ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

December 2016, Volume 25, Number 4 [DOI: 10.13164/re.2016-4]

Show all Hide all

A. Karwowski, A. Noga, T. Topa [references] [full-text] [DOI: 10.13164/re.2016.0629] [Download Citations]
An Efficient Framework for Analysis of Wire-Grid Shielding Structures over a Broad Frequency Range

A computationally efficient MoM-based framework for broadband electromagnetic simulation of wire-grid shielding structures is presented in the paper. Broadband capability of the approach is attained through supporting MoM by an adaptive frequency sweep combined with rational interpolation of the observable implemented via Stoer-Bulirsch algorithm. The performance increase is gained by employing CUDA-enabled CPU+GPU co-processing. For large-size problems exceeding the amount of memory available on the GPU device, a hybrid out-of-GPU memory LU decomposition algorithm is employed. The demonstration examples are provided to illustrate the the accuracy and high efficiency of the approach.

  1. CASEY, K. F. Electromagnetic shielding behavior of wire-mesh screens. IEEE Transactions on Electromagnetic Compatibility, Aug. 1988, vol. 30, no. 3, p. 298–306. DOI: 10.1109/15.3309
  2. MARIANI PRIMIANI, V., MOGLIE, F., PASTORE A. P. Field penetration through a wire mesh screen excited by a reverberation chamber field: FDTD analysis and experiments. IEEE Transactions on Electromagnetic Compatibility, Nov. 2009, vol. 51, no. 4, p. 883–891. DOI: 10.1109/TEMC.2009.2032650
  3. ISHIKAWA, R., AMEMIYA, F., NAKASHIO, N., et al. Method of evaluating shielding effect for electronic equipment case using wire grid model and radiation source from 1 GHz to 3 GHz. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility. Portland (USA), 2006, p. 133–138. DOI: 10.1109/ISEMC.2006.1706279
  4. METWALLY, I. A., HEIDLER, F. H. Reduction of lightning-induced magnetic fields and voltages inside struck double-layer grid-like shields. IEEE Transactions on Electromagnetic Compatibility, Nov. 2008, vol. 50, no. 4, p. 905–912. DOI: 10.1109/TEMC.2008.2002575
  5. METWALLY, I. A., ZISCHANK, W. J., HEIDLER, F. H. Measurement of magnetic fields inside single- and double-layer reinforced concrete buildings during simulated lightning currents. IEEE Transactions on Electromagnetic Compatibility, May 2004, vol. 46, no. 2, p. 208–221. DOI: 10.1109/TEMC.2004.826894
  6. ANTONINI, G., DESCHRIJVER D., DHAENE, T. Broadband rational macromodeling based on the adaptive frequency sampling algorithm and the partial element equivalent circuit method. IEEE Transactions on Electromagnetic Compatibility, 2008, vol. 50, no. 1, p. 128–137. DOI: 10.1109/TEMC.2007.913225
  7. DATTA, B. N. Applied and Computational Control, Signals, and Circuits. 1st ed. Boston (USA): Springer Science, 1999. (Chapter 9: Reduced-order modeling techniques based on Krylov subspaces and their use in circuit simulation.) ISBN: 978-0-8176-3954-9
  8. ANDERSON, B., BRACKEN, J. E., MANGES, J. B., et al. Fullwave analysis in SPICE via model-order reduction. IEEE Transactions on Microwave Theory and Techniques, Sep. 2004, vol. 52, no. 9, p. 2314–2320. DOI: 10.1109/TMTT.2004.834569
  9. CHIPROUT, E., NAKHLA, M. S. Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis. Norwell (USA): Kluwer, 1994. ISBN: 978-0-7923-9413-6
  10. CHIPROUT, E., NAKHLA, M. S. Analysis of interconnect networks using complex frequency hopping (CFH). IEEE Transacions on Computer-Aided Design of Integrated Circuits and Systems, 1995, vol. 14, no. 2, p. 186–200. DOI: 10.1109/43.370425
  11. CHEW,W. C., JIN, J.-M., MICHIELSSEN, E., et al. Fast and Efficient Algorithms in Computational Electromagnetics. Norwood (USA): Artech House, 2001. ISBN: 1580531520
  12. DHAENE, T., UREEL, J., FACHE, N., et al. Adaptive frequency sampling algorithm for fast and accurate S-parameter modeling of general planar structures. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest. Orlando (USA), May 1995, vol. 3, p. 1427–1430. DOI: 10.1109/MWSYM.1995.406240
  13. ADVE, R. S., SARKAR, T. K., RAO, S. M., et al. Application of the Cauchy method for extrapolating/interpolating narrowband system responses. IEEE Transactions on Microwave Theory and Techniques, 1997, vol. 45, no. 5, p. 837–845. DOI: 10.1109/22.575608
  14. GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 1999, vol. 14, p. 1052–1061. DOI: 10.1109/61.772353
  15. KARWOWSKI, A. Efficient wide-band interpolation of MoMderived frequency responses using Stoer-Bulirsch algorithm. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility. Austin (USA), 2009, p. 249–252. DOI: 10.1109/ISEMC.2009.5284600
  16. STOER, J., BULIRSCH, R. Introduction to Numerical Analysis. 2nd ed. New York (USA): Springer-Verlag, 1980. ISBN: 0-387- 97878-X
  17. DING, Y., WU, K. L., FANG, D. G. A broad-band adaptive frequency sampling approach for microwave circuit EM simulation exploiting Stoer-Bulirsch algorithm. IEEE Transactions on Microwave Theory and Techniques, 2003, vol. 51, no. 3, p. 928–934. DOI: 10.1109/TMTT.2003.808694
  18. RAO, S. M., WILTON, D. R., GLISSON, A. W. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antennas Propagation, 1982, vol. 30, p. 409–418. DOI: 10.1109/TAP.1982.1142818
  19. HWU, S. U.,WILTON, D. R. Electromagnetic Scattering and Radiation by Arbitrary Configurations of Conducting Bodies and Wires. Tech. Doc. 1325, University of Houston, 1988.
  20. TOPA, T., KARWOWSKI, A., NOGA, A. Using GPU with CUDA to accelerate MoM-based electromagnetic simulation of wire-grid models. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 342–345. DOI: 10.1109/LAWP.2011.2144557
  21. TOPA, T. Efficient out-of-GPU memory strategies for solving matrix equation generated by method of moments. Electronics Letters, 2015, vol. 51, no. 19, p. 1542–1543. DOI: 10.1049/el.2015.2175
  22. KURZAK, J., BADER, D. A., DONGARRA, J. Scientific Computing with Multicore and Accelerators. Florida (USA): CRC Press, 2011. ISBN: 9781439825365
  23. TOPA, T. Load balanced Fortran-based out-of-GPU memory implementation of the method of moments. IEEE Antennas and Wireless Propagation Letters, 2016, (in press). DOI: 10.1109/LAWP.2016.2605042
  24. EMPHOTONICS. CULA Tools – GPU Accelerated LAPACK. [Online] Cited: 2016-10-29. Available at: http://www.culatools.com/
  25. ANISEROWICZ, K., MAKSIMOWICZ, T. Comparison of lightninginduced current simulations in the time and frequency domains using different computer codes. IEEE Transactions on Electromagnetic Compatibility, 2011, vol. 53, no. 2, p. 446–461. DOI: 10.1109/TEMC.2010.2076338
  26. BONYADI-RAM, S., MOINI, R., SADEGHI, S. H. H., et al. On representation of lightning return stroke as a lossy monopole antenna with inductive loading. IEEE Transactions on Electromagnetic Compatibility, 2008, vol. 50, no. 1, p. 118–127. DOI: 10.1109/TEMC.2007.913221
  27. DUFFY, A. P., BENSON, T. M., CHRISTOPOULOS, C. Propagation along a wire placed inside a cavity with an aperture: A comparison of measurements and transmission-line modeling (TLM). IEEE Transactions on Electromagnetic Compatibility, 1994, vol. 36, no. 2, p. 144–146. DOI: 10.1109/15.293275
  28. ALTAIR ENGINEERING, INC. FEKO: A Comprehensive Electromagnetic Simulaiton Tool. Available at: https://www.feko.info

Keywords: Computational electromagnetics, wire-grid structures, MoM, wideband analysis, adaptive frequency sampling, rational interpolation, GPGPU computing

F. Perez-Fontan, M. Kvicera, P. Pechac, J. Israel [references] [full-text] [DOI: 10.13164/re.2016.0637] [Download Citations]
A Model for the Detailed Analysis of Radio Links Involving Tree Canopies

Detailed analysis of tree canopy interaction with incident radiowaves has mainly been limited to remote sensing for the purpose of forest classification among many other applications. This represents a monostatic configuration, unlike the case of communication links, which are bistatic. In general, link analyses have been limited to the application of simple, empirical formulas based on the use of specific attenuation values in dB/m and the traversed vegetated mass as, e.g., the model in Recommendation ITU-R P.833-8 [1]. In remote sensing, two main techniques are used: Multiple Scattering Theory (MST) [2]-[5] and Radiative Transfer Theory (RT), [5] and [6]. We have paid attention in the past to MST [7]-[10]. It was shown that a full application of MST leads to very long computation times which are unacceptable in the case where we have to analyze a scenario with several trees. Extensive work using MST has been also presented by others in [11]-[16] showing the interest in this technique. We have proposed a simplified model for scattering from tree canopies based on a hybridization of MST and a modified physical optics (PO) approach [16]. We assume that propagation through a canopy is accounted for by using the complex valued propagation constant obtained by MST. Unlike the case when the full MST is applied, the proposed approach offers significant benefits including a direct software implementation and acceptable computation times even for high frequencies and electrically large canopies. The proposed model thus replaces the coherent component in MST, significant in the forward direction, but keeps the incoherent or diffuse scattering component present in all directions. The incoherent component can be calculated within reasonable times. Here, we present tests of the proposed model against MST using an artificial single-tree scenario at 2 GHz and 10 GHz.

  1. ITU. Attenuation in Vegetation, ITU-R Rec. P.833-8. Geneva (Switzerland): ITU, 2013.
  2. FOLDY, L. L. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review, 1945, vol. 67, no. 3/4, p. 107–119. DOI: 10.1103/PhysRev.67.107
  3. LAX, M. Multiple scattering of waves. Review of Modern Physics, 1951, vol. 23, no. 4, p. 287–310. DOI: 10.1103/RevModPhys.23.287
  4. TWERSKY, V. Multiple scattering of electromagnetic waves by arbitrary configurations. Journal of Mathematical Physics, 1967, vol. 8, no. 3, p. 589–610. DOI: 10.1063/1.1705237
  5. ISHIMARU, A. Wave Propagation and Scattering in Random Media. Wiley-IEEE Press, 1999. ISBN: 978-0-7803-4717-5
  6. ULABY, F. T., LONG., D. Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, 2014. ISBN-13: 978-0472119356
  7. CHEFFENA, M., PEREZ-FONTAN, F. Land mobile satellite channel simulator along roadside trees. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 748–751. DOI: 10.1109/LAWP.2010.2060465
  8. CHEFFENA, M., PEREZ-FONTAN, F., LACOSTE, F., et al. Land mobile satellite dual polarized MIMO channel along roadside trees: modeling and performance evaluation. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 597–605. DOI: 10.1109/TAP.2011.2173447
  9. KVICERA, M., ISRAEL, J., PEREZ-FONTAN, F., PECHAC, P. Sensitivity analysis of multiple scattering theory applied to tree canopies at microwave frequencies. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 1175–1178. DOI: 10.1109/LAWP.2015.2498645
  10. KVICERA, M., PEREZ-FONTAN, F., PECHAC, P. Scattering from single isolated tree based on physical optics: preliminary model. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015.
  11. DE JONG, Y. L. C., HERBEN, M. H. A. J. A tree-scattering model for improved propagation prediction in urban microcells. IEEE Transactions on Vehicular Technology, 2004, vol. 53, no. 2, p. 503–513. DOI: 10.1109/TVT.2004.823493
  12. DE JONG, Y. L. C. Measurement and Modeling of Radiowave Propagation in Urban Microcells. PhD Thesis. T.U. Eindhoven, 2001.
  13. ISRAEL, J., PAJOT, A. Fading and scattering due to trees in L to Ka band propagation simulations. In Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP). Lisbon (Portugal), 2015.
  14. TORRICO, S. A., BERTONI, H. L., LANG, R. H. Modeling tree effects on path loss in a residential environment. IEEE Transactions on Antennas and Propagation, 1998, vol. 46, no. 6, p. 872–880. DOI: 10.1109/8.686776
  15. CHEE, K. L., TORRICO, S. A., KURNER, T. Radiowave propagation prediction in vegetated residential environments. IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 2, p. 486–499. DOI: 10.1109/TVT.2012.2226764
  16. KVICERA, M., PEREZ-FONTAN, F., ISRAEL, J., PECHAC, P. Modeling scattering from tree canopies for UAV scenarios. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP). Davos (Switzerland), 2016. DOI: 10.1109/EuCAP.2016.7481249
  17. TORRICO, S. A., LANG, R. H. A simplified analytical model to predict the specific attenuation of a tree canopy. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 2, p. 696–703. DOI: 10.1109/TVT.2007.891485
  18. KARAM, M. A., FUNG, A. K. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation. International Journal of Remote Sensing, 1988, vol. 9, no. 6, p. 1109–1134. DOI: 10.1080/01431168808954918
  19. KARAM, M. A., FUNG, A. K., ANTAR, Y. M. M. Electromagnetic wave scattering from some vegetation samples. IEEE Transactions on Geoscience and Remote Sensing, 1988, vol. 26, no. 6, p. 799–808. DOI: 10.1109/36.7711
  20. KARAM, M. A., FUNG, A. K. Leaf-shape effects in electromagnetic wave scattering from vegetation. IEEE Transactions on Geoscience and Remote Sensing, 1989, vol. 27, no. 6, p. 687–697. DOI: 10.1109/TGRS.1989.1398241
  21. DIAZ, L., MILLIGAN, T. Antenna Engineering using Physical Optics: Practical CAD Techniques and Software. Norwood (USA): Artech House, 1996. ISBN:0890067325
  22. BALANIS, C. A. Advanced Engineering Electromagnetics. Wiley, 2012. ISBN : 978-0-470-58948-9
  23. KVICERA, M., PECHAC, P. Seasonal variations of polarization diversity gain in a vegetated area considering high elevation angles and a nomadic user. International Journal of Antennas and Propagation, 2015, vol. 2015, 9 p., Article ID 194626. DOI: 10.1155/2015/194626
  24. TESCHL F., PEREZ-FONTAN, F., SCHONHUBER, M., et al. Attenuation of spruce, pine, and deciduous woodland at C-band. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 109–112. DOI: 10.1109/LAWP.2012.2184253
  25. HORAK, P., PECHAC, P. Excess loss for high elevation angle links shadowed by a single tree: measurements and modelling. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3541–3545. DOI: 10.1109/TAP.2012.2196944
  26. SCHUBERT, F. M., JAKOBSEN, M. L., FLEURY, B. H. Nonstationary propagation model for scattering volumes with an application to the rural LMS channel. IEEE Transaction on Antennas and Propagation, 2013, vol. 61, no. 5, p. 2817–2828. DOI: 10.1109/TAP.2013.2242821
  27. CHEFFENA, M., EKMAN, T. Dynamic model of signal fading due to swaying vegetation. EURASIP Journal on Wireless Communications and Networking, 2009. DOI: 10.1155/2009/306876

Keywords: Radiowave propagation, vegetation, scattering, multiple scattering theory

M. N. Khan, M. Jamil, M. Hussain [references] [full-text] [DOI: 10.13164/re.2016.0644] [Download Citations]
Adaptation of Hybrid FSO/RF Communication System Using Puncturing Technique

Spectrum of radio frequency (RF) communications is limited and expensive to install new applications. Free space optical (FSO) communication is a viable technology which offers enormous bandwidth, license free installation, inexpensive deployment and error prone links. The FSO links degrade significantly due to the varying atmospheric and weather conditions (fog, cloud, snow, haze and combination of these). We propose a hybrid FSO/RF communication system which adapts the varying nature of atmosphere and weather. For the adaption of varying atmosphere and weather scenarios, we develop a novel optimization algorithm. The proposed algorithm is based on the well-known puncturing technique. We provide an extrinsic information transfer (EXIT) chart for the binary and quaternary mapping scheme for the proposed communication system. We simulate the proposed algorithm for the hybrid communication system and analyze the system performance. The proposed algorithm is computationally less expensive and provide better performance gains over varying atmosphere and weather conditions. The algorithm is suitable for fast speed applications.

