ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2025, Volume 34, Number 1 [DOI: 10.13164/re.2025-1]

Show all Hide all

Y. Zhang, H. M. Liu, S. Li, Z. B. Wang, S. J. Fang [references] [full-text] [DOI: 10.13164/re.2025.0001] [Download Citations]
Compact Wideband High-Selectivity Filtering Power Divider Using Four-Coupled-Lines

In the paper, a compact wideband filtering power divider (FPD) with high frequency selectivity is presented, which is merely based on the four-coupled-lines (FCLs) and isolated resistors. Since the FCL with diagonal short-circuited of input port has filtering response, an FPD without adding extra resonators can be easily realized. Further, two types of FCLs are cascaded as multi-mode resonators for bandwidth enhancement, and two resistors are added for isolation improvement. For validation, a 3-dB prototype with a size of 0.4λg × 0.07λg is implemented. Measurements show that the proposed FPD has a fractional bandwidth of more than 80%. Besides, the stopband rejection is over 35 dB with a rectangle coefficient (|BW20dB/BW3dB|) of 1.28, which indicates high frequency selectivity.

  1. SHEN, G. X., CHE, W. Q., XUE, Q., et al. Novel design of miniaturized filtering power dividers using dual-composite right-/left-handed resonators. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 12, p. 5260-5271. DOI: 10.1109/TMTT.2018.2873313
  2. FENG, T., MA, K. X., WANG, Y. Q. A miniaturized bandpass filtering power divider using quasi-lumped elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 1, p. 70-74. DOI: 10.1109/TCSII.2021.3087699
  3. GUO, X., LIU, Y. H., WU, W. Wideband unequal filtering power divider with arbitrary constant power ratio and phase difference. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, vol. 70, no. 2, p. 421-425. DOI: 10.1109/TCSII.2022.3212675
  4. ZHANG, S. R., LIU, H. M., CHEN, S. Y., et al. Wideband filtering power divider with unequal power division ratio and all-frequency input absorptive feature. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, vol. 71, no. 3, p. 1136-1140. DOI: 10.1109/TCSII.2023.3324915
  5. ZHU, Y. H., CAI, J., CAO, Y., et al. Compact wideband absorptive filtering power divider with a reused composite T-shape network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, vol. 70, no. 3, p. 899-903. DOI: 10.1109/TCSII.2022.3217462
  6. ZHANG, Y. F., WU, Y. L., YAN, J., et al. Wideband high selectivity filtering all-frequency absorptive power divider with deep out-of-band suppression. IEEE Transactions on Plasma Science, 2021, vol. 49, no. 7, p. 2099-2106. DOI: 10.1109/TPS.2021.3083780
  7. ZHAO, W., WU, Y. L., YANG, Y. H., et al. Novel on-chip wideband filtering power dividers with high selectivity and ultrawide out-of-band suppression in LTCC technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 11, p. 4288-4292. DOI: 10.1109/TCSII.2022.3179308
  8. WANG, X. D., GUO, Z. C., WANG, J. P., et al. Synthesis design of a self-packaged wideband out-of-phase filtering power divider implemented by PCB lamination process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, vol. 13, no. 11, p. 1833-1839. DOI: 10.1109/TCPMT.2023.3327686
  9. XIAO, J. K., YANG, X. Y., LI, X. F. A 3.9GHz/63.6% FBW multi-mode filtering power divider using self-packaged SISL. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 6, p. 1842-1846. DOI: 10.1109/TCSII.2020.3048108
  10. WANG, Y. C., XIAO, F., CAO, Y., et al. Novel wideband microstrip filtering power divider using multiple resistors for port isolation. IEEE Access, 2019, vol. 7, p. 61868-61873. DOI: 10.1109/ACCESS.2019.2913093
  11. XIA, Z. P., WANG, J. P., LU, Q. Y., et al. A wideband 90° phase shifting element applied in quadrature phase filtering power divider. IEEE Microwave and Wireless Technology Letters, 2024, vol. 34, no. 2, p. 167-170. DOI: 10.1109/LMWT.2023.3340720
  12. TIAN, H. Y., XIAO, L. K., YU, H., et al. Wideband microstrip filtering power divider designed by direct synthesis technique (DST). IEEE Microwave and Wireless Components Letters, 2022, vol. 32, no. 6, p. 507-510. DOI: 10.1109/LMWC.2022.3143546
  13. YU, X., SUN, S. A novel wideband filtering power divider with embedding three-line coupled structures. IEEE Access, 2018, vol. 6, p. 41280-41290. DOI: 10.1109/ACCESS.2018.2858275
  14. XU, K. D., BAI, Y. C., REN, X., et al. Broadband filtering power dividers using simple three-line coupled structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, vol. 9, no. 6, p. 1103-1110. DOI: 10.1109/TCPMT.2018.2869077
  15. LIU, H. M., MA, Y. H., GUAN, M. Y., et al. Synthesis of miniaturized wideband four-way filtering power divider consisting of unequal-width three-coupled-lines. International Journal of RF and Microwave Computer-Aided Engineering, 2021, vol. 31, no. 10. DOI: 10.1002/mmce.22805
  16. ZHANG, S. R., LIU, H. M., CHEN, S. Y., et al. Synthesis of wideband all-frequency absorptive filtering power divider with high selectivity and flat output port distributions. Electronics, 2023, vol. 12, no. 17, p. 1–16. DOI: 10.1002/electronics.12173704
  17. CHEN, C. P., KATO, N., ANADA, T. Synthesis scheme for wideband filters consisting of three-coupled-lines including the cross-coupling between non-adjacent lines. IET Microwave Antennas Propagation, 2015, vol. 9, no. 14, p. 1558-1566. DOI: 10.1049/IET-MAP.2014.0467
  18. LI, L., LI, Z. F. Side-coupled shorted microstrip line for compact quasi-elliptic wideband bandpass filter design. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 6, p. 322-324. DOI: 10.1109/LMWC.2010.2047516
  19. ZHU, H., ABBOSH, A., GUO, L. Ultra-wideband unequal in phase power divider using three-line coupled structure. Electronic Letters, 2014, vol. 50, no. 15, p. 1081–1082. DOI: 10.1049/el.2014.1214

