ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2025, Volume 34, Number 1 [DOI: 10.13164/re.2025-1]

Show all Hide all

Y. Zhang, H. M. Liu, S. Li, Z. B. Wang, S. J. Fang [references] [full-text] [DOI: 10.13164/re.2025.0001] [Download Citations]
Compact Wideband High-Selectivity Filtering Power Divider Using Four-Coupled-Lines

In the paper, a compact wideband filtering power divider (FPD) with high frequency selectivity is presented, which is merely based on the four-coupled-lines (FCLs) and isolated resistors. Since the FCL with diagonal short-circuited of input port has filtering response, an FPD without adding extra resonators can be easily realized. Further, two types of FCLs are cascaded as multi-mode resonators for bandwidth enhancement, and two resistors are added for isolation improvement. For validation, a 3-dB prototype with a size of 0.4λg × 0.07λg is implemented. Measurements show that the proposed FPD has a fractional bandwidth of more than 80%. Besides, the stopband rejection is over 35 dB with a rectangle coefficient (|BW20dB/BW3dB|) of 1.28, which indicates high frequency selectivity.

  1. SHEN, G. X., CHE, W. Q., XUE, Q., et al. Novel design of miniaturized filtering power dividers using dual-composite right-/left-handed resonators. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 12, p. 5260-5271. DOI: 10.1109/TMTT.2018.2873313
  2. FENG, T., MA, K. X., WANG, Y. Q. A miniaturized bandpass filtering power divider using quasi-lumped elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 1, p. 70-74. DOI: 10.1109/TCSII.2021.3087699
  3. GUO, X., LIU, Y. H., WU, W. Wideband unequal filtering power divider with arbitrary constant power ratio and phase difference. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, vol. 70, no. 2, p. 421-425. DOI: 10.1109/TCSII.2022.3212675
  4. ZHANG, S. R., LIU, H. M., CHEN, S. Y., et al. Wideband filtering power divider with unequal power division ratio and all-frequency input absorptive feature. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, vol. 71, no. 3, p. 1136-1140. DOI: 10.1109/TCSII.2023.3324915
  5. ZHU, Y. H., CAI, J., CAO, Y., et al. Compact wideband absorptive filtering power divider with a reused composite T-shape network. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, vol. 70, no. 3, p. 899-903. DOI: 10.1109/TCSII.2022.3217462
  6. ZHANG, Y. F., WU, Y. L., YAN, J., et al. Wideband high selectivity filtering all-frequency absorptive power divider with deep out-of-band suppression. IEEE Transactions on Plasma Science, 2021, vol. 49, no. 7, p. 2099-2106. DOI: 10.1109/TPS.2021.3083780
  7. ZHAO, W., WU, Y. L., YANG, Y. H., et al. Novel on-chip wideband filtering power dividers with high selectivity and ultrawide out-of-band suppression in LTCC technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, vol. 69, no. 11, p. 4288-4292. DOI: 10.1109/TCSII.2022.3179308
  8. WANG, X. D., GUO, Z. C., WANG, J. P., et al. Synthesis design of a self-packaged wideband out-of-phase filtering power divider implemented by PCB lamination process. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2023, vol. 13, no. 11, p. 1833-1839. DOI: 10.1109/TCPMT.2023.3327686
  9. XIAO, J. K., YANG, X. Y., LI, X. F. A 3.9GHz/63.6% FBW multi-mode filtering power divider using self-packaged SISL. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 6, p. 1842-1846. DOI: 10.1109/TCSII.2020.3048108
  10. WANG, Y. C., XIAO, F., CAO, Y., et al. Novel wideband microstrip filtering power divider using multiple resistors for port isolation. IEEE Access, 2019, vol. 7, p. 61868-61873. DOI: 10.1109/ACCESS.2019.2913093
  11. XIA, Z. P., WANG, J. P., LU, Q. Y., et al. A wideband 90° phase shifting element applied in quadrature phase filtering power divider. IEEE Microwave and Wireless Technology Letters, 2024, vol. 34, no. 2, p. 167-170. DOI: 10.1109/LMWT.2023.3340720
  12. TIAN, H. Y., XIAO, L. K., YU, H., et al. Wideband microstrip filtering power divider designed by direct synthesis technique (DST). IEEE Microwave and Wireless Components Letters, 2022, vol. 32, no. 6, p. 507-510. DOI: 10.1109/LMWC.2022.3143546
  13. YU, X., SUN, S. A novel wideband filtering power divider with embedding three-line coupled structures. IEEE Access, 2018, vol. 6, p. 41280-41290. DOI: 10.1109/ACCESS.2018.2858275
  14. XU, K. D., BAI, Y. C., REN, X., et al. Broadband filtering power dividers using simple three-line coupled structures. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2019, vol. 9, no. 6, p. 1103-1110. DOI: 10.1109/TCPMT.2018.2869077
  15. LIU, H. M., MA, Y. H., GUAN, M. Y., et al. Synthesis of miniaturized wideband four-way filtering power divider consisting of unequal-width three-coupled-lines. International Journal of RF and Microwave Computer-Aided Engineering, 2021, vol. 31, no. 10. DOI: 10.1002/mmce.22805
  16. ZHANG, S. R., LIU, H. M., CHEN, S. Y., et al. Synthesis of wideband all-frequency absorptive filtering power divider with high selectivity and flat output port distributions. Electronics, 2023, vol. 12, no. 17, p. 1–16. DOI: 10.1002/electronics.12173704
  17. CHEN, C. P., KATO, N., ANADA, T. Synthesis scheme for wideband filters consisting of three-coupled-lines including the cross-coupling between non-adjacent lines. IET Microwave Antennas Propagation, 2015, vol. 9, no. 14, p. 1558-1566. DOI: 10.1049/IET-MAP.2014.0467
  18. LI, L., LI, Z. F. Side-coupled shorted microstrip line for compact quasi-elliptic wideband bandpass filter design. IEEE Microwave and Wireless Components Letters, 2010, vol. 20, no. 6, p. 322-324. DOI: 10.1109/LMWC.2010.2047516
  19. ZHU, H., ABBOSH, A., GUO, L. Ultra-wideband unequal in phase power divider using three-line coupled structure. Electronic Letters, 2014, vol. 50, no. 15, p. 1081–1082. DOI: 10.1049/el.2014.1214

Keywords: Filtering power divider (FPD), high selectivity, four-coupled-line (FCL), wideband, miniaturization

J. Wang, Y. Luo, J. Zhang, L. Hou, J. Wang, B. Liu [references] [full-text] [DOI: 10.13164/re.2025.0009] [Download Citations]
A Wide-band High-performance Voltage-controlled Oscillator for 5G IoT Wireless Communication

A low phase noise and power-efficient class-B/C hybrid voltage-controlled oscillator (VCO) is presented for applying to 5G Internet of Things (IoT) wireless communication in this paper. The proposed three sets of switch capacitor array (SCA) are adopted first to widen the bandwidth by dividing the VCO output into eight overlapped frequency bands while maintaining the flexible frequency tuning. Then a multiple bias variable capacitor array (VCA) is designed to realize the fine-grain tuning of output frequency, which also improves the linearity within frequency-voltage tuning, the curvature variation in tunable gain, while minimizes the phase noise and stabilize tuning control on output frequency. After circuit implementation based on 180nm/1.2V CMOS standard process, the post-layout simulation results demonstrate that the proposed VCO achieves a wide frequency output from 4.63 GHz to 5.13 GHz, with consuming a total consumption of 0.19 mW at 1.2 V power supply voltage. The key phase noise is -115.1 dBc/Hz@1MHz on the 4.82 GHz center frequency, and the figure of merit (FoM) value can reach up to -195.6 dBc/Hz, which can surpass the performance to comparable similar class VCO design cases.

  1. GHORBEL, I., HADDAD, F., RAHAJANDRAIBE , W., et al. Design methodology of ultra l ow power LC VCOs f or IoT applications. Journal of Circuits, Systems and Computers 2019, vol. 28, no. 7, p. 1 7. DOI: 10.1142/S0218126619501226
  2. RAJALINGAM, P., JAYAKUMAR, S., ROUTRAY, S. Design and analysis of low power and high frequency current starved sleep voltage controlled oscillator for phase locked loop application. Silicon , 2021, vol. 13, no. 8, p. 2715 2726. DOI: 10.1007/s12633-020-00619-7
  3. NEJADHASAN, S., MOAZENIAN, N., ABIRI, E., et al. Low power and low phase noise VCO with dual current shape for IoT applications. Turkish Journal of Electrical Engineering and Computer Sciences , 2020, vol. 28, no. 5, p. 2493 2506 DOI: 10.3906/elk-1909-47
  4. FANG, M., GE, W., ZHANG, Y., et al. A Ku b and 200.2 dBc/Hz FoMT low power low phase noise LC VCO IC with a novel feedback circuit using the leakage current. In 2021 IEEE MTT-S International Wireless Symposium (IWS). Nanjing (China), 2021, p. 1 3. DOI: 10.1109/IWS52775.2021.9499525
  5. LI, P., TIAN, T., PU, et al. A 5.67 8.75 GHz LC VCO with small gain variation for 2.4 GHz band WLAN applications. IEICE Electronics Express, 2021, vol. 18, no. 23, p. 20210387-20210387. DOI: 10.1587/elex.18.20210387
  6. SUN, Z., XU, D., HUANG, H., et al. A compact TF based LC VCO with ultra low power operation and supply pushing reduction for IoT applications. IEICE Transactions on Electronics, 2020, vol. 103, no. 10, p. 505 513. DOI: 10.1587/transele.2019CTP0005
  7. HATI, M. K., BHATTACHARYYA, T. K. A fast automatic frequency and amplitude control LC VCO circuit with noise filtering technique for a fractional N PLL frequency synthesizer. Microelectronics Journal, 2016, vol. 52, p. 134 146. DOI: 10.1016/j.mejo.2016.03.014
  8. YU, F, TANG, Q, WANG, W., et al. A 2.7 GHz low phase noise LC QVCO using the gate modulated coupling technique. Wireless Personal Communications, 2016, vol. 86, p. 671 681681. DOI: 10.1007/s11277-015-2951-8
  9. XU, H., YAN, Y., WANG, Y., et al. A low voltage class-D VCO with implicit common-mode resonator implemented in 55 nm CMOS technology. Electronics, 2023, vol. 12, no. 10, p. 1-13. DOI: 10.3390/electronics12102262
  10. NARAYANAN, A. T., LI, N., OKADA, K., et al. A pulse tail feedback VCO achieving FoM of 195 dBc/Hz with flicker noise corner of 700 Hz. In 2017 Symposium on VLSI Circuits. Kyoto (Japan), 2017, p. C124-C125. DOI: 10.23919/VLSIC.2017.8008454
  11. MOHAMED, S., ORTMANNS, M., MANOLI, Y. Design of current reuse CMOS LC VCO. In 2008 15th IEEE International Conference on Electronics, Circuits and Systems. Saint Julian's (Malta), 2008, p. 714 717717. DOI: 10.1109/ICECS.2008.4674953
  12. ZHANG, H., XUE, P., HONG, Z. A 4.6 5.6 GHz constant KVCO low phase noise LC VCO and an optimized automatic frequency calibrator applied in PLL frequency synthesizer. In IECON 2017 43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing (China), 2017, p. 8337 83428342. DOI: 10.1109/IECON.2017.8217464
  13. ITALIA, A., IPPOLITO, C. M., PALMISANO, G. A 1 mW 1.13 1.9 GHz CMOS LC VCO using shunt connected switched coupled inductors. IEEE Transactions on Circuits and Systems I: Regular Papers , 2012, vol. 59, no. 6, p. 1145 11551155. DOI: 10.1109/TCSI.2011.2173383
  14. EHAB, Y., NAGUIB, A., AHMED, H. N. An ultra low phase noise low power 10 GHz LC VCO with high Q common mode harmonic resonance for 5G systems. In 2023 International Microwave and Antenna Symposium (IMAS). Cairo (Egypt), 2023, p. 166 169169. DOI: 10.1109/IMAS55807.2023.10066937
  15. YANG, Z. Y., CHEN, R. Y. High performance cost efficient dual band CMOS LC VCO. IEICE Electronics Express , 2015, vol. 12, no. 8, p. 1–6. DOI: 10.1587/elex.12.20150118
  16. MOSTAJERAN, A., BAKHTIAR, M. S., AFSHARI, E. A 2.4 GHz VCO with FOM of 190 dBc/Hz at 10 kHz to 2 MHz offset frequencies in 0.13 μm CMOS using an ISF manipulation technique. In 2015 IEEE International Solid State Circuits Conference --(ISSCC) Digest of Technical San Francisco (USA), 2015, p. 1 33. DOI: 10.1109/ISSCC.2015.7063121
  17. NAKAMURA, T., KITAMURA, T., SHIRAMIZU, N., et al. A wide tuning range VCO with s mall VCO gain variation for multi band W-CDMA RFIC. IEICE Transactions on Electronics, 2013, vol. 96, no. 6, p. 790 795795. DOI: 10.1587/transele.E96.C.790
  18. SON, H. J., SHIN, D. J., CHOI, U. G., et al. K‐band CMOS voltage‐controlled oscillator using switched self‐biasing technique. Microwave and Optical Technology Letters, 2024, vol. 66, no. 1, p. 1–5. DOI: 10.1002/mop.33979
  19. WANG, Y., HU, S., QIN, M., et al. A wide tuning range low phase noise LC VCO with a high Q switched capacitor array. IEICE Electronics Express, 2023, vol. 20, no. 19, p. 1–6. DOI: 10.1587/elex.20.20230355
  20. ZHANG, R., ZHENG, Y., CHEN, Z., et al. A wide tuning range low Kvco Ka band BiCMOS LC VCO using varactor bank. In 2021 IEEE MTT S International Wireless Symposium (IWS). Nanjing (China), 2021, p. 1 3. DOI: 10.1109/IWS52775.2021.9499714
  21. MOON, Y. J., ROH, Y. S., JEONG, C. Y., et al. A 4.39 5.26 GHz LC tank CMOS voltage controlled oscillator with small VCO gain variation. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 8, p. 534 536536. DOI: 10.1109/LMWC.2009.2024846
  22. TANG, R., ZHAO, Z., ZHANG, J., et al. A l ow gain variation LC VCO with mutual inductive tuning for K VCO linearity compensation. IEEE Microwave and Wireless Technology Letters, 2022, vol. 33, no. 1, p. 55-58. DOI: 10.1109/LMWC.2022.3193003
  23. LIU, Z., FENG, H., ZHANG, N. A low gain VCO with varactor based LC tank for NB IoT application. In 2019 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC). Xi'an (China), 2019, p. 1 22. DOI: 10.1109/EDSSC.2019.8754311
  24. CHUNG, Y. R., YU, Y. H., LU, Y. C., et al. A V band CMOS 90nm PLL. In 2014 Asia Pacific Microwave Conference. Sendai (Japan), 2014, p. 1259- 1261.
  25. WANG, K. N., HE, Y., TANG, R., et al. A high‐linearity LC‐VCO with combined MOS varactors and bulk‐biased PMOS varactors for gain variation compensation. Microwave and Optical Technology Letters , 2024, vol. 66, no. 1. DOI: 10.1002/mop.34031
  26. MAZZANTI, A, ANDREANI, P. Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 2008, vol. 43, no. 12, p. 2716–2729. DOI: 10.1109/JSSC.2008.2004867

Keywords: LC voltage-controlled oscillator, Internet of Things communication, low phase noise, low power

Y. Wang, Z. H. Guo, K. Sun, H. B. Xiao, W. M. Wang [references] [full-text] [DOI: 10.13164/re.2025.0018] [Download Citations]
Youth Depression Diagnosis Algorithm Based on 3D-WGMobileNet and Transfer Learning

Depression is a common mental illness that not only profoundly infests the psychological state of patients, but also tends to cause damage to the functioning of patients' brain areas. To construct a comprehensive and detailed framework for a supporting diagnostic network that will help physicians make accurate and timely diagnoses when dealing with patients at different stages of depression, a network model based on three-dimensional (3D) weight group MobileNet (3D-WGMobileNet) and transfer learningis proposed. Firstly, fMRI data is preprocessed, and regional homogeneity analysis is used to reduce the dimension of the image. Then, the characteristics of Alzheimer's disease are learned by transfer learning and transferred to the proposed model. Next, the dynamic group convolution was used to construct the expert weight matrix of the convolution kernel, and the sliding window group convolution was used to compress the parameters of the model to improve the expression ability and computing power of the model. By using 5-fold cross-validation, we conducted experiments using data from HCP and REST-meta-MDD. The experiment results show that the proposed model gives a superior performance compared with other state-of-the-art methods, especially on the classification of the healthy group with major depression groups, where the two datasets achieve 88% and 91% accuracy, respectively, which verifies the feasibility and effectiveness of our model.