  1. GAGLIARDI, R. M., KARP, S., Optical Communications. 2nd ed. New York (USA): John Wiley & Sons, Inc., 1995. ISBN: 978-0-471-54287-2
  2. KHAN, M. N., COWLEY, W., NGUYEN, K. Link adaptation of FAHOR communication system. In Proceedings of the Australian Communications Theory Workshop (AusCTW). Wellington (New Zealand), 2012, p. 120–125. DOI: 10.1109/AusCTW.2012.6164917
  3. MAKKI, B., SVENSSON, B., ERIKSSON, T., et al. On the performance of RF-FSO links with and without Hybrid ARQ. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 7, p. 4928– 4943. DOI: 10.1109/TWC.2016.2549537
  4. KHAN, M. N. Importance of noise models in FSO communications. EURASIP Journal of Wireless Communication and Networking, Feb. 2014, vol. 2014, no. 102, p. 1–10. DOI: 10.1186/1687-1499- 2014-102
  5. PISHRO-NIK, H., FEKRI, F. Results on punctured low density paritycheck codes and improved iterative decoding techniques. IEEE Transactions on Information Theory, 2007, vol. 53, no. 2, p. 599–614. DOI: 10.1109/TIT.2006.889701
  6. KHAN, M. N., JAMIL, M. Maximizing throughput of free space communications system using puncturing technique. Arabian Journal for Science and Engineering, Nov. 2014, vol. 39, no. 12, p. 8925–8933. DOI: 10.1007/s13369-014-1451-6
  7. GALLAGER, R. Low-density parity-check codes. IRE Transactions on Information Theory, 1962, vol. 8, no. 1, p. 21–28. DOI: 10.1109/TIT.1962.1057683
  8. JOHNSON, S. Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes. New York: Cambridge University Press, 2010. ISBN: 9780521871488
  9. HAGENAUER, J. The EXIT chart-introduction to extrinsic information transfer in iterative processing. In Proceeding of the 12th European Signal Processing Conference (EUSIPCO). Vienna (Austria), Sep. 2004, p. 1541–1548. ISBN: 978-320-0001-65-7
  10. ESLAMI, A., VANGALA, S., PISHRO-NIK, H. Hybrid channel codes for efficient FSO/RF communication systems. IEEE Transaction on Communication, Oct. 2010, vol. 58, no. 10, p. 2926–2938. DOI: 10.1109/TCOMM.2010.082710.090195
  11. LUBY, M., MITZENMACHER, M., SHOKROLLAHI, M., et al. Improved low-density parity-check codes using irregular graphs. IEEE Transactions on Information Theory, Feb. 2001, vol. 47, no. 2, p. 585– 598. DOI: 10.1109/18.910576
  12. RICHARDSON, T., URBANKE, R. The capacity of low density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory, 2001, vol. 47, no. 2, p. 599–618. DOI: 10.1109/18.910577
  13. TEN BRINK, S., KRAMER, G., ASHIKHMIN, A. Design of lowdensity parity-check codes for modulation and detection. IEEE Transactions on Communications, Apr. 2004, vol. 52, no. 4, p. 670–678. DOI: 10.1109/TCOMM.2004.826370
  14. TEN BRINK, S. Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications, Oct. 2001, vol. 49, no. 10, p. 1727–1737. DOI: 10.1109/26.957394
  15. SHARON, E., ASHIKHMIN, A., LITSYN E. Analysis of lowdensity parity-check codes based on EXIT functions. IEEE Transactions on Communications, Jul. 2006, vol. 54, no. 7, p. 1407–1414. DOI: 10.1109/TCOMM.2006.877935
  16. ASHIKHMIN, A., KRAMER, G., TEN BRINK, S. Extrinsic information transfer functions: model and erasure channel properties. IEEE Transactions on Information Theory, Nov. 2004, vol. 50, no. 11, p. 2657–2673. DOI: 10.1109/TIT.2004.836693
  17. TAPSE, H., BORAH, D. Hybrid optical/RF channels: characterization and performance study using low density parity check codes. IEEE Transactions on Communications, 2009, vol. 57, no. 11, p. 3288–3297. DOI: 10.1109/TCOMM.2009.11.080170
  18. RAKIA, T., YANG, H.-C., ALOUINI, M.-S., et al. Outage analysis of practical FSO/RF hybrid system with adaptive combining. IEEE Communications Letters, Aug. 2015, vol. 19, no. 8, p. 1366–1369. DOI: 10.1109/LCOMM.2015.2443771
  19. TEN BRINK, S., SPEIDEL, J., YAN, R.-H. Iterative demapping and decoding for multilevel modulation. In Proceedings of the Global Telecommunications Conference. 1998, vol. 1, p. 579–584. DOI: 10.1109/GLOCOM.1998.775793
  20. TEN BRINK, S. Designing iterative decoding schemes with the extrinsic information transfer chart. AEU International Journal of Electronics and Communications, 2000, vol. 54, no. 6, p. 389–398.

Keywords: Free space optical (FSO) communication, Low density parity check (LDPC) code, extrinsic information transfer (EXIT), puncturing optimization algorithm (POA), minimum positive difference (MPD)

Yuanhang Zhao, Yixin Zhang, Qiu Wang [references] [full-text] [DOI: 10.13164/re.2016.0652] [Download Citations]
Average Polarization of Electromagnetic Gaussian Schell-Model Beams through Anisotropic Non-Kolmogorov Turbulence

Polarization properties of electromagnetic Gaussian Schell-model beams propagating through the anisotropic non-Kolmogorov turbulence of marine-atmosphere channel are studied based on the cross-spectral density matrix. Detailed analysis shows that the average polarization decreases with increasing the spectral index, inner scale of turbulence and generalized refractive-index structure parameter. We find the effects of anisotropic turbulence on the average polarization is less than that of the isotropic turbulence and the depolarization effect of turbulence in marine-atmosphere is larger than terrene-atmosphere. The electromagnetic Gaussian Schell-model beam with the parameters of smaller σxx ,σyy and Ax, but larger Ay will reduce the interference of turbulence.

  1. KOROTKOVA, O., SALEM, M., WOLF, E. The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence, Optics Communications, 2004, vol. 233, no. 4-6, p. 225–230. DOI: 10.1016/j.optcom.2004.01.005
  2. ZHU, Y., ZHAO, D. Propagation of a stochastic electromagnetic Gaussian Schell-model beam through an optical system in turbulent atmosphere. Applied Physics B, 2009, vol. 96. no. 1, p. 155–160. DOI: 10.1007/s00340-009-3452-9
  3. ZHU, S., CAI, Y., KOROTKOVA, O. Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam. Optics Express, 2010, vol. 18, no. 12, p. 12587–12598. DOI: 10.1364/OE.18.012587
  4. DU, X., ZHAO, D. Polarization modulation of stochastic electromagnetic beams on propagation through the turbulent atmosphere. Optics Express, 2009, vol. 17, no. 6, p. 4257–4262. DOI: 10.1364/OE.17.004257
  5. TANG, X., GHASSEMLOOY, Z., RAJBHANDARI, S., et al. Coherent heterodyne multilevel polarization shift keying with spatial diversity in a free-space optical turbulence channel. Journal of Lightwave Technology, 2012, vol. 30, no. 16, p. 2689–2695. DOI: 10.1109/JLT.2012.2204859
  6. WANG, Y., SI, C., ZHANG, Y., et al. Cross-polarization properties of two Gaussian Schell-model beams through nonKolmogorov turbulence. Optics & Lasers in Engineering, 2011, vol. 49, no. 11, p. 1060–1064. DOI: 10.1016 /j.optlaseng. 2011.03.016
  7. ROYCHOWDGHURY, H., PONOMARENKO, S. A., WOLF, E. Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere. Journal of Modern Optics, vol. 52, no. 11, 2005, p. 1611–1618. DOI: 10.1080/09500340500064841
  8. LUO, M., ZHAO, D. Propagation of electromagnetic spectral Gaussian Schell-model beams in atmosphere. Optics Communications, 2015, vol. 336, p. 98–102. DOI: 10.1016/j.optcom.2014.10.002
  9. TOSELLI, I., AGRAWAL, B., RESTAINO, S. Light propagation through anisotropic turbulence. Journal of the Optical Society of America A, 2011, vol. 28, no. 3, p. 483–488. DOI: 10.1364/JOSAA.28.000483
  10. TOSELLI, I. Introducing the concept of anisotropy at different scales for modeling optical turbulence. Journal of the Optical Society of America A, 2014, vol. 31, no. 8, p. 1868–1875. DOI: 10.1364/JOSAA.31.001868
  11. GUDIMETLA, V. S. R., HOLMES, R. B., SMITH, C., NEEDHAM, G. Analytical expressions for the log-amplitude correlation function of a plane wave through anisotropic atmospheric refractive turbulence. Journal of the Optical Society of America A, 2012, vol. 29, no. 5, p. 832–840. DOI: 10.1364/JOSAA.29.000832
  12. GUDIMETLA, V. S. R., HOLMES, R. B., RIKER, J. F. Analytical expressions for the log-amplitude correlation function for spherical wave propagation through anisotropic non-Kolmogorov atmosphere. Journal of the Optical Society of America A, 2014, vol. 31, no. 1, p. 148–154. DOI: 10.1364/JOSAA.31.000148
  13. YAO, M., TOSELLI, I., KOROTKOVA, O. Propagation of electromagnetic stochastic beams in anisotropic turbulence. Optics Express, 2014, vol. 22, no. 26, p. 31608–31618. DOI: 10.1364/OE.22.031608
  14. CHEN, C., YANG, H., TONG, S., REN, B., LI, Y. Characterization of temporal pulse broadening for horizontal propagation in strong anisotropic atmospheric turbulence. Optics Express, 2015, vol. 23, no. 4, p. 4814–4828. DOI: 10.1364/OE.23.004814
  15. CUI, L., XUE, B., CAO, X., ZHOU, F. Atmospheric turbulence MTF for optical waves propagating through anisotropic nonKolmogorov atmospheric turbulence. Optics & Laser Technology, 2014, vol. 63, p. 70–75. DOI: 10.1016/j.optlastec.2014.03.011
  16. KOROTKOVA, O., AVRAMOV-ZAMUROVIC, S., MALEKMADANI, R., et al. Probability density function of the intensity of a laser beam propagating in the maritime environment. Optics Express, 2011, vol. 19, no. 21, p. 20322–20331. DOI: 10.1364/OE.19.020322
  17. CUI, L., XUE, B., ZHOU, F. Atmospheric turbulence MTF for infrared optical waves’ propagation through marine atmospheric turbulence. Infrared Physics & Technology, 2014, vol. 65, p. 24–29. DOI: 10.1016/j.infrared.2014.03.004
  18. ZHAO, Y., ZHANG, Y., HU, Z., et al. Polarization of quantization Gaussian Schell-beams through anisotropic non-Kolmogorov turbulence of marine-atmosphere. Optics Communications, 2016, vol. 371, p. 178–183. DOI: 10.1016/j.optcom.2016.03.068
  19. WOLF, E. Unified theory of coherence and polarization of random electromagnetic beams. Physics Letters A, 2003, vol. 312, no. 5-6, p. 263–267. DOI: 10.1016/S0375-9601(03)00684-4
  20. ANDREWS, L. C., PHILLIPS, R. L. Laser Beam Propagation through Random Media. 2nd ed. New York: SPIE, 2005. ISBN: 9780819459480
  21. XUE, B., CUI, L., XUE, W., et al. Generalized modified atmospheric spectral model for optical wave propagating through non-Kolmogorov turbulence. Journal of the Optical Society of America A, vol. 28, no. 5, 2011, p. 912–916. DOI: 10.1364/ JOSAA.28.000912
  22. ROYCHOWDHURY, H., WOLF, E. Determination of the electric cross-spectral density matrix of a random electromagnetic beam. Optics Communications, 2003, vol. 226, p. 57–60. DOI: 10.1016/ j.optcom.2003.07.054
  23. KOROTKOVA, O., WOLF, E. Changes in the state of polarization of a random electromagnetic beam on propagation. Optics Communications, 2005, vol. 246, p. 35–43. DOI: 10.1016/ j.optcom.2004.10.078

Keywords: Average polarization, electromagnetic Gaussian Schell-model beams, anisotropic non-Kolmogorov turbulence, marine-atmosphere

O. M. Hasan, M. A. Taha [references] [full-text] [DOI: 10.13164/re.2016.0658] [Download Citations]
Optimized FSO System Performance over Atmospheric Turbulence Channels with Pointing Error and Weather Conditions

In this paper, Bit Error rate and probability of outage are derived in closed form for plane wave mode over Gamma-Gamma free space optical channel under the influence of pointing errors and different weather conditions. The free-space optical system under study assumes deployment of intensity modulation / direct detection with on-off keying data formats. To evaluate the performance of the system using the derived expressions, two independent optimization algorithms were applied to find optimum system and channel parameters that optimize the performance of the two system metrics, i.e., bit error rate and probability of outage. The optimized system results were shown for different values of channel strength, weather conditions, optimum beamwidths and pointing error jitter variances. For each case, the optimized results are provided as a function of the transmitted power or average received power.

  1. KIM, I., CHAFFEE, T., FLEISHAUER, R., et al. Advances in Communications: New FSO provides reliable 10 Gbit/s and beyond backhaul connections. Laser Focus World, 2013, p. 1-8.
  2. http://www.attochron.com/
  3. KIM, I., MCARTHUR, B., KOREVAAR, E. Comparison of laser propagation at 785 nm and 1550 nm in for fog and haze for optical wireless communications. SPIE Proceedings, 2001, vol. 4214, p. 26–37. DOI: 10.1117/12.417512
  4. HASAN, O. Performance of heterodyne differential phase-shift keying system over double Weibull free-space optical channel. Journal of Modern Optics, 2015, vol. 62, no. 11, p. 869–876. DOI: 10.1080/09500340.2015.1027311
  5. TRUNG, H., TUAN, D., PHAM, A. Pointing error effects on performance of free-space optical communication system using SC-QAM signals over atmospheric turbulence channels. AEU International Journal of Electronics and Communications, 2014, vol. 68, no. 9, p. 869–876. DOI: 10.1016/j.aeue.2014.04.008
  6. VU, B., DANG, N., THANG, T., PHAM, A. Bit error rate analysis of rectangular QAM/FSO systems using an APD receiver over atmospheric turbulence channels. Journal of Optical Communications and Networking. 2013, vol. 5, no 5, p. 437–446. DOI: 10.1364/JOCN.5.000437
  7. MORRA, A., KHALLAF, H., SHALABY, H., KAWASAK, Z. Performance analysis of both shot- and thermal-noise limited multipulse PPM receivers in gamma–gamma atmospheric channels. Journal of Lightwave Technology, 2013, vol. 31, no. 19, p. 3142–3150. DOI: 10.1109/JLT.2013.2278692
  8. NISTAZAKES, H., TSIGOPOULOS, A., HANIAS, M., et al. Estimation of outage capacity for free space optical links over I-K and K turbulence channels. Radio Engineering, 2011, vol. 20, no. 11, p. 493–498.
  9. CHATZIDIAMANTIS, N., SANDALIDIS, H., KARAGIANNIDIS, G., et al. New results on turbulence modeling for free-space optical systems. In Proceedings of the 17th IEEE International Conference on Telecommunications. Doha (Qatar), April, 2010. DOI: 10.1109/ICTEL.2010.5478872
  10. POPOOLA, W., GHASSEMLOOY, Z., AHMADY, V. Performance of subcarrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment. International Journal of Autonomous and Adaptive Communication Systems, 2008, vol. 1, no. 3, p. 342–355. DOI: 10.1504/IJAACS.2008.019809
  11. AL-HABASH, C., ANDREWS, L., PHILIPS, R. Mathematical model for irradiance probability density function of a laser beam propagating through turbulent media. Optical Engineering, 2001, vol. 40, no. 8, p. 1554–1563. DOI: 10.1117/1.1386641
  12. NISTAZAKIS, H., KARAGIANI, E., TSIGOPOULOS, A., et al. Average capacity of optical wireless communication systems over atmospheric turbulence channels. Journal of Lightwave Technology, 2009, vol. 27, no. 8, p. 974–979. DOI: 10.1109/JLT.2008.2005039
  13. SANDALIDIS, H., TSIFTSIS, A., KARAGIANNIS, G. Optical wireless communications with heterodyne detection over turbulence channels with pointing errors. Journal of Lightwave Technology, 2009, vol. 27, no. 20, p. 4440–4445. DOI: 10.1109/JLT.2009.2024169
  14. SANDALIDIS, H., TSIFTSIS, T. Outage probability and ergodic capacity of free-space optical links over strong turbulence. Electronics Letters, 2008, vol. 44, no. 1, p. 46–47. DOI: 10.1049/el:20082495
  15. FARID, A., HRANILOVIC, S. Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology. 2007, vol. 25, no. 7, p. 1702–1710. DOI: 10.1109/JLT.2007.899174
  16. SAGIAS, N., KARAGIANNIDIS, G., MATHIOPOULOS, P., et al. On the performance analysis of equal-gain diversity receiver over generalized Gamma fading channels. IEEE Transactions on Wireless Communications, 2006, vol. 5, no. 10, p. 2967–2973. DOI: 10.1109/TWC.2006.05301.
  17. Wolfram function site, http://functions.wolfram.com.
  18. ADAMCHIK, V., MARIACHEV, O. The algorithm for calculating integrals of hypergeometric type and its realization in reduce system. In Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’90). Tokyo (Japan), 1990, p. 212–224. DOI: 10.1145/96877.96930
  19. TSIFTSIS, T., SANDALIDIS, H., KARAGIANNIDIS, G., et al. Optical wireless links with diversity over strong atmospheric turbulence channels. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 2, p. 951–957. DOI: 10.1109/TWC.2009.071318
  20. KIASALEH, K. Performance of coherent DPSK free-space communication systems in K-distributed turbulence. IEEE Transactions on Communications, 2006, vol. 54, no. 4, p. 604–607. DOI: 10.1109/TCOMM.2006.873067
  21. PHILLIPS, R., ANDREWS, L. Measured statistics of laser light scattering in atmospheric turbulence. Journal of the Optical Society of America, 1981, vol. 71, no. 12, p. 1440–1445. DOI: 10.1364/JOSA.71.001440
  22. FLATTE, S., BRACHER, C., WANG, G. Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulations. Journal of the Optical Society of America A, 1994, vol. 11, no. 7, p. 2080–2092. DOI: 10.1364/JOSAA.11.002080
  23. CHOUDHURY, S., GIBSON, J. D. Ergodic Capacity, Outage Capacity, and Information Transmission over Rayleigh Fading Channels. Dept. of Electrical and Computer Engineering, University of California, Santa Barbara. 5 pages. [online] Cited 2015-04-10. Available at: http://vivonets.ece.ucsb.edu/ChoudhuryGibson_ITW07.pdf.