Keywords: Filtering power divider (FPD), high selectivity, four-coupled-line (FCL), wideband, miniaturization

J. Wang, Y. Luo, J. Zhang, L. Hou, J. Wang, B. Liu [references] [full-text] [DOI: 10.13164/re.2025.0009] [Download Citations]
A Wide-band High-performance Voltage-controlled Oscillator for 5G IoT Wireless Communication

A low phase noise and power-efficient class-B/C hybrid voltage-controlled oscillator (VCO) is presented for applying to 5G Internet of Things (IoT) wireless communication in this paper. The proposed three sets of switch capacitor array (SCA) are adopted first to widen the bandwidth by dividing the VCO output into eight overlapped frequency bands while maintaining the flexible frequency tuning. Then a multiple bias variable capacitor array (VCA) is designed to realize the fine-grain tuning of output frequency, which also improves the linearity within frequency-voltage tuning, the curvature variation in tunable gain, while minimizes the phase noise and stabilize tuning control on output frequency. After circuit implementation based on 180nm/1.2V CMOS standard process, the post-layout simulation results demonstrate that the proposed VCO achieves a wide frequency output from 4.63 GHz to 5.13 GHz, with consuming a total consumption of 0.19 mW at 1.2 V power supply voltage. The key phase noise is -115.1 dBc/Hz@1MHz on the 4.82 GHz center frequency, and the figure of merit (FoM) value can reach up to -195.6 dBc/Hz, which can surpass the performance to comparable similar class VCO design cases.