  1. BAI, R., XIAO, L., GUO, Y., et al. Tracking and monitoring mood stability of patients with major depressive disorder by machine learning models using passive digital data (preprint). JMIR mHealth and uHealth, 2021, vol. 9, no. 3, p. e24365. DOI: 10.2196/24365 [2] LIU, H.-J., QIU, J. Depression brain dysfunction: evidence from a local functional connectivity method (in Chinese). Journal of Psychological Science, 2016, vol. 39, no. 1, p. 239–244. DOI: 10.16719/j.cnki.1671-6981.20160135 [3] CHEN, Z., ZHAO, R., WANG, Q., et al. Functional connectivity changes of the visual cortex in the cervical spondylitis myelopathy patients: A resting-state fMRI study. Spine, 2020, vol. 45, no. 5, p. E272–E279. DOI:10.1097/BRS.0000000000003245
  2. JU, R., HU, C., LI, Q., et al. Early diagnosis of Alzheimer's disease based on resting-state brain networks and deep learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, vol. 16, no. 1, p. 244–257. DOI: 10.1109/TCBB.2017.2776910
  3. JUN, E., NA, K.-S., KANG, W., et al. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks. Human Brain Mapping, 2020, vol. 41, no. 17, p. 4997–5014. DOI: 10.1002/hbm.25175
  4. HUANG, H., HUANG, Y., KAGGIE, J. D., et al. Multiparametric MRI-based deep learning radiomics model for assessing 5-year recurrence risk in non-muscle invasive bladder cancer. Journal of Magnetic Resonance Imaging, 2025, vol. 61, no. 3, 1442–1456. DOI: 10.1002/jmri.29574
  5. HOSSEINI-ASL, E., GHAZAL, M., MAHMOUD, A., et al. Alzheimer’s disease diagnostics by a deeply supervised adaptable
  6. 3D convolutional network. Frontiers in Bioscience-Landmark, 2018, vol. 23, no. 3, p. 584–596. DOI: 10.2741/4606
  7. LAO, H., ZHANG, X., TANG, Y., et al. Alzheimer's disease diagnosis based on the visual attention model and equal-distance ring shape context features. IET Image Processing, 2021, vol. 15, no. 10, p. 2351–2362. DOI: 10.1049/IPR2.12218
  8. CHEN, E., WU, X., WANG, C., et al. Application of improved convolutional neural network in lung image segmentation. In 2019 International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI). Taiyuan (China), 2019, p. 1–6. DOI: 10.1109/MLBDBI48998.2019.00027 [10] WANG, Y., ZHENG, G., JIE, R., et al. A major depression auxiliary diagnosis method based on convolution neural network (in Chinese). Journal of Lanzhou University (Medical Edition), 2022, vol. 48, no. 08, p. 5–10. DOI: 10.13885/j.issn.1000-2812.2022.08.002 [11] HAMID, D. S. B. A., GOYAL, S. B., BEDI, P. Integration of deep learning for improved diagnosis of depression using EEG and facial features. Materials Today: Proceedings, 2023, vol. 80, p. 1965–1969. DOI: 10.1016/J.MATPR.2021.05.659
  9. JAN, A., MENG, H., GAUS, Y. F. A., et al. Artificial intelligent system for automatic depression level analysis through visual and vocal expressions. IEEE Transactions on Cognitive and Developmental Systems, 2017, vol. 10, no. 3, p. 668–680. DOI: 10.1109/TCDS.2017.2721552 [13] DE MELO, W. C., GRANGER, E., HADID, A. Depression detection based on deep distribution learning. In 2019 IEEE International Conference on Image Processing (ICIP). Taipei (Taiwan), 2019, p. 4544–4548. DOI: 10.1109/ICIP.2019.8803467
  10. EL-GAZZAR, A., THOMAS, R. M., VAN WINGEN, G. fMRI-S4: Learning short-and long-range dynamic fMRI dependencies using 1D convolutions and state space models. In International Workshop on Machine Learning in Clinical Neuroimaging, 2022, p. 158–168. DOI: 10.48550/arXiv.2208.04166
  11. CHOI, D., ZHANG, G., JUNG, J., et al. Depression diagnosis algorithm based on 2-stream CNN using facial image. In 2023 IEEE/ACIS 23rd International Conference on Computer and Information Science (ICIS). Wuxi (China), 2023, p. 43–47. DOI: 10.1109/ICIS57766.2023.10210234
  12. FU, Y., ALDRICH, C. Flotation froth image analysis by use of a dynamic feature extraction algorithm. IFAC-PapersOnLine, 2016, vol. 49, no. 20, p. 84–89. DOI: 10.1016/J.IFACOL.2016.10.101
  13. AL JAZAERY, M., GUO, G. Video-based depression level analysis by encoding deep spatiotemporal features. IEEE Transactions on Affective Computing, 2018, vol. 12, no. 1, p. 262 to 268. DOI: 10.1109/TAFFC.2018.2870884
  14. CHEN, X., LU, B., LI, H.-X., et al. The DIRECT consortium and the REST-meta-MDD project: Towards neuroimaging biomarkers of major depressive disorder. Psychoradiology, 2022, vol. 2, no. 1, p. 32–42. DOI: 10.1093/psyrad/kkac005
  15. SARRAF, S., TOFIGHI, G. Classification of Alzheimer's disease using fMRI data and deep learning convolutional neural networks. arXiv, 2016, p. 1–5. DOI: 10.48550/arXiv.1603.08631
  16. ZANG, Y., JIANG, T., LU, Y., et al. Regional homogeneity approach to fMRI data analysis. NeuroImage, 2004, vol. 22, no. 1, p. 394–400. DOI: 10.1016/j.neuroimage.2003.12.030
  17. HARADA, A., BOLLEGALA, D., CHANDRASIRI, N. P. Discrimination of human-written and human and machine written sentences using text consistency. In 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). Greater Noida (India), 2021, p. 41–47. DOI: 10.1109/ICCCIS51004.2021.9397237
  18. ZHANG, C., YANG, T., YANG, J. Image recognition of wind turbine blade defects using attention-based MobileNetv1-YOLOv4 and transfer learning. Sensors, 2022, vol. 22, no. 16, p. 1–18. DOI: 10.3390/s22166009
  19. LUO, Y., ZHU, K., WANG, W., et al. A speaker recognition method based on dynamic convolution with dual attention mechanism. Engineering Letters, 2023, vol. 31, no. 2, p. 1–8.
  20. ROY, S. K., DUBEY, S. R., CHATTERJEE, S., et al. FuSENet: Fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification. IET Image Processing, 2020, vol. 14, no. 8, p. 1653–1661. DOI: 10.1049/iet-ipr.2019.1462
  21. RADFORD, A., METZ, L., CHINTALA, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv, 2015, p. 1–16. DOI: 10.48550/arXiv.1511.06434
  22. TAJBAKHSH, N., SHIN, J. Y., GURUDU, S. R., et al. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on Medical Imaging, 2016, vol. 35, no. 5, p. 1299–1312. DOI: 10.1109/TMI.2016.2535302
  23. JIA, H., WANG, Y., DUAN, Y., et al. Alzheimer’s disease classification based on image transformation and features fusion. Computational and Mathematical Methods in Medicine, 2021, no. 1, p. 1–11. DOI: 10.1155/2021/9624269
  24. CHANG, J., GUAN, S. Q., SHI, H. Y. Strip defect classification based on improved generative adversarial networks and MobileNetV3 (in Chinese). Laser Optoelectronics Progress, 2021, vol. 58, no. 4, p. 1–6. DOI: 10.3788/LOP202158.0410016
  25. ZHAO, Y., DONG, Q., ZHANG, S., et al. Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks. IEEE Transactions on Biomedical Engineering, 2017, vol. 65, no. 9, p. 1975–1984. DOI: 10.1109/TBME.2017.2715281
  26. BHASKAR SEN, MUELLER, B., KLIMES-DOUGAN, B., et al. Classification of major depressive disorder from resting-state fMRI. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin (Germany), 2019, p. 3511–3514. DOI: 10.1109/EMBC.2019.8856453
  27. BHASKAR SEN, CULLEN, K. R., PARHI, K. K. Classification of adolescent major depressive disorder via static and dynamic connectivity. IEEE Journal of Biomedical and Health Informatics, 2021, vol. 25, no. 7, p. 2604–2614. DOI: 10.1109/JBHI.2020.3043427
  28. NOMAN, F., TING, M. C., KANG, H., et al. Graph autoencoders for embedding learning in brain networks and major depressive disorder identification. IEEE Journal of Biomedical and Health Informatics, 2024, vol. 28, no. 3, p. 1644-1655. DOI: 10.1109/JBHI.2024.3351177

Keywords: Depression, functional magnetic resonance imaging, transfer learning, MobileNet, dynamic group convolution

G. Q. Zhang, X. Rao, J. L. Fu, W. W. Hu, J. F. Hu [references] [full-text] [DOI: 10.13164/re.2025.0028] [Download Citations]
Integrated Waveform Design of Radar and Communication Based on Chirp-rate Hopping Modulation

The increasing demand for spectrum resources and the need for reducing the burden of modern electronic combat platforms have prompted the development of integrated radar and communication systems. An integrated radar and communication waveform scheme based on Chirp-rate Hopping Modulation (CrHM) is proposed in this paper to realize target detection and information transmission simultaneously. The CrHM signal can be regarded as the synthesis of multiple sub-pulses, and each sub-pulse is a chirp signal, which is determined by the communication information sequence. The performance of the CrHM signal is analyzed, including the ambiguity function, the principle of demodulation, and the robust properties of demodulation. Subsequently, several simulations are provided to testify the high weak target detection performance of the CrHM signal and robustness of demodulation.

  1. WANG, J., LIANG, X. D., CHEN, L. Y., et al. Waveform designs for joint wireless communication and radar sensing: Pitfalls and opportunities. IEEE Internet of Things Journal, 2023, vol. 10, no. 17, p. 15252–15265. DOI: 10.1109/JIOT.2023.3265367
  2. SHI, Q., ZHANG, T. X., YU, X. X., et al. Waveform designs for joint radar-communication systems with OQAM-OFDM. Signal Processing, 2022, vol. 195, p. 1–10. DOI: 10.1016/j.sigpro.2022.108462
  3. GAGLIONE, D., CLEMENTE, C., ILIOUDIS, C. V., et al. Fractional Fourier based waveform for a joint radar-communication system. In IEEE Radar Conference (RadarConf). Philadelphia (PA, USA), 2016, p. 1–6. DOI: 10.1109/RADAR.2016.7485314
  4. FENG, Z., FANG, Z., WEI, Z., et al. Joint radar and communication: A survey. China Communications, 2020, vol. 17, no. 1, p. 1–27. DOI: 10.23919/JCC.2020.01.001
  5. HAN, Y., EKICI, E., KREMO, H., et al. Spectrum sharing methods for the coexistence of multiple RF systems: a survey. Ad Hoc Networks, 2016, vol. 53, p. 53–78. DOI: 10.1016/j.adhoc.2016.09.009
  6. ZHOU, S., LIANG, X., YU, Y., et al. Joint radar-communications co-use waveform design using optimized phase perturbation. IEEE Transactions on Aerospace and Electronic Systems, 2019, vol. 55, no. 3, p. 1227–1240. DOI: 10.1109/TAES.2019.2909254
  7. LIU, F., MASOUROS, C., PETROPULU, A. P., et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Transactions on Communications, 2020, vol. 68, no. 6, p. 3834–3862. DOI: 10.1109/TCOMM.2020.2973976
  8. ZHOU, Y., ZHOU, H., ZHOU, F., et al. Resource allocation for a wireless powered integrated radar and communication system. IEEE Wireless Communications Letters, 2019, vol. 8, no. 1, p. 253–256. DOI: 10.1109/LWC.2018.2868819
  9. CHENG, Z., HE, Z., LIAO, B. Hybrid beamforming for multi-carrier dual-function radar-communication system. IEEE Transactions on Cognitive Communications and Networking, 2021, vol. 7, no. 3, p. 1002–1015. DOI: 10.1109/TCCN.2021.3063110
  10. LI, H., LIU, Y., LIAO, G., et al. Joint radar and communications waveform design based on complementary sequence sets. Remote Sensing, 2023, vol. 15, no. 3, p. 1–20. DOI: 10.3390/rs15030645
  11. ZHEN, D., ZHANG, Z. H., YU, W. X. A multicarrier phase-coded waveform design scheme for joint radar and communication system. Chinese Journal. Electronics, 2021, vol. 30, no. 4, p. 769 to 780. DOI: 10.1049/cje.2021.05.020
  12. QIAN, J., TIAN, F., HUANG, N., et al. Multiobjective optimization for spectral coexistence of radar and communication system. In IEEE Radar Conference (RadarConf). Boston (MA, USA), 2019, p. 1–5. DOI: 10.1109/RADAR.2019.8835742
  13. ZHANG, Q., SUN, H., GAO, X., et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation. IEEE Journal on Selected Areas in Communications, 2022, vol. 40, no. 7, p. 2206–2218. DOI: 10.1109/JSAC.2022.3155506
  14. RAVENSCROFT, B., MCCORMICK, P. M., BLUNT, S. D., et al. Tandem-hopped OFDM communications in spectral gaps of FM noise radar. In IEEE Radar Conference (RadarConf). Seattle (WA, USA), 2017, p. 1262–1267. DOI: 10.1109/RADAR.2017.7944398
  15. MA, D., SHLEZINGER, N., HUANG, T. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype. IEEE Transactions on Vehicular Technology, 2021, vol. 70, no. 3, p. 2283–2298. DOI: 10.1109/TVT.2021.3056408
  16. XU, Z., PETROPULU, A., SUN, S. A joint design of MIMO-OFDM dual-function radar communication system using generalized spatial modulation. In IEEE Radar Conference (RadarConf20). Florence (Italy), 2020, p. 1–6. DOI: 10.1109/RadarConf2043947.2020.9266486
  17. CHEN, X., WANG, X., XU, S., et al. A novel radar waveform compatible with communication. In International Conference on Computational Problem-Solving (ICCP). Chengdu (China), 2011, p. 177–181. DOI: 10.1109/ICCPS.2011.6092272
  18. MA, Q., LU, J., MAOXIANG, Y. Integrated waveform design for 64QAM-LFM radar communication. In IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Chongqing (China), 2021, p. 1615–1625. DOI: 10.1109/IAEAC50856.2021.9390784
  19. ZHAO, J., LI, J., YI, Y. Research on radar communication integrated signal based on 64QAM-LFM. In International Wireless Communications and Mobile Computing (IWCMC). Harbin (China), 2021, p. 1151–1155. DOI: 10.1109/IWCMC51323.2021.9498961
  20. GU, Y., ZHAGN, L., ZHOU, Y., et al. Embedding communication symbols into radar waveform with orthogonal FM scheme. IEEE Sensors Journal, 2018, vol. 18, no. 21, p. 8709–8719. DOI: 10.1109/JSEN.2018.2868542
  21. GU, Y., ZHANG, L., ZHOU, Y., et al. Waveform design for integrated radar and communication system with orthogonal frequency modulation. Digital Signal Processing, 2018, vol. 83, p. 129–138. DOI: 10.1016/j.dsp.2018.08.014
  22. ZHANG, Y., YEH, C., LI, Z., et al. Design and processing method for Doppler-tolerant stepped-frequency waveform using staggered PRF. Sensors, 2021, vol. 21, no. 19, p. 1–20. DOI: 10.3390/s21196673

Keywords: Integrated radar and communication, waveform design, chirp-rate, chirp-rate hopping modulation, weak target detection

R. Ding, L. Cheng, X. Wang, Y. Yao, H. Xu, E. Zhao [references] [full-text] [DOI: 10.13164/re.2025.0037] [Download Citations]
Robust Optimal Operation Method for Active Distribution Networks with Multiple Types of Regulation Resources Considering Source and Load Uncertainties

The increasing prevalence of renewable energy sources and the heightened uncertainty in load demands within active distribution networks (ADNs) have led to more fluctuations in power flow and voltage levels during operational periods. In light of these challenges, this paper proposes a robust optimization framework specifically designed for ADNs, which carefully balances system secu¬rity, economic efficiency, and operational flexibility with multiple types of regulation resources. Firstly, a compre¬hensive regulation methodology is employed to integrate a variety of dispatchable resources. Secondly, the proposed model accounts for the inherent uncertainties related to load demand and the output of renewable energy genera¬tion by using the robust optimization (RO) technique. The proposed robust operational model for ADNs aims to min¬imizing power losses within the network and reducing voltage deviations, thereby improving overall network performance and reliability. Thirdly, the proposed model is linearized and reformulated as a convex optimization problem utilizing second-order cone relaxation techniques, and a relaxed cooperative co-evolution algorithm is im¬plemented to solve it efficiently. Numerical results across various scenarios indicate that, compared to the conven¬tional model without regulation resources, the proposed robust optimization model with multiple types of regulation resources can reduce voltage fluctuations by 89.6% and network losses by 12.9%. The proposed algorithm demon-strates better computational performance compared to conventional methods.