Keywords: Bit Error Rate (BER), Free Space Optical channel (FSO), Intensity Modulation (IM), Direct Detection (DD) with On-Off Keying (OOK), pointing error, jitter variance

J. Schneider, M. Mrnka, J. Gamec, M. Gamcova, Z. Raida [references] [full-text] [DOI: 10.13164/re.2016.0666] [Download Citations]
Vivaldi Antenna for RF Energy Harvesting

Energy harvesting is a future technology for capturing ambient energy from the environment to be recycled to feed low-power devices. A planar antipodal Vivaldi antenna is presented for gathering energy from GSM, WLAN, UMTS and related applications. The designed antenna has the potential to be used in energy harvesting systems. Moreover, the antenna is suitable for UWB applications, because it operates according to FCC regulations (3.1 – 10.6 GHz). The designed antenna is printed on ARLON 600 substrate and operates in frequency band from 0.810 GHz up to more than 12 GHz. Experimental results show good conformity with simulated performance.

  1. VALENTA, C. R., DURGIN, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Magazine, 2014, vol. 15, no. 4, p. 108–120. DOI: 10.1109/MMM.2014.2309499
  2. ZUNGERU, A. M., et al. Radio frequency energy harvesting and management for wireless sensor networks. Green Mobile Devices and Networks: Energy Optimization and Scavenging Techniques, 2012, p. 341–368. DOI: 10.1201/b10081-16
  3. ZAKARIA, Z., ZAINUDDIN, N. A., ABD AZIZ, M. Z. A., et al. Dual-band monopole antenna for energy harvesting system. In IEEE Symposium Wireless Technology and Applications (ISWTA). Kuching (Malaysia), 2013, p. 225–229. DOI: 10.1109/ISWTA.2013.6688775
  4. HIRABARU, T., KANAYA, H., KANEMOTO, D., et al. Development of 900MHz band one-sided directional antenna on flexible substrate. In IEEE International Symposium Antennas and Propagation (APSURSI). Spokane (USA), 2011, p. 1008–1011. DOI: 10.1109/APS.2011.5996449
  5. KANAYA, H., TSUKAMAOTO, S., HIRABARU, T., et al. Energy harvesting circuit on a one-sided directional flexible antenna. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 3, p. 164–166. DOI: 10.1109/LMWC.2013.2246779
  6. PHAM, B. L., PHAM, A.-V. Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz. In IEEE MTT-S International Microwave Symposium Digest (IMS). 2013, p. 1-3. DOI: 10.1109/MWSYM.2013.6697364
  7. BORGES, L. M., BARROCA, N., SARAIVA, H., et al. Design and evaluation of multi-band RF energy harvesting circuits and antennas for WSNs. In 21st International Conference Telecommunications (ICT). Lisbon (Portugal), 2014, p. 308–312. DOI: 10.1109/ICT.2014.6845129
  8. TAGHADOSI, M., ALBASHA, L., QADDOUMI, N., et al. Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 10, p. 1045–1053. DOI: 10.1049/iet-map.2014.0744
  9. ZAINUDDIN, N. A., ZAKARIA, Z., HUSAIN, M. N., et al. Design of wideband antenna for RF energy harvesting system. In 3rd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICIBME). Bandung (Indonesia), 2013, p. 162–166. DOI: 10.1109/ICICI-BME.2013.6698485
  10. SAGHLATOON, H., BJORNINEN, T., SYDANHEIMO, L., et al. Inkjet-printed wideband planar monopole antenna on cardboard for RF energy-harvesting applications., IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 325–328. DOI: 10.1109/LAWP.2014.2363085
  11. SAFATLY, L., et al. A reduced-size antipodal Vivaldi antenna with a reconfigurable band notch. In Progress In Electromagnetics Research Symposium Proceedings (PIERS). Moscow (Russia), 2012, p. 220–224. ISBN: 9781934142226
  12. ARLON MICROWAVE MATERIALS, AD600 (datasheet). 4 pages. [Online] Cited 2015-10-26. Available at: http://www.pwcircuits.co.uk/AD600.pdf
  13. ABBOSH, A. M., KAN, H. K., BIALKOWSKI, M. E. Design of compact directive ultra wideband antipodal antenna. Microwave and Optical Technology Letters, 2006, vol. 48, no. 12, p. 2448 to 2450. DOI: 10.1002/mop.21955
  14. Computer Simulation Technology (CST), CST Microwave Studio. [Online] Cited 2015-10-26. Available at: https://www.cst.com/Products/CSTMWS. 2015
  15. O'CONCHUBHAIR, O., YANG, K., MCEVOY, P., et al. Amorphous silicon solar Vivaldi antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 893–896. DOI: 10.1109/LAWP.2015.2479189
  16. PANDEY, G. K., VERMA, H., MESHRAM, M. K. Compact antipodal Vivaldi antenna for UWB applications. IET Electronics Letters, 2015, vol. 51, no. 4, p. 308–310. DOI: 10.1049/el.2014.3540
  17. BAI, J., SHI, S., PRATHER, D. W. Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application. IEEE Transactions on Microwave Theory and Techniques, 2011 vol. 59, no. 4, p. 1051–1057. DOI: 10.1109/TMTT.2011.2113970
  18. ILUZ Z., BOAG, A. Wideband dual Vivaldi nano-antenna with high radiation efficiency over the infrared frequency band. In IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). Tel Aviv (Israel), 2011, p. 1–3. DOI: 10.1109/COMCAS.2011.6105818

Keywords: RF energy harvesting, UWB, Vivaldi antenna

P. Moeikham, P. Akkaraekthalin [references] [full-text] [DOI: 10.13164/re.2016.0672] [Download Citations]
A Compact Printed Slot Antenna with High Out-of-band Rejection for WLAN/WiMAX Applications

The suppression of electromagnetic interferences (EMIs) caused by the out-of-band operation is required for broadband antennas. To achieve this purpose, a compact broadband printed slot antenna with build-in filters for band notching is presented. The filters, including I-shaped and inverse L-shaped narrow slits and an L-shaped conductor strip, whose lengths correspond to half wavelengths, were integrated in the proposed antenna structure. The mitigation of the EMIs at the frequency ranges of 2.7 to 3.2 GHz, 4.1 to 4.7 GHz, and over 6.1 GHz was obtained. The proposed antenna capably operated at WLAN/WiMAX frequency ranges of 2.26 to 2.68 GHz, 3.28 to 4.09 GHz, and 4.75 to 6.04 GHz. The nearly omni-directional and likely bi- directional radiation patterns were given by the proposed antenna in xz and yz planes, respectively. Therefore, this antenna is suitable for various WLAN/WiMAX applications.

  1. ZAKER, R., GHOBADI, CH., NOURINIA, J. A modified microstrip-fed two-step tapered monopole antenna for UWB and WLAN applications. Progress In Electromagnetics Research, 2007, PIER 77, p. 137–148. DOI: 10.2528/PIER07080701
  2. MOEIKHAM, P., AKKARAEKTHALIN, P. A compact ultrawideband monopole antenna with tapered CPW feed and slot stubs. In Proceedings of the 8th International Conference of Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Khon Kaen (Thailand), 2011, p. 180–183, 2011. DOI: 10.1109/ECTICON.2011.5947802
  3. ISLAM, M. T., AZIM, R., MOBASHSHER, A. T. Triple bandnotched planar UWB antenna using parasitic strips. Progress In Electromagnetics Research, 2012, vol. 129, p. 161–179. DOI: 10.2528/PIER12032604
  4. ZHANG, X., ZHANG, T.-L., XIA, Y.-Y. , YAN, Z.-H., WANG, X.-M. Planar monopole antenna with band-notch characterization for UWB applications. Progress In Electromagnetics Research Letters, 2009, vol. 6, p. 149–156. DOI: 10.2528/PIERL09011305
  5. TRANG, N. D. , LEE, D. H., PARK, H. C. Compact printed CPWfed monopole ultra-wideband antenna with triple subband notched characteristics. Electronics Letters, 2010, vol. 46, no. 17, p. 1177 to 1179. DOI: 10.1049/el.2010.1140
  6. MOEIKHAM, P., MAHATTHANAJATUPHAT, C., AKKARAEKTHALIN, P. A compact ultrawideband monopole antenna with V-shaped slit for 5.5 GHz notched band. In Proceedings of the 9th International Conference of Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Hua Hin (Thailand), 2012. DOI: 10.1109/ECTICon.2012.6254176
  7. LI, W.-M., NI, T., QUAN, T., JIAO, Y.-C. A compact CPW-fed UWB antenna with WiMAX-band notched characteristics. Progress In Electromagnetics Research Letters, 2011, vol. 26, p. 79–85. DOI: 10.2528/PIERL11080202
  8. MOEIKHAM, P., MAHATTHANAJATUPHAT, C., AKKARAEKTHALIN, P. A compact ultrawideband monopole antenna with 5.5 GHz notched band. Progress In Electromagnetics Research C, 2012, vol. 26, p. 13–27. DOI: 10.2528/PIERC11091602
  9. MOEIKHAM, P., MAHATTHANAJATUPHAT, C., AKKARAEKTHALIN, P. A compact UWB antenna with a quarterwavelength strip in a rectangular slot for 5.5 GHz band notch. International Journal of Antennas and Propagation, vol. 2013, Article ID 574128, 9 pages. DOI: 10.1155/2013/574128
  10. WU, S.-J., TARNG, J.-H. Planar band-notched ultra-wideband antenna with square-looped and end-coupled resonator. IET Microwave, Antennas and Propagation, 2011, vol. 5, p. 1227 to 1233. DOI: 10.1049/iet-map.2010.003
  11. WU, S.-J., KANG, C.-H., CHEN, K.-H., et al. Study of an ultrawideband monopole antenna with a band- notched open- looped resonator. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 6, p. 1890–1897. DOI: 10.1109/TAP.2010.2046839
  12. MOEIKHAM, P., AKKARAEKTHALIN, P. Printed slot antenna for WLAN/WiMAX and UWB applications. In International Symposium on Antennas and Propagation (ISAP 2013). Nanjing (China), 2013, p. 88–91.
  13. MOEIKHAM, P., TANGTHONG, N., AKATIMAGOOL, S. CPW-fed printed slot antenna for WLAN/WiMAX and UWB applications. In International Symposium on Antennas and Propagation (ISAP). Kaohsiung (China), 2014, p. 227–228. DOI: 10.1109/ISANP.2014.7026613
  14. CHEN, D., CHENG, C. H. A novel compact ultra-wideband (UWB) wide slot antenna with via holes. Progress In Electromagnetics Research, 2009, vol. 94, p. 343–349. DOI: 10.2528/PIER09062306
  15. GOPIKRISHNA, M., DEEPTI DAS KRISHNA, C. K. ANANDAN, C. K., MOHANAN, P., VASUDEVAN, K. Design of a compact semi-elliptic monopole slot antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 6, p. 1834–1837. DOI: 10.1109/TAP.2009.2015850
  16. LIN, Y. C., HUNG, K. J. Compact ultrawideband rectangular aperture antenna and band-notched designs. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 11, p. 3075–3081. DOI: 10.1109/TAP.2006.883982
  17. GAO, P., XIONG, L., DAI, J., HE, S., ZHENG, Y. Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual bandnotched characteristics. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 983–986. DOI: 10.1109/LAWP.2013.2277591
  18. HONGNARA, T., MAHATTANAJATUPHAT, C., AKKARAEKTHALIN, P. A multiband CPW-fed slot antenna. Radioengineering, 2012, vol. 21, no. 2, p. 597–605.
  19. KRISHNA, D.D., GOPIKRISHNA, M., ANANDAN, C. K., MOHANAN, P., VASUDEVAN, K. CPW-fed Koch fractal slot antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 389–392. DOI: 10.1109/LAWP.2008.2000814
  20. LIU, P., ZOU, Y., XIE, B., LIU, X., SUN, B. Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 1242–1244. DOI: 10.1109/LAWP.2012.2225402
  21. BALANIS, C. Antenna Theory, Analysis and Design. 3rd ed. Hoboken (NJ, USA): John Wiley & Sons, 2005. ISBN: 978-0-471- 66782-7

Keywords: Printed slot antenna, multiband antenna, out-of-band rejection

M. M. Fakharian, P. Rezaei, A. A. Orouji [references] [full-text] [DOI: 10.13164/re.2016.0680] [Download Citations]
Polarization and Radiation Pattern Reconfigurability of a Planar Monopole-Fed Loop Antenna for GPS Application

This paper presents a reconfigurable loop antenna with monopole-fed using embedded RF PIN switches based shorted parasitic elements for GPS applications. The antenna can independently reconfiguring multiple polarizations with switchable radiation pattern. Four switched metallic patches are used as parasitic elements to provide a reconfiguration capability to antenna acting as a driven monopole-fed loop. The edge of the parasitic elements is shorted by posts. The parasitic patches are connected/disconnected by using switching, therewith changing the configuration of monopole, to turn changes the current distribution over the loop surface. The antenna is designed to work on the GPS L1 frequency band. The antenna simultaneously changes the radiation beam in E- and H-planes, and switches among three polarizations (LP, LHCP, and RHCP) in the various modes. The antenna maximum gain among the different modes is tuned between 1.5 and 4.2 dBi.

  1. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A., et al. A wideband and reconfigurable filtering slot antenna. IEEE Antennas and Wireless Propagation Letters. Early Access Articles, DOI: 10.1109/LAWP.2016.2518859
  2. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. Reconfigurable multiband extended U-slot antenna with switchable polarization for wireless applications. IEEE Antennas and Propagation Magazine, 2015, vol. 57, no. 2, p. 194–202. DOI: 0.1109/MAP.2015.2414665
  3. FAKHARIAN, M. M., REZAEI, P., OROUJI, A. A. A novel slot antenna with reconfigurable meander-slot DGS for cognitive radio applications. Applied Computational Electromagnetics Society Journal, 2015, vol. 30, no. 7, p. 748–753.
  4. BORHANI KAKHKI, M., REZAEI, P., SHARBATI, V., et al. Small square reconfigurable antenna with switchable single/triband functions. Radioengineering, 2016, vol. 25, no. 1, p. 40–45. DOI: 10.13164/re.2016.004
  5. QIN, P.-Y., GUO, Y. J., WEILY, A. R., et al. A pattern reconfigurable U-slot antenna and its applications in MIMO systems. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 2, p. 516–528. DOI: 10.1109/TAP.2011.2173439
  6. CAO, W., ZHANG, B., LIU, A., et al. A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity. IEEE Antennas and Wireless Propagation Letters, 2012, vol. 11, p. 454–456. DOI: 10.1109/LAWP.2012.2193549
  7. RAMAN, P., MOHANAN, P., TIMMONS, N., et al. Microstripfed pattern- and polarization-reconfigurable compact truncated monopole antenna. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 710–713. DOI: 10.1109/LAWP.2013.2263983
  8. CHEN, W., SUN, J., FENG, Z. A novel compact reconfigurable polarization and pattern antenna. Microwave and Optical Technology Letters, 2007, vol. 49, no. 11, p. 2802–2805. DOI: 10.1002/mop.22865
  9. AGARWAL, K., NASIMUDDIN, AROKIASWAMI, A. Tripleband compact circularly polarised stacked microstrip antenna over reactive impedance meta-surface for GPS applications. IET Microwaves, Antennas and Propagation, 2014, vol. 8, no. 13, p. 1057–1065. DOI: 10.1049/iet-map.2013.0586
  10. SYMMETRICOM, INC. General GPS Antenna Information. Application Note. [Online] Cited 2016-02-29. Available at: http://www.microsemi.com/document-portal/doc_view/133239- general-gps-antenna-information
  11. BRZEZINA, G., ROY, L. A miniaturized GPS antenna in LTCC with linear polarization suitable for SoP integration. In 14th International Symposium on Antenna Technology and Applied Electromagnetics and the American Electromagnetics Conference (ANTEM-AMEREM). Ottawa (ON), 2010, p. 1–4. DOI: 10.1109/ANTEM.2010.5552526
  12. RODRIGO, D., JOFRE, L. Frequency and radiation pattern reconfigurability of a multi-size pixel antenna. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2219–2225. DOI: 10.1109/TAP.2012.2189739
  13. INFINEON TECHNOLOGIES. BAR50 Silicon PIN Diode (datasheet). 16 pages. [Online] Cited 2011-07-18. Available at: http://www.alldatasheet.com/datasheetpdf/pdf/78976/INFINEON/ BAR5002.html
  14. PAN, G., LI, Y., ZHANG, Z., FENG, Z. A compact wideband slotloop hybrid antenna with a monopole feed. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 7, p. 3864–3868. DOI: 10.1109/TAP.2014.2320535

Keywords: Loop antenna, reconfigurable, RF PIN switch, pattern diversity, polarization agile, monopole-fed

P. Hubka, J. Lacik [references] [full-text] [DOI: 10.13164/re.2016.0687] [Download Citations]
X-Band Circularly Polarized HMSIW U-Slot Antenna

In this paper, a circularly polarized U-slot half-mode substrate integrated waveguide (HMSIW) antenna is proposed. It is based on a combination of U-shaped slot etched in the HMSIW top wall and a shorting via placed between the area bounded by the slot and the HMSIW bottom wall. The antenna is designed for the operating frequency of 10 GHz, parametrically studied, fabricated and experimentally verified. Experimental results proves that the fabricated prototype radiates a left handed circularly polarized (LHCP) electromagnetic wave and it achieves the impedance bandwidth of 11.9 % for the reflection coefficient less than -10 dB, the axial ratio (AR) bandwidth 2.2 % for AR less than 3 dB, and the LHCP peak gain of 6 dBi. The proposed antenna combines attractive features like low profile, low weight and low cost fabrication process.