  1. GHORBEL, I., HADDAD, F., RAHAJANDRAIBE , W., et al. Design methodology of ultra l ow power LC VCOs f or IoT applications. Journal of Circuits, Systems and Computers 2019, vol. 28, no. 7, p. 1 7. DOI: 10.1142/S0218126619501226
  2. RAJALINGAM, P., JAYAKUMAR, S., ROUTRAY, S. Design and analysis of low power and high frequency current starved sleep voltage controlled oscillator for phase locked loop application. Silicon , 2021, vol. 13, no. 8, p. 2715 2726. DOI: 10.1007/s12633-020-00619-7
  3. NEJADHASAN, S., MOAZENIAN, N., ABIRI, E., et al. Low power and low phase noise VCO with dual current shape for IoT applications. Turkish Journal of Electrical Engineering and Computer Sciences , 2020, vol. 28, no. 5, p. 2493 2506 DOI: 10.3906/elk-1909-47
  4. FANG, M., GE, W., ZHANG, Y., et al. A Ku b and 200.2 dBc/Hz FoMT low power low phase noise LC VCO IC with a novel feedback circuit using the leakage current. In 2021 IEEE MTT-S International Wireless Symposium (IWS). Nanjing (China), 2021, p. 1 3. DOI: 10.1109/IWS52775.2021.9499525
  5. LI, P., TIAN, T., PU, et al. A 5.67 8.75 GHz LC VCO with small gain variation for 2.4 GHz band WLAN applications. IEICE Electronics Express, 2021, vol. 18, no. 23, p. 20210387-20210387. DOI: 10.1587/elex.18.20210387
  6. SUN, Z., XU, D., HUANG, H., et al. A compact TF based LC VCO with ultra low power operation and supply pushing reduction for IoT applications. IEICE Transactions on Electronics, 2020, vol. 103, no. 10, p. 505 513. DOI: 10.1587/transele.2019CTP0005
  7. HATI, M. K., BHATTACHARYYA, T. K. A fast automatic frequency and amplitude control LC VCO circuit with noise filtering technique for a fractional N PLL frequency synthesizer. Microelectronics Journal, 2016, vol. 52, p. 134 146. DOI: 10.1016/j.mejo.2016.03.014
  8. YU, F, TANG, Q, WANG, W., et al. A 2.7 GHz low phase noise LC QVCO using the gate modulated coupling technique. Wireless Personal Communications, 2016, vol. 86, p. 671 681681. DOI: 10.1007/s11277-015-2951-8
  9. XU, H., YAN, Y., WANG, Y., et al. A low voltage class-D VCO with implicit common-mode resonator implemented in 55 nm CMOS technology. Electronics, 2023, vol. 12, no. 10, p. 1-13. DOI: 10.3390/electronics12102262
  10. NARAYANAN, A. T., LI, N., OKADA, K., et al. A pulse tail feedback VCO achieving FoM of 195 dBc/Hz with flicker noise corner of 700 Hz. In 2017 Symposium on VLSI Circuits. Kyoto (Japan), 2017, p. C124-C125. DOI: 10.23919/VLSIC.2017.8008454
  11. MOHAMED, S., ORTMANNS, M., MANOLI, Y. Design of current reuse CMOS LC VCO. In 2008 15th IEEE International Conference on Electronics, Circuits and Systems. Saint Julian's (Malta), 2008, p. 714 717717. DOI: 10.1109/ICECS.2008.4674953
  12. ZHANG, H., XUE, P., HONG, Z. A 4.6 5.6 GHz constant KVCO low phase noise LC VCO and an optimized automatic frequency calibrator applied in PLL frequency synthesizer. In IECON 2017 43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing (China), 2017, p. 8337 83428342. DOI: 10.1109/IECON.2017.8217464
  13. ITALIA, A., IPPOLITO, C. M., PALMISANO, G. A 1 mW 1.13 1.9 GHz CMOS LC VCO using shunt connected switched coupled inductors. IEEE Transactions on Circuits and Systems I: Regular Papers , 2012, vol. 59, no. 6, p. 1145 11551155. DOI: 10.1109/TCSI.2011.2173383
  14. EHAB, Y., NAGUIB, A., AHMED, H. N. An ultra low phase noise low power 10 GHz LC VCO with high Q common mode harmonic resonance for 5G systems. In 2023 International Microwave and Antenna Symposium (IMAS). Cairo (Egypt), 2023, p. 166 169169. DOI: 10.1109/IMAS55807.2023.10066937
  15. YANG, Z. Y., CHEN, R. Y. High performance cost efficient dual band CMOS LC VCO. IEICE Electronics Express , 2015, vol. 12, no. 8, p. 1–6. DOI: 10.1587/elex.12.20150118
  16. MOSTAJERAN, A., BAKHTIAR, M. S., AFSHARI, E. A 2.4 GHz VCO with FOM of 190 dBc/Hz at 10 kHz to 2 MHz offset frequencies in 0.13 μm CMOS using an ISF manipulation technique. In 2015 IEEE International Solid State Circuits Conference --(ISSCC) Digest of Technical San Francisco (USA), 2015, p. 1 33. DOI: 10.1109/ISSCC.2015.7063121
  17. NAKAMURA, T., KITAMURA, T., SHIRAMIZU, N., et al. A wide tuning range VCO with s mall VCO gain variation for multi band W-CDMA RFIC. IEICE Transactions on Electronics, 2013, vol. 96, no. 6, p. 790 795795. DOI: 10.1587/transele.E96.C.790
  18. SON, H. J., SHIN, D. J., CHOI, U. G., et al. K‐band CMOS voltage‐controlled oscillator using switched self‐biasing technique. Microwave and Optical Technology Letters, 2024, vol. 66, no. 1, p. 1–5. DOI: 10.1002/mop.33979
  19. WANG, Y., HU, S., QIN, M., et al. A wide tuning range low phase noise LC VCO with a high Q switched capacitor array. IEICE Electronics Express, 2023, vol. 20, no. 19, p. 1–6. DOI: 10.1587/elex.20.20230355
  20. ZHANG, R., ZHENG, Y., CHEN, Z., et al. A wide tuning range low Kvco Ka band BiCMOS LC VCO using varactor bank. In 2021 IEEE MTT S International Wireless Symposium (IWS). Nanjing (China), 2021, p. 1 3. DOI: 10.1109/IWS52775.2021.9499714
  21. MOON, Y. J., ROH, Y. S., JEONG, C. Y., et al. A 4.39 5.26 GHz LC tank CMOS voltage controlled oscillator with small VCO gain variation. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 8, p. 534 536536. DOI: 10.1109/LMWC.2009.2024846
  22. TANG, R., ZHAO, Z., ZHANG, J., et al. A l ow gain variation LC VCO with mutual inductive tuning for K VCO linearity compensation. IEEE Microwave and Wireless Technology Letters, 2022, vol. 33, no. 1, p. 55-58. DOI: 10.1109/LMWC.2022.3193003
  23. LIU, Z., FENG, H., ZHANG, N. A low gain VCO with varactor based LC tank for NB IoT application. In 2019 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). Xi'an (China), 2019, p. 1 22. DOI: 10.1109/EDSSC.2019.8754311
  24. CHUNG, Y. R., YU, Y. H., LU, Y. C., et al. A V band CMOS 90nm PLL. In 2014 Asia Pacific Microwave Conference. Sendai (Japan), 2014, p. 1259- 1261.
  25. WANG, K. N., HE, Y., TANG, R., et al. A high‐linearity LC‐VCO with combined MOS varactors and bulk‐biased PMOS varactors for gain variation compensation. Microwave and Optical Technology Letters , 2024, vol. 66, no. 1. DOI: 10.1002/mop.34031
  26. MAZZANTI, A, ANDREANI, P. Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 12, p. 2716–2729. DOI: 10.1109/JSSC.2008.2004867