  1. GRUOSSO, G., MAFFEZZONI, P. Data-driven uncertainty analysis of distribution networks including photovoltaic generation. International Journal of Electrical Power and Energy Systems, 2020, vol. 121, p. 1–11. DOI: 10.1016/j.ijepes.2020.106043
  2. ZAKERNEZHAD, H., SETAYESH NAZAR, M., SHAFIE-KHAH, M., et al. Optimal scheduling of an active distribution system considering distributed energy resources, demand response aggregators and electrical energy storage. Applied Energy, 2022, vol. 314, p. 1–23. DOI: 10.1016/j.apenergy.2022.118865
  3. VAHIDINASAB, V., TABARZADI, M., ARASTEH, A., et al. Overview of electric energy distribution networks expansion planning. IEEE Access, 2020, vol. 8, p. 34750–34769. DOI: 10.1109/ACCESS.2020.2973455
  4. GRUOSSO, G., MAFFEZZONI, P., ZHANG, Z., et al. Probabilistic load flow methodology for distribution networks including loads uncertainty. International Journal of Electrical Power and Energy Systems, 2019, vol. 106, p. 392–400. DOI: 10.1016/j.ijepes.2018.10.023
  5. DOLATABADI, S. H. H., SOLEIMANI, A., EBTIA, A., et al. Enhancing voltage profile in islanded microgrids through hierarchical control strategies. Electric Power Systems Research, 2024, vol. 231, p. 1–11. DOI: 10.1016/j.epsr.2024.110270
  6. CABALLERO-PEÑA, J., CADENA-ZARATE, C., PARRADO-DUQUE, A., et al. Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts. International Journal of Electrical Power and Energy
  7. Systems, 2022, vol. 138, p. 1–19. DOI: 10.1016/j.ijepes.2021.107900
  8. YANG, Z., YANG, F., MIN, H., et al. Energy management programming to reduce distribution network operating costs in the presence of electric vehicles and renewable energy sources. Energy, 2023, vol. 263, p. 1–12. DOI: 10.1016/j.energy.2022.125695
  9. GHAEMI, S., SALEHI, J., MOEINI-AGHTAIE, M. Estimating abilities of distributed energy resources in providing flexible ramp products for active distribution networks. Sustainable Cities and Society, 2021, vol. 65, p. 1–14. DOI: 10.1016/j.scs.2020.102593
  10. SHAFIK, M. B., CHEN, H., RASHED, G. I., et al. Adequate topology for efficient energy resources utilization of active distribution networks equipped with soft open points. IEEE Access, 2019, vol. 7, p. 99003–99016. DOI: 10.1109/ACCESS.2019.2930631
  11. DAS, A., SENGUPTA, A. Power system voltage stabilization using model predictive control. Electrical Engineering, 2024, vol. 106, no. 3, p. 2765–2783. DOI: 10.1007/s00202-023-02099-5
  12. GARRIDO-AREVALO, V. M., GIL-GONZALEZ, W., MONTOYA, O. D., et al. Optimal dispatch of DERs and battery-based ESS in distribution grids while considering reactive power capabilities and uncertainties: A second-order cone programming formulation. IEEE Access, 2024, vol. 12, p. 48497–48510. DOI: 10.1109/ACCESS.2024.3382940
  13. MAHDAVI, M., SCHMITT, K., CHAMANA, M., et al. A mixed-integer programming model for reconfiguration of active distribution systems considering voltage dependency and type of loads and renewable sources. IEEE Transactions on Industry Applications, 2024, vol. 60, no. 4, p. 5291–5303. DOI: 10.1109/TIA.2024.3383805
  14. SHARMA, S., NIAZI, K. R., VERMA, K., et al. Impact of battery energy storage, controllable load and network reconfiguration on contemporary distribution network under uncertain environment. IET Generation, Transmission & Distribution, 2020, vol. 14, no. 21, p. 4719–4727. DOI: 10.1049/iet-gtd.2020.0369
  15. MARDANIMAJD, K., KARIMI, S., ANVARI-MOGHADDAM, A. Voltage stability improvement in distribution networks by using soft open points. International Journal of Electrical Power and Energy Systems, 2024, vol. 155, p. 1–17. DOI: 10.1016/j.ijepes.2023.109582
  16. YIN, Z., WANG, S., ZHAO, Q. Sequential reconfiguration of unbalanced distribution network with soft open points based on deep reinforcement learning. Journal of Modern Power Systems and Clean Energy, 2023, vol. 11, no. 1, p. 107–119. DOI: 10.35833/MPCE.2022.000271
  17. JIANG, X., ZHOU, Y., MING, W., et al. An overview of soft open points in electricity distribution networks. IEEE Transactions on Smart Grid, 2022, vol. 13, no. 3, p. 1899–1910. DOI: 10.1109/TSG.2022.3148599
  18. SARANTAKOS, I., PEKER, M., ZOGRAFOU-BARREDO, N. M., et al. A robust mixed-integer convex model for optimal scheduling of integrated energy storage—soft open point devices. IEEE Transactions on Smart Grid, 2022, vol. 13, no. 5, p. 4072 to 4087. DOI: 10.1109/TSG.2022.3145709
  19. HU, R., WANG, V., CHEN, Z., et al. Coordinated voltage regulation methods in active distribution networks with soft open points. Sustainability, 2020, vol. 12, no. 22, p. 1–18. DOI: 10.3390/su12229453
  20. MA, H., LIU, Z., LI, M., et al. A two-stage optimal scheduling method for active distribution networks considering uncertainty risk. Energy Reports, 2021, vol. 7, p. 4633–4641. DOI: 10.1016/j.egyr.2021.07.023
  21. LENG, R., LI, Z., XU, Y. Two-stage stochastic programming for coordinated operation of distributed energy resources in unbalanced active distribution networks with diverse correlated uncertainties. Journal of Modern Power Systems and Clean Energy, 2023, vol. 11, no. 1, p. 120–131. DOI: 10.35833/MPCE.2022.000510
  22. XU, T., REN, Y., GUO, L., et al. Multi-objective robust optimization of active distribution networks considering uncertainties of photovoltaic. International Journal of Electrical Power and Energy Systems, 2021, vol. 133, p. 1–10. DOI: 10.1016/j.ijepes.2021.107197
  23. YANG, J., GUO, Y., GUO, C., et al. A robust active distribution network defensive strategy against cyber-attack considering multi-uncertainties. IET Generation, Transmission and Distribution, 2022, vol. 16, no. 8, p. 1476–1488. DOI: 10.1049/gtd2.12443
  24. ANTONIOU, M., PAPA, G. Solving min-max optimization problems by means of bilevel evolutionary algorithms: A preliminary study. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion GECCO ’20. New York (NY, USA), 2020, p. 187–188. DOI: 10.1145/3377929.3390037
  25. XU, B., GONG, D., SHANG, Y., et al. Cooperative co-evolutionary algorithm for multi-objective optimization problems with changing decision variables. Information Sciences, 2022, vol. 607, p. 278–296. DOI: 10.1016/j.ins.2022.05.123
  26. https://www.torontomu.ca/content/dam/cue/research/reports/33bus%20test%20system.pdf.
  27. CAI, X., HUANG, Q., ZHOU, X., et al. Multi-objective dynamic reactive power optimization based on OLTC and reactive power compensation. In 2022 4th Asia Energy and Electrical Engineering Symposium (AEEES). Chengdu (China), 2022, p. 825–831. DOI: 10.1109/AEEES54426.2022.9759406

Keywords: Active distribution networks, renewable energy integration, dispatch resources, source and load uncertainties, second-order cone relaxation techniques

J. Jiang, Q. Luo, Z. Xu, H. Li, C. Gao [references] [full-text] [DOI: 10.13164/re.2025.0050] [Download Citations]
Enhanced Reliability Assessment in Distribution Network Planning via Optimal Double Q Strategy with Explicit Topology-Variable Consideration

In the planning of distribution networks, assessing reliability is essential for enhancing network design and selection. This research introduces a new distribution network planning model that aims to balance economic performance and system reliability through a double Q strategy. The model integrates important reliability assessment metrics with the optimized design of the distribution network's topology. To address the computational difficulties associated with traditional power flow calculations in complex network configurations, this study employs a linearized power flow method, which enhances the model's practicality and adaptability. Additionally, recognizing the discrete decision-making aspects of the planning issue, a mixed-integer linear programming model is developed. By utilizing the adaptive ε-constraint method, the study investigates the global Pareto frontier between reliability and cost, offering valuable decision-making support for planners. Results from case studies demonstrate that the proposed method effectively lowers the overall construction and operational costs of the distribution network, albeit with a minor reduction in system reliability.

  1. YU, X., LI, W., MALEKI, A., et al. Selection of optimal location and design of a stand-alone photovoltaic scheme using a modified hybrid methodology. Sustainable Energy Technologies and Assessments, 2021, vol. 45, p. 1–15. DOI: 10.1016/j.seta.2021.101071
  2. AHMADIAN, A., SEDGHI, M., MOHAMMADI-IVATLOO, B., et al. Cost-benefit analysis of V2G implementation in distribution networks considering PEVs battery degradation. IEEE Transactions on Sustainable Energy, 2018, vol. 9, no. 2, p. 961 to 970. DOI: 10.1109/TSTE.2017.2768437
  3. CHEN, Y., SHI, K., CHEN, M., et al. Data center power supply systems: From grid edge to point-of-load. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, vol. 11, no. 3, p. 2441–2456. DOI: 10.1109/JESTPE.2022.3229063
  4. ELSAYED, A. T., MOHAMED, A. A., MOHAMMED, O. A. DC microgrids and distribution systems: An overview. Electric Power Systems Research, 2015, vol. 119, p. 407–417. DOI: 10.1016/j.epsr.2014.10.017
  5. GHADIRI, A., HAGHIFAM, M. R., MIRI LARIMI, S. M. Comprehensive approach for hybrid AC/DC distribution network planning using genetic algorithm. IET Generation, Transmission & Distribution, 2017, vol. 11, no. 16, p. 3892–3902. DOI: 10.1049/iet-gtd.2016.1293
  6. RASTGOU, A. Distribution network expansion planning: An updated review of current methods and new challenges. Renewable and Sustainable Energy Reviews, 2024, vol. 189, p. 1–21. DOI: 10.1016/j.rser.2023.114062
  7. JOOSHAKI, M., ABBASPOUR, A., FOTUHI-FIRUZABAD, M., et al. An enhanced MILP model for multistage reliability-constrained distribution network expansion planning. IEEE Transactions on Power Systems, 2022, vol. 37, no. 1, p. 118–131. DOI: 10.1109/TPWRS.2021.3098065
  8. LI, Z., WU, W., TAI, X., et al. A reliability-constrained expansion planning model for mesh distribution networks. IEEE Transactions on Power Systems, 2021, vol. 36, no. 2, p. 948–960. DOI: 10.1109/TPWRS.2020.3015061
  9. PINTO, R. S., UNSIHUAY-VILA, C., TABARRO, F. H. Reliability-constrained robust expansion planning of active distribution networks. IET Generation, Transmission & Distribution, 2022, vol. 16, no. 1, p. 27–40. DOI: 10.1049/gtd2.12263
  10. LEE WILLIS, H. Power Distribution Planning Reference Book. 1st ed. Boca Raton: CRC Press, 2004. ISBN 9780429164798 DOI: 10.1201/9780824755386
  11. SIVANAGARAJU, S., RAO, J. V., RAJU, P. S. Discrete particle swarm optimization to network reconfiguration for loss reduction and load balancing. Electric Power Components and Systems, 2008, vol. 36, no. 5, p. 513–524. DOI: 10.1080/15325000701735389
  12. RUIZ-RODRIGUEZ, F. J., HERNANDEZ, J. C., JURADO, F. Voltage unbalance assessment in secondary radial distribution networks with single-phase photovoltaic systems. International Journal of Electrical Power & Energy Systems, 2015, vol. 64, p. 646–654. DOI: 10.1016/j.ijepes.2014.07.071
  13. RUIZ-RODRIGUEZ, F. J., GOMEZ-GONZALEZ, M., JURADO, F. Optimization of radial systems with biomass fueled gas engine from a metaheuristic and probabilistic point of view. Energy Conversion and Management, 2013, vol. 65, p. 343–350. DOI: 10.1016/j.enconman.2012.09.002
  14. GOMEZ-GONZALEZ, M., LOPEZ, A., JURADO, F. Optimization of distributed generation systems using a new discrete PSO and OPF. Electric Power Systems Research, 2012, vol. 84, no. 1, p. 174–180. DOI: 10.1016/j.epsr.2011.11.016
  15. BAGHERI, A., MONSEF, H., LESANI, H. Integrated distribution network expansion planning incorporating distributed generation considering uncertainties, reliability, and operational conditions. International Journal of Electrical Power & Energy Systems, 2015, vol. 73, p. 56–70. DOI: 10.1016/j.ijepes.2015.03.010
  16. BORGES, C. L. T., MARTINS, V. F. Multistage expansion planning for active distribution networks under demand and Distributed Generation uncertainties. International Journal of Electrical Power & Energy Systems, 2012, vol. 36, no. 1, p. 107 to 116. DOI: 10.1016/j.ijepes.2011.10.031
  17. MUÑOZ-DELGADO, G., CONTRERAS, J., ARROYO, J. M. Multistage generation and network expansion planning in distribution systems considering uncertainty and reliability. IEEE Transactions on Power Systems, 2016, vol. 31, no. 5, p. 3715 to 3728. DOI: 10.1109/TPWRS.2015.2503604
  18. POMBO, A. V., MURTA-PINA, J., PIRES, V. F. A multiobjective placement of switching devices in distribution networks incorporating distributed energy resources. Electric Power Systems Research, 2016, vol. 130, p. 34–45. DOI: 10.1016/j.epsr.2015.08.012
  19. LI, Z., WU, W., ZHANG, B., et al. Analytical reliability assessment method for complex distribution networks considering post-fault network reconfiguration. IEEE Transactions on Power Systems, 2020, vol. 35, no. 2, p. 1457–1467. DOI: 10.1109/TPWRS.2019.2936543
  20. TABARES, A., MUÑOZ-DELGADO, G., FRANCO, J. F., et al. An enhanced algebraic approach for the analytical reliability assessment of distribution systems. IEEE Transactions on Power Systems, 2019, vol. 34, no. 4, p. 2870–2879. DOI: 10.1109/TPWRS.2019.2892507
  21. LI, J., KONG, H., WANG, W., et al. A novel reliability assessment method for distribution networks based on linear programming considering distribution automation and distributed generation. IET Renewable Power Generation, 2024, vol. 18, no. 3, p. 529–544. DOI: 10.1049/rpg2.12818
  22. MANSOURI, S. A., NEMATBAKHSH, E., AHMARINEJAD, A., et al. A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units. Renewable and Sustainable Energy Reviews, 2022, vol. 168, p. 1–23. DOI: 10.1016/j.rser.2022.112854
  23. TABARES, A., MUÑOZ-DELGADO, G., FRANCO, J. F., et al. Multistage reliability-based expansion planning of ac distribution networks using a mixed-integer linear programming model. International Journal of Electrical Power & Energy Systems, 2022, vol. 138, p. 1–12. DOI: 10.1016/j.ijepes.2021.107916
  24. ALANAZI, M., ALANAZI, A., AKBARI, M. A., et al. A non-simulation-based linear model for analytical reliability evaluation of radial distribution systems considering renewable DGs. Applied Energy, 2023, vol. 342, p. 1–11. DOI: 10.1016/j.apenergy.2023.121153
  25. WEI, W., ZHOU, Y., ZHU, J., et al. Reliability assessment for AC/DC hybrid distribution network with high penetration of renewable energy. IEEE Access, 2019, vol. 7, p. 153141–153150. DOI: 10.1109/ACCESS.2019.2947707
  26. XU, X., TAI, N., HU, Y., et al. Reliability calculation of AC/DC hybrid distribution network with a solid-state transformer. The Journal of Engineering, 2019, vol. 2019, no. 16, p. 3067–3071. DOI: 10.1049/joe.2018.8385
  27. WU, T., WANG, J., LU, X., et al. AC/DC hybrid distribution network reconfiguration with microgrid formation using multi-agent soft actor-critic. Applied Energy, 2022, vol. 307, p. 1–11. DOI: 10.1016/j.apenergy.2021.118189
  28. MUÑOZ-DELGADO, G., CONTRERAS, J., ARROYO, J. M. Joint expansion planning of distributed generation and distribution networks. IEEE Transactions on Power Systems, 2015, vol. 30, no. 5, p. 2579–2590. DOI: 10.1109/TPWRS.2014.2364960
  29. MAVROTAS, G., FLORIOS, K. An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact Pareto set in multi-objective integer programming problems. Applied Mathematics and Computation, 2013, vol. 219, no. 18, p. 9652–9669. DOI: 10.1016/j.amc.2013.03.002
  30. AHMED, H. M. A., ELTANTAWY, A. B., SALAMA, M. M. A. A reliability-based stochastic planning framework for AC-DC hybrid smart distribution systems. International Journal of Electrical Power & Energy Systems, 2019, vol. 107, p. 10–18. DOI: 10.1016/j.ijepes.2018.11.003
  31. MAVROTAS, G. Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation, 2009, vol. 213, no. 2, p. 455–465. DOI: 10.1016/j.amc.2009.03.037

Keywords: Reliability assessment, distribution network planning, double Q strategy, linearized power flow method, adaptive ε-constraint

Z. J. Xu, S. Zhang, Z. W. Liu, J. L. Lin, X. S. Huang, Y. Gong [references] [full-text] [DOI: 10.13164/re.2025.0064] [Download Citations]
Binary Quasi-differential Stochastic Process Keying Modulation Scheme for Covert Communications

Covert communication working at the physical layer provides an important means for ensuring the security of private user data. This work proposes a novel covert communication system based on binary quasi-differential stochastic process keying (BQDSPK). At the transmitter, the polarity of the correlation coefficient of two consecutive stochastic sequences is modulated by one binary covert bit. At the receiver, the correlation between two consecutively received random sequences is computed, and the transmitted covert bit is inferred through a hard decision process. A pseudo-random sequence is introduced to eliminate the transmitted sequences' correlation. The transmitted signal has the same statistical characteristics as the ambient noise to avoid attracting the attention of eavesdroppers. We theoretically demonstrate that the proposed system fully satisfies the requirement of covert communication when the signal-to-noise ratio (SNR) is less than a certain threshold value. In addition, theoretical bit error rate (BER) expressions are derived under additive white Gaussian noise (AWGN) channels and frequency-flat fading channels. The simulation results show that the theoretical BERs are very close to the BERs obtained from the simulations, regardless of which stochastic process is used as the carrier. Specifically, when the number of samples within a bit period is 400, the BER approaches approximately 10^-5 at a SNR of -5 dB under an AWGN channel, which adequately satisfies the communication requirements.

  1. CHEN, X., AN, J., XIONG, Z., et al. Covert communications: a comprehensive survey. IEEE Communications Surveys and Tutorials, 2023, vol. 25, no. 2, p. 1171–1198. DOI: 10.1109/COMST.2023.326391
  2. SHEN, Y., ZHANG, Y., JIANG, X. Secrecy, Covertness, and Authentication in Wireless Communications: Physical Layer Security Approach. Cham (Switzerland): Springer, 2023. ISBN: 9783031384646
  3. YANG, N., WANG, L., GERACI, G., et al. Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine, 2015, vol. 53, no. 4, p. 20–27. DOI: 10.1109/MCOM.2015.7081071
  4. PENG, J., TANG, S. Covert communication over VoIP streaming media with dynamic key distribution and authentication. IEEE Transactions on Industrial Electronics, 2021, vol. 68, no. 4, p. 3619–3628. DOI: 10.1109/TIE.2020.2979567
  5. YENER, A., ULUKUS, S. Wireless physical-layer security: Lessons learned from information theory. Proceedings of the IEEE, 2015, vol. 103, no. 10, p. 1814–1825. DOI: 10.1109/JPROC.2015.2459592
  6. LIU, Z. H., LIU, J.J., ZENG, Y., et al. Covert wireless communications in IoT systems: Hiding information in interference. IEEE Wireless Communications, 2018, vol. 25, no. 6, p. 46–52. DOI: 10.1109/MWC.2017.1800070
  7. BASH, B. A., GOECKEL, D., TOWSLEY, D. Limits of reliable communication with low probability of detection on AWGN channels. IEEE Journal on Selected Areas in Communications, 2013, vol. 31, no. 9, p. 1921–1930. DOI: 10.1109/JSAC.2013.130923
  8. AZERANG, S.F., SAMSAMI KHODADAD, F., FOROUZESH, M. Covert communication based on energy harvesting and cooperative jamming. Wireless Networks, 2022, vol. 28, p. 3729–3738. DOI: 10.1007/s11276-022-03082-x
  9. TA, H. Q, PHAM, Q. V., KHUONG, H. V., et al. Covert communication with noise and channel uncertainties. Wireless Networks, 2022, vol. 28, p. 161–172. DOI: 10.1007/s11276-021-02828-3
  10. HUANG, S. H., LIU W. W., LIU, G. J., et al. A correlation based approach to detecting wireless physical covert channels. Computer Communications, 2021, vol. 76, p. 31–39. DOI: 10.1016/j.comcom.2021.05.017
  11. CHEN, X., ZHENG, T. X., DONG, L. M., et al. Enhancing MIMO covert communications via intelligent reflecting surface. IEEE Wireless Communications Letters, 2022, vol. 11, no. 1, p. 33–37. DOI: 10.1109/LWC.2021.3119687
  12. HU, L. T., BI, S. J., LIU, Q. J., et al. Intelligent reflecting surface aided covert wireless communication exploiting deep reinforcement
  13. learning. Wireless Networks, 2023, vol. 29, p. 877–899. DOI: 10.1007/s11276-022-03037-2
  14. LI, M., TAO, X. F., LI, N., et al. Energy-efficient covert communication with the aid of aerial reconfigurable intelligent surface. IEEE Communications Letters, 2022, vol. 26, no. 9, p. 2101–2105. DOI: 10.1109/LCOMM.2022.3183637
  15. LI, Q., XU, D. Y., ZHANG, K. Y., et al. Covert communications in STAR-RIS assisted NOMA IoT networks over Nakagami-

Keywords: Physical layer covert communication, stochastic process, pseudo-random sequence, modulation, correlation

H. Yang, M. Liu, J. Zou, R. Xu, J. Huang, P. Geng [references] [full-text] [DOI: 10.13164/re.2025.0079] [Download Citations]
Intelligent Layout and Optimization of EV Charging Stations: Initial Configuration via Enhanced K-Means and Subsequent Refinement through Integrated GCN

This paper proposes an optimization model for the layout of EV charging stations, aiming to ensure a wide and efficient service area to meet the increasing demand for charging. Through an in-depth study of the deployment optimization of EV charging stations, a layout algorithm based on K-Means and simulated annealing is first introduced to determine the optimal locations for new charging stations. Building on this, a layout optimization algorithm utilizing a Residual Attention Graph Convolutional Network (RAGCN) is proposed, which leverages the efficient learning capability of Graph Convolutional Networks (GCN) on graph-structured data to learn and obtain the best layout for charging stations. Finally, the effectiveness of the model is validated in Nanjing, Jiangsu Province. The results show that the optimized layout of charging stations, which added 493 new stations in high-demand areas such as business districts and corporate enterprises, significantly enhances the convenience and utilization rate of charging for EV users. Additionally, sensitivity analysis and ablation experiments based on Points of Interest (POI) data are conducted to evaluate the impact of various POI features on the layout of charging stations and to explore the contribution of different model components to classification performance.