  1. LUO, G. Q., SUN, L. L., DONG, L. X. Single probe fed cavity backed circularly polarized antenna. Microwave and Optical Technology Letters, 2008, vol. 50, no. 11 , p. 2996–2998. DOI: 10.1002/mop.23848
  2. LUO, G. Q., HU, Z. F., LIANG Y., et al. Development of low profile cavity backed crossed slot antennas for planar integration. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 10, p. 2972–2979. DOI: 10.1109/TAP.2009.2028602
  3. LUO, G. Q., SUN, L. L. A reconfigurable cavity backed antenna for circular polarization diversity. Microwave and Optical Technology Letters, 2009, vol. 51, no. 6, p. 1491–1493. DOI: 10.1002/mop.24393
  4. KIM, D., LEE, J. W., CHO, C. S., et al. X-band circular ring-slot antenna embedded in single-layered SIW for circular polarization. Electronics Letters, 2009, vol. 45, no. 13, p. 668–669. DOI: 10.1049/el.2009.0901
  5. KIM, D., LEE, J. W., CHO, C. S., et al. Design of SIW cavitybacked circular-polarized antennas using two different feeding transitions. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 4, p. 1398–1403. DOI: 10.1109/TAP.2011.2109675
  6. LACIK, J. Circularly polarized SIW square ring-slot antenna for X-band applications. Microwave and Optical Technology Letters, 2012, vol. 54, no. 11, p. 2590–2594. DOI: 10.1002/mop.27113
  7. XU, F., WU, K. Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 1, p. 66–73. DOI: 10.1109/TMTT.2004.839303
  8. LAI, Q., FUMEAUX, C., HONG, W., et al. Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 8, p. 1996–2004. DOI: 10.1109/TMTT.2009.2025429
  9. RAZAVI, S. A., NESHATI, M. H. Development of a low–profile circularly polarized cavity–backed antenna using HMSIW technique. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 3, p. 1041–1047. DOI: 10.1109/TAP.2012.2227104
  10. DASHTI, H., NESHATI, M. H. Development of low-profile patch and semi-circular SIW cavity hybrid antennas. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 9, p. 4481–4488. DOI: 10.1109/TAP.2014.2334708
  11. LAI, Q., FUMEAUX, C., HONG, W., et al. 60 GHz aperturecoupled dielectric resonator antennas fed by a half-mode substrate integrated waveguide. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 6, p. 1856–1864. DOI: 10.1109/TAP.2010.2046852
  12. SAGHATI, A. P., MIRSALEHI, M. M, NESHATI, M. H. A HMSIW circularly polarized leaky-wave antenna with backward, broadside, and forward radiation. IEEE Antennas and Wireless Propagation Letters, vol. 13, no. 4, p. 451–454. DOI: 10.1109/LAWP.2014.2309557
  13. HUBKA, P., LACIK, J. Linearly polarized HMSIW U-slot antenna. In Proceedings of the Conference on Microwave Techniques (COMITE). Pardubice (Czech Republic), 2015, DOI: 10.1109/COMITE.2015.7120225

Keywords: Slot antenna, HMSIW, circular polarization

C. Mahatthanajatuphat, N. Srisoontorn, T. Suangun, P. Akkaraekthalin [references] [full-text] [DOI: 10.13164/re.2016.0693] [Download Citations]
A Wideband Slot Antenna with Folded Parasitic Line for Multiple Band Operation

The rectangular slot antenna with rectangular stub for a wide impedance bandwidth is proposed. In addition, the interference frequency band has been rejected by placing the folded parasitic line surrounding the rectangular stub of the presented antenna. The bidirectional radiation patterns are obtained at all operating frequencies. Also, the average gain of the presented antenna is approximately 3 dBi. The antenna properties such as return losses, radiation patterns and gains are evaluated via numerical simulation and measurement. The presented antenna can support the multiple band operation at frequency bands of 824 – 960 MHz and 1710 – 2485 MHz.

  1. ZHANG, Z., LI, M. Wireless communication management model of workshop and warehouse manufacturing system. In Proceedings of the 2nd International Conference on Intelligent Computation Technology and Automation ICICTA 2009. Changsha (China), 2009, vol. 4, p. 121–123. DOI: 10.1109/ICICTA.2009.74
  2. WU, K., WU, X. A wireless mobile monitoring system for home healthcare and community medical services. In The 1st International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2007). China, July 2007, p. 1190–1193. DOI: 10.1109/ICBBE.2007.307
  3. HALL, E. S., VAWDERY, D. K., KNUTSON, C. D., et al. Enabling remote access to personal electronic medical records. IEEE Engineering in Medicine and Biology Magazine, 2003, vol. 22, no. 3, p. 133–139. DOI: 10.1109/MEMB.2003.1213636
  4. JONSSON, M., KUNERT, K. Towards reliable wireless industrial communication with real-time guarantees. IEEE Transactions on Industrial Informatics, 2009, vol. 5, no. 4, p. 429– 442. DOI: 10.1109/TII.2009.2031921
  5. CAO, Y. F., CHEUNG, S. W., YUK, T. I. A multiband slot antenna for GPS/WiMAX/WLAN systems. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 3, p. 952–958. DOI: 10.1109/TAP.2015.2389219
  6. WU, S.-J., KANG, C.-H., CHEN, K.-H., et al. A multiband quasiYagi type antenna. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 2, p. 593–596. DOI: 10.1109/TAP.2010.2041522
  7. ANTONIADES, M. A., ELEFTHERIADES, G. V. A compact multiband monopole antenna with a defected ground plane. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 652 to 655. DOI: 10.1109/LAWP.2008.2007813
  8. LIU, W.-C. Design of a multiband CPW-fed monopole antenna using a Particle Swarm Optimization approach. IEEE Transactions on Antennas and Propagation, 2005, vol. 53, no. 10, p. 3273 to 3279. DOI: 10.1109/TAP.2005.856339
  9. LIN, K.-C., LIN, C.-H., LIN, Y.-C. Simple printed multiband antenna with novel parasitic-element design for multistandard mobile phone applications. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 1, p. 488–491. DOI: 10.1109/TAP.2012.2220106
  10. ZHANG, T., LI, R., JIN, G., et al. A novel multiband planar antenna for GSM/UMTS/LTE/Zigbee/RFID mobile devices. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 11, p. 4209–4214. DOI: 10.1109/TAP.2011.2164201
  11. MAHATTHANAJATUPHAT, C., WONGSIN, N., AKKARAEKTHALIN, P. A multiband monopole antenna with modified fractal loop parasitic for DCS 1800, WLAN, WiMAX and IMT advanced systems. IEICE Transactions on Communications, 2012, vol. E95- B, no. 1, p. 27–33. DOI: 10.1587/transcom.E95.B.27
  12. LI, Y., LI, W., LIU, C., et al. Miniaturization circular wide slot ultra wideband antenna with X-band rejection filter function. In IEEE International Workshop on Antenna Technology (iWAT). Tucson (Arizona, USA), 2012, p. 253–256. DOI: 10.1109/IWAT.2012.6178660
  13. PANDA, J. R., KSHETRIMAYUM, R. S. A compact CPW-fed monopole antenna with a U-shaped slot for 5 GHz/6 GHz bandnotched ultrawideband applications. In Workshop on Advanced Antenna Technology, 2010 Indian Antenna Week. Puri (India), 2010, p. 1–4. DOI: 10.1109/AAT.2010.5545942
  14. CHANG, T.-N., WU, M.-C. Band-notched design for UWB antennas. IEEE Antennas and Wireless Propagation Letters, 2008, vol. 7, p. 636–640. DOI: 10.1109/LAWP.2008.2007581
  15. HUANG, C. -Y., HUANG, S. -A., YANG, C. -F. Band-notched ultra-wideband circular slot antenna with inverted C-shaped parasitic strip. Electronics Letters, 2008, vol. 44, no. 15, p. 891–892. DOI: 10.1049/el:20081143
  16. LUI, W. J., CHENG, C. H., ZHU, H. B. Frequency notched printed slot antenna with parasitic open-circuit stub. Electronics Letters, 2005, vol. 41, no. 20, p. 1094–1095. DOI: 10.1049/el:20052544

Keywords: Wideband, Slot antenna, Parasitic line, Notched frequency

K.D. Xu, X.S. Li, Y.J. Guo, Q.H. Liu [references] [full-text] [DOI: 10.13164/re.2016.0700] [Download Citations]
Simple Memristive SPICE Macro-Models and Reconfigurability in Filter and Antenna

Simple current- and voltage-controlled memristive circuit macro-models using SPICE are proposed to capture the nonlinear hysteresis loop behaviors in this paper. Different current-voltage characteristics are investigated by applying sinusoidal-wave, triangular-wave and square-wave source, respectively. Furthermore, using finite-difference time-domain (FDTD) emulator incorporated with a SPICE circuit solver, the current- or voltage-controlled memristive SPICE model is embedded into a planar microwave bandstop filter (BSF) and an ultra-wideband (UWB) monopole antenna, which connects two ends of the half-wavelength open-loop resonator and two sides of the U-slot in the radiating patch, respectively. The reconfigurability of the BSF and antenna notched band can be achieved by switching the states of the memristor.

  1. CHUA, L. O. Memristor: The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. 18, no. 5, p. 507–519. ISSN: 0018-9324. DOI: 10.1109/TCT.1971.1083337
  2. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, S. R. The missing memristor found. Nature, 2008, vol. 453, no. 7191, p. 80–83. ISSN: 0028-0836. DOI: 10.1038/nature06932
  3. MEIJER, G. I. Who wins the nonvolatile memory race? Science, 2008, vol. 319, p. 1625–1626. ISSN: 0036-8075. DOI: 10.1126/science.1153909
  4. SHIN, S., KIM, K., KANG, S. M. Memristor applications for programmable analog ICs. IEEE Transactions on Nanotechnology, 2010, vol. 10, no. 2, p. 266–274. ISSN: 1536-125X. DOI: 10.1109/TNANO.2009.2038610
  5. BORGHETTIL, J., SNIDER, G. S., KUEKES, P. J., YANG, J. J., STEWART, D. R., WILLIAMS, R. S. Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature Letters, 2010, vol. 464, no. 8, p. 873–876. ISSN: 0028-0836. DOI: 10.1038/nature08940
  6. KIM, H., SAH, M. P., YANG, C., ROSKA, T., CHUA, L. O. Neural synaptic weighting with a pulse-based memristor circuit. IEEE Transactions on Circuits and Systems I, 2012, vol. 59, no. 1, p. 148–158. ISSN: 1549-8328. DOI: 10.1109/TCSI.2011.2161360
  7. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512.
  8. YAKOPCIC, C., TAHA, T. M., SUBRAMANYAM, G., PINO, R. E. Generalized memristive device SPICE model and its application in circuit design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, vol. 32, no. 8, p. 1201 to 1214. ISSN: 0278-0070. DOI: 10.1109/TCAD.2013.2252057
  9. XU, K. D., ZHANG, Y. H., WANG, L., YUAN, M. Q., FAN, Y., JOINES, W. T., LIU, Q. H. Two memristor SPICE models and their applications in microwave devices. IEEE Transactions on Nanotechnology, 2014, vol. 13, no. 3, p. 607–616. ISSN: 1536- 125X. DOI: 10.1109/TNANO.2014.2314126
  10. RAK, A., CSEREY, G. Macromodeling of the memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 632–636. ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2042900
  11. SHIN, S., KIM, K., KANG, S. M. Compact models for memristors based on charge-flux constitutive relationships. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, vol. 29, no. 4, p. 590–598. ISSN: 0278-0070. DOI: 10.1109/TCAD.2010.2042891
  12. ELWAKIL, A. S., FOUDA, M. E., RADWAN, A. G. A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II, Express Briefs, 2013, vol. 60, no. 8, p. 487–491. ISSN: 1549-7747. DOI: 10.1109/TCSII.2013.2268376
  13. WAVE COMPUTATION TECHNOLOGIES, Inc. (WCT), Wavenology EM User’s Manual, 2012.

Keywords: Bandstop filter, memristor, SPICE model, UWB antenna

Si-Jia Li, Li-Ming Xu, Xiang-Yu Cao, Jiang-Feng Han, Zhao Zhang, Xiao Liu, Kui-Sheng Feng, Chen Zhang [references] [full-text] [DOI: 10.13164/re.2016.0707] [Download Citations]
Scattering Fields Control by Metamaterial Device Based on Ultra-Broadband Polarization Converters

We proposed a novel ultra-broadband meta-material screen with controlling the electromagnetic scattering fields based on the three layers wideband polarization converter (TLW-PC). The unit cell of TLW-PC was composed of a three layers substrate loaded with double metallic split-rings structure and a metal ground plane. We observed that the polarization converter primarily performed ultra-broadband cross polarization conversion from 5.71 GHz to 14.91 GHz. Furthermore, a metamaterial screen, which contributed to the low scattering charac-teristics, had been exploited with the orthogonal array based on TLW-PC. The near scattering electronic fields are controlled due to the change of phase and amplitude for incident wave. The metamaterial screen significantly exhibited low scattering characteristics from 5.81 GHz to 15.06 GHz. To demonstrate design, a metamaterial device easily implemented by the common printed circuit board method has been fabricated and measured. Experimental results agreed well with the simulated results.

  1. ALÙ, A. Mantle cloak: Invisibility induced by a surface. Physical Review B, 2009, vol. 80, p. 245115-1–245115-5. DOI: 10.1103/PhysRevB.80.245115
  2. MONTI, A., SORIC, J., BARBUTO, M., et al. Mantle cloaking for co-site radio-frequency antennas. Applied Physics Letters, 2016, vol. 108, no. 11, p. 113502-1–113502-5. DOI: 10.1063/1.4944042
  3. ALITALO, P., LUUKKONEN, O., JYLHA, L., et al. Transmission-line networks cloaking objects from electromagnetic fields. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 2, p. 416–424. DOI: 10.1109/TAP. 2007.915469
  4. PENDRY, J. B., SCHURIG, D., SMITH, D. R. Controlling electromagnetic fields. Science, 2006, vol. 312, no. 5781, p. 1780 to 1782. DOI. 10.1126/science.1125907
  5. SMITH, D. R., PENDRY, J. B., WILTSHIRE, M. C. K. Metamaterials and negative refractive index. Science, 2004, vol. 305, no. 5685, p. 788–792. DOI: 10.1126/science.1096796
  6. WAN, X., LI, Y. B., CAI, B. G., et al. Simultaneous controls of surface waves and propagating waves by metasurfaces. Applied Physics Letters, 2014, vol. 105, no. 12, p. 121603-1–121603-5. DOI: 10.1063/1.4896540
  7. NI, X. J., WONG, Z. J., MREJEN, M., et al. An ultrathin invisibility shin cloak for visible light. Science, 2015, vol. 349, no. 6254, p. 1310–1314. DOI: 10.1126/science.aac9411
  8. LI, S. J., GAO, J., CAO, X. Y., et.al. Multiband and broadband polarization-insensitive perfect absorber devices based on a tunable and thin double split-ring metamaterial. Optics Express, 2015, vol. 23, no. 3, p. 3523–3533. DOI: 10.1364/OE.23. 003523
  9. VASA, P., WANG, W., POMRAENKE, R., et al. Optical Stark effects in J-aggregate-metal hybrid nanostructures exhibiting a strong exciton-surface-plasmon-polariton interaction. Physical Review Letters, 2015, vol. 114, no. 3, p. 036802-1–036802-6. DOI: 10.1103/PhysRevLett.114.036802
  10. LANDY, N. I., SAJUYIGBE, S., MOCK, J. J., et al. A perfect metamaterial absorber. Physical Review Letters, 2008, vol. 100, p. 207402-1–207402-4. DOI: 10.1103/PhysRevLett.100.207402
  11. LI, S., GAO, J., CAO, X., et al. Wideband, thin, and polarizationinsensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. Journal of Applied Physics, 2014, vol. 116, no. 4, p. 043710-1–043710-6. DOI: 10.1063/1.4891716
  12. LI, S. J., GAO, J., CAO, X. Y., et al. Loaded metamaterial perfect absorber using substrate integrated cavity. Journal of Applied Physics, 2014, vol. 115, no. 21, p. 213703-1–213703-5. DOI: 10.1063/1.4881115
  13. SUN, L. K., CHENG, H. F., ZHOU, Y. J., et al. Broadband metamaterial absorber based on coupling resistive frequency selective surface. Optics Express, 2012, vol. 20, no. 4, p. 4675–4680. DOI: 10.1364/OE.20.004675
  14. YOO, M., LIM, S. Polarization-independent and ultra-wide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2652–2658. DOI: 10.1109/TAP.2014.2308511
  15. LI, S. J., GAO, J., CAO, X. Y., et al. Polarization-insensitive and thin stereometamaterial with broadband angular absorption for oblique incidence. Applied Physics A, 2015, vol. 119, no. 1, p. 371–378. DOI: 10.1007/s00339-014-8978-y
  16. PAQUAY, M., IRIARTE, J. C., EDERRA, I., et al. Thin AMC structure for radar cross-section reduction. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 12, p. 3630–3638. DOI: 10.1109/TAP.2007.910306
  17. GENOVESI, S., COSTA, F., MONORCHIO, A. Wideband radar cross section reduction of slot antennas arrays. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 163–173. DOI: 10.1109/TAP.2013.2287888
  18. IRIARTE GALARREGUI, J. C., TELLECHEA PEREDA, A., MARTINEZ DE FALCON, J. L., et al. Broadband radar crosssection reduction using AMC technology. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 12, p. 6136–6143. DOI: 10.1109/TAP.2013.2282915
  19. HAN, J. F., CAO, X. G., GAO, J., et al. Design of broadband reflective 90deg polarization rotator based on metamaterial. Acta Physica Sinica, 2016, vol. 65, no. 4, p. 044201. DOI: 10.7498/aps.65.044201
  20. HUANG, X. J., XIAO, B. X., YANG, D., et al. Ultra-broadband 90deg polarization rotator based on bi-anisotropic metamaterial. Optics Communications, 2015, vol. 338, p. 416–421. DOI: 10.1016/j.optcom.2014.11.010
  21. LI, S. J., GAO, J., CAO, X. Y., et al. Hybrid metamaterial device with wideband absorption and multiband transmission based on spoof surface plasmon polaritons and perfect absorber. Applied Physics Letters. 2015, vol. 106, no. 18, p. 181103. DOI: 10.1063/1.4919789
  22. GAO, X., HAN, X., CAO, W. P., et al. Ultra-wideband and highefficiency linear polarization converter based on double V-shaped metasurface. IEEE Transaction on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3522–3530. DOI: 10.1109/TAP.2015.2434392
  23. YIN, J. Y., WAN, X., ZHANG, Q., et al. Ultra wideband polarization-selective conversions of electromagnetic waves by metasurface under large-range incident angles. Scientific Reports, 2015, vol. 5, 10 p. DOI: 10.1038/srep12476
  24. JIA, Y., LIU, Y., GUO, Y. J., et al. Broadband polarization rotation reflective surfaces and their applications to RCS reduction. IEEE Transaction on Antennas and Propagation, 2016, vol. 64, no. 1, p. 179–185. DOI: 10.1109/TAP.2015.2502981
  25. PAN, W. B., HUANG, C., PU, M. B., et al. Combining the absorptive and radiative loss in metasurface for multi-spectral shaping of the electromagnetic scattering. Scientific Reports, 2016, vol. 6, 8 p. DOI: 10.1038/srep21462
  26. ZHAO, Y., CAO, X. G., GAO, J., et al. Broadband diffusion metasurface based on a single anisotropic element and optimized by the Simulated Annealing algorithm. Scientific Reports, 2016, vol. 6, 9 p. DOI:10.1038/srep23896
  27. LI, S., CAO, X., XU, L., et al. Ultra-broadband reflective metamaterial with RCS reduction based on polarization convertor, information entropy theory and genetic optimization algorithm. Scientific Reports, 2016, vol. 6, 12 p. DOI: 10.1038/srep37409

Keywords: Ultra-broadband, radar cross section reduction, metamaterial, polarization converter

A. Yasin, F. Rehman, U. Naeem, S. A. Khan, M. F. Shafique [references] [full-text] [DOI: 10.13164/re.2016.0714] [Download Citations]
Top loaded TM01δ Mode Cylindrical Dielectric Resonator for Complex Permittivity Characterization of Liquids

This paper reports on a technique of using a very high quality factor cylindrical dielectric resonator operating in TM01δ mode to characterize liquids available in trace quantities. The proposed measurement technique is based on the resonant perturbation theory and the resonator is used as a sensor to determine complex permittivity of solvents at 10.5GHz. Owing to a very high unloaded quality factor of about 5000 the proposed sensor can characterize low to medium loss materials with high accuracy. Small quantities of isopropanol and ethanol have been characterized for their solution ratio when mixed with different quantities of distilled water. Low cost and versatility of the proposed structure make it a prime choice for pharmaceutical industry where high standards of purity need to be ensured.