Keywords: LC voltage-controlled oscillator, Internet of Things communication, low phase noise, low power

Y. Wang, Z. H. Guo, K. Sun, H. B. Xiao, W. M. Wang [references] [full-text] [DOI: 10.13164/re.2025.0018] [Download Citations]
Youth Depression Diagnosis Algorithm Based on 3D-WGMobileNet and Transfer Learning

Depression is a common mental illness that not only profoundly infests the psychological state of patients, but also tends to cause damage to the functioning of patients' brain areas. To construct a comprehensive and detailed framework for a supporting diagnostic network that will help physicians make accurate and timely diagnoses when dealing with patients at different stages of depression, a network model based on three-dimensional (3D) weight group MobileNet (3D-WGMobileNet) and transfer learningis proposed. Firstly, fMRI data is preprocessed, and regional homogeneity analysis is used to reduce the dimension of the image. Then, the characteristics of Alzheimer's disease are learned by transfer learning and transferred to the proposed model. Next, the dynamic group convolution was used to construct the expert weight matrix of the convolution kernel, and the sliding window group convolution was used to compress the parameters of the model to improve the expression ability and computing power of the model. By using 5-fold cross-validation, we conducted experiments using data from HCP and REST-meta-MDD. The experiment results show that the proposed model gives a superior performance compared with other state-of-the-art methods, especially on the classification of the healthy group with major depression groups, where the two datasets achieve 88% and 91% accuracy, respectively, which verifies the feasibility and effectiveness of our model.