  1. ZHOU,Y.,WANG, M.,HAO, H., et al. Plug-in electric vehicle market penetration and incentives: A global review. Mitigation and Adaptation
  2. Strategies for Global Change, 2015, vol. 20, no. 5, p. 777–795. DOI: 10.1007/s11027-014-9611-2
  3. BURRA, L. T., AL-KHASAWNEH, M. B., CIRILLO, C. Impact of charging infrastructure on electric vehicle adoption: A synthetic population approach. Travel Behaviour and Society, 2024, vol. 37, p. 1–12. DOI: 10.1016/j.tbs.2024.100834
  4. SOMMER, S., VANCE, C. Do more chargers mean more electric cars? Environmental Research Letters, 2021, vol. 16, no. 6, p. 1–10. DOI: 10.1088/1748-9326/ac05f0
  5. GREENE, D. L., KONTOU, E., BORLAUG, B., et al. Public charging infrastructure for plug-in electric vehicles: What is it worth? Transportation Research Part D: Transport and Environment, 2020, vol. 78, p. 1–15. DOI: 10.1016/j.trd.2019.11.011
  6. MA, H., WANG, H., CHENG, S., et al. Research on location selection and capacity planning of urban electric vehicle charging station. In Proceedings of the 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). Xi’an (China), 2019, p. 331–335. DOI: 10.1109/APAP47170.2019.9225059
  7. GONG, D., TANG, M., BUCHMEISTER, B., et al. Solving location problem for electric vehicle charging stations: A sharing charging model. IEEE Access, 2019, vol. 7, p. 138391–138402. DOI: 10.1109/ACCESS.2019.2943079
  8. JORDAN, J., PALANCA, J., DEL VAL, E., et al. Localization of charging stations for electric vehicles using genetic algorithms. Neurocomputing, 2021, vol. 452, p. 416–423. DOI: 10.1016/j.neucom.2019.11.122
  9. LAZARI, V., CHASSIAKOS, A. Multi-objective optimization of electric vehicle charging station deployment using genetic algorithms. Applied Sciences, 2023, vol. 13, no. 8, p. 1–18. DOI: 10.3390/app13084867
  10. GAN, X., ZHANG, H., HANG, G., et al. Fast-charging station deployment considering elastic demand. IEEE Transactions on Transportation Electrification, 2020, vol. 6, no. 1, p. 158–169. DOI: 10.1109/TTE.2020.2964141
  11. NICCOLAI, A., BETTINI, L., ZICH, R. Optimization of electric vehicles charging station deployment by means of evolutionary algorithms. International Journal of Intelligent Systems, 2021, vol. 36, no. 9, p. 5359–5383. DOI: 10.1002/int.22515
  12. ZHAO, Y., GUO, Y., GUO, Q., et al. Deployment of the electric vehicle charging station considering existing competitors. IEEE Transactions on Smart Grid, 2020, vol. 11, no. 5, p. 4236–4248. DOI: 10.1109/TSG.2020.2991232
  13. ZHONG, P., XU, A., KANG, Y., et al. An optimal deployment scheme for extremely fast charging stations. Peer-to-Peer Networking and Applications, 2022, vol. 15, no. 3, p. 1486–1504. DOI: 10.1007/s12083-022-01306-7
  14. HU, D., ZHANG, J., ZHANG, Q. Optimization design of electric vehicle charging stations based on the forecasting data with service balance consideration. Applied Soft Computing, 2019, vol. 75, p. 215–226. DOI: 10.1016/j.asoc.2018.07.063
  15. OTHMAN, A. M., GABBAR, H. A., PINO, F., et al. Optimal electrical fast charging stations by enhanced descent gradient and Voronoi diagram. Computers&Electrical Engineering, 2020, vol. 83, p. 1–15. DOI: 10.1016/j.compeleceng.2020.106574
  16. XU, M., MENG, Q. Optimal deployment of charging stations considering path deviation and nonlinear elastic demand. Transportation Research Part B: Methodological, 2020, vol. 135, p. 120–142. DOI: 10.1016/j.trb.2020.03.001
  17. ANTHOPOULOS, L., KOLOVOU, P. A multi-criteria decision process for EV charging stations deployment: Findings from Greece. Energies, 2021, vol. 14, no. 17, p. 1–15. DOI: 10.3390/en14175441
  18. ZHAO, Z., LEE, C. K. M., REN, J., et al. Optimal EV fast charging station deployment based on a reinforcement learning framework. IEEE Transactions on Intelligent Transportation Systems, 2023, vol. 24, no. 8, p. 8053–8065. DOI: 10.1109/TITS.2023.3265517
  19. JIA, J., LIU, C.,WAN, T. Planning of the charging station for electric vehicles utilizing cellular signaling data. Sustainability, 2019, vol. 11,
  20. no. 3, p. 1–18. DOI: 10.3390/su11030643
  21. HU, D., HUANG, L., LIU, C., et al. Data-driven optimization for electric vehicle charging station locating and sizing with charging satisfaction
  22. consideration in urban areas. IET Renewable Power Generation, 2022, vol. 16, no. 12, p. 2630–2643. DOI: 10.1049/rpg2.12382
  23. GENG, Q., SUN, D., JIA, Y. Planning of electric vehicle charging facilities on highways based on chaos cat swarm simulated annealing algorithm. Tehnicki Vjesnik - Technical Gazette, 2023, vol. 30, no. 5, p. 1602–1611. DOI: 10.17559/TV-20230320000459
  24. AMAP. Amap Open Platform API Download. Amap Open Platform [Online]. Available: https://lbs.amap.com/api/webservice/download, Accessed: Dec. 23, 2024

Keywords: Electric vehicle charging station, points of interest, fused residual network, attention mechanism, graph convolutional neural network

Y. Feng, M. Li, J. Li, Y. Yu [references] [full-text] [DOI: 10.13164/re.2025.0092] [Download Citations]
Edge Cloud Resource Scheduling with Deep Reinforcement Learning

Designing optimal scheduling algorithms for task allocation in edge cloud clusters presents significant challenges due to the constantly changing workloads and service requests in edge cloud data center environments. These challenges stem from the need to manage the vast amounts of information transmitted by IoT devices, as well as the necessity of offloading computational tasks to cloud data centers. To tackle this issue, we propose a novel deep reinforcement learning-based resource allocation method called Decima#, which offers an effective resource optimization solution for edge cloud data centers. We utilize a transformer architecture to capture resource states on directed acyclic graphs (DAGs), accelerating the aggregation speed of the Graph Neural Network (GNN). Moreover, we develop innovative reward functions and concurrent processing mechanisms to minimize training time. Furthermore, we enhance the Proximal Policy Optimization (PPO) algorithm to improve adaptability, increase the accuracy of likelihood ratio estimation, identify a more suitable activation function, and impose constraints on gradient updates. In simulation environments, Decima# reduced the average job duration by 19% compared to the Decima algorithm, while also achieving a 56% increase in training convergence speed. Code has been made available at https://github.com/limengzhaolihai/spark-decimasharp-ppog.

  1. BELOGLAZOV, A., BUYYA, R. Managing overloaded hosts for dynamic consolidation of virtual machines in cloud data centers under quality of service constraints. IEEE Transactions on Parallel and Distributed Systems, 2012, vol. 24, no. 7, p. 1366–1379. DOI: 10.1109/TPDS.2012.240
  2. GOUDARZI, H., GHASEMAZAR, M., PEDRAM, M. SLA-based optimization of power and migration cost in cloud computing. In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). Ottawa (Canada), 2012, p. 172–179. DOI: 10.1109/CCGrid.2012.112
  3. ASSI, C., AYOUBI, S., SEBBAH, S., et al. Towards scalable traffic management in cloud data centers. IEEE Transactions on Communications, 2014, vol. 62, no. 3, p. 1033–1045. DOI: 10.1109/TCOMM.2014.012614.130747
  4. HU, J., GU, J., SUN, G., et al. A scheduling strategy on load balancing of virtual machine resources in cloud computing environment. In 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming. Liaoning (China), 2010, p. 89–96. DOI: 10.1109/PAAP.2010.65
  5. LEINBERGER, W., KARYPIS, G., KUMAR, V., et al. Load balancing across near-homogeneous multi-resource servers. In Proceedings 9th Heterogeneous Computing Workshop (HCW 2000). Cancun (Mexico), 2000, p. 60–71. DOI: 10.1109/HCW.2000.843733
  6. SHAW, S. B., SINGH, A. K. A survey on scheduling and load balancing techniques in cloud computing environment. In 2014 International Conference on Computer and Communication Technology (ICCCT). Allahabad (India), 2014, p. 87–95. DOI: 10.1109/ICCCT.2014.7001474
  7. YANHAO, Z., ABHISHEK, N. V., GURUSAMY, M. RAVEN: Resource allocation using reinforcement learning for vehicular edge computing networks. IEEE Communications Letters, 2022, vol. 26, no. 11, p. 2636–2640. DOI: 10.1109/LCOMM.2022.3196711
  8. ZHOU, Z., LIU, P., FENG, J., et al. Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 4, p. 3113–3125. DOI: 10.1109/TVT.2019.2894851
  9. DOMANAL, S. G., GUDDETI, R. M. R., BUYYA, R. A hybrid bio-inspired algorithm for scheduling and resource management in cloud environment. IEEE Transactions on Services Computing, 2017, vol. 13, no. 1, p. 3–15. DOI: 10.1109/TSC.2017.2679738
  10. LI, R., WANG, C., ZHAO, Z., et al. The LSTM-based advantage actor-critic learning for resource management in network slicing with user mobility. IEEE Communications Letters, 2020, vol. 24, no. 9, p. 2005–2009. DOI: 10.1109/LCOMM.2020.3001227
  11. MISHRA, K., RAJAREDDY, G. N. V., GHUGAR, U., et al. A collaborative computation and offloading for compute-intensive and latency-sensitive dependency-aware tasks in dew-enabled vehicular fog computing: A federated deep Q-learning approach. IEEE Transactions on Network and Service Management, 2023, vol. 20, no. 4, p. 4600–4614. DOI: 10.1109/TNSM.2023.3282795
  12. LIU, W. X., LU, J., CAI, J., et al. DRL-PLink: Deep reinforcement learning with private link approach for mix-flow scheduling in software-defined data-center networks. IEEE Transactions on Network and Service Management, 2021, vol. 19, no. 2, p. 1049–1064. DOI: 10.1109/TNSM.2021.3128267
  13. SHI, J., DU, J., WANG, J., et al. Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning. IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 12, p. 16067–16081. DOI: 10.1109/TVT.2020.3041929
  14. MAO, H., ALIZADEH, M., MENACHE, I., et al. Resource management with deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot Topics in Networks. Atlanta (USA), 2016, p. 50–56. DOI: 10.1145/3005745.3005750
  15. GUO, W., TIAN, W., YE, Y., et al. Cloud resource scheduling with deep reinforcement learning and imitation learning. IEEE Internet of Things Journal, 2020, vol. 8, no. 5, p. 3576–3586. DOI: 10.1109/JIOT.2020.3025015
  16. MONDAL, S. S., SHEORAN, N., MITRA, S. Scheduling of time varying workloads using reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence. Virtual Event, 2021, vol. 35, no. 10, p. 9000–9008. DOI: 10.1609/aaai.v35i10.17088
  17. CHEN, X., YANG, L., CHEN, Z., et al. Resource allocation with workload-time windows for cloud-based software services: A deep reinforcement learning approach. IEEE Transactions on Cloud Computing, 2022, vol. 11, no. 2, p. 1871–1885. DOI: 10.1109/TCC.2022.3169157
  18. MAO, H., SCHWARZKOPF, M., VENKATAKRISHNAN, S. B., et al. Learning scheduling algorithms for data processing clusters. In Proceedings of the ACM Special Interest Group on Data Communication. New York (USA), 2019, p. 270–288. DOI: 10.1145/3341302.3342080
  19. GERTSMAN, A. A faster reinforcement learning approach to efficient job scheduling in Apache Spark. Master’s Thesis, University of Illinois at Urbana-Champaign, 2023, p. 1–48. [Online]. Available at: https://hdl.handle.net/2142/121563
  20. MORABITO, R., COZZOLINO, V., DING, A. Y., et al. Consolidate IoT edge computing with lightweight virtualization. IEEE Network, 2018, vol. 32, no. 1, p. 102–111. DOI: 10.1145/3341302.3342080
  21. ZHANG, J., GUO, H., LIU, J., et al. Task offloading in vehicular edge computing networks: A load-balancing solution. IEEE Transactions on Vehicular Technology, 2019, vol. 69, no. 2, p. 2092–2104. DOI: 10.1109/TVT.2019.2959410
  22. XIONG, X., ZHENG, K., LEI, L., et al. Resource allocation based on deep reinforcement learning in IoT edge computing. IEEE Journal on Selected Areas in Communications, 2020, vol. 38, no. 6, p. 1133–1146. DOI: 10.1109/JSAC.2020.2986615
  23. ALFAKIH, T., HASSAN, M. M., GUMAEI, A., et al. Task offloading and resource allocation for mobile edge computing by deep reinforcement learning based on SARSA. IEEE Access, 2020, vol. 8, p. 54074–54084. DOI: 10.1109/ACCESS.2020.2981434
  24. ALAMEDDINE, H. A., SHARAFEDDINE, S., SEBBAH, S., et al. Dynamic task offloading and scheduling for low-latency IoT services in multi-access edge computing. IEEE Journal on Selected Areas in Communications, 2019, vol. 37, no. 3, p. 668–682. DOI: 10.1109/JSAC.2019.2894306
  25. WANG, J. B., WANG, J., WU, Y., et al. A machine learning framework for resource allocation assisted by cloud computing. IEEE Network, 2018, vol. 32, no. 2, p. 144–151. DOI: 10.1109/MNET.2018.1700293
  26. CHEN, T., ZHANG, X., YOU, M., et al. A GNN-based supervised learning framework for resource allocation in wireless IoT networks. IEEE Internet of Things Journal, 2021, vol. 9, no. 3, p. 1712–1724. DOI: 10.1109/JIOT.2021.3091551
  27. THONGLEK, K., ICHIKAWA, K., TAKAHASHI, K., et al. Improving resource utilization in data centers using an LSTM-based prediction model. In 2019 IEEE International Conference on Cluster Computing (CLUSTER). Albuquerque (USA), 2019, p. 1–8. DOI: 10.1109/CLUSTER.2019.8891022
  28. TULI, S., MAHMUD, R., TULI, S., et al. Fogbus: A block chain based lightweight framework for edge and fog computing. Journal of Systems and Software, 2019, vol. 154, p. 22–36. DOI: 10.1016/j.jss.2019.04.050
  29. HU, B., ZHANG, K., LI, N., et al. Toward a theoretical foundation of policy optimization for learning control policies. Annual Review of Control, Robotics, and Autonomous Systems, 2023, vol. 6, no. 1, p. 123–158. DOI: 10.1146/annurev-control-042920-020021
  30. BIANCHINI, M., GORI, M., SCARSELLI, F. Processing directed acyclic graphs with recursive neural networks. IEEE Transactions on Neural Networks, 2001, vol. 12, no. 6, p. 1464–1470. DOI: 10.1109/72.963781
  31. SUTTORP, M. M., SIEGERINK, B., JAGER, K. J., et al. Graphical presentation of confounding in directed acyclic graphs. Nephrology Dialysis Transplantation, 2015, vol. 30, no. 9, p. 1418–1423. DOI: 10.1093/ndt/gfu325
  32. LUO, Y., THOST, V., SHI, L. Transformers over directed acyclic graphs. In Advances in Neural Information Processing Systems. Vancouver (Canada), 2024, p. 47764–47782. DOI: 10.48550/arXiv.2210.13148
  33. SCHULMAN, J., WOLSKI, F., DHARIWAL, P., et al. Proximal policy optimization algorithms. arXiv, 2017, p. 1–12. DOI: 10.48550/arXiv.1707.06347
  34. GRONDMAN, I., BUSONIU, L., LOPES, G. A. D., et al. A survey of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE Transactions on Systems, 2012, vol. 42, no. 6, p. 1291–1307. DOI: 10.1109/TSMCC.2012.2218595
  35. COBBE, K.W., HILTON, J., KLIMOV, O., et al. Phasic policy gradient. In International Conference on Machine Learning. Virtual Event, 2021, p. 2020–2027. DOI: 10.48550/arXiv.2009
  36. QUEENEY, J., PASCHALIDIS, Y., CASSANDRAS, C. G. Generalized proximal policy optimization with sample reuse. In Advances in Neural Information Processing Systems. Virtual Event, 2021, p. 11909–11919. DOI: 10.48550/arXiv.2111.00072
  37. WANG, Y., HE, H., TAN, X. Truly proximal policy optimization. In Uncertainty in Artificial Intelligence, PMLR. Virtual Event, 2020, p. 113–122. DOI: 10.48550/arXiv.1903.07940
  38. ZHU, W., ROSENDO, A. A functional clipping approach for policy optimization algorithms. IEEE Access, 2021, vol. 9, p. 96056–96063. DOI: 10.1109/ACCESS.2021.3094566
  39. BONCZ, P., NEUMANN, T., ERLING, O. TPC-H analyzed: Hidden messages and lessons learned from an influential benchmark. In Technology Conference on Performance Evaluation and Benchmarking. Trento (Italy), 2013, p. 61–76. DOI: 10.1007/978-3-319-04936-6
  40. KAUR, K., GARG, S., AUJLA, G. S., et al. Edge computing in the industrial internet of things environment: Software-defined-networks based edge-cloud interplay. IEEE Communications Magazine, 2018, vol. 56, no. 2, p. 44–51. DOI: 10.1109/MCOM.2018.1700622

Keywords: Edge computing, deep reinforcement learning, resource scheduling

T. Yu, L. Liu [references] [full-text] [DOI: 10.13164/re.2025.0109] [Download Citations]
Gridless Azimuth and Polarization Parameter Estimation Based on Uniform Circular COLD Arrays

In order to achieve gridless azimuth and polarization parameter estimation, the polarization atomic norm minimization (P-ANM) algorithm is proposed. The polarization-sensitive uniform circular array (P-UCA) consisting of concentered orthogonal loop and dipole (COLD) antennas is considered in this paper for its stable estimation ability for all 0 degrees ~ 360 degrees range. The proposed method is capable of estimating the parameters with only single snapshot and overcomes the grid mismatch. First, the the mathematical models of signals received by the P-UCA are established and the P-ANM algorithm is applied. Then, The P-UCA is mapped into the virtual uniform linear array based on the Fourier expansion. Subsequently, the dual method is employed to solve the P-ANM model and determine the azimuths of the signals. Ultimately, by reconstructing the signal vectors, the polarization information can be inversely estimated based on the relationship between the electrical and magnetic signals. The simulations demonstrate that the proposed P-ANM algorithm exhibits superior joint estimation ability for all the azimuth and polarization parameters of the signals.