  1. GREGORY, A. P., CLARKE, R. N. A review of RF and microwave techniques for dielectric measurements on polar liquids. IEEE Transactions on Dielectrics and Electrical Insulation, Aug. 2006, vol. 13, no. 4, p. 727–743. DOI: 10.1109/TDEI.2006.1667730
  2. CHEN, L. F., ONG, C. K., TAN, B. T. G. Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics. IEEE Transactions on Instrumentation and Measurement, Dec. 1999, vol. 48, no. 6, p. 1031–1037. DOI: 10.1109/19.816109
  3. YOU, K. Y., ABBAS, Z., LEE, C. Y., et al. Modelling and measuring dielectric constants for very thin materials using a coaxial probe. Radioengineering, Dec. 2014, vol. 23, no. 4, p. 1016–1025.
  4. SAEED, K., POLLARD, D. R., HUNTER, C. I. Substrate integrated waveguide cavity resonator for complex permittivity characterization of materials. IEEE Transactions on Microwave Theory and Techniques, Oct. 2008, vol. 56, no. 10, p. 2340–2347. DOI: 10.1109/TMTT.2008.2003523
  5. JHA, K. A., AKHTAR, M. J. SIW cavity based RF sensor for dielectric characterization of liquids. In IEEE Conference on Antenna Measurements and Applications (CAMA). Antibes (France), 2014. DOI: 10.1109/CAMA.2014.7003427
  6. SAEED, K., GUYETTE, C. A., HUNTER, C. I., et al. Microstrip resonator technique for measuring dielectric permittivity of liquid solvents and for solution sensing. In IEEE MTT-S International Microwave Symposium digest. Hawaii (USA), 2007, p. 1185 to 1188. DOI: 10.1109/MWSYM.2007.380342
  7. SEEWATTANAPON, S., AKKARAEKTHALIN, P. A dual microstrip resonator for liquid dielectric constant measurement. In IEEE Asia Pacific Microwave Conference APMC 2008. Hong Kong, 2008, p. 1–4. DOI: 10.1109/APMC.2008.4958682
  8. KOGAMI, Y., TAMURA, H., MATSUMURA, K. Characterization of low loss dielectric materials in millimeter wave region using a whispering gallery mode resonator. In 13th International Conference on Microwaves, Radar and Wireless Communications (MIKON-2000). Wroclaw (Poland), 2000, p. 340–343. DOI: 10.1109/MIKON.2000.913939
  9. SHAFOROST, N. E., BARANNIK, A. A., VITUSEVICH, S., et al. Open WGM dielectric resonator technique for characterization of nL-volume liquids. In 38th European Microwave Conference (EuMC 2008). Amsterdam (The Netherlands), Oct. 2008, p. 1129 to 1132. DOI: 10.1109/EUMC.2008.4751657
  10. PROTSENKO, A. I., BARANNIK, A. A., GUBIN, I. A., et al. Accurate permittivity characterization of liquids by means of WGM resonator with microfluidic. In International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW). Kharkov (Belarus), 2013, p. 538–540. DOI: 10.1109/MSMW.2013.6622132
  11. GUBIN, I. A., BARANNIK, A. A., CHERPAK, T. N., et al. Whispering-gallery mode resonator technique for characterization of small volumes of biochemical liquids in microfluidic channel. In Proceedings of the 41st European Microwave Conference (EuMC). Manchester (UK), 2011, p. 615–618. DOI:
  12. MONGIA, K. R., BHARTIA, P. Dielectric resonator antennasA review and general design relations for resonant frequency and bandwidth. International Journal of Microwave and Millimeter Wave Computer Aided Engineering, 1994, vol. 4, p. 230–247. DOI: 10.1002/mmce.4570040304
  13. ANSYS Inc. High Frequency Structure Simulator (HFSS). Version 14.
  14. TUNCER, E., GUBANSKI, M. S., NETTELBLAD, B. Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas. Journal of Applied Physics, 2001, vol. 89, no. 12, p. 8092–8100. DOI: 10.1063/1.1372363
  15. BUCKLEY, F., MARYOTT, A. A. Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions. National Bureau of Standards Circular, 1958, Vol. 589, U.S. Dept. of Commerce, National Bureau of Standards.

Keywords: Material characterization, complex permittivity, cylindrical dielectric resonator, resonant perturbation techniques

H. H. Kha [references] [full-text] [DOI: 10.13164/re.2016.0721] [Download Citations]
Interference Mitigation and Sum Rate Optimization for MIMO Downlink Small Cells

This paper addresses interference issues in multiuser multiple-input multiple-output (MIMO) downlink heterogeneous networks in which multiple small cells are deployed in macrocell coverage. With the higher priority to access the frequency bands, the macro base station (MBS) will exploit eigenmode transmission along with water-filling based power allocation to maximize its data rate. To avoid harmful interference to macro users, we propose structures of the precoders at the small cell BSs (SBSs) as cascades of two precoding matrices. In addition, to mitigate intra-tier inference in small cells, the SBSs exploit the user scheduling schemes for their associated users. We investigate two user scheduling schemes using the minimum interference leakage and maximum signal to noise ratio criteria. The sum rate of the selected users can be further improved by power allocation. We develop an iterative algorithm using difference of convex functions (d.c.) programming to tackle the mathematical challenges of the nonconvex power allocation problem, Numerical simulation results show that the proposed strategy outperforms the conventional methods in terms of the achievable sum rate.

  1. CASTANHEIRA, D., SILVA, A., GAMEIRO, A. Null-space cognitive precoding for heterogeneous networks. IET Communications, 2014, vol. 8, no. 5, p. 555–563. DOI: 10.1049/iet-com.2013.043
  2. MANOSHA, K. B. S., CODREANU, M., RAJATHEVA, N., et al. Power-throughput tradeoff in MIMO heterogeneous networks. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 8, p. 4309–4322. DOI: 10.1109/TWC.2014.2319076
  3. DAMNJANOVIC, A., MONTOJO, J., WEI, Y., et al., A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 2011, vol. 18, no. 3, p. 10–21. DOI: 10.1109/MWC.2011.5876496
  4. XU, Z., YANG, C., LI, G. Y., et al. Energy-efficient CoMP precoding in heterogeneous networks. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 4, p. 1005–1017. DOI: 10.1109/TSP.2013.2296279
  5. SHIN, W., LEE, N., NOH, W., et al. Hierarchical interference alignment for heterogeneous networks with multiple antennas. In Proceedings of the IEEE International Conference on Communications Workshops (ICC). Kyoto (Japan), 2011, p. 1–6. DOI: 10.1109/iccw.2011.5963547
  6. RIHAN, M., ELSABROUTY, M., MUTA, O., et al. Iterative interference alignment in macrocell-femtocell networks: A cognitive radio approach. In Proceedings of the 11th International Symposium on Wireless Communications Systems (ISWCS). Barcelona (Spain), 2014, p. 654–658. DOI: 10.1109/ISWCS.2014.6933435
  7. AMIR, M., EL-KEYI, A., NAFIE, M. Constrained interference alignment and the spatial degrees of freedom of MIMO cognitive networks. IEEE Transactions on Information Theory, 2011, vol. 57, no. 5, p. 2994–3004. DOI: 10.1109/TIT.2011.2119770
  8. SHIN, W., NOH, W., JANG, K., et al. Herarchical interference alignment for downlink heterogeneous networks. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 12, p. 4549–4559. DOI: 10.1109/TWC.2012.101912.120421
  9. JUNG, B. C., PARK, D., SHIN, W. Y. Opportunistic interference mitigation achieves optimal degrees-of-freedom in wireless multi-cell uplink networks. IEEE Transactions on Communications, 2012, vol. 60, no. 7, p. 1935–1944. DOI: 10.1109/TCOMM.2012.051012.110205
  10. CADAMBE, V. R., JAFAR, S. A. Interference alignment and degrees of freedom of the K-user interference channel. IEEE Transactions on Information Theory, 2008, vol. 54, no. 8, p. 3425–3441. DOI: 10.1109/TIT.2008.926344
  11. VU, T. T., KHA, H. H., DUONG, T. Q. Interference alignment designs for secure multiuser MIMO systems: Rank constrained rank minimization approach. In Proceedings of the International Conference on Communications, Management and Telecommunications (ComManTel). DaNang (Vietnam), 2015, p. 116–121. DOI: 10.1109/ComManTel.2015.7394271
  12. VU, T. T., KHA, H. H., DUONG, T. Q., et al. Wiretapped signal leakage minimization for secure multiuser MIMO systems via interference alignment. In Proceedings of the International Conference on Advanced Technologies for Communications (ATC). Ho Chi Minh City (Vietnam), 2015, p. 79–83. DOI: 10.1109/ATC.2015.7388422
  13. VU, T. T., KHA, H. H., TUAN, H. D. Transceiver design for optimizing the energy efficiency in multiuser MIMO channels. IEEE Communications Letters, 2016, vol. 20, no. 8, p. 1507–1510. DOI: 10.1109/LCOMM.2016.2579640
  14. ALI, S. S., CASTANHEIRA, D., SILVA, A., et al. Transmission cooperative strategies for MIMO-OFDM heterogeneous networks. Radioengineering, 2015, vol. 24, no. 2, p. 431–441. DOI: 10.13164/re.2015.0431
  15. SHU, C., HO, M., TSE, D. N. C. Downlink interference alignment. IEEE Transactions on Communications, 2011, vol. 59, no. 9, p. 2616–2626. DOI: 10.1109/TCOMM.2011.070511.100313
  16. JIN, H., JEON, S. W., JUNG, B. C. Opportunistic iterference alignment for random access networks. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 12, p. 5947–5954. DOI: 10.1109/TVT.2015.2388714
  17. ZHAO, N., YU, F. R., LEUNG, V. C. M. Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 2015, vol. 22, no. 1, p. 88–95. DOI: 10.1109/MWC.2015.7054723
  18. TANG, J., ANANDKUMAR, A. J. G., LAMBOTHARAN, S. Opportunistic MIMO multi-cell interference alignment techniques. In Proceedings of the 5th International Conference on Internet Multimedia Systems Architecture and Application (IMSAA). Bangalore, 2011, p. 1–4. DOI: 10.1109/IMSAA.2011.6156355
  19. RIHAN, M., ELSABROUTY, M., MUTA, O., et al. Interference mitigation framework based on interference alignment for femtocellmacrocell two tier cellular systems. IEICE Transactions on Communication, 2015, vol. E98-B, no. 3, p. 467–476. ISSN: 1745-1345
  20. LEE, J. H., CHOI, W. Interference alignment by opportunistic user selection in 3-user MIMO interference channels. In Proceddings of the IEEE International Conference on Communications (ICC). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5962830
  21. KANG, X., LIANG, Y. C., GARG, H. K. Distributed power control for spectrum-sharing femtocell networks using stackelberg game. In Proceedings of the IEEE International Conference on Communications (ICC). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5962650
  22. OH, D. C., LEE, H. C., LEE, Y. H. Power control and beamforming for femtocells in the presence of channel uncertainty. IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 6, p. 2545–2554. DOI: 10.1109/TVT.2011.2158615
  23. LIU, G., SHENG, M., WANG, X., et al. Interference alignment for partially connected downlink MIMO heterogeneous networks. IEEE Transactions on Communications, 2015, vol. 63, no. 2, p. 551–564. DOI: 10.1109/TCOMM.2015.2388450
  24. PANTISANO, F., BENNIS, M., SAAD, W., et al. Interference alignment for cooperative femtocell networks: A game-theoretic approach. IEEE Transactions on Mobile Computing, 2013, vol. 12, no. 11, p. 2233–2246. DOI: 10.1109/TMC.2012.196
  25. KHA, H. H., TUAN, H. D., NGUYEN, H. H. Fast gobal optimal power allocation in wireless networks by local D.C. programming. IEEE Transactions on Wireless Communications, 2012, vol. 11, no. 2, p. 510–515. DOI: 10.1109/TWC.2011.120911.110139
  26. ZOU, Y., LI, X., LIANG, Y. C. Secrecy outage and diversity analysis of cognitive radio systems. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 11, p. 2222–2236. DOI: 10.1109/JSAC.2014.141121
  27. PALOMAR, D. P., FONOLLOSA, J. R. Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing, 2005, vol. 53, no. 2, p. 686–695. DOI: 10.1109/TSP.2004.840816
  28. SHIM, S., KWAK, J. S., HEATH, R. W., et al. Block diagonalization for multi-user MIMO with other-cell interference. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 7, p. 2671–2681. DOI: 10.1109/TWC.2008.070093
  29. HORN, R. A., JOHNSON, C. R. Matrix Analysis. New York (USA): Cambridge University Press, 2012. ISBN: 0521548233
  30. RASHID, U., TUAN, H. D., KHA, H. H., et al. Joint optimization of source precoding and relay beamforming in wireless MIMO relay networks. IEEE Transactions on Communications, 2014, vol. 62, no. 2, p. 488–499. DOI: 10.1109/TCOMM.2013.122013.130239
  31. NGUYEN, D. H. N., NGUYEN-LE, H., LE-NGOC, T. Blockdiagonalization precoding in a multiuser multicell MIMO system: Competition and coordination. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 2, p. 968–981. ISSN: 1536-1276. DOI: 10.1109/TWC.2013.010214.130724
  32. BOYD, S., VANDEBBERGHE, L. Convex Optimization. New York (USA): Cambridge University Press, 2004. ISBN: 9780521833783
  33. RAZAVIYAYN, M., SANJABI, M., LUO, Z. Q. Linear transceiver design for interference alignment: Complexity and computation. IEEE Transactions on Information Theory, 2012, vol. 58, no. 5, p. 2896–2910. DOI: 10.1109/TIT.2012.2184909

Keywords: MU-MIMO interference channels, interference alignment, small cells, precoder design

N. S. N. Anwar, M. Z. Abdullah [references] [full-text] [DOI: 10.13164/re.2016.0730] [Download Citations]
Sidelobe Suppression Featuring the Phase Coherence Factor in 3-D Through-the-Wall Radar Imaging

Through-the-Wall Radar Imaging (TWRI) could be performed by beamforming of the signals from an array of ultrawideband (UWB) antennas. Preferably the imaging is done in 3-D so that both the position and the height of the target be revealed. This is possible with planar array antenna geometry. However, implementing this technique that fulfills Nyquist criterion leads to a large number of antennas while sparse array suffers from an increase of the sidelobe level. In this work, the Phased Coherence Factor (PCF) is applied to conventional delay and sum (DAS) beamformer to suppress the sidelobe of a sparse planar antenna array. The performance of the proposed technique is experimentally evaluated in terms of the target-to-clutter ratio (TCR), and the separation resolution. It is discovered that PCF is effective in reducing the sidelobe’s artifacts, resulting in TCR of greater than 20 dB and a separation resolution of 20 cm at 2.5 m range.