  1. BAI, R., XIAO, L., GUO, Y., et al. Tracking and monitoring mood stability of patients with major depressive disorder by machine learning models using passive digital data (preprint). JMIR mHealth and uHealth, 2021, vol. 9, no. 3, p. e24365. DOI: 10.2196/24365 [2] LIU, H.-J., QIU, J. Depression brain dysfunction: evidence from a local functional connectivity method (in Chinese). Journal of Psychological Science, 2016, vol. 39, no. 1, p. 239–244. DOI: 10.16719/j.cnki.1671-6981.20160135 [3] CHEN, Z., ZHAO, R., WANG, Q., et al. Functional connectivity changes of the visual cortex in the cervical spondylitis myelopathy patients: A resting-state fMRI study. Spine, 2020, vol. 45, no. 5, p. E272–E279. DOI:10.1097/BRS.0000000000003245
  2. JU, R., HU, C., LI, Q., et al. Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, vol. 16, no. 1, p. 244–257. DOI: 10.1109/TCBB.2017.2776910
  3. JUN, E., NA, K.-S., KANG, W., et al. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks. Human Brain Mapping, 2020, vol. 41, no. 17, p. 4997–5014. DOI: 10.1002/hbm.25175
  4. HUANG, H., HUANG, Y., KAGGIE, J. D., et al. Multiparametric MRI-based deep learning radiomics model for assessing 5-year recurrence risk in non-muscle invasive bladder cancer. Journal of Magnetic Resonance Imaging, 2025, vol. 61, no. 3, 1442–1456. DOI: 10.1002/jmri.29574
  5. HOSSEINI-ASL, E., GHAZAL, M., MAHMOUD, A., et al. Alzheimer’s disease diagnostics by a deeply supervised adaptable
  6. 3D convolutional network. Frontiers in Bioscience-Landmark, 2018, vol. 23, no. 3, p. 584–596. DOI: 10.2741/4606
  7. LAO, H., ZHANG, X., TANG, Y., et al. Alzheimer's disease diagnosis based on the visual attention model and equal-distance ring shape context features. IET Image Processing, 2021, vol. 15, no. 10, p. 2351–2362. DOI: 10.1049/IPR2.12218
  8. CHEN, E., WU, X., WANG, C., et al. Application of improved convolutional neural network in lung image segmentation. In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). Taiyuan (China), 2019, p. 1–6. DOI: 10.1109/MLBDBI48998.2019.00027 [10] WANG, Y., ZHENG, G., JIE, R., et al. A major depression auxiliary diagnosis method based on convolution neural network (in Chinese). Journal of Lanzhou University (Medical Edition), 2022, vol. 48, no. 08, p. 5–10. DOI: 10.13885/j.issn.1000-2812.2022.08.002 [11] HAMID, D. S. B. A., GOYAL, S. B., BEDI, P. Integration of deep learning for improved diagnosis of depression using EEG and facial features. Materials Today: Proceedings, 2023, vol. 80, p. 1965–1969. DOI: 10.1016/J.MATPR.2021.05.659
  9. JAN, A., MENG, H., GAUS, Y. F. A., et al. Artificial intelligent system for automatic depression level analysis through visual and vocal expressions. IEEE Transactions on Cognitive and Developmental Systems, 2017, vol. 10, no. 3, p. 668–680. DOI: 10.1109/TCDS.2017.2721552 [13] DE MELO, W. C., GRANGER, E., HADID, A. Depression detection based on deep distribution learning. In 2019 IEEE International Conference on Image Processing (ICIP). Taipei (Taiwan), 2019, p. 4544–4548. DOI: 10.1109/ICIP.2019.8803467
  10. EL-GAZZAR, A., THOMAS, R. M., VAN WINGEN, G. fMRI-S4: Learning short-and long-range dynamic fMRI dependencies using 1D convolutions and state space models. In International Workshop on Machine Learning in Clinical Neuroimaging, 2022, p. 158–168. DOI: 10.48550/arXiv.2208.04166
  11. CHOI, D., ZHANG, G., JUNG, J., et al. Depression diagnosis algorithm based on 2-stream CNN using facial image. In 2023 IEEE/ACIS 23rd International Conference on Computer and Information Science (ICIS). Wuxi (China), 2023, p. 43–47. DOI: 10.1109/ICIS57766.2023.10210234