  1. PAN, B., DONG, L., YU, X., et al. Joint polarization-spacetime processing for main lobe jamming via CP decomposition. IEEE Sensors Journal, 2023, vol. 23, no. 13, p. 14781–14794. DOI: 10.1109/JSEN.2023.3279069
  2. ZHANG, Q., JIANG, H., LIU, Y. Joint range, angle and polarization estimation in polarimetric FDA-MIMO radar based on Tucker tensor decomposition. EURASIP Journal on Advances in Signal Processing, 2023, no. 1, p. 2023–2039. DOI: 10.1186/s13634-023-00997-8
  3. HU, Y., ZHAO, Y., CHEN, S., et al. Two-dimensional direction-of arrival estimation method based on interpolation fitting for airborne conformal MIMO radar in a multipath environment. Digital Signal Processing, 2022, vol. 122, p. 1–13. DOI: 10.1016/j.dsp.2021.103374
  4. XU, Z., WU, J., XIONG, Z., et al. Low-angle tracking algorithm using polarisation sensitive array for very-high frequency radar. IET Radar, Sonar and Navigation, 2014, vol. 8, no. 9, p. 1035–1041. DOI: 10.1049/iet-rsn.2014.0041
  5. EBIHARA, S., KURODA, T., KORESAWA, Y., et al. Improved discrimination of subsurface targets using a polarization sensitive directional borehole radar. IEEE Transactions on Geoscience and Remote Sensing, 2016, vol. 54, no. 11, p. 6429–6443. DOI: 10.1109/TGRS.2016.2585178
  6. BARAT, M., KARIMI, M., MASNADI-SHIRAZI, M. A. Direction of arrival estimation in vector-sensor arrays using higher-order statistics. Multidimensional Systems and Signal Processing, 2022, vol. 33, no. 1, p. 161–187. DOI: 10.1007/s11045-020-00734-z
  7. JAMSHIDPOUR, S., KARIMI, M., MASNADI-SHIRAZI, M. A. A coarray processing technique for nested vector-sensor arrays with improved resolution capabilities. Digital Signal Processing, 2022, vol. 130, p. 1–10. DOI: 10.1016/j.dsp.2022.103715
  8. ZHAO, W., MENG, X., CAO, B., et al. Efficient DOA-polarization estimation for 2-D mirrored array based on the hybrid aperture expansion. Digital Signal Processing, 2024, vol. 145, p. 1–13. DOI: 10.1016/j.dsp.2023.104344
  9. YANG, Y., JIANG, G. Efficient DOA and polarization estimation for dual-polarization synthetic nested arrays. IEEE Systems Journal, 2022, vol. 16, no. 4, p. 6277–6288. DOI: 10.1109/JSYST.2021.3134470
  10. MIRON, S., LE BIHAN, P., MARS, J. I. Quaternion-MUSIC for vector-sensor array processing. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 4, p. 1218–1229. DOI: 10.1109/TSP.2006.870630
  11. LE BIHAN, N., MIRON, S. M., MARS, J. I. MUSIC algorithm for vector-sensors array using biquaternions. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 9, p. 4773–4784. DOI: 10.1109/TSP.2007.896067
  12. LI, Y., ZHANG, J., HU, B., et al. A novel 2-D quaternion ESPRIT for joint DOA and polarization estimation with crossed-dipole. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver (Canada), 2022, p. 1038–1043. DOI: 10.1109/ICASSP43922.2022.9746221
  13. QU, Y., LU, J., ZHAO, X., et al. Augmented tensor MUSIC for DOA estimation using nested acoustic vector-sensor array. IEEE Signal Processing Letters, 2022, vol. 29, p. 1624–1628. DOI: 10.1109/LSP.2022.3191254
  14. LOU, M., QU, X., WANG, Z., et al. Augmented quaternion ESPRIT-type DOA estimation with a crossed-dipole array. IEEE Transactions on Signal Processing, 2023, vol. 61, p. 1–14. DOI: 10.1109/TGRS.2023.3274182
  15. CHEN, H., WANG, W., LIU, W. Augmented quaternion ESPRIT for DOA estimation with polarization-sensitive arrays. IEEE Transactions on Signal Processing, 2022, vol. 29, p. 548–552. DOI: 10.1109/LSP.2019.2962463
  16. MALIOUTOV, D., CETIN, M., WILLSKY, A. S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 8, p. 3010–3022. DOI: 10.1109/TSP.2005.850882
  17. WEI, Z., LI, X.,WANG,W., et al. An efficient super-resolution DOA estimator based on grid learning. Radioengineering, 2019, vol. 28, no. 4, p. 785–792. DOI: 10.13164/re.2019.0785
  18. RAJ, A. G., MCCLELLAN, J. H. Single coarray snapshot superresolution DOA estimation using sparse Bayesian learning. IEEE Transactions on Signal Processing, 2019, vol. 26, no. 1, p. 119–123. DOI: 10.1109/LSP.2019.2962463
  19. TIAN, Y., SUN, X., ZHAO, S. Sparse-reconstruction-based direction of arrival, polarisation and power estimation using a cross-dipole array. IET Radar Sonar and Navigation, 2015, vol. 9, no. 6, p. 727–731. DOI: 10.1049/iet-rsn.2013.0169
  20. DAS, A. A Bayesian sparse-plus-low-rank matrix decomposition approach for direction-of-arrival estimation. IEEE Sensors Journal, 2017, vol. 17, no. 15, p. 4894–4902. DOI: 10.1109/JSEN.2017.2715347
  21. CHANG, W., RU, J., DENG, L. Stokes parameters and DOA estimation of polarised sources with an unknown number of sources. IET Radar Sonar and Navigation, 2018, vol. 12, no. 6, p. 218–226. DOI: 10.1049/iet-rsn.2013.0415
  22. SHI, S., LI, Y., YANG, D., et al. Sparse representation-based direction-of-arrival estimation using circular acoustic vector sensor arrays. Digital Signal Processing, 2020, vol. 99, p. 1–17. DOI: 10.1016/j.dsp.2020.102675
  23. CHANDRASEKARAN, V., RECHT, B., PARRILO, P. A., et al. The convex geometry of linear inverse problems. Foundations of Computational Mathematics, 2012, vol. 12, no. 6, p. 805–849. DOI: 10.1007/s10208-012-9135-7
  24. BHASKAR, B. N., TANG, G., RECHT, B. Atomic norm denoising with applications to line spectral estimation. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 23, p. 5987–5999. DOI: 10.1109/TSP.2013.2273443
  25. CHI, Y., CHEN, Y. Compressive two-dimensional harmonic retrieval via atomic norm minimization. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 4, p. 1030–1042. DOI: 10.1109/TSP.2014.2386283
  26. CHEN, P., CHEN,Y., CAO, J., et al. A new atomic norm for DOA estimation with gain-phase errors. IEEE Transactions on Signal Processing, 2020, vol. 68, p. 4293–4306. DOI: 10.1109/TSP.2020.3010749
  27. GONG, Q., REN, S., ZHONG, S., et al. DOA estimation using a sparse array with gain-phase error based on a novel atomic norm. Digital Signal Processing, 2022, vol. 120, p. 1–14. DOI: 10.1016/j.dsp.2021.103266
  28. TENG, L., WANG, Q., CHEN, H., et al. Atomic norm-based DOA estimation with sum and difference co-arrays in coexistence of circular and non-circular signals. Circuits Systems and Signal Processing, 2021, vol. 40, no. 10, p. 4293–5053. DOI: 10.1007/s10208-021-01708-7
  29. CHEN, H.,WANG,W. L., LIU,W., et al. Derivative ESPRIT for DOA and polarization estimation for UCA using tangential individually polarized dipoles. Digital Signal Processing, 2020, vol. 96, p. 1–10. DOI: 10.1016/j.dsp.2020.102599
  30. ZHANG, Y., WONG, K. The "Co-centered orthogonal loop/dipole" (COLD) array’s "Spatial matched filter” beam-steering. IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 58, no. 6, p. 5932–5936. DOI: 10.1109/TAES.2022.3171749
  31. CHEN, H., WANG, W. L., LIU, W., et al. An exact near-field model-based localization for bistatic MIMO radar with COLD arrays. IEEE Transactions on Vehicular Technology, 2023, vol. 69, no. 12, p. 16021–16030. DOI: 10.1109/TVT.2023.3294625
  32. YIN, K., DAI, Y., GAO, C. Near-field DOA-range and polarization estimation based on exact propagation model with COLD arrays. Circuits Systems and Signal Processing, 2022, vol. 41, p. 5183–5200. DOI: 10.1007/s10208-022-02029-z
  33. NEHORAI, A., PALDI, E. Vector-sensor array processing for direction-of-arrival estimation and source polarization. IEEE Transactions on Signal Processing, 1994, vol. 42, no. 2, p. 376–398. DOI: 10.1109/78.275610
  34. LI, J., STOICA, P., ZHENG, D. Efficient direction and polarization estimation with a COLD array. IEEE Transactions on Antennas and Propagation, 1996, vol. 42, no. 2, p. 539–547. DOI: 10.1109/78.489306
  35. WEN, F., SHI, J., ZHANG, Z. Joint 2D-DOD, 2D-DOA and polarization angles estimation for bistatic EMVS-MIMO radar via PARAFAC analysis. IEEE Transactions on Vehicular Technology, 2019, vol. 69, no. 2, p. 1626–1637. DOI: 10.1109/TVT.2023.2957511
  36. DONOHO, D. L. Compressed sensing. IEEE Transactions on Information Theory, 2006, vol. 52, no. 4, p. 1289–1306. DOI: 10.1109/TIT.2006.871582
  37. CANDES, E. J., FERNANDEZ-GRANDA, C. Towards a mathematical theory of super-resolution. Communications on Pure and Applied Mathematics, 2014, vol. 67, no. 6, p. 906–956. DOI: 10.1002/cpa.21455
  38. XENAKI, A., GERSTOFT, P. Grid-free compressive beamforming. Journal of the Acoustical Society of America, 2015, vol. 137, no. 4, p. 1923–1935. DOI: 10.1121/1.4916269

Keywords: Polarization Sensitive Array (PSA), Uniform Circular Array (UCA), Concentered Orthogonal Loop and Dipole (COLD), Atomic Norm Minimization (ANM)

Y. Shu, Y. Wang, M. Zhang, J. Yang, Y. Wang, J. Wang, Y. Zhang [references] [full-text] [DOI: 10.13164/re.2025.0118] [Download Citations]
Context Aware Multimodal Fusion YOLOv5 Framework for Pedestrian Detection under IoT Environment

Pedestrian detection based on deep networks has become a research hotspot in the field of computer vision. With the rapid development of the Internet of Things (IoT) and autonomous driving technology, the deployment of pedestrian detection models on mobile devices places higher demands on the accuracy and real-time performance of detection. In addition, fully integrating multimodal information can further improve the robustness of the model. To this end, this article proposes a novel multimodal fusion YOLOv5 network for pedestrian detection. Specifically, to improve the performance of multi-scale pedestrian detection, we enhance contextual awareness abilities by embedding the multi-head self-attention (MSA) mechanism and graph convolution operations in the existing YOLOv5 framework. In addition, we can fully explore the real-time advantages of the YOLOv5 framework in pedestrian detection tasks. To improve multimodal information fusion, we introduce the joint cross-attention fusion mechanism to enhance knowledge interaction between different modalities. To validate the effectiveness of the proposed model, we conduct a large number of experiments on two multimodal pedestrian detection datasets. All the results confirm that our proposed model obtains the highest performance in terms of multi-scale pedestrian detection. Moreover, compared to other multimodal deep models, our proposed model still shows superior performance.