  1. INC, M. A. S. Through-the-Wall Sensors for Law Enforcement - Market Survey. U.S Department of Justice, U.S2012.
  2. MANOLAKIS, D. G., INGLE, V. K., KOGON, S. M. Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing. McGraw-Hill Boston, 2000.
  3. CAMACHO, J., PARRILLA, M., FRITSCH, C. Phase coherence imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2009, vol. 56, no. 5, p. 958–974. DOI: 10.1109/TUFFC.2009.1128
  4. SCHWARTZ, J. L., STEINBERG, B. D. Ultrasparse, ultrawideband arrays. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, vol. 45, no. 2, p. 376–393. DOI: 10.1109/58.660149
  5. STEINBERG, B. D. Microwave Imaging with Large Antenna Arrays: Radio Camera Principles and Techniques. New York: Wiley-Interscience, 1983. 323 p. ISBN: 0471891738
  6. AMIN, M. G., AHMAD, F. Change detection analysis of humans moving behind walls. IEEE Transactions on Aerospace and Electronic Systems, 2013, vol. 49, no. 3, p. 1410–1425. DOI: 10.1109/TAES.2013.6557995
  7. MOULTON, J., KASSAM, S., AHMAD, F., et al. Target and change detection in synthetic aperture radar sensing of urban structures. In IEEE Radar Conference RADAR '08. Adelaide (Australia), 2008, p. 1–6. DOI: 10.1109/RADAR.2008.4721104
  8. LU, B., SUN, X., ZHAO, Y., et al. Phase coherence factor for mitigation of sidelobe artifacts in through-the-wall radar imaging. Journal of Electromagnetic Waves and Applications,2013, vol. 27, p. 716–725. DOI: 10.1080/09205071.2013.774111
  9. MARTONE, A., RANNEY, K., INNOCENTI, R. Automatic through the wall detection of moving targets using low-frequency ultra-wideband radar. In IEEE Radar Conference. Arlington (USA), 2010, p. 39–43. DOI: 10.1109/RADAR.2010.5494655
  10. AHMAD, F., AMIN, M. G., KASSAM, S. A. Synthetic aperture beamformer for imaging through a dielectric wall. IEEE Transactions on Aerospace and Electronic Systems, 2005, vol. 41, p. 271–283. DOI: 10.1109/TAES.2005.1413761
  11. WANG, W.-Q. Virtual antenna array analysis for MIMO synthetic aperture radars. International Journal of Antennas and Propagation, 2012, 10 p. DOI: 10.1155/2012/587276
  12. RALSTON, T. S., CHARVAT, G. L., PEABODY, J. E. Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system. In 2010 IEEE International Symposium on Phased Array Systems and Technology (ARRAY). Boston (USA), 2010, p. 551–558. DOI: 10.1109/ARRAY.2010.5613314
  13. LIAO, C.-H., CHANG, D.-C. A large aperture UWB antenna array for real beam radar imaging. International Journal of Antennas and Propagation, 2012, 7 p. DOI: 10.1155/2012/639603
  14. BROWNE, K. E., BURKHOLDER, R. J., VOLAKIS, J. L. Through-wall opportunistic sensing system utilizing a low-cost flat-panel array. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 3, p. 859–868. ISSN: 0018-926X. DOI: 10.1109/TAP.2010.2103015
  15. VERMA, P. K., GAIKWAD, A. N., SINGH, D., et al. Analysis of clutter reduction techniques for through wall imaging in UWB range. Progress In Electromagnetics Research B, 2009, vol. 17, p. 29–48. DOI: 10.2528/PIERB09060903
  16. RIAZ, M. M., GHAFOOR, A. Principle component analysis and fuzzy logic based through wall image enhancement. Progress In Electromagnetics Research, 2012, vol. 127, p. 461–478. DOI: 10.2528/PIER12012702
  17. YOON, Y.-S., AMIN, M. G. Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 3, p. 3192 to 3208. DOI: 10.1109/TGRS.2009.2019728
  18. LIANLIN LI., WENJI ZHANG, FANG LI. A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics. IEEE Transactions on Geoscience and Remote Sensing, 2010, vol. 48, no. 1, p. 423–431. DOI: 10.1109/TGRS.2009.2024686
  19. AHMAD, F., AMIN, M. G. Multi-location wideband synthetic aperture imaging for urban sensing applications. Journal of the Franklin Institute, 2008, vol. 345, no. 6, p. 618–639. DOI: 10.1016/j.jfranklin.2008.03.003
  20. YOON, Y.-S., AMIN, M. G., AHMAD, F. MVDR beamforming for through-the-wall radar imaging. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47, no. 1, p. 347 to 366. DOI: 10.1109/TAES.2011.5705680
  21. HOOI BEEN LIM, NGUYEN THI TUYET NHUNG, ER-PING LI, et al. Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm. IEEE Transactions on Biomedical Engineering, 2008, vol. 55, no. 6, p. 1697–1704. DOI: 10.1109/TBME.2008.919716
  22. HOLLMAN, K. W., RIGBY, K. W., O'DONNELL, M. Coherence factor of speckle from a multi-row probe. In Proceedings of 1999 IEEE Ultrasonics Symposium. Caesars Tahoe (USA), 1999, vol. 2, p. 1257–1260. DOI: 10.1109/ULTSYM.1999.849225
  23. BURKHOLDER, R. J., BROWNE, K. E. Coherence factor enhancement of through-wall radar images. Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 842–845. DOI: 10.1109/LAWP.2010.2069078
  24. ANWAR, N. S. N., ABDULLAH, M. Z. Clutter suppression in through-the-wall radar imaging using enhanced delay-and-sum beamformer. In Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST). Santorini (Greece), 2014, p. 179–183. DOI: 10.1109/IST.2014.6958469
  25. ANWAR, N. S. N., ABDULLAH, M. Z. Three dimensional through-the-wall imaging using ultrawideband (UWB) sensors with enhanced delay-and-sum algorithm. In The 8th International Conference on Robotic, Vision, Signal Processing & Power Applications. Chapter 48 in Lecture Notes in Electrical Engineering, vol. 291, p. 419–425. Eds. H. A. Mat Sakim and M. T. Mustaffa. Singapore, 2014. DOI: 10.1007/978-981-4585-42-2_48
  26. CAMACHO, J., FRITSCH, C. Adaptive Beamforming by Phase Coherence Processing. INTECH Open Access Publisher, 2011.
  27. LIN, S., YANG, S., FATHY, A. E., et al. Development of a novel UWB Vivaldi antenna array using SIW technology. Progress In Electromagnetics Research, 2009, vol. 90, p. 369–384. DOI: 10.2528/PIER09020503
  28. TIANG, S. S., SADOON, M., ZANOON, T. F., et al. Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection. Progress In Electromagnetics Research B, 2012, vol. 46, p. 299–316. DOI: 10.2528/PIERB12102201
  29. BUONANNO, A., D’URSO, M., PRISCO, G., et al. A new measurement method for through-the-wall detection and tracking of moving targets. Measurement, 2013, vol. 46, no. 6, p. 1834– 1848. DOI: 10.1016/j.measurement.2012.12.021
  30. SOLDOVIERI, F., SOLIMENE, R., PIERRI, R. A simple strategy to detect changes in through the wall imaging. Progress In Electromagnetics Research M, 2009, vol. 7, p. 1–13. DOI: 10.2528/PIERM09030902
  31. AHMAD, F., FRAZER, G. J., KASSAM, S. A., et al. Design and implementation of near-field, wideband synthetic aperture beamformers. IEEE Transactions on Aerospace and Electronic Systems, 2004, vol. 40, p. 206–220. DOI: 10.1109/TAES.2004.1292154
  32. GILMORE, C., MOJABI, P., ZAKARIA, A., et al. On superresolution with an experimental microwave tomography system. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 393–396. DOI: 10.1109/LAWP.2010.2049471
  33. SKOLNIK, M. I. Introduction to Radar. Vol. 2, 1962.
  34. HUSSAIN, M. G. Ultra-wideband impulse radar - an overview of the principles. IEEE Aerospace and Electronic Systems Magazine, 1998, vol. 13, no. 9, p. 9–14. DOI: 10.1109/62.715515
  35. MAILLOUX, R. J. Phased Array Antenna Handbook. Boston: Artech House, 2005. ISBN-13: 978-1580536899
  36. ZHU, G., HU, J., JIN, T., ZHOU, Z. Effect and compensation of timing jitter in through-wall human indication via impulse through-wall radar. Radioengineering, 2014, vol. 23, no. 1, p. 20 to 29.

Keywords: Through-wall, radar, sidelobe, suppression, sparse array, phase coherence factor

L. Cao, F. Yao, H. Zhao, J. Zhang [references] [full-text] [DOI: 10.13164/re.2016.0741] [Download Citations]
Matching Theory for Channel Allocation in Cognitive Radio Networks

For a cognitive radio network (CRN) in which a set of secondary users (SUs) competes for a limited number of channels (spectrum resources) belonging to primary users (PUs), the channel allocation is a challenge and dominates the throughput and congestion of the network. In this paper, the channel allocation problem is first formulated as the 0-1 integer programming optimization, with considering the overall utility both of primary system and secondary system. Inspired by matching theory, a many-to-one matching game is used to remodel the channel allocation problem, and the corresponding PU proposing deferred acceptance (PPDA) algorithm is also proposed to yield a stable matching. We compare the performance and computation complexity between these two solutions. Numerical results demonstrate the efficiency and obtain the communication overhead of the proposed scheme.

  1. HUAWEI. 5G a technology vision. [Online] Cited 2015-12-10. Available at: http://www.huawei.com/ilink/en/download/HW_314849
  2. MITOLA, J. Cognitive radio (Licentiate proposal). Stockholm (Sweden), KTH, 1998.
  3. MITOLA, J., GUERCI, J., REED, J., et al. Accelerating 5G QoE via public-private spectrum sharing. IEEE Communications Magazine, May 2014, vol. 52, no. 5, p. 77–85. ISSN: 0163-6804. DOI: 10.1109/MCOM.2014.6815896
  4. AHMAD, A., AHMAD, S., REHMANI, M. H., et al. A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 2015, vol. 17, no. 2, p. 888–917. DOI: 10.1109/COMST.2015.2401597
  5. TSIROPOULOS, G. I., DOBRE, O. A., AHMED, M. H., et al. Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 1, p. 824–847. DOI: 10.1109/COMST.2014.2362796
  6. BAYAT, S., LOUIE, R. H. Y., HAN, Z., et al. Distributed user association and femtocell allocation in heterogeneous wireless networks. IEEE Communications Surveys & Tutorials, 2014, vol. 62, no. 8, p. 3027–3043. DOI: 10.1109/TCOMM.2014.2339313
  7. LIANG, Y.-C., ZENG, Y., PEH, E. C. Y., et al. Sensingthroughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 4, p. 1326–1337. DOI: 10.1109/TWC.2008.060869
  8. ROTH, A., SOTOMAYOR, M. A. O. Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, 1992. ISBN: 9780521390156
  9. VASSAKI, S., POULAKIS, M. I., PANAGOPOULOS, A. D. Spectrum leasing in cognitive radio networks: A matching theory approach. In Proceedings of the the 81st IEEE Vehicular Technology Conference. Glasgow (UK), May 2015, p. 1–5. DOI: 10.1109/VTCSpring.2015.7146101
  10. YAFFE, Y., LESHEM, A., ZEHAVI, E. Stable matching for channel access control in cognitive radio systems. In Proceedings of the International Workshop on Cognitive Information Processing (CIP). Jun. 2010, p. 470–475. DOI: 10.1109/CIP.2010.5604115
  11. MANLOVE, D. F. Algorithmics of Matching Under Preferences. World Scientific, 2013. ISBN: 9789814425247
  12. IRVING, R. W., LEATHER, P., GUSFIELD, D. An efficient algorithm for the optimal stable marriage. Journal of the Association for Computing Machinery, 1987, vol. 34, no. 3, p. 532–543. DOI: 10.1145/28869.28871
  13. LESHEM, A., ZEHAVI, E., YAFFE, Y. Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 2012, vol. 30, no. 1, p. 82–95. DOI: 10.1109/JSAC.2012.120108
  14. GU, Y., SAAD, W., BENNIS, M., et al. Matching theory for future wireless networks: fundamentals and applications. IEEE Communications Magazine, 2015, vol. 53, no. 5, p. 52–59. DOI: 10.1109/MCOM.2015.7105641
  15. GU, Y., ZHANG, Y., PAN, M., et al. Student admission matching based content-cache allocation. In Proceedings of the IEEE Wireless Communications and Networking Conference. New Orleans (USA), Mar. 2015, p. 2179–2184. DOI: 10.1109/WCNC.2015.7127805
  16. NAMVAR, N., AFGHAN, F. Spectrum sharing in cooperative cognitive radio networks: A matching game framework. In Proceedings of the IEEE the 49th Annual Conference on Information Sciences and Systems (CISS). Baltimore (USA), Mar. 2015, p. 1–5. DOI: 10.1109/CISS.2015.7086843
  17. ARROW, K. J. Social Choice and Individual Values. 2nd ed. Yale University Press, 1963. ISBN: 9780300013634
  18. PAPADIMITROU, C., STEIGLITZ, K. Combinatorial Optimization: Algorithms and Complexity. Dover Press, 1998. ISBN: 9780486402581
  19. IBM. Cplex Optimizer. [Online] Cited 2015-12-10. Available at: http://www-01.ibm.com/software/commerce/optimization/cplexoptimizer/.
  20. JORSWIECK, E. Stable matchings for resource allocation in wireless networks. In Proceedings of the 17th International Conference on Digital Signal Processing (DSP). Corfu, Jul. 2011, p. 1–8. DOI: 10.1109/ICDSP.2011.6004983
  21. BAYAT, S., LOUIE, R., HAN, Z., et al. Physical-layer security in distributed wireless networks using matching theory. IEEE Transactions on Information Forensics and Security, 2013, vol. 8, no. 5, p. 717–732. DOI: 10.1109/TIFS.2013.2251335
  22. ROTH, A. E. The evolution of the labor market for medical interns and residents: A case study in game theory. Journal of Political Economy, 1984, vol. 92, no. 6, p. 991–1016. DOI: 10.1086/261272
  23. DALE, D., SHAPLEY, L. S. College admissions and the stability of marriage. The American Mathematical Monthly, 1962, vol. 69, no. 1, p. 9–15. DOI: 10.2307/2312726

Keywords: cognitive radio, channel allocation, optimization, matching theory, stable matching, computation complexity

B. Ghosh, S. Biswas, A. Chandra, A. K. Mal [references] [full-text] [DOI: 10.13164/re.2016.0749] [Download Citations]
Energy Efficient DF Relay Placement in α-μ Fading Channel with Cooperative and Non-Cooperative Schemes

In this paper we examine the energy efficiency of relay aided wireless sensor network (WSN) links where the two-hop transmission between source and destination is realized with an adaptive decode and forward (DF) relay. The receiver may use only the relayed signal (non-cooperative mode) or it may be combined with the signal directly available from the source (co-operative mode). In the second mode, we have considered two combining schemes, selection combining (SC) and maximum ratio combining (MRC). A generalized α-μ model is used to characterize fading and spectrally efficient M-ary quadrature amplitude modulation (MQAM) is chosen as the modulation technique. The α-μ model is quite general in nature and it encompasses other popular fading models such as Rayleigh and Nakagami-m. The result of our analysis reveals that combining does not necessarily help in reducing energy requirement and the decision of whether 'to use' or 'not to use' combining depends on the source to destination distance. Further, a comparison between MRC and SC from the energy efficiency perspective manifests that using MRC does not automatically guarantee maximum energy savings and the SC strategy is more robust against parameter variations as well as incurs lower receiver complexity. We also investigate the optimal relay location, which minimizes energy requirement, for all the above mentioned relaying strategies, and study how different system parameters affect the optimal relay placement.

  1. FENG, D., JIANG, C., LIM, G., et al. A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials, 2013, vol. 15, no. 1, p. 167–178. DOI: 10.1109/SURV.2012.020212.00049
  2. ZHANG, Z., WANG, J., WU, Q. ARQ protocols in cognitive decodeand-forward relay networks: Opportunities gain. Radioengineering, 2015, vol. 24, no. 1, p. 296–304. DOI: 10.13164/re.2015.0296
  3. MORAES, A. C., DA COSTA, D. B., YACOUB, M. D. An outage analysis of multibranch diversity receivers with cochannel interference in α − µ, κ − µ, and η − µ fading scenarios. Wireless Personal Communications, 2012, vol. 64, no. 1, p. 3–19. DOI: 10.1007/s11277- 012-0513-x
  4. YACOUB, M. D. The α−µ distribution: A physical fading model for the Stacy distribution. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 1, p. 27–34. DOI: 10.1109/TVT.2006.883753
  5. GHOSH, B., GHOSH, A., BISWAS, N., et al. Placing the ’third’ node: An energy efficiency perspective. In Proceedings of the 5th International Conference on Computers and Devices for Communication (CODEC). Kolkata (India), 2012, p. 1–4. DOI: 10.1109/CODEC.2012.6509228
  6. CHANDRA, A., GHOSH, B., BISWAS, N., et al. Energy efficient relay placement for dual hop wireless transmission. International Journal of Electronics Letters, 2013, vol. 1, no. 4, p. 198–209. DOI: 10.1080/21681724.2013.853370
  7. CHANDRA, A., BISWAS, S., GHOSH, B., et al. Energy ef- ficient relay placement in dual hop 802.15.4 networks. Wireless Personal Communications, 2014, vol. 75, no. 4, p. 1947–1967. DOI: 10.1007/s11277-013-1447-7
  8. CUI, S., GOLDSMITH, A., BAHAI, A. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 2004, vol. 22, no. 6, p. 1089–1098. DOI: 10.1109/JSAC.2004.830916
  9. WANG, S., NIE, J. Energy efficiency optimization of cooperative communication in wireless sensor network. EURASIP Journal on Wireless Communications and Networking, 2010, vol. 2010, no. 162326, p. 1–8. DOI: 10.1155/2010/162326
  10. ZHANG, R., GORCE, J.-M. Optimal transmission range for minimum energy consumption in wireless sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC). Las Vegas (USA), 2008, p. 757–762. DOI: 10.1109/WCNC.2008.139
  11. DE OLIVEIRA BRANTE, G. G., KAKITANI, M. T., SOUZA, R. D. Energy efficiency analysis of some cooperative and non-cooperative transmission schemes in wireless sensor networks. IEEE Transactions on Communications, 2011, vol. 59, no. 10, p. 2671–2677. DOI: 10.1109/TCOMM.2011.063011.100744
  12. SOUZA, R., KAKITANI, M., BRANTE, G. Energy efficiency analysis of a two dimensional cooperative wireless sensor network with relay selection. Radioengineering, 2013, vol. 22, no. 2, p. 549–557. ISSN: 1210-2512
  13. SADEK, A. K., YU, W., LIU, K. J. R. On the energy efficiency of cooperative communications in wireless sensor networks. ACM Transactions on Sensor Networks, 2009, vol. 6, no. 1, p. 1–21. DOI: 10.1145/1653760.1653765
  14. KHORMUJI, M., LARSSON, E. G. Cooperative transmission based on decode-and-forward relaying with partial repetition coding. IEEE Transactions on Wireless Communications, 2009, vol. 8, no. 4, p. 1716–1725. DOI: 10.1109/TWC.2009.070674
  15. DA COSTA, D. B., YACOUB, M. D., SANTOS FILHO, J. C. S. Highly accurate closed-form approximations to the sum of α − µ variates and applications. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 9, p. 3301–3306. DOI: 10.1109/TWC.2008.070336
  16. PENA-MARTIN, J., ROMERO-JEREZ, J., TELLEZ-LABAO, D. C. Performance of selection combining diversity in η−µ fading channels with integer values of µ. IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 2, p. 834–839. DOI: 10.1109/TVT.2014.2326333
  17. BISWAS, N., GHOSH, B., CHANDRA, A. Energy efficiency relay node placement in a eta-mu fading channel. In Proceedings of the IEEE Conference on Information & Communication Technologies (ICT). Kumaracoil (India), 2013, p. 824–828. DOI: 10.1109/CICT.2013.6558208
  18. GHOSH, B., BISWAS, S., CHANDRA, A., et al. Energy efficiency analysis of cooperative and non-cooperative communication scheme in α-μ fading channel. In Proceedings of the Interdisciplinary Scientific eConference (ISeC). Bratislava (Slovakia), 2015, p. 1–11.
  19. GOLDSMITH, A. Wireless Communications. 2nd ed. New York (USA): Cambridge University Press, 2005. ISBN: 9780521837163
  20. LIN, M., WEI, H., OUYANG, J., et al. Performance analysis of a dual-hop cooperative relay network with co-channel interference. Radioengineering, 2014, vol. 23, no. 4, p. 1234–1240. ISSN: 1210- 2512

