, p. 34–46. DOI: 10.1109/54.970422
  4. LAUWERS, E., GIELEN, G. Power estimation methods for analog circuits for architectural exploration of integrated systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2002, vol. 10, no. 2, p. 155–162. DOI: 10.1109/92.994993
  5. WENJUN, S., EMIRA, A., SANCHEZ-SINENCIO, E. CMOS RF receiver system design: A systematic approach. IEEE Transactions on Circuits and Systems I: Regular Papers, 2006, vol. 53, no. 5, p. 1023–1034. DOI: 10.1109/TCSI.2005.862286
  6. LI, Y., BAKKALOGLU, B., CHAKRABARTI, C. A system level energy model and energy-quality evaluation for integrated transceiver front-ends. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2007, vol. 15, no. 1, p. 90–103. DOI: 10.1109/TVLSI.2007.891095
  7. VAN DEN HEUVEL, J. H. C., WU, Y., BALTUS, P. G. M., et al. Front end power dissipation minimization and optimal transmission rate for wireless receivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, vol. 61, no. 5, p. 1566–1577. DOI: 10.1109/TCSI.2013.2285694
  8. LAURIDSEN, M. Studies on Mobile Terminal Energy Consumption for LTE and Future 5G. PhD thesis. Aalborg University, 2015
  9. DE SOUZA, M., MARIANO, A., TARIS, T. Reconfigurable inductorless wideband CMOS LNA for wireless communications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 64, no. 3, p. 675–685. DOI: 10.1109/TCSI.2016.2618361
  10. TASIC, A., SERDIJIN, W.A., LONG, J.R. Optimal distribution of the RF front-end system specifications to the RF front-end circuit blocks. In Proceedings of the IEEE International Symposium on Circuits and Systems. Vancouver (Canada), 2004, p. I–889–92. DOI: 10.1109/ISCAS.2004.1328338
  11. GU, Q. RF System Design of Transceivers for Wireless Communications. 1st ed. New York (US): Springer US, 2006. ISBN: 9780387241616
  12. LOLIS, L., PELISSIER, M., BERNIER, C. et al. System design of bandpass sampling RF receivers. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS). Yasmine Hammamet (Tunisia), 2009, p. 691–694. DOI: 10.1109/ICECS.2009.5410785
  13. SCHOEN, F. Two-phase Methods for Global Optimization. in Handbook of Global Optimization. Volume 2. 1st ed. New York (US): Springer US, 2013. ISBN: 9781475753622
  14. POTRA, F. A., WRIGTH, S. J. Interior-point methods. Journal of Computational and Applied Mathematics, 2000, vol. 124, no. 1-2, p. 281–302. DOI: 10.1016/S0377-0427(00)00433-7
  15. ETSI TS 136 101. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception. 3GPP TS 36.101 version 12.5.0 Release 12, 2014.
  16. MOHAMED, M. A., ABD-EL ATTY, H. M., ABO EL-SEOUD, M. E. A., RASLAN, W.M. Performance analysis of LTE-advanced physical layer. IJCSI International Journal of Computer Science Issues, 2014, vol. 11, no. 1, p. 80–87.
  17. Bluetooth Special Interest Group (SIG). Bluetooth Low Energy Technology Specification - Controller and Host Volumes. ed. 2008.

Keywords: System level design, power consumption model, RF receiver, LTE, non linear optimization