  1. GUPTA, A., ANPALAGAN, A., GUAN, L., et al. Deep learning for object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array, 2021, vol. 10, p. 1–20. DOI: 10.1016/j.array.2021.100057
  2. SAPONARA, S., ELHANASHI, A., GAGLIARDI, A. Real-time video fire/smoke detection based on CNN in antifire surveillance systems. Journal of Real-Time Image Processing, 2021, vol. 18, p. 889–900. DOI: 10.1007/s11554-020-01044-0
  3. KIM, K., KIM, S., SHCHUR, D. A UAS-based work zone safety monitoring system by integrating internal traffic control plan (ITCP) and automated object detection in game engine environment. Automation in Construction, 2021, vol. 128, p. 1–20. DOI: 10.1016/j.autcon.2021.103736
  4. GAO, F., WANG, C., LI, C. A combined object detection method with application to pedestrian detection. IEEE Access, 2020, vol. 8, p. 194457–194465. DOI: 10.1109/ACCESS.2020.3031005
  5. CHEN, L., LIN, S., LU, X., et al. Deep neural network based vehicle and pedestrian detection for autonomous driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 2021, vol. 22, no. 6, p. 3234–3246. DOI: 10.1109/TITS.2020.2993926
  6. ISLAM, M. M., KARIMODDINI, A. Pedestrian detection for autonomous cars: inference fusion of deep neural networks. IEEE Transactions on Intelligent Transportation Systems, 2022, vol. 23, no. 12, p. 23358–23368. DOI: 10.1109/TITS.2022.3210186
  7. GIRSHICK, R., DONAHUE, J., DARRELL, T., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus (USA), 2014, p. 580–587. DOI: 10.1109/CVPR.2014.81
  8. ZHU, F., CHEN, X., GAO, X., et al. Constraint-weighted support vector ordinal regression to resist constraint noises. Information Sciences, 2023, vol. 649, p. 1–17. DOI: 10.1016/j.ins.2023.119644
  9. LI, J., LIANG, X., SHEN, S. M., et al. Scale-aware fast R-CNN for pedestrian detection. IEEE Transactions on Multimedia, 2017, vol. 20, no. 4, p. 985–996. DOI: 10.1109/tmm.2017.2759508
  10. YU, X., SI, Y., LI, L. Pedestrian detection based on improved Faster RCNN algorithm. In 2019 IEEE/CIC International Conference on Communications in China (ICCC). Chengdu (China), 2019, p. 346–351. DOI: 10.1109/ICCChina.2019.8855960
  11. ZHAI, S., SHANG, D., WANG, S., et al. DF-SSD: An improved SSD object detection algorithm based on DenseNet and feature fusion. IEEE Access, 2020, vol. 8, p. 24344–24357. DOI: 10.1109/ACCESS.2020.2971026
  12. JIANG, P., ERGU, D., LIU, F., et al.AreviewofYolo algorithm developments. Procedia Computer Science, 2022, vol. 199, p. 1066–1073. DOI: 10.1016/j.procs.2022.01.135
  13. YU, W., XIANG, Z., JIANG, S., et al. YOLOv5-based dense small target detection algorithm for aerial images using DIOUNMS. Radioengineering, 2024, vol. 33, no. 1, p. 12–22. DOI: 10.13164/re.2024.0012
  14. GUPTA, K., ASTHANA, A. Reducing the side-effects of oscillations in training of quantized YOLO networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Tucson (USA), 2024, p. 2452–2461. DOI: 10.1109/WACV57701.2024.00244
  15. LAN, W., DANG, J., WANG, Y., et al. Pedestrian detection based on YOLO network model. In 2018 IEEE International Conference on Mechatronics and Automation (ICMA). Changchun (China), 2018, p. 1547–1551. DOI: 10.1109/ICMA.2018.8484698
  16. JIANG, C., REN, H., YE, X., et al. Object detection from UAV thermal infrared images and videos using YOLO models. International Journal of Applied Earth Observation and Geoinformation, 2022, vol. 112, p. 1–17. DOI: 10.1016/j.jag.2022.102912
  17. LI, Z.,WANG, H., XUE, H., et al. Infrared image recognition method for pedestrian and vehicles based on improved YOLO. Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 2021, vol. 11763, p. 1422–1427. DOI: 10.1117/12.2587231
  18. HSU, W. Y., LIN, W. Y. Ratio-and-scale-aware YOLO for pedestrian detection. IEEE Transactions on Image Processing, 2020, vol. 30, p. 934–947. DOI: 10.1109/TIP.2020.3039574
  19. HSU, W. Y., LIN, W. Y. Adaptive fusion of multi-scale YOLO for pedestrian detection. IEEE Access, 2021, vol. 9, p. 110063–110073. DOI: 10.1109/ACCESS.2021.3102600
  20. HOU, Z., SUN, Y., GUO, H., et al. M-YOLO: An object detector based on global context information for infrared images. Journal of Real-Time Image Processing, 2022, vol. 19, no. 6, p. 1009–1022. DOI: 10.1007/s11554-022-01242-y
  21. XUE, P., CHEN, H., LI, Y., et al. Multiscale pedestrian detection with global local attention and multiscale receptive field context. IET Computer
  22. Vision, 2023, vol. 17, no. 1, p. 13–25. DOI: 10.1049/cvi2.12125
  23. XUE, Y., JU, Z., LI, Y., et al. MAF-YOLO: Multi-modal attention fusion based YOLO for pedestrian detection. Infrared Physics & Technology, 2021, vol. 118, p. 1–14. DOI: 10.1016/j.infrared.2021.103906
  24. DASGUPTA, K., DAS, A., DAS, S., et al. Spatio-contextual deep network-based multimodal pedestrian detection for autonomous driving. IEEE Transactions on Intelligent Transportation Systems, 2022, vol. 23, no. 9, p. 15940–15950. DOI: 10.1109/TITS.2022.3146575
  25. KOLLURI, J., DAS, R. Intelligent multimodal pedestrian detection using hybrid metaheuristic optimization with deep learning model. Image and Vision Computing, 2023, vol. 131, p. 1–11. DOI: 10.1016/j.imavis.2023.104628
  26. LEE, W. Y., JOVANOR, L., PHILIPS, W. Cross-modality attention and multimodal fusion transformer for pedestrian detection. In European Conference on Computer Vision. TelAviv (Israel), 2022, p. 608–623. DOI: 10.1007/978-3-031-25072-9_41
  27. LI, G., LAI, W., QU, X. Pedestrian detection based on light perception fusion of visible and thermal images. Optics&Laser Technology, 2022, vol. 156, p. 1–14. DOI: 10.1016/j.optlastec.2022.108466
  28. TANG, L., MA, S., MA, X., et al. Research on image matching of improved sift algorithm based on stability factor and feature descriptor simplification. Applied Sciences, 2022, vol. 12, no. 17, p. 1–19. DOI: 10.3390/app12178448
  29. RANGANATHA, S., GOWRAMMA, Y. Eigen and HOG features based algorithm for human face tracking in different background challenging video sequences. International Journal of Image, Graphics and Signal Processing, 2022, vol. 10, no. 4, p. 70–83. DOI: 10.5815/ijigsp.2022.04.06
  30. ZHAI, Y., LIU, H. One class SVM model based on neural tangent kernel for anomaly detection task on small-scale data. Journal of Intelligent & Fuzzy Systems, 2022, vol. 43, no. 3, p. 2731–2746. DOI: 10.3233/JIFS-213088
  31. WEINBERG, G. Interference control in sliding window detection processes using a Bayesian approach. Digital Signal Processing, 2020, vol. 99, p. 1–12. DOI: 10.1016/j.dsp.2020.102658
  32. WANG, J., WU, R., YU, X. An algorithm of object detection based on regression learning for remote sensing images. Journal of Physics: Conference Series, 2021, vol. 1903, no. 1, p. 1–7. DOI: 10.1088/1742-6596/1903/1/012039
  33. ZHANG, L., LIN, L., LIANG, X., et al. Is faster R-CNN doing well for pedestrian detection? In Computer Vision-ECCV 2016: 14th European
  34. Conference. Amsterdam (The Netherlands), 2016, p. 443–457. DOI: 10.1007/978-3-319-46475-6_28
  35. LIU, W., ANGUELOV, D., ERHAN, D., et al. SSD: Single shot multibox detector. Computer Vision-ECCV. Amsterdam (The Netherlands), 2016, p. 21–37. DOI: 10.1007/978-3-319-46448-0_2
  36. JIANG, X., GAO, T., ZHU, Z., et al. Real-time face mask detection method based on YOLOv3. Electronics, 2021, vol. 10, no. 7, p. 1–17. DOI: 10.3390/electronics10070837
  37. BOCHKOVSKIY, A., WANG, C., LIAO, H. YOLOv4: Optimal speed and accuracy of object detection. arXiv, 2020, p. 1–17. DOI: 10.48550/arXiv.2004.10934
  38. GAI, Y., HE,W., ZHOU, Z. Pedestrian target tracking based on Deep-SORT with YOLOv5. In 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC). Chongqing (China), 2021, p. 1–5. DOI: 10.1109/ICCEIC54227.2021.00008
  39. SUKKAR, M., KUMAR, D., SINDHA, J. Real-time pedestrians detection by YOLOv5. In 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). Kharagpur (India), 2021, p. 1–6. DOI: 10.1109/ICCCNT51525.2021.9579808
  40. LV, H., YAN, H., LIU, K., et al. YOLOv5-AC: Attention mechanism based lightweight YOLOv5 for track pedestrian detection. Sensors, 2022, vol. 22, no. 15, p. 1–25. DOI: 10.3390/s22155903
  41. KROTOSKY, S. J., TRIVEDI, M. M. On color-, infrared-, and multimodal-stereo approaches to pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2007, vol. 8, no. 4, p. 619–629. DOI: 10.1109/TITS.2007.908722
  42. CHEN, Y. T., SHI, J., YE, Z., et al. Multimodal object detection via probabilistic assembling. In European Conference on Computer Vision. Cham (Switzerland), 2022, p. 139–158. DOI: 10.1007/978-3-031-20077-9_9
  43. CAO, Y., BIN, J., HAMARI, J., et al. Multimodal object detection by channel switching and spatial attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver (Canada), 2023, p. 403–411. DOI: 10.1109/CVPRW59228.2023.00046
  44. DRADRACH, A., KONERT, J., RUMINSKI, J. Multimodal camera for pedestrian detection with deep learning models. In 2023 IEEE International Conference on Industrial Technology (ICIT). Orlando (USA), 2023, p. 1–6. DOI: 10.1109/ICIT58465.2023.10143046
  45. WANG, C., LIU, Y., CHANG, F., et al. Pedestrian detection based on YOLOv3 multimodal data fusion. Systems Science & Control Engineering, 2022, vol. 10, no. 1, p. 832–845. DOI: 10.1080/21642583.2022.2129507
  46. CAO, Z., YANG, H., ZHAO, J., et al. Attention fusion for one-stage multispectral pedestrian detection. Sensors, 2021, vol. 21, no. 12, p. 1–17. DOI: 10.3390/s21124184
  47. DAS, A., DAS, S., SISTU, G., et al. Revisiting modality imbalance in multimodal pedestrian detection. In 2023 IEEE International Conference on Image Processing (ICIP). Kuala Lumpur (Malaysia), 2023, p. 1755–1759. DOI: 10.1109/ICIP49359.2023.10222711
  48. LI, Q., ZHANG, C., HU, Q., et al. Confidence-aware fusion using Dempster-Shafer theory for multispectral pedestrian detection. IEEE Transactions on Multimedia, 2022, vol. 25, p. 3420–3431. DOI: 10.1109/TMM.2022.3160589
  49. WANG, Q., CHI, Y., SHEN, T., et al. Improving RGB-infrared pedestrian detection by reducing cross-modality redundancy. In 2022 IEEE International Conference on Image Processing (ICIP). Bordeaux (France), 2022, p. 526–530. DOI: 10.1109/ICIP46576.2022.9897682
  50. HAN, K., XIAO, A., WU, E., et al. Transformer in transformer. In Proceedings of the 35th International Conference on Neural Information Processing Systems (NIPS). 2021 p. 15908–15919. DOI: 10.5555/3540261.3541478
  51. CARION, N., MASSA, F., SYNNAEVE, G., et al. End-to-end object detection with transformers. In European Conference on Computer Vision. Glasgow (UK), 2020, p. 213–229. DOI: 10.1007/978-3-030-58452-8_13
  52. ZHU, X., SU, W., LU, L., et al. Deformable DETR: Deformable transformers for end-to-end object detection. arXiv, 2020, p. 1–16. DOI: 10.48550/arXiv.2010.04159
  53. ROH, B., SHIN, J. W., SHIN, W., et al. Sparse DETR: Efficient end-to-end object detection with learnable sparsity. arXiv, 2021, p. 1–23. DOI: 10.48550/arXiv.2111.14330
  54. WANG, Y., ZHANG, X., YANG, T., et al. Anchor DETR: Query design for transformer-based object detection. In Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver (Canada), 2022, p. 2567–2575. DOI: 10.48550/arXiv.2109.07107
  55. DAI, X., CHEN, Y., YANG, J., et al. Dynamic DETR: End-to-end object detection with dynamic attention. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal (Canada), 2021, p. 2988–2997. DOI: 10.1109/ICCV48922.2021.00298
  56. MENG, D., CHEN, X., FAN, Z., et al. Conditional DETR for fast training convergence. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal (Canada), 2021, p. 3651–3660. DOI: 10.1109/ICCV48922.2021.00363
  57. ZHU, X., LYU, S., WANG, X., et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal (Canada), 2021, p. 2778–2788. DOI: 10.1109/ICCVW54120.2021.00312
  58. SANKAR, A., WU, Y., GOU, L., et al. Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th International Conference on Web Search and Data Mining. Houston (USA), 2020, p. 519–527. DOI: 10.1145/3336191.3371845
  59. PRAVEEN, R. G., DE MELO, W. C., ULLAH, N., et al. A joint cross-attention model for audio-visual fusion in dimensional emotion recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans (USA), 2022, p. 2486–2495. DOI: 10.1109/CVPRW56347.2022.00278
  60. CHOI, Y., KIM, N., HWANG, S., et al. KAIST multi-spectral day/night data set for autonomous and assisted driving. IEEE Transactions on Intelligent Transportation Systems, 2018, vol. 19, no. 3, p. 934–948. DOI: 10.1109/TITS.2018.2791533
  61. ZHOU, K., CHEN, L., CAO, X. Improving multispectral pedestrian detection by addressing modality imbalance problems. In Computer Visionâ=C“ECCV. Glasgow (UK), 2020, p. 787–803. DOI: 10.1007/978-3-030-58523-5_46
  62. LIU, J., ZHANG, S., WANG, S., et al. Multispectral deep neural networks for pedestrian detection. arXiv, 2016, p. 1–13. DOI: 10.48550/arXiv.1611.02644
  63. GUAN, D., CAO, Y., YANG, J., et al. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection. Information Fusion, 2019, vol. 50, p. 148–157. DOI: 10.1016/j.inffus.2018.11.017
  64. LI, C., SONG, D., TONG, R., et al. Multispectral pedestrian detection via simultaneous detection and segmentation. arXiv, 2018, p. 1–12. DOI: 10.48550/arXiv.1808.04818
  65. ZHANG, L., ZHU, X., CHEN, X., et al.Weakly aligned cross-modal learning for multispectral pedestrian detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul (SouthKorea), 2019, p. 5127–5137. DOI: 10.1109/ICCV.2019.00523
  66. DOLLAR, P., APPEL, R., BELONGIE, S., et al. Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, vol. 36, no. 8, p. 1532–1545. DOI: 10.1109/TPAMI.2014.2300479
  67. KONIG, D., ADAM, M., JARVERS, C., et al. Fully convolutional region proposal networks for multispectral person detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu (USA), 2017, p. 49–56. DOI: 10.1109/CVPRW.2017.36
  68. LI, C., SONG, D., TONG, R., et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern Recognition, 2019, vol. 85, p. 161–171. DOI: 10.1016/j.patcog.2018.08.005
  69. CHOI, H., KIM, S., PARK, K., et al. Multi-spectral pedestrian detection based on accumulated object proposal with fully convolutional networks. In 23rd International Conference on Pattern Recognition (ICPR). Cancun (Mexico), 2016, p. 621–626. DOI: 10.1109/ICPR.2016.7899703
  70. PARK, K., KIM, S., SOHN, K. Unified multi-spectral pedestrian detection based on probabilistic fusion networks. Pattern Recognition, 2018, vol. 80, p. 143–155. DOI: 10.1016/j.patcog.2018.03.007
  71. PRAVEEN, R. G., GRANGER, E., CARDINAL, P. Cross attentional audio-visual fusion for dimensional emotion recognition. In IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021). Jodhpur (India), 2021, p. 1–8. DOI: 10.1109/FG52635.2021.9667055
  72. SCHONEVELD, L., OTHMANI, A., ABDELKAWY, H. Leveraging recent advances in deep learning for audio-visual emotion recognition. Pattern Recognition Letters, 2021, vol. 146, p. 1–7. DOI: 10.1016/j.patrec.2021.03.007

Keywords: Pedestrian detection, IoT, deep learning, multimodal fusion, YOLOv5

C. Xiu, Y. Li [references] [full-text] [DOI: 10.13164/re.2025.0132] [Download Citations]
Adaptive Constant False Alarm Rate Detector Based on Long Short-term Memory Network

To solve the problem of degradation of detection performance of adaptive constant false alarm rate (CFAR) detectors due to low accuracy of environment recognition, an automatic clipping adaptive CFAR detector based on long short-term memory (LSTM) network is proposed. LSTM network is used to recognize the environmental type information contained in radar echo signals, and the appropriate detector is determined based on the recognition results. When there are interferences in both the leading and lagging reference windows, the interferences are clipped, and an ordered statistics CFAR detector is used to detect the target. Simulation results show that the designed adaptive CFAR detector, compared to the variability index CFAR detector, achieves an average improvement of 0.31% in detection probability in homogeneous environment. In the environment with interferences in a single-sided reference window, the average improvement in detection probability is 5.43%. In the environment with interferences in both the leading and lagging reference windows, the average improvement in detection probability is 41.57%. The automatic clipping adaptive CFAR detector based on LSTM network can more accurately recognize background environments and clipping interferences when interferences exist in both the leading and lagging reference windows, so its detection performance can be enhanced.

  1. DETOUCHE, N., LAROUSSI, T., MADJIDI, H. New log-t-based CFAR detectors for a non-homogeneous Weibull background. Physical Communication, 2023, vol. 59, p. 1–12. DOI: 10.1016/j.phycom.2023.102085
  2. RIHAN, M. Y., NOSSAIR, Z. B., MUBARAK, R. I. An improved CFAR algorithm for multiple environmental conditions. Signal, Image and Video Processing, 2024, vol. 18, no. 4, p. 3383–3393. DOI: 10.1007/s11760-024-03001-x
  3. LIU, X., BAI, X., WANG, D. Multi-fold high-order cumulants based CFAR detector for radar weak target detection. Digital Signal Processing, 2023, vol. 139, p. 1–11. DOI: 10.1016/j.dsp.2023.104076
  4. FINN, H. M., JOHNSON, R. S. Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates. RCA Review, 1968, vol. 29, p. 414–465.
  5. TRUNK, G. V. Range resolution of targets using automatic detectors. IEEE Transactions on Aerospace and Electronic Systems, 1978, vol. 14, no. 5, p. 750–755. DOI: 10.1109/TAES.1978.308625
  6. HANSEN, V. G., SAWYERS, J. H. Detectability loss due to "greatest of" selection in a cell-averaging CFAR. IEEE Transactions on Aerospace and Electronic Systems, 1980, vol. 16, no. 1, p. 115–118. DOI: 10.1109/TAES.1980.308885
  7. ROHLING, H. Radar CFAR thresholding in clutter and multiple target situations. IEEE Transactions on Aerospace and Electronic Systems, 1983, vol. 19, no. 4, p. 608–621. DOI: 10.1109/TAES.1983.309350
  8. WANG, X., LI, Y., ZHANG, N. A robust variability index CFAR detector for Weibull background. IEEE Transactions on Aerospace and Electronic Systems, 2023, vol. 59, no. 2, p. 2053–2064. DOI: 10.1109/TAES.2022.3206256
  9. GANDHI, P. P., KASSAM, S. A. Analysis of CFAR processors in nonhomogeneous background. IEEE Transactions on Aerospace and Electronic Systems, 1988, vol. 24, no. 4, p. 427–445. DOI: 10.1109/7.7185
  10. LIU, Y., ZHANG, S., SUO, J., et al. Research on a new comprehensive CFAR (Comp-CFAR) processing method. IEEE Access, 2019, vol. 7, p. 19401–19413. DOI: 10.1109/ACCESS.2019.2897358
  11. XU, D., ADDABBO, P., HAO, C., et al. Adaptive strategies for clutter edge detection in radar. Signal Processing, 2021, vol. 186, p. 1–14. DOI: 10.1016/j.sigpro.2021.108127
  12. SAFA, A., VERBELEN, T., KEUNINCKX, L., et al. A low complexity radar detector outperforming OS-CFAR for indoor drone obstacle avoidance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, vol. 14, p. 9162–9175. DOI: 10.1109/JSTARS.2021.3107686
  13. YANG, X., HUO, K., SU, J., et al. An anti-FOD method based on CACM-CFAR for MMW radar in complex clutter background. Sensors, 2020, vol. 20, no. 6, p. 1–20. DOI: 10.3390/s20061635
  14. SMITH, M. E., VARSHNEY, P. K. Intelligent CFAR processor based on data variability. IEEE Transactions on Aerospace and Electronic Systems, 2000, vol. 18, no. 4, p. 3383–3393. DOI: 10.1109/7.869503
  15. AI, J., MAO, Y., LUO, Q., et al. Robust CFAR ship detector based on bilateral-trimmed-statistics of complex ocean scenes in SAR imagery: A closed-form solution. IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, no. 3, p. 1872–1890. DOI: 10.1109/TAES.2021.3050654
  16. LI, Y., JI, Z., LI, B., et al. Switching variability index based multiple strategy CFAR detector. Journal of Systems Engineering and Electronics, 2014, vol. 25, no. 4, p. 580–587. DOI: 10.1109/JSEE.2014.00068
  17. QIN, T. C., WANG, Z. X., HUANG, Y., et al. VIHCEMOS-CFAR detector based on improved VI-CFAR. Journal of Physics: Conference Series, 2023, vol. 2613, no. 1, p. 1–12. DOI: 10.1088/1742-6596/2613/1/012007
  18. CHEIKH, K., SOLTANI, F. Performance of the fuzzy VI-CFAR detector in non-homogeneous environments. In Proceedings of the IEEE International Conference on Signal and Image Processing Applications (ICSIPA). Kuala Lumpur (Malaysia), 2011, p. 100–103. DOI: 10.1109/ICSIPA.2011.6144088
  19. RAMAN, S. N., KALPATHI, R. R. Robust variability index CFAR for non-homogeneous background. IET Radar, Sonar and Navigation, 2019, vol. 13, no. 10, p. 1775–1786. DOI: 10.1049/iet-rsn.2018.5435
  20. ZHU, X., TU, L., ZHOU, S., et al. Robust variability index CFAR detector based on Bayesian interference control. IEEE Transactions on Aerospace and Electronic Systems, 2022, vol. 60, p. 1–9. DOI: 10.1109/TGRS.2021.3110238
  21. GENG, Z., YAN, H., ZHANG, J., et al. Deep-learning for radar: A survey. IEEE Access, 2021, vol. 9, p. 141800–141818. DOI: 10.1109/ACCESS.2021.3119561
  22. ROHMAN, B. P. A., KURNIAWAN, D., MIFTAHUSHUDUR, M. T. Switching CA/OS CFAR using neural network for radar target detection in non-homogeneous environment. In Proceedings of the International Electronics Symposium (IES). Surabaya (Indonesia), 2015, p. 280–283. DOI: 10.1109/ELECSYM.2015.7380855
  23. WANG, L.,WANG, D., HAO, C. Intelligent CFAR detector based on support vector machine. IEEE Access, 2017, vol. 5, p. 26965–26972. DOI: 10.1109/ACCESS.2017.2774262
  24. LIN, C. H., LIN, Y. C., BAI, Y., et al. DL-CFAR: A novel CFAR target detection method based on deep learning. In Proceedings of the IEEE Vehicular Technology Conference (VTC-Fall). Honolulu (USA), 2019, p. 1–6. DOI: 10.1109/VTCFall.2019.8891420
  25. MOHAMMADI, F. N., MILLER, L., TAN, C. W., et al. Deep learning for time series classification and extrinsic regression: A current survey. ACM Computing Surveys, 2024, vol. 56, no. 9, p. 1–45. DOI: 10.1145/3649448
  26. KARIM, F., MAJUMDAR, S., DARABI, H., et al. LSTM fully convolutional networks for time series classification. IEEE Access, 2018, vol. 6, p. 1662–1669. DOI: 10.1109/ACCESS.2017.2779939
  27. KARIM, F., MAJUMDAR, S., DARABI, H., et al. Multivariate LSTM-FCNs for time series classification. Neural Networks, 2019, vol. 116, p. 237–245. DOI: 10.1016/j.neunet.2019.04.014