Keywords: α-μ fading channel, energy efficiency, maximum ratio combining, relay placement, selection combining

D. Krstic, B. Jaksic, M. Gligorijevic, D. Stefanovic, M. Stefanovic [references] [full-text] [DOI: 10.13164/re.2016.0757] [Download Citations]
Performance of Diversity System Output Signal in Mobile Cellular System in the Presence of α-μ Short Term Fading and Gamma Long Term Fading

In this paper, wireless mobile communication system with macrodiversity reception is considered. Macrodiversity system is consisting of macrodiversity selection combining (SC) receiver and three microdiversity SC receivers. Propagation channel suffers α-μ short term fading and Gamma long term fading resulting in system performance degradation. Analytical closed form expression for average level crossing rate (LCR) of macrodiversity SC receiver output signal envelope is obtained. Mathematical results are analyzed, presenting the influence of long term fading parameters and short term fading parameters on average level crossing rate. Obtained results can be used in the process of simulation and design of real-world environments mobile cellular telecommunication systems.

  1. GOLDSMITH, A. Wireless Communications. Cambridge (UK): Cambridge University Press, 2005. ISBN-13: 978-0521837163
  2. SIMON, M. K., ALOUNI, M. S. Digital Communication over Fading Channels. 2nd ed. New Jersey: Wiley, 2005. ISBN: 978-0- 471-64953-3
  3. PANIC, S., STEFANOVIC, M., ANASTASOV, J., SPALEVIC. P. Fading and Interference Mitigation in Wireless Communications. USA: CRC Press, 2013. ISBN: 9781466508415
  4. HANSEN, F., MENO, F. I. Mobile fading-Rayleigh and lognormal superimposed. IEEE Transactions on Vehicular Technology, 1977, vol. 26, no. 4, p. 332–335. DOI: 10.1109/T-VT.1977.23703
  5. MUKHERJEE, S., AVIDOR, D. Effect of microdiversity and correlated macrodiversity on outages in a cellular system. IEEE Transactions on Wireless Technology, 2003, vol. 2, no. 1, p. 50 to 59. DOI: 10.1109/TWC.2002.806363
  6. SHANKAR, P. M. Macrodiversity and microdiversity in correlated shadowed fading channels. IEEE Transactions on Vehicular Technology, 2009, vol. 58, no. 2, p. 727–732. DOI: 10.1109/TVT.2008.926622
  7. NIKOLIC, B., STEFANOVIC, M., PANIĆ, S., ANASTASOV, J., MILOSEVIC, B. Closed-form expressions for selection combining system statistics over correlated Generalized-K (KG) fading channels in the presence of interference. ETRI Journal, 2011, vol. 33, no. 3, 2011, p. 320–325. DOI: 10.4218/etrij.11.0110.0311
  8. PANIC, S., STEFANOVIC, D., PETROVIC, I., STEFANOVIC, M., ANASTASOV, J., KRSTIC, D. Second-order statistics of selection macro-diversity system operating over Gamma shadowed κ-μ fading channels. EURASIP Journal on Wireless Communications and Networking, 2011, Article ID 151, p. 1–7. DOI: 10.1186/1687-1499-2011-151
  9. STEFANOVIC, D., PANIC, S., SPALEVIC, P. Second-order statistics of SC macrodiversity system operating over Gamma shadowed Nakagami-m fading channels. AEU International Journal of Electronics and Communications, 2011, vol. 65, no. 5, p. 413–418. DOI: 10.1016/j.aeue.2010.05.001
  10. SEKULOVIC, N., STEFANOVIĆ, M. Performance analysis of system with micro- and macrodiversity reception in correlated Gamma shadowed Rician fading channels. Wireless Personal Communications, 2012, vol. 65, no. 1, p. 143–156. DOI: 10.1007/s11277-011-0232-8
  11. YACOUB, M. D. The α-µ distribution: A physical fading model for the stacy distribution. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 1, p. 27–34. DOI: 10.1109/TVT.2006.883753
  12. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series and Products. San Diego: Academic Press, 2000. ISBN: 0-12- 294757-6

Keywords: α-μ short term fading, Gamma long term fading, correlation, level crossing rate, macrodiversity, microdiversity, SC combining

M. N. Qureshi, M. I. Tiwana [references] [full-text] [DOI: 10.13164/re.2016.0763] [Download Citations]
A Novel Stochastic Learning Automata Based SON Interference Mitigation Framework for 5G HetNets

Long Term Evolution Advanced (LTE-A) Heterogeneous Networks (HetNet) are an important aspect of 5th generation mobile communication systems. They consists of high power macrocells along with low power cells i.e. picocells and femtocells to fill up macrocell coverage gaps. HetNet permit deployment of femtocells by users for added flexibility, but then interference issues between neighbouring cells have to be addressed as all femtocells use the same frequency channels for transmission. To mitigate this problem, LTE-A standard offers two new features, one is carrier aggregation in which Component Carriers (CC) form the basic aggregate units shared among cells and the other is enhanced Inter-Cell Interference Co-ordination (eICIC) through X2 interface. The physical implementation of these features is left open to research. This paper investigates two distinct techniques for orthogonal CC selection through Stochastic Cellular Learning Automata (SCLA) to improve the QoS performance of a femtocell. The first, technique uses SCLA with user feedback, and the second technique uses SCLA with a central publishing server where all cells upload their past used CC vectors. SCLA methods are better suited for Self Organizing Network (SON) as they do not require synchronized cell coordination, have low complexity and have good optimization characteristics. The simulation results show that the techniques enhance the cell edge performance considerably.

  1. AKYILDIZ, I. F., GUTIERREZ-ESTEVEZ, D. M., BALAKRISHNAN, R., et al. LTE-Advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 2014, vol. 10, p. 31–60. ISSN: 1874-4907. DOI: 10.1016/j.phycom.2013.11.009
  2. GONCALVES, L. C., SEBASTIAO, P., SOUTO, N., et al. On the impact of user segmentation and behavior analysis over traffic generation in beyond 4G networks. Transactions on Emerging Telecommunications Technologies, 2015. DOI: 10.1002/ett.2933
  3. DAMNJANOVIC, A., MONTOJO, J., WEI, Y., et al. A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 2011, vol. 18, p. 10–21. DOI: 10.1109/MWC.2011.5876496
  4. KIM, J., JEON, W. S. Fractional frequency reuse-based resource sharing strategy in two-tier femtocell networks. In Proceedings of the IEEE Consumer Communications and Networking Conference (CCNC). 2012, p. 696–698. DOI: 10.1109/CCNC.2012.6181148
  5. KAWSER, M. T., ISLAM, M. R., AHMED, K. I., et al. Efficient resource allocation and sectorization for fractional frequency reuse (FFR) in LTE femtocell systems. Radioengineering, 2015, vol. 24, no. 4, p. 940–947. DOI: 10.13164/re.2015.0940
  6. JIN, F., ZHANG, R., HANZO, L. Fractional Frequency Reuse Aided Twin-Layer Femtocell Networks: Analysis, Design and Optimization. IEEE Transactions on Communications, 2013, vol. 61, no. 5, p. 2074–2085. DOI: 10.1109/TCOMM.2013.022713.120340
  7. COSTA, G. W. O., CATTONI, A. F., KOVACS, I. Z., et al. A fully distributed method for dynamic spectrum sharing in femtocells. In Proceedings of the IEEE Wireless Communications and Networking Conference Workshops (WCNCW). 2012, p. 87–92. DOI: 10.1109/WCNCW.2012.6215547
  8. DEB, S., MONOGIOUDIS, P., MIERNIK, J., et al. Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets. IEEE/ACM Transactions on Networking, Feb. 2014, vol. 22, no. 1, p. 137–150. DOI: 10.1109/TNET.2013.2246820
  9. OSTERBO, O., GRONDALEN, O. Benefits of Self-Organizing Networks (SON) for Mobile Operators. Journal of Computer Networks and Communications, 2012, vol. 2012. DOI: 10.1155/2012/862527
  10. KHAN, Y., SAYRAC, B., MOULINES, E. Centralized selfoptimization of eICIC with varying traffic in LTE-A. In Proceedings of the European Wireless Conference. May. 2014, p. 1–6. ISBN: 978-3-8007-3621-8
  11. TIWANA, M. I. Self organizing networks: A reinforcement learning approach for self-optimization of LTE mobility parameters. Automatika, 2014, vol. 55, no. 4, p. 504–513. DOI: 10.7305/automatika.2014.12.502
  12. ALIU, O. G., IMRAN, A., IMRAN, M. A., et al. A Survey of self organisation in future cellular networks. IEEE Communications Survey and Tutorials, 2013, vol. 15, no. 1, p. 336–361. DOI: 10.1109/SURV.2012.021312.00116
  13. 3GPP TECHNICAL SPECIFICATION GROUP RADIO ACCESS NETWORK. TR 36.814: Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA Physical Layer Aspects. Jun. 2010.
  14. HOLMA, H., TOSKALA, A., REUNANEN, J. LTE Small Cell Optimization 1st ed. Chichester (UK): John Wiley & Sons Ltd, 2015. (3GPP Evolution to Release 13) ISBN: 9781118912577
  15. SAAD, S. A., ISMAIL, M., NORDIN, R. A survey on power control techniques in femtocell networks. Journal of Communications, 2013, vol. 8, no. 12, p. 845–854. DOI: 10.12720/jcm.8.12.845-854
  16. CHEN, Z., LIN, T. Stochastic learning automata based resource allocation for LTE-Advanced heterogeneous networks. In Proceedings of the 24th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications: Mobile and Wireless Networks. 2013, p. 1952–1956. DOI: 10.1109/PIMRC.2013.6666463
  17. FREDKIN, E. Digital machine: An informational process based on reversible universal cellular automata. Physica D: Nonlinear Phenomena, Sep. 1990, vol. 45, no. 1–3, p. 254–270. DOI: 10.1016/0167-2789(90)90186-S
  18. NAVID, A. H. F., AGHABABA, A. B. Emerging Applications of Cellular Automata. InTech, 2013. (Cellular learning automata and its applications.) DOI: 10.5772/52953
  19. BEIGY, H., MEYBODI, M. R. Asynchronous cellular learning automata and its applications. Automatica, May. 2008, vol. 44, no. 5, p. 1350–1357. DOI: 10.1016/j.automatica.2007.09.018
  20. BEIGY, H., MEYBODI, M. R. Cellular learning automata with multiple learning automata in each cell and its applications. IEEE Transactions on Systems, MAN, and Cybernetics - Part B: Cybernetics, 2010, vol. 40, no. 1, p. 54–65. DOI: 10.1109/TSMCB.2009.2030786
  21. MOGENSEN, P., NA, W., KOVACS, I., et al. LTE capacity compared to the Shannon bound. In Proceedings of the 65th IEEE Vehicular Technology Conference - Spring. 2007, p. 1234–1238. DOI: 10.1109/VETECS.2007.260
  22. BEIGY, H., MEYBODI, M. R. A mathematical framework for cellular learning automata. Advances in Complex Systems, 2004, vol. 7, no. 3, p. 295–319. DOI: 10.1142/S0219525904000202
  23. NARENDRA, K. S., ANNASWARMY, A. M. Stable Adaptive Systems. 1st ed. New York (US): Prentice-Hall, 1989. ISBN: 0486442268
  24. KAELBING, L. P., LITTMAN, M. L., MOORE, A. W. Reinforcement learning: A survey. Journal on Artificial Intelligence Research, 1996, vol. 4, p. 237–285. DOI: 10.1613/jair.301
  25. PAPADIMITRIOU, G. I. A new approach to the design of reinforcement schemes for learning automata: Stochastic estimator learning algorithms. IEEE Transactions on Knowledge and Data Engineering, Aug. 1994, vol. 6, p. 649–654. DOI: 10.1109/69.298183
  26. TIWANA, M. I., NAWAZ, S. J., IKRAM, A. A., et al. Selforganizing networks: A packet scheduling approach for coverage/ capacity optimization in 4G networks using reinforcement learning. Elektronika ir Elektrotechnika, 2014, vol. 20, no. 9, p. 59–64. DOI: 10.5755/j01.eee.20.9.4786
  27. NASRI, R., ALTMAN, Z. Handover adaption for dynamic load balancing in 3GPP Long term evolution systems. In Proseedings of the 5th International Conference on Advances in Mobile Computing & Multimedia (MoMM2007). Jan 2007, HAL-ID: hal-00918897.
  28. BOCCARDI, F., HEATH, W., LOZANO, A., et al. Five disruptive technology directions for 5G. IEEE Communications Magazine, Feb. 2014, vol. 52, no. 2, p. 74–80. DOI: 10.1109/MCOM.2014.6736746

Keywords: Heterogeneous networks (HetNets), LTE-A, 3GPP, stochastic cellular learning automata (SCLA), cellular automata, self-optimization network (SON), femtocell, component carrier (CC), carrier aggregation, cell publishing

T.-T. Phu, T. H. Dang, T. D. Tran, M. Voznak [references] [full-text] [DOI: 10.13164/re.2016.0774] [Download Citations]
Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels

In this paper, we evaluate probability of non-zero secrecy capacity of multi-hop relay networks over Nakagami-m fading channels in presence of hardware impairments. In the considered protocol, a source attempts to transmit its data to a destination by using multi-hop randomize-and-forward (RF) strategy. The data transmitted by the source and relays are overheard by an eavesdropper. For performance evaluation, we derive exact expressions of probability of non-zero secrecy capacity (PoNSC), which are expressed by sums of infinite series of exponential functions and exponential integral functions. We then perform Monte Carlo simulations to verify the theoretical analysis.