  12. FU, Y., ALDRICH, C. Flotation froth image analysis by use of a dynamic feature extraction algorithm. IFAC-PapersOnLine, 2016, vol. 49, no. 20, p. 84–89. DOI: 10.1016/J.IFACOL.2016.10.101
  13. AL JAZAERY, M., GUO, G. Video-based depression level analysis by encoding deep spatiotemporal features. IEEE Transactions on Affective Computing, 2018, vol. 12, no. 1, p. 262 to 268. DOI: 10.1109/TAFFC.2018.2870884
  14. CHEN, X., LU, B., LI, H.-X., et al. The DIRECT consortium and the REST-meta-MDD project: Towards neuroimaging biomarkers of major depressive disorder. Psychoradiology, 2022, vol. 2, no. 1, p. 32–42. DOI: 10.1093/psyrad/kkac005
  15. SARRAF, S., TOFIGHI, G. Classification of Alzheimer's disease using fMRI data and deep learning convolutional neural networks. arXiv, 2016, p. 1–5. DOI: 10.48550/arXiv.1603.08631
  16. ZANG, Y., JIANG, T., LU, Y., et al. Regional homogeneity approach to fMRI data analysis. NeuroImage, 2004, vol. 22, no. 1, p. 394–400. DOI: 10.1016/j.neuroimage.2003.12.030
  17. HARADA, A., BOLLEGALA, D., CHANDRASIRI, N. P. Discrimination of human-written and human and machine written sentences using text consistency. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). Greater Noida (India), 2021, p. 41–47. DOI: 10.1109/ICCCIS51004.2021.9397237
  18. ZHANG, C., YANG, T., YANG, J. Image recognition of wind turbine blade defects using attention-based MobileNetv1-YOLOv4 and transfer learning. Sensors, 2022, vol. 22, no. 16, p. 1–18. DOI: 10.3390/s22166009
  19. LUO, Y., ZHU, K., WANG, W., et al. A speaker recognition method based on dynamic convolution with dual attention mechanism. Engineering Letters, 2023, vol. 31, no. 2, p. 1–8.
  20. ROY, S. K., DUBEY, S. R., CHATTERJEE, S., et al. FuSENet: Fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification. IET Image Processing, 2020, vol. 14, no. 8, p. 1653–1661. DOI: 10.1049/iet-ipr.2019.1462
  21. RADFORD, A., METZ, L., CHINTALA, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv, 2015, p. 1–16. DOI: 10.48550/arXiv.1511.06434
  22. TAJBAKHSH, N., SHIN, J. Y., GURUDU, S. R., et al. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 2016, vol. 35, no. 5, p. 1299–1312. DOI: 10.1109/TMI.2016.2535302
  23. JIA, H., WANG, Y., DUAN, Y., et al. Alzheimer’s disease classification based on image transformation and features fusion. Computational and Mathematical Methods in Medicine, 2021, no. 1, p. 1–11. DOI: 10.1155/2021/9624269
  24. CHANG, J., GUAN, S. Q., SHI, H. Y. Strip defect classification based on improved generative adversarial networks and MobileNetV3 (in Chinese). Laser Optoelectronics Progress, 2021, vol. 58, no. 4, p. 1–6. DOI: 10.3788/LOP202158.0410016
  25. ZHAO, Y., DONG, Q., ZHANG, S., et al. Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 2017, vol. 65, no. 9, p. 1975–1984. DOI: 10.1109/TBME.2017.2715281
  26. BHASKAR SEN, MUELLER, B., KLIMES-DOUGAN, B., et al. Classification of major depressive disorder from resting-state fMRI. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin (Germany), 2019, p. 3511–3514. DOI: 10.1109/EMBC.2019.8856453
  27. BHASKAR SEN, CULLEN, K. R., PARHI, K. K. Classification of adolescent major depressive disorder via static and dynamic connectivity. IEEE Journal of Biomedical and Health Informatics, 2021, vol. 25, no. 7, p. 2604–2614. DOI: 10.1109/JBHI.2020.3043427
  28. NOMAN, F., TING, M. C., KANG, H., et al. Graph autoencoders for embedding learning in brain networks and major depressive disorder identification. IEEE Journal of Biomedical and Health Informatics, 2024, vol. 28, no. 3, p. 1644-1655. DOI: 10.1109/JBHI.2024.3351177

Keywords: Depression, functional magnetic resonance imaging, transfer learning, MobileNet, dynamic group convolution