Keywords: Constant false alarm rate, adaptive detection, target detection, long short-term memory network

X. Yang, G. Zhang, H. Song [references] [full-text] [DOI: 10.13164/re.2025.0143] [Download Citations]
Radar HRRP recognition based on supervised exponential sparsity preserving projection with small training data size

The echo signals from ships and sea clutter are coherently accumulated. Therefore, it is difficult to capture and distinguish the features within the signals. In addition, due to poor measurement conditions, the radar system can only collect data from a limited number of non-cooperative ships. In this article, a method termed supervised exponential sparsity preserving projection (E-MMC-SPP) is proposed for recognizing ship classes based on high-resolution range profile (HRRP). The method consists of three parts: First, to extract richer features from sea clutter, a maximum margin criterion sparse reconstructive relationship is constructed, which maximally preserves the sparse reconstruction of data and enhances class separability. Second, matrix exponential is utilized to ensure the positive definiteness of the coefficient matrices, thereby addressing the small-sample-size (SSS) problem. Finally, an efficient numerical method is presented for solving the corresponding large-scale matrix exponential eigenvalue problem. Experimental results on measured radar data demonstrate that the proposed method effectively reduces feature dimensionality and enhances target recognition performance with limited training data.

  1. HADAVI, M., RADMARD, M., NAYEBI, M. A new MCMC sampling based segment model for radar target recognition. Radioengineering, 2015, vol. 24, no. 1, p. 280–287. DOI: 10.13164/re.2015.0280
  2. ZENG, Z., SUN, J., HAN, Z., et al. Radar HRRP target recognition method based on multi-input convolutional gated recurrent unit with cascaded feature fusion. IEEE Geoscience and Remote Sensing Letters, 2022, vol. 19, p. 1–5. DOI: 10.1109/LGRS.2022.3192289
  3. ZHANG, K., SHUI, P. L. Estimation of complex high-resolution range profiles of ships by sparse recovery iterative minimization method. IEEE Transactions on Aerospace and Electronic Systems, 2021, vol. 57, no. 5, p. 3042–3056. DOI: 10.1109/TAES.2021.3068431
  4. TURK, M., PENTLAND, A. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, vol. 3, no. 1, p. 71–86. DOI: 10.1162/jocn.1991.3.1.71
  5. BELHUMEUR, P. N., HESPANHA, J. P., KRIEGMAN, D. J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, vol. 19, no. 7, p. 711–720. DOI: 10.1109/34.598228
  6. BELKIN, M., NIYOGI, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 2003, vol. 15, no. 6, p. 1373–1396. DOI: 10.1162/089976603321780317
  7. ZHANG, Q., LU, J., LIU, T., et al. Ship HRRP target recognition based on CNN and ELM. In Proceedings of the 2019 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT). Guilin (China), 2019, p. 124–128. DOI: 10.1109/ICECTT.2019.00035
  8. LI, Y. G., GUO, L. B.,WANG, Y., et al. A method of radar HRRP aircraft type identification and rejection based on LSTM. In Proceedings of the 2023 IEEE 2nd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Changchun (China), 2023, p. 1115–1118. DOI: 10.1109/EEBDA56825.2023.10090595
  9. PAN, M., LIU, A., YU, Y., et al. Radar HRRP target recognition model based on a stacked CNN–Bi-RNN with attention mechanism. IEEE Transactions on Geoscience and Remote Sensing, 2022, vol. 60, p. 1–14. DOI: 10.1109/TGRS.2021.3055061
  10. PAN, M., JIANG, J., KONG, Q., et al. Radar HRRP target recognition based on t-SNE segmentation and discriminant deep belief network. IEEE Geoscience and Remote Sensing Letters, 2017, vol. 14, no. 9, p. 1609–1613. DOI: 10.1109/LGRS.2017.2726098
  11. ZHANG, L., LI, Y., WANG, Y., et al. Polarimetric HRRP recognition based on ConvLSTM with self-attention. IEEE Sensors Journal, 2021, vol. 21, no. 6, p. 7884–7898. DOI: 10.1109/JSEN.2020.3044314
  12. SALAZAR, A., VERGARA, L., VIDAL, E. A proxy learning curve for the Bayes classifier. Pattern Recognition, 2023, vol. 136, p. 1–14. DOI: 10.1016/j.patcog.2022.109240
  13. ROWEIS, S. T., SAUL, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, vol. 290, no. 5500, p. 2323–2326. DOI: 10.1126/science.290.5500.2323
  14. QIAO, L. S., CHEN, S. C., TAN, X. Y. Sparsity preserving projections with applications to face recognition. Pattern Recognition, 2010, vol. 43, no. 1, p. 331–341. DOI: 10.1016/j.patcog.2009.05.005
  15. PANG, Y., WANG, S., YUAN, Y. Learning regularized LDA by clustering. IEEE Transactions on Neural Networks and Learning Systems, 2014, vol. 25, no. 12, p. 2191–2201. DOI: 10.1109/TNNLS.2014.2306844
  16. LU, J., TAN, Y. P. Regularized locality preserving projections and its extensions for face recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, vol. 40, no. 3, p. 958–963. DOI: 10.1109/TSMCB.2009.2032926
  17. LI, L., LIU, Z., LI, T. Radar high-resolution range profile feature extraction method based on multiple kernel projection subspace fusion. IET Radar, Sonar & Navigation, 2018, vol. 12, no. 4, p. 417–425. DOI: 10.1049/iet-rsn.2017.0391
  18. LIU, W. B., YUAN, J. W., ZHANG, G., et al. HRRP target recognition based on kernel joint discriminant analysis. Journal of Systems Engineering and Electronics, 2019, vol. 30, no. 4, p. 703–708. DOI: 10.21629/jsee.2019.04.08
  19. LI, C., BAO, W. M., XU, L. P., et al. Multiple kernel learning via orthogonal neighborhood preserving projection and maximum margin criterion method for synthetic aperture radar target recognition. Optical Engineering, 2018, vol. 57, no. 5, p. 1–10. DOI: 10.1117/1.OE.57.5.053105
  20. FENG, X., ZHANG, Y., HUO, C., et al. Small sample target recognition based on radar HRRP and sparse autoencoder. In Proceedings of the 2023 8th International Conference on Computer and Communication Systems (ICCCS). Chengdu (China), 2023, p. 1043–1046. DOI: 10.1109/ICCCS.2023.000136
  21. MIAN, P., JIE, J., ZHU, L., et al. Radar HRRP recognition based on discriminant deep autoencoders with small training data size. Electronics Letters, 2016, vol. 52, no. 20, p. 1725–1727. DOI: 10.1049/el.2016.3060
  22. HUANG, Y., WEN, Y., SHI, L., et al. Recognition-aware HRRP generation with generative adversarial network. IEEE Geoscience and Remote Sensing Letters, 2022, vol. 19, p. 1–5. DOI: 10.1109/lgrs.2021.3056192
  23. YUE, Z., LU, J., WAN, L. Lightweight transformer network for ship HRRP target recognition. Applied Sciences, 2022, vol. 12, no. 19, p. 1–14. DOI: 10.3390/app12199728
  24. TAIPING, Z., BIN, F., YUAN YAN, T., et al. Generalized discriminant analysis: A matrix exponential approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, vol. 40, no. 1, p. 186–197. DOI: 10.1109/tsmcb.2009.2024759
  25. HUANG, S. C., ZHUANG, L. Exponential discriminant locality preserving projection for face recognition. Neurocomputing, 2016, vol. 208, p. 373–377. DOI: 10.1016/j.neucom.2016.02.063
  26. RAN, R., FANG, B., WU, X. Exponential neighborhood preserving embedding for face recognition. IEICE Transactions on Information and Systems, 2018, vol. E101.D, no. 5, p. 1410–1420. DOI: 10.1587/transinf.2017EDP7259
  27. WEI, W., DAI, H., LIANG, W. T. Exponential sparsity preserving projection with applications to image recognition. Pattern Recognition, 2020, vol. 104, p. 1–11. DOI: 10.1016/j.patcog.2020.107357
  28. LIU, J., CHERI, S. C., TAN, X. Y., et al. Efficient and robust feature extraction by maximum margin criterion. IEEE Transactions on Neural Networks, 2007, vol. 18, no. 6, p. 1862–1864. DOI: 10.1109/tnn.2007.900813
  29. YANG, H. C., FEI, C., WANG, X. W. Neighborhood preserving discriminant projection algorithm and its application in acoustic target recognition. Journal of Computer Information Systems, 2011, vol. 7, no. 12, p. 4471–4479.
  30. YANG, X.L., ZHANG, G., SONG, H. Ship recognition based on HRRP via multi-scale sparse preserving method. Journal of Systems Engineering and Electronics, 2024, vol. 35, no. 3, p. 599–608. DOI: 10.23919/jsee.2023.000136
  31. WU, G., FENG, T. T., ZHANG, L. J., et al. Inexact implementation using Krylov subspace methods for large scale exponential discriminant analysis with applications to high dimensionality reduction problems. Pattern Recognition, 2017, vol. 66, p. 328–341. DOI: 10.1016/j.patcog.2016.08.020
  32. WANG, S. J., CHEN, H. L., PENG, X. J., et al. Exponential locality preserving projections for small sample size problem. Neurocomputing, 2011, vol. 74, no. 17, p. 3654–3662. DOI: 10.1016/j.neucom.2011.07.007
  33. XU, B., CHEN, Y., GU, H., et al. Multi-view features-based HRRP classification via sparsity preserving projection. In International Conference on Control, Automation and Information Sciences (ICCAIS). Jeju (South Korea), 2019, p. 1–6. DOI: 10.1109/ICCAIS46528.2019.9074684
  34. MIAO, X.Y., SHAN,Y. P. SAR target recognition via sparse representation of multi-view SAR images with correlation analysis. Journal of Electromagnetic Waves and Applications, 2019, vol. 33, no. 7, p. 897–910. DOI: 10.1080/09205071.2019.1575290
  35. LIAN, R. K.-L., SUBROTO, R. S., ANDREAN, V., et al. Matrix exponential. Chapter in Harmonic Modeling of Voltage Source Converters using Basic Numerical Methods, 2022, p. 73–94. DOI: 10.1002/9781119527190.ch4
  36. MIAO, C. Q., WU, W. T. On relaxed filtered Krylov subspace method for non-symmetric eigenvalue problems. Journal of Computational and Applied Mathematics, 2021, vol. 398, no. C, p. 1–15. DOI: 10.1016/j.cam.2021.113698
  37. XU, S. J., XUE, F. Inexact rational Krylov subspace method for eigenvalue problems. Numerical Linear Algebra with Applications, 2022, vol. 29, no. 5, p. 1–15. DOI: 10.1002/nla.2437
  38. CHEN, B., LIU, H. W., BAO, Z., et al. PCA and kernel PCA for radar high range resolution profiles recognition. In IEEE Radar Conference. Arlington (USA), 2005, p. 528–533. DOI: 10.1109/RADAR.2005.1435883
  39. SALAZAR, A., VERGARA, L., SAFONT, G. Generative adversarial networks and Markov random fields for oversampling very small training sets. Expert Systems with Applications, 2021, vol. 163, no. 1, p. 1–11. DOI: 10.1016/j.eswa.2020.113819

Keywords: Supervised exponential sparsity preserving projection, high-resolution range profile, ship recognition, small-sample-size (SSS) problem

P. T. P. Nguyen, K. A. Phan, L. Tran [references] [full-text] [DOI: 10.13164/re.2025.0155] [Download Citations]
An Area-Efficient and Low-Latency Analog Content-Addressable Memory Design Using gm/ID Methodology with Memristors

In-memory computing (IMC) is an emerging approach to mitigating the memory bottleneck, a critical issue affecting energy efficiency and latency in modern digital computing. IMC operating in the analog domain can achieve high data density and accelerate signal processing tasks such as neural network training by leveraging nonvolatile memory technologies, specifically resistive switching devices. Conversely, content-addressable memories (CAMs), known for their inherent parallelism and fast digital lookup capabilities, are constrained by their large area and high energy consumption. To address these limitations, analog CAMs, which combine the analog domain with the tunability of memristors, have been proposed to enhance storage density and energy efficiency. In this work, we introduce a novel topology that reduces latency and area by employing the gm/ID design methodology to optimize the sizing of MOS devices. Utilizing the VTEAM model for simulations, our circuit achieves approximately twice the latency reduction compared to the 10T2M design, while occupying up to 66% less area. Additionally, our design exhibits the lowest latency among existing multi-bit and analog CAM approaches, reducing latency by 96%.

  1. MANNOCI, P. In-memory computing with emerging memory de vices: status and outlook. APL Machine Learning, 2023, vol. 1, no. 1, p. 1–25. DOI: 10.1063/5.0136403
  2. GARZON, E., GOLMAN, R., JAHSHAN, Z., et al. Hamming distance tolerant content-addressable memory (HD-CAM) for DNA classification. IEEE Access, 2022, vol. 10, p. 28080–28093. DOI: 10.1109/ACCESS.2022.3158305
  3. YANG, B.-D. Low-power effective memory-size expanded TCAM using data-relocation scheme. IEEE Journal of Solid State Circuits, 2015, vol. 50, no. 10, p. 2441–2450. DOI: 10.1109/JSSC.2015.2457908
  4. WOO, K.-C., YANG, B.-D. Low-area TCAM using a don’t care reduction scheme. IEEE Journal of Solid-State Circuits, 2018, vol. 53, no. 8, p. 2427–2433. DOI: 10.1109/JSSC.2018.2822696
  5. BLYTH, T., ORLANDO, R. Analog Content Addressable Patent Memory (CAM) Employing Analog Nonvolatile Storage. no. US6985372B1. [Online]. Available: https://patents.google.com/patent/US6985372B1/en
  6. LI, C., GRAVES, C. E., SHENG, X., et al. Analog content addressable memories with memristors. Nature Communications, 2020, vol. 11, no. 1, p. 1–10. DOI: 10.1038/s41467-020-15254-4
  7. GRAVES, C. E., LAM, S.-T., LI, X., et al. Memristor TCAMs accelerate regular expression matching for network intrusion detection. IEEE Transactions on Nanotechnology, 2019, vol. 18, p. 963–970. DOI: 10.1109/TNANO.2019.2936239
  8. GRAVES, C. E., LI, C., SHENG, X., et al. In-memory computing with memristor content-addressable memories for pattern matching. Advanced Materials, 2020, vol. 32, no. 37, p. 1–10. DOI: 10.1002/adma.202003437
  9. KIM,J., CHOI, M.-J., JANG, H. Ferroelectric field effect transistors: progress and perspective. APL Materials, 2021, vol. 9, no. 2, p. 1–18. DOI: 10.1063/5.0035515
  10. MERCED-GRAFALS, E. J., DAVILA, N., GE, N., et al. Repeatable, accurate, and high-speed multi-level programming of memristor 1T1R arrays for power-efficient analog computing applications. Nanotechnology, 2016, vol. 27, no. 36, p. 1–5. DOI: 10.1088/0957-4484/27/36/365202
  11. IRMANOVA, A., MAAN, A., JAMES, A., et al. Analog self timed programming circuits for aging memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, vol. 68, no. 4, p. 1133–1137. DOI: 10.1109/TCSII.2020.3032282
  12. LI, Y., ANG, K.-W. Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Advanced Intelligent Systems, 2020, vol. 3, no. 1, p. 1–10. DOI: 10.1002/aisy.202000137
  13. BAZZI, J., SWEIDAN, J., FOUDA, M. E., et al. Variability-aware design of RRAM-based analog CAMs. IEEE Access, 2024, vol. 12, p. 55859–55873. DOI: 10.1109/ACCESS.2024.3388730
  14. AGWA, S., PAPANDROULIDAKIS, G., PRODROMAKIS, T. A 1T1R+2T analog content-addressable memory pixel for online template matching. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems(ISCAS).Monterey(USA), 2023, p. 1–5. DOI: 10.1109/ISCAS46773.2023.10181451
  15. PEDRETTI, G., MOON, J., BRUEL, P., et al. X-time: Anin-memory engine for accelerating machine learning on tabular data with CAMs. arXiv, 2023, p. 1–13. DOI: 10.48550/ARXIV.2304.01285
  16. YU,J., MANEA,P.-P., AMELI,S., et al. Analog feedback-controlled memristor programming circuit for analog content-addressable memory. In Proceedings of the 2023 IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). Milan (Italy), 2023, p. 983–988. DOI: 10.1109/MetroXRAINE58569.2023.10405732
  17. FLANDRE, D., VIVIANI, A., EGGERMONT, J.-P., et al. Improved synthesis of gain-boosted regulated-cascode CMOS stages using symbolic analysis and gm/ID methodology. IEEE Journal of Solid-State Circuits, 1997, vol. 32, no. 7, p. 1006–1012. DOI: 10.1109/4.597291
  18. HESHAM, B., HASANEEN, E.-S., HAMED, H.F.A. Design procedure for two-stage CMOS opamp using gm/ID design methodology in 16 nm FinFET technology. In Proceedings of the 2019 31st International Conference on Microelectronics (ICM). Cairo (Egypt), 2019, p. 325–329. DOI: 10.1109/ICM48031.2019.9021511
  19. CHUA, L., KANG, S. M. Memristive devices and systems. Proceedings of the IEEE, 1976, vol. 64, no. 2, p. 209–223. DOI: 10.1109/PROC.1976.10092
  20. CHUA, L. Everything you wish to know about memristors but are afraid to ask. Radioengineering, 2015, vol. 24, no. 2, p. 319–368. DOI: 10.13164/re.2015.0319
  21. CHUA, L. Resistance switching memories are memristors. Applied Physics A, 2011, vol. 102, no. 4, p. 765–783. DOI: 10.1007/s00339-011-6264-9
  22. YANG, J. J., PICKETT, M. D., LI, X., et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008, vol. 3, no. 7, p. 429–433. DOI: 10.1038/nnano.2008.160
  23. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., et al. The missing memristor found. Nature, 2008, vol. 453, no. 7191, p. 80–83. DOI: 10.1038/nature06932
  24. SOUTO, J., BOTELLA, G., GARCIA, D., et al. Neuromorphic circuit simulation with memristors: Design and evaluation using memtorch for MNIST and CIFAR. arXiv, 2024, p. 1–19. DOI: 10.48550/ARXIV.2407.13410
  25. ZAHEDI, M., SHAHROODI, T., WONG, S., et al. Efficient signed arithmetic multiplication on memristor-based crossbar. IEEE Access, 2023, vol. 11, p. 33964–33978. DOI: 10.1109/ACCESS.2023.3263259
  26. SERB, A., KHIAT, A., PRODROMAKIS, T. Seamlessly fused digital-analogue reconfigurable computing using memristors. Nature Communications, 2018, vol. 9, no. 1, p. 1–9. DOI: 10.1038/s41467-018-04624-8
  27. RASHED, M. R. H., KUMAR, S. K., EWETZ, R. Logic synthesis for digital in-memory computing. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD). San Diego (USA), 2022, p. 1–9. DOI: 10.1145/3508352.3549348
  28. BARRAJ, I., MESTIRI, H., MASMOUDI, M. Overview of memristor-based design for analog applications. Micromachines, 2024, vol. 15, no. 4, p. 1–12. DOI: 10.3390/mi15040505
  29. MLADENOV, V., KIRILOV, S. A memristor neural network based on simple logarithmic-sigmoidal transfer function with MOS transistors. Electronics, 2024, vol. 13, no. 5, p. 1–26. DOI: 10.3390/electronics13050893
  30. XIE, T., YU, S., LI, S. A high-parallelism RRAM-based compute in-memory macro with intrinsic impedance boosting and in-ADC computing. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2023, vol. 9, no. 1, p. 38–46. DOI: 10.1109/JXCDC.2023.3255788
  31. BAZZI, J., SWEIDAN, J., FOUDA, M. E., et al. Hardware acceleration of DNA pattern matching using analog resistive CAMs. Frontiers in Electronics, 2024, vol. 4, p. 1–12. DOI: 10.3389/felec.2023.1343612
  32. TAHA, M. M. A., TEUSCHER, C. Approximate memristive in memory Hamming distance circuit. ACM Journal on Emerging Technologies in Computing Systems, 2020, vol. 16, no. 2, p. 1–14. DOI: 10.1145/3371391
  33. GARCIA-REDONDO, F., LOPEZ-VALLEJO, M., ITUERO, P. Building memristor applications: From device model to circuit design. IEEE Transactions on Nanotechnology, 2014, vol. 13, no. 6, p. 1154–1162. DOI: 10.1109/TNANO.2014.2345093
  34. KVATINSKY, S., RAMADAN, M., FRIEDMAN, E. G., et al. VTEAM: A general model for voltage-controlled memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, vol.62, no. 8, p. 786–790. DOI: 10.1109/TCSII.2015.2433536
  35. KVATINSKY, S., FRIEDMAN, E. G., KOLODNY, A., et al, U. C. TEAM: Threshold adaptive memristor model. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 1, p. 211-221. DOI: 10.1109/TCSI.2012.2215714
  36. KVATINSKY, S., TALISVEYBERG, K., FLITER, D., et al. Models of memristors for SPICE simulations. In Proceedings of the IEEE 27th Convention of Electrical and Electronics Engineers in Israel. Eilat (Israel), 2012, p. 1–5. DOI: 10.1109/EEEI.2012.6377081
  37. BIOLEK, D., KOLKA, Z., BIOLKOVA, V., et al. (V)TEAM for SPICE simulation of memristive devices with improved numerical performance. IEEE Access, 2021, vol. 9, p. 30242–30255. DOI: 10.1109/ACCESS.2021.3059241
  38. BAZZI, J., FOUDA, M.E., KANJ, R., et al. Threshold switch modeling for analog CAM design. In Proceedings of the 32nd International Conference on Microelectronics (ICM). Cairo (Egypt), 2020, p. 1–4. DOI: 10.1109/ICM50269.2020.9331775
  39. PEDRETTI, G., GRAVES, C. E., VAN VAERENBERGH, T., et al. Differentiable content addressable memory with memristors. Advanced Electronic Materials, 2022, vol. 8, no. 8, p. 1–9. DOI: 10.1002/aelm.202101198
  40. SHI, L., ZHENG,G., TIAN, B., et al. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Advances, 2020, vol. 2, no. 5, p. 1811–1827. DOI: 10.1039/d0na00100gNCSTATEEDA.FreePDK45.[Online]Cited2024-04-31. Available at: https://eda.ncsu.edu/freepdk/freepdk45/
  41. PEDRETTI, G., GRAVES, C. E., SEREBRYAKOV, S., et al. Tree based machine learning performed in-memory with memristive analog CAM. Nature Communications, 2021, vol. 12, no. 1, p. 1–14. DOI: 10.1038/s41467-021-25873-0
  42. YIN, X., LI, C., HUANG, Q., et al. FECAM: A universal compact digital and analog content addressable memory using ferroelectric. IEEE Transactions on Electron Devices, 2020, vol. 67, no. 7, p. 2785–2792. DOI: 10.1109/TED.2020.2994896
  43. LIU, X., KATTI, K., HE, Y., et al. Analog content-addressable memory from complementary FeFETs. Device, 2024, vol.2, no.2, p.1–12. DOI: 10.1016/j.device.2023.100218
  44. RAJAEI, R., SHARIFI, M. M., KAZEMI, A., et al. Compact single phase-search multistate content-addressable memory design using one FeFET/cell. IEEE Transactions on Electron Devices, 2021, vol. 68, no. 1, p. 109–117. DOI: 10.1109/TED.2020.3039477
  45. BEKDACHE, O., EDDINE, H. N., AL TAWIL, M., et al. Scalable complementary FeFET CAM design. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). Monterey (USA), 2023, p. 1–5. DOI: 10.1109/ISCAS46773.2023.10181788
  46. GIACOMIN, E., GAILLARDON, P.-E. A resistive random access memory add-on for the NCSU FreePDK 45 nm. IEEE Transactions on Nanotechnology, 2019, vol. 18, p. 68–72. DOI: 10.1109/TNANO.2018.2881109

Keywords: In-memory computing, content-addressable memory, analog CAM, memristor, gm/ID design methodology

M. Rahman, W. Wang, J. Wang, Y. Wang [references] [full-text] [DOI: 10.13164/re.2025.0166] [Download Citations]
Artifact Aware Deep Learning with Diffuse Model for MRI Brain Tumor Image Segmentation

Brain tumor segmentation in MRI images is crucial for clinical diagnosis and treatment planning but those scans are usually affected by imaging artifacts which decrease the quality of data and hamper segmentation performance. To address these challenges, this study proposed a unique framework that seamlessly combines artifact correction with segmentation of tumors. The framework features a data preparation module which is able to prepare realistic artifact-contaminated and artifact-free MRI image pairs that have been used for training. It also includes a diffuse model which acts on MRI images and removes the artifacts thus giving high-quality inputs for segmentation. In ad-dition, a modified 3D Convolutional Neural Network (CNN) architecture which integrates attention blocks and squeeze-and-excitation (SE) layers is used to segment the tumor sub-regions, including the enhancing tumor (ET), tumor core (TC), and whole tumor (WT). The framework was evaluated with artifact-corrupted data and clean data and achieved better results regarding the generation of artifact-free data and stable segmentation than the other baseline methods. This method emphasizes the magnitude of imaging artifacts on MRI-based segmentation and facilitates improvement in the clinical workflows. The code is available at https://github.com/Rahman3175/MMR

  1. GROCHANS, S., CYBULSKA, A. M., SIMINSKA, D., et al. Epidemiology of glioblastoma multiforme: Literature review. Cancers, 2022, vol. 14, no. 10, p. 1–32. DOI: 10.3390/cancers14102412
  2. ABD-ELLAH, M. K., AWAD, A. I., KHALAF, A. A., et al. A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 2019, vol. 61, p. 300–318. DOI: 10.1016/j.mri.2019.05.028
  3. PRICE, M., BALLARD, C., BENEDETTI, J., et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2017–2021. Neurooncology, 2024, vol. 26, no. 6, p. vi1–vi85. DOI: 10.1093/neuonc/noae145
  4. HAACKE, E. M., BROWN, R. W., THOMPSON, M. R., et al. Magnetic Resonance Imaging: Physical Principles and Sequence Design. 1st ed. New York (USA): Wiley-Liss, 1999. ISBN 9780471351283
  5. GODENSCHWEGER, F., KAGEBEIN, U., STUCHT, D., et al. Motion correction in MRI of the brain. Physics in Medicine & Biology, 2016, vol. 61, no. 5, p. R32–R56. DOI: 10.1088/00319155/61/5/R32
  6. VIONNET, L., ARANOVITCH, A., DUERST, Y., et al. Simultaneous feedback control for joint field and motion correction in brain MRI. NeuroImage, 2021, vol. 226, p. 1–18. DOI: 10.1016/j.neuroimage.2020.117286
  7. TAVAF, N., TORFI, A., UGURBIL, K., et al. GRAPPA-GANs for parallel MRI reconstruction. arXiv preprint, 2021, vol. 2101, p. 1 to 6. DOI: 10.48550/arXiv.2101.03135
  8. YIASEMIS, G., SANCHEZ, C. I., SONKE, J. J., et al. On retrospective k-space subsampling schemes for deep MRI reconstruction. Magnetic Resonance Imaging, 2024, vol. 107, p. 33–46. DOI: 10.1016/j.mri.2023.12.012
  9. BALAMURUGAN, T., GNANAMANOHARAN, E. Brain tumor segmentation and classification using hybrid deep CNN with LuNetClassifier. Neural Computing and Applications, 2023, vol. 35, no. 6, p. 4739–4753. DOI: 10.1007/s00521-022-07934-7
  10. ÇİÇEK, O., ABDULKADIR, A., LIENKAMP, S. S., et al. 3D UNet: Learning dense volumetric segmentation from sparse annotation. In Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Athens (Greece), October 2016, p. 424–432. DOI: 10.1007/978-3-319-46723-8_49
  11. ZOSSO, D., AN, J., STEVICK, J., et al. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging, 2017, vol. 11, no. 3, p. 577–600. DOI: 10.3934/ipi.2017027
  12. SHAIK, F., PAVITHRA, P., SWARUPA RANI, K., et al. Image segmentation with complex artifacts and correction of bias. In Proceedings of the 3rd International Conference on Communications and Cyber Physical Engineering (ICCCE 2020). Singapore, 2021, p. 519–526. DOI: 10.1007/978-981-15-7961-5_50
  13. KOETZIER, L. R., WU, J., MASTRODICASA, D., et al. Generating synthetic data for medical imaging. Radiology, 2024, vol. 312, no. 3, p. e232471. DOI: 10.1148/radiol.232471 [14] NARAI, A., HERMANN, P., AUER, T., et al. Movement-related artefacts (MR-ART) dataset of matched motion-corrupted and clean structural MRI brain scans. Scientific Data, 2022, vol. 9, no. 1, p. 1–6. DOI: 10.1038/s41597-022-01694-8
  14. ZAITSEV, M., MACLAREN, J., HERBST, M. Motion artifacts in MRI: A complex problem with many partial solutions. Journal of Magnetic Resonance Imaging, 2015, vol. 42, no. 4, p. 887–901. DOI: 10.1002/jmri.24850
  15. WANG, N. C., NOLL, D. C., SRINIVASAN, A., et al. Simulated MRI artifacts: Testing machine learning failure modes. BME Frontiers, 2022, vol. 2022, p. 1–16. DOI: 10.34133/2022/9807590
  16. BELJAARDS, L., PEZZOTTI, N., RAO, C., et al. AI‐based motion artifact severity estimation in under sampled MRI allowing for selection of appropriate reconstruction models. Medical Physics, 2024, vol. 51, no. 5, p. 3555–3565. DOI: 10.1002/mp.16918
  17. OLSSON, H., MILLWARD, J. M., STARKE, L., et al. Simulating rigid head motion artifacts on brain magnitude MRI data–Outcome on image quality and segmentation of the cerebral cortex. Plos One, 2024, vol. 19, no. 4, p. e0301132. DOI: 10.1371/journal.pone.0301132
  18. SAFARI, M., YANG, X., FATEMI, A., et al. MRI motion artifact reduction using a conditional diffusion probabilistic model (MARCDPM). Medical Physics, 2024, vol. 51, no. 4, p. 2598–2610. DOI: 10.1002/mp.16844
  19. OKTAY, O., SCHLEMPER, J., FOLGOC, L. L., et al. Attention UNet: Learning where to look for the pancreas. arXiv preprint, 2018, vol. 1804, p. 1–10. DOI: 10.48550/arXiv.1804.03999
  20. KARIMZADEH, R., FATEMIZADEH, E., ARABI, H., et al. Attention-based deep learning segmentation: Application to brain tumor delineation. In Proceedings of the 2021 28th National and 6th International Iranian Conference on Biomedical Engineering (ICBME). Tehran (Iran), 2021, p. 248–252. DOI: 10.1109/ICBME54433.2021.9750374
  21. LIU, T., LUO, R., XU, L., et al. Spatial channel attention for deep convolutional neural networks. Mathematics, 2022, vol. 10, no. 10, p. 1–10. DOI: 10.3390/math10101750
  22. VAN LEEMPUT, K., MAES, F., VANDERMEULEN, D., et al. Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 1999, vol. 18, no. 10, p. 885–896. DOI: 10.1109/42.811268
  23. AL-MASNI, M. A., LEE, S., YI, J., et al. Stacked U-Nets with self assisted priors towards robust correction of rigid motion artifact in brain MRI. NeuroImage, 2022, vol. 259, p. 1–17. DOI: 10.1016/j.neuroimage.2022.119411
  24. CHEN, G., XIE, H., RAO, X., et al. MRI motion correction through disentangled CycleGAN based on multi-mask K-space subsampling. IEEE Transactions on Medical Imaging, 2024, p. 1–16. DOI: 10.1109/TMI.2024.3523949
  25. CAI, T., LI, X., ZHONG, C., et al. DiffMAR: A generalized diffusion model for metal artifact reduction in CT images. IEEE Journal of Biomedical and Health Informatics, 2024, vol. 28, no. 11, p. 6712–6724. DOI: 10.1109/JBHI.2024.3439729
  26. VINCENT, P., LAROCHELLE, H., BENGIO, Y., et al. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning. Helsinki (Finland), July 2008, p. 1096–1103. DOI: 10.1145/1390156.1390294
  27. HUANG, J., FANG, Y., WU, Y., et al. Swin transformer for fast MRI. Neurocomputing, 2022, vol. 493, p. 281–304. DOI: 10.1016/j.neucom.2022.04.051
  28. TSAI, T. H., LIN, Y. H., LIN, T. H., et al. Motion artifact correction in MRI using GAN-based channel attention transformer. In Proceedings of the 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). Toronto (Canada), 2023, p. 1–5. DOI: 10.1109/BioCAS58349.2023.10389083
  29. HSU, C., CHANG, C., CHEN, T. W., et al. Brain tumor segmentation (BraTS) challenge short paper: Improving three dimensional brain tumor segmentation using SegResNet and hybrid boundary-dice loss. In Proceedings of the International MICCAI Brainlesion Workshop. Strasbourg (France), 2021, p. 334–344. DOI: 10.1007/978-3-031-09002-8_30
  30. ABBAS, R., GU, N. Improving deep learning-based image super resolution with residual learning and perceptual loss using SRGAN model. Soft Computing, 2023, vol. 27, no. 21, p. 16041–16057. DOI: 10.1007/s00500-023-09126-4
  31. WANG, Z., BOVIK, A. C. Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 2009, vol. 26, no. 1, p. 98–117. DOI: 10.1109/MSP.2008.930649
  32. ZHAO, H., GALLO, O., FROSIO, I., et al. Loss functions for image restoration with neural networks. IEEE Transactions on Computational Imaging, 2016, vol. 3, no. 1, p. 47–57. DOI: 10.1109/TCI.2016.2644865
  33. DE VERDIER, M. C., SALUJA, R., GAGNON, L., et al. The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-Treatment MRI. arXiv preprint, 2024, vol. 2405, p. 1–10. DOI: 10.48550/arXiv.2405.18368
  34. HENRY, T., CARRE, A., LEROUSSEAU, M., et al. Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: A BraTS 2020 challenge solution. In Proceedings of Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: BrainLes 2020. Lima (Peru), 2020, p. 327–339. DOI: 10.1007/978-3-030-72084-1_30
  35. WANG, W., CHEN, C., MENG, D., et al. TransBTS: Multimodal brain tumor segmentation using transformer. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg (France), 2021, p. 109 to 119. DOI: 10.48550/arXiv.2103.04430
  36. MILLETARI, F., NAVAB, N., AHMADI, S. A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 4th International Conference on 3D Vision (3DV). Stanford (CA, USA), 2016, p. 565 to 571. DOI: 10.1109/3DV.2016.79

Keywords: MRI artifacts, diffuse model, artifact-free images, attention blocks, brain tumor segmentation, 3D CNN