  1. WYNER, A. D. The wire-tap channel. The Bell System Technical Journal, 1975, vol. 54, no. 8, p. 1355–1387. DOI: 10.1002/j.1538-7305.1975.tb02040.x
  2. GOPALA, P. K., LAI, L., GAMAL, H. E. On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 2008, vol. 54, no. 10, p. 4687–4698. DOI: 10.1109/TIT.2008.928990
  3. WANG, L., YANG, N., ELKASHLAN, M., et al. Physical layer security of Maximal ratio combining in two-wave with diffuse power fading channels. Transactions on Information Forensics and Security, 2014, vol. 9, no. 2, p. 247 – 258. DOI: 10.1109/TIFS.2013.2296991
  4. KAKITANI, M., BRANTEB, G., SOUZAS, R. Energy efficiency analysis of a two dimensional cooperative wireless sensor network with relay selection. Radioengineering, 2013, vol. 22, no. 2, p. 549–557. ISSN: 1805-9600
  5. WANG, G., GUO, D., LIU, A., et al. Multiuser cooperation with hybrid network coding in wireless networks. Radioengineering, 2014, vol. 23, no. 1, p. 435–444. ISSN: 1805-9600
  6. LIU, Y., WANG, L., DUY, T. T., et al. Relay selection for security enhancement in cognitive relay networks. IEEE Wireless Communications Letters, 2015, vol. 4, no. 1, p. 46–49. DOI: 10.1109/LWC.2014.2365808
  7. DUY, T. T., DUONG, T. Q., THANH, T. L., et al. Secrecy performance analysis with relay selection methods under impact of cochannel interference. IET Communications, 2015, vol. 9, no. 11, p. 1427–1435. DOI: 10.1049/iet-com.2014.1128
  8. FAN, L., ZHANG, S., DUONG, T. Q., et al. Secure switchand-stay combining (SSSC) for cognitive relay networks. IEEE Transactions on Communications, 2016, vol. 64, no. 1, p. 70–82. DOI: 10.1109/TCOMM.2015.2497308
  9. DING, Z., MA, Z., FAN, P. Asymptotic studies for the impact of antenna selection on secure two-way relaying communications with artificial noise. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 4, p. 2189–2203. DOI: 10.1109/TWC.2014.022714131252
  10. DUY, T. T., KONG, H. Y. Secrecy performance analysis of multihop transmission protocols in cluster networks. Wireless Personal Communications, 2015, vol. 82, no. 4, p. 2505–2518. DOI: 10.1007/s11277-015-2361-y
  11. SANG, N. Q., KONG, H. Y. Exact outage analysis of the effect of cochannel interference on secured multi-hop relaying networks. International Journal of Electronics, 2016, vol. 103, no. 11, p. 1822–1838. DOI: 10.1080/00207217.2016.1138534
  12. BJORNSON, E., MATTHAIOU, M., DEBBAH, M. A new look at dual-hop relaying: Performance limits with hardware impairments. IEEE Transactions on Communications, 2013, vol. 61, no. 11, p. 4512–4525. DOI: 10.1109/TCOMM.2013.100913.130282
  13. DUY, T. T., DUONG, T. Q., DA COSTA, D. B., et al. Proactive relay selection with joint impact of hardware impairment and co-channel interference. IIEEE Transactions on Communications, 2015, vol. 63, no. 5, p. 1594–1606. DOI: 10.1109/TCOMM.2015.2396517
  14. BOULOGEORGOS, A. A., KARAS, D. S., KARAGIANNIDIS, G. K. How much does I/Q Imbalance affect secrecy capacity? IEEE Communications Letters, 2016, vol. 20, no. 7, p. 1305–1308. DOI: 10.1109/LCOMM.2016.2558561
  15. MO, J., TAO, M., LIU, Y. Relay placement for physical layer security: A secure connection perspective. IEEE Communications Letters, 2012, vol. 16, no. 6, p. 878–881. DOI: 10.1109/LCOMM.2012.042312.120582
  16. DENG, Y., WANG, L., ELKASLAN, M., et al. Generalized selection combining for cognitive relay networks over Nakagami-m fading. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 8, p. 1993–2006. DOI: 10.1109/TSP.2015.2405497
  17. LEE, S., LEE, H., CHOI, H. H., et al. Outage probability of decodeand-forward relaying systems with efficient partial relay selection in Nakagami fading channels. ETRI Journal, 2014, vol. 36, no. 1, p. 22–30. DOI: 10.4218/etrij.13.0113.0348
  18. GRADSHTEYN, I., RYZHIKR, I. Table of Integrals, Series, and Products. 7th ed. New York (USA): Academic Press, Inc., 2007. ISBN: 978-0123736376
  19. YANG, N., ELKASLAN, M., YUAN, J. Outage probability of multiuser relay networks in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 5, p. 2120–2132. DOI: 10.1109/TVT.2010.2042828
  20. LANEMAN, J. N., TSE, D. N. C., WORNELL, G. W. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, vol. 50, no. 12, p. 3062 – 3080. DOI: 10.1109/TIT.2004.838089
  21. ALVI, S. H., WYNE, S. Error analysis of fixed-gain AF relaying with MRC over Nakagami-m fading channels. Radioengineering, 2016, vol. 25, no. 1, p. 106–113. DOI: 10.13164/re.2016.0106

Keywords: Hardware impairments, probability of non-zero secrecy capacity, multi-hop networks, Nakagami-m fading channel.

Z. Biolek, D. Biolek, V. Biolkova [references] [full-text] [DOI: 10.13164/re.2016.0783] [Download Citations]
Utilization of Euler-Lagrange Equations in Circuits with Memory Elements

It is well known that the equation of motion of a system can be set up using the Lagrangian and the dissipation function, which describe the conservative and dissipative parts of the system. However, this procedure, consisting in a systematic differentiation of the above state functions, cannot be used for circuits containing simultaneously conventional nonlinear elements such as the resistor, capacitor, and inductor, and their nonlinear memory versions – the memristor, memcapacitor, and meminductor. The paper provides a general solution to this problem and demonstrates it on the example of modeling Josephson’s junction.

  1. CHUA, L. O. Memristor – The missing circuit element. IEEE Transactions on Circuit Theory, 1971, vol. CT-18, no. 5, p. 507 to 519. ISSN: 0018-9324. DOI: 10.1109/TCT.1971.1083337
  2. STRUKOV, D. B., SNIDER, G. S., STEWART, D. R., WILLIAMS, R. S. The missing memristor found. Nature, 2008, vol. 453, p. 80–83. ISSN: 0028-0836. DOI: 10.1038/nature06932
  3. CHUA, L. O. Device modeling via nonlinear circuit elements. IEEE Transactions on Circuits and Systems, 1980, vol. 27, no. 11, p. 1014–1044. ISSN: 0098-4094. DOI: 10.1109/TCS.1980.1084742
  4. CHUA, L. O., SZETO, E. W. High-order non-linear circuit elements: Circuit-theoretic properties. International Journal of Circuit Theory and Applications, 1983, vol. 11, no. 2, p. 187–206. ISSN: 1097-007X. DOI: 10.1002/cta.4490110206
  5. CHUA, L. O. Nonlinear circuit foundations for nanodevices. I. The four-element torus. Proceedings of the IEEE, 2003, vol. 91, no. 11, p. 1830–1859. ISSN: 0018-9219. DOI: 10.1109/JPROC.2003.818319
  6. DI VENTRA, M., PERSHIN, Y. V. Biologically-inspired electronics with memory circuit elements. Advances in Neuromorphic Memristor Science and Applications, 2012, vol. 4 of the series Springer Series in Cognitive and Neural Systems, p. 15–36. ISBN: 978-94-007-4490-5. DOI: 10.1007/978-94-007- 4491-2_3
  7. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In European Conference on Circuit Theory and Design, 2009, p. 249–252. CD-ROM ISBN: 978-1-4244-3896-9. DOI: 10.1109/ECCTD.2009.5274934
  8. CHUA, LO. Everything you wish to know about memristors but are afraid to ask. Radioengineering, 2015, vol. 24, no. 2, p. 319 to 368. ISSN: 1210-2512. DOI: 10.13164/re.2015.0319
  9. HAJJ, I. N. Extended nodal analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, vol. 31, no. 1, p. 89–100. ISSN: 0278-0070. DOI: 10.1109/TCAD.2011.2167330
  10. RIAZA, R. Second order mem-circuits. International Journal of Circuit Theory and Applications, 2015, vol. 43, no. 11, p. 1719 to 1742. ISSN: 0098-9886. DOI: 10.1002/cta.2037
  11. JELTSEMA, D. Memory elements: A paradigm shift in Lagrangian modeling of electrical circuits. IFAC Proceedings Volumes, 2012, vol. 45, no. 2, p. 445–450. ISSN: 1474-6670. DOI: 10.3182/20120215-3-AT-3016.00078
  12. COHEN, G. Z., PERSHIN, Y. V., DI VENTRA, M. Lagrange formalism of memory circuit elements: classical and quantum formulations. Physical Review B, 2012, vol. 85, no. 16, p. 165428- 165430. DOI: 10.1103/PhysRevB.85.165428
  13. ITOH, M., CHUA, L. O. Duality of memristor circuits. International Journal of Bifurcation and Chaos, 2013, vol. 23, no. 1, p. 1 to 50. ISSN: 0218-1274. DOI: 10.1142/S0218127413300012
  14. FRANKSEN, O. I. The nature of data — From measurements to systems. BIT Numerical Mathematics, 1985, vol. 25, no. 1, p. 24 to 50. ISSN: 0006-3835. DOI: 10.1007/BF01934986
  15. CHERRY, E. C. Some general theorems for non-linear systems possessing reactance. Philosophical Magazine, 1951, series 7, vol. 42, no. 333, p. 1161–1177. ISSN: 0031-8086. DOI: 10.1080/14786445108561362
  16. MILLAR, E. C. Some general theorems for non-linear systems possessing reactance. Philosophical Magazine, 1951, series 7, vol. 42, no. 333, p. 1150–1160. ISSN: 0031-8086. DOI: 10.1080/14786445108561361
  17. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Interpreting area of pinched memristor hysteresis loop. Electronics Letters, 2014, vol. 50, no. 2, p. 74–75. ISSN: 0013-5194. DOI: 10.1049/el.2013.3108
  18. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. (Co)content in circuits with memristive elements. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, vol. 62, no. 2, p. 488–496. ISSN: 1549-8328. DOI: 10.1109/TCSI.2014.2364694

Keywords: Resistor, capacitor, inductor, memristor, memcapacitor, meminductor, content, energy, action, Lagrangian

R. Yao, Y. Zhu, J. Xu, F. Gao, L. Wang [references] [full-text] [DOI: 10.13164/re.2016.0790] [Download Citations]
Improving 3D-Turbo Code's BER Performance with a BICM System over Rayleigh Fading Channel

Classical Turbo code suffers from high error floor due to its small Minimum Hamming Distance (MHD). Newly-proposed 3D-Turbo code can effectively increase the MHD and achieve a lower error floor by adding a rate-1 post encoder. In 3D-Turbo codes, part of the parity bits from the classical Turbo encoder are further encoded through the post encoder. In this paper, a novel Bit-Interleaved Coded Modulation (BICM) system is proposed by combining rotated mapping Quadrature Amplitude Modulation (QAM) and 3D-Turbo code to improve the Bit Error Rate (BER) performance of 3D-Turbo code over Raleigh fading channel. A key-bit protection scheme and a Two-Dimension (2D) iterative soft demodulating-decoding algorithm are developed for the proposed BICM system. Simulation results show that the proposed system can obtain about 0.8-1.0 dB gain at BER of 10^{-6}, compared with the existing BICM system with Gray mapping QAM.

  1. BERROU, C., GLAVIEUX, A. Near optimum error correcting coding and decoding: turbo-codes. IEEE Transactions on Communications, 2007, vol. 44, no. 10, p. 1261–1271. DOI: 10.1109/26.539767
  2. ISMAIL, D. K. B., DOUILLARD, C., KEROUEDAN, S. A survey of three-dimensional turbo codes and recent performance enhancements. EURASIP Journal on Wireless Communications and Networking, 2013, vol. 2013, p. 1–13. DOI: 10.1186/1687-1499-2013-115
  3. ISMAIL, D. K. B., DOUILLARD, C., KEROUEDAN, S. Reducing the convergence loss of 3-dimensional turbo codes. In Proceedings of the 6th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). Brest (France), 2010, p. 146–150. DOI: 10.1109/ISTC.2010.5613823
  4. NOUR, C. A., DOUILLARD, C. Rotated QAM constellations to improve BICM performance for DVB-T2. In Proceedings of the 10th IEEE International Symposium on Spread Spectrum Techniques and Applications (ISSSTA). Bologna (Italy), 2008, p. 354–359. DOI: 10.1109/ISSSTA.2008.71
  5. LI, M., NOUR, C., JEGO, C., et al. Design of rotated QAM mapper/demapper for the DVB-T2 standard. In Proceedings of the IEEE Workshop on Signal Processing Systems (SIPS). Tampere (Finland), 2009, p. 18–23. DOI: 10.1109/SIPS.2009.5336265
  6. TRAN, N., NGUYEN, H., LE-NGOC, T. Performance of BICMID with signal space diversity. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 5, p. 1732–1742. DOI: 10.1109/TWC.2007.360375
  7. LI, M., BPURDOUX, A., DEJONGHE, A., et al. A geometrical approach for highly efficient soft demodulation of rotated constellations. In Proceedings of the IEEE Workshop on Signal Processing Systems (SIPS). Quebec (Canada), 2012, p. 179–184. DOI: 10.1109/SIPS.2012.63
  8. KEKRT, D., LUKES, T., KLIMA, M., et al. 2D iterative map detection: principles and applications in image restoration. Radioengineering, 2014, vol. 23, no. 2, p. 618–631. ISSN: 1805-9600
  9. ANASTASOPOULOS, A., CHUGG, K. M. Adaptive soft-input softoutput algorithms for iterative detection with parametric uncertainty. IEEE Transactions on Communications, 2000, vol. 48, no. 10, p. 1638–1649. DOI: 10.1109/26.871389
  10. ISMAIL, D. K. B. Towards Ideal Codes: Looking for New Turbo Code Schemes. (Ph.D. thesis), Telecomm. Bretagne, 2011.
  11. YAO, R., GAO, F., ZHANG, K., et al. Theoretical analysis and performance study of 3-dimension turbo codes. Journal of Harbin Institute of Technology, 2014, vol. 46, no. 11, p. 95–100. DOI: 0367-6234(2014)11-0095-06
  12. ETSI EN 302 755, V1.3.1 (2012-04). Digital Video Broadcasting (DVB): Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2). Standard, European Telecommunications Standards Institute (ETSI), Sophia Antipolis Cedex, France, 2012.
  13. BOUTROS, J., VITERBO, E. Signal space diversity: a power- and bandwidth-efficient diversity technique for the rayleigh fading channel. IEEE Transactions on Information Theory, 1998, vol. 44, no. 4, p. 1453–1467. DOI: 10.1109/18.681321
  14. LI, P., CHANG, Y., FENG, N., et al. A novel hierarchical QAM-based unequal error protection scheme for H.264/AVC video over frequency-selective fading channels. IEEE Transactions on Consumer Electronics, 2010, vol. 56, no. 4, p. 2741–2746. DOI: 10.1109/TCE.2010.5681164
  15. SKLAR, B. Digital Communications: Fundamentals and Applications. New York (USA): Pearson Education Limited, 2013. ISBN: 1292026065
  16. NOUR, C. A., DOUILLARD, C. On lowering the error floor of high order turbo BICM schemes over fading channels. In Proceedings of the IEEE Global Telecommunications Conference (GlobeCom). San Francisco (USA), 2006, p. 1–5. DOI: 10.1109/GLOCOM.2006.96
  17. SUN, Q., QI, W. Soft-demodulation algorithm for 64QAM and it’s application in HSPA+. In Proceedings of the 11th IEEE International Conference on Signal Processing (ICSP). Beijing (China), 2012, p. 2309–2312. DOI: 10.1109/ICoSP.2012.6492042
  18. 3GPP2, C.S0002-F. Physical Layer Standard for CDMA2000 Spread Spectrum Systems. Standard, Third Generation Partnership Project 2 (3GPP2), Seattle, 2012.
  19. BERROU, C., GRALL, I. A., MOUHAMEDOU, Y. O. C. Adding a rate-1 third dimension to turbo codes. In Proceedings of the IEEE Information Theory Workshop (ITW). Lake Tahoe (USA), 2007, p. 156–161. DOI: 10.1109/ITW.2007.4313066

Keywords: 3D-Turbo code, rotated mapping, Bit-Interleaved Coded Modulation (BICM), key-bit protection, 2D iterative soft demodulating-decoding algorithm

B. Csuka, Z. Kollar [references] [full-text] [DOI: 10.13164/re.2016.0801] [Download Citations]
Software and Hardware Solutions for Channel Estimation based on Cyclic Golay Sequences

This paper presents channel estimation methods based on cyclic complementary Golay sequences. First, the conventional Golay correlator is investigated, then a frequency domain approach using Discrete Fourier Transform (DFT) is provided. A complex valued fast Golay correlator is introduced which can be used for the estimation of complex valued channel impulse response. Furthermore, this paper presents the Recursive DFT (R-DFT), a signal processing architecture which may be beneficial compared to the well-known Fast Fourier Transform (FFT). The R-DFT is able to efficiently calculate a point-by-point block spectra of the input signal, which makes it suitable for hardware implementation. Throughout the paper, the R-DFT is applied and it is compared to the conventional estimation methods. Finally, the efficiency of the proposed schemes is compared through simulations based on the 60 GHz WiGig and the COST 207 standard, applying various channel models.

  1. GONG, G., HUO, F., YANG, Y. Large zero autocorrelation zones of Golay seqeunces and their applications. IEEE Transactions on Communications, 2013, vol. 61, no. 9, p. 3967–3979. DOI: 10.1109/TCOMM.2013.072813.120928
  2. DONATO, P. G., FUNES, M. A., HADAD, M. N., et al. Optimised Golay correlator. Electronics Letters, 2009, vol. 45, no. 7, p. 380–381. DOI: 10.1049/el.2009.2923
  3. LI, S., YUE, G., CHENG, X., et al. A novel and robust timing synchronization method for SC-FDE 60 GHz WPAN systems. In Proceedings of the 14th IEEE International Conference on Communication Technology. Chengdu (China), 2012, p. 262–267. DOI: 10.1109/ICCT.2012.6511226
  4. WU, H., LIN, P., CHEN, K. A novel frequency offset estimation algorithm with wide range and high accuracy for OFDM system. Journal of Networks, 2014, vol. 9, no. 8, p. 2218–2223. DOI: 10.4304/jnw.9.8.2218-2223
  5. LEI, M., HUANG, Y. CFR and SNR estimation based on complementary Golay sequences for single-carrier block transmission in 60-GHz WPAN. In Proceedings of the IEEE Wireless Communications and Networking Conference. Budapest (Hungary), 2009, p. 1–5. DOI: 10.1109/WCNC.2009.4917623
  6. CSUKA, B., KOLLAR, I., KOLLAR, Z., et al. Comparison of signal processing methods for calculating point-by-point discrete Fourier transforms. In Proceedings of the 26th International Conference Radioelektronika. Kosice (Slovakia), 2016, p. 217–221. DOI: 10.1109/RADIOELEK.2016.7477394
  7. VARGA, L., KOLLAR, Z. Low complexity FBMC transceiver for FPGA implementation. In Proceedings of the 23rd International Conference Radioelektronika. Pardubice (Czech Republic), 2013, p. 219–223. DOI: 10.1109/RadioElek.2013.6530920
  8. JACOBSEN, E., LYONS, R. The sliding DFT. IEEE Signal Processing Magazine, 2003, vol. 20, no. 2, p. 74–80. DOI: 10.1109/MSP.2003.1184347
  9. VARGA, L., KOLLAR, Z., HORVATH, P. Recursive discrete Fourier transform based SMT receivers for cognitive radio applications. In Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Vienna (Austria), 2012, p. 130–133. ISBN: 978-1-4577-2191-5
  10. MALTSEV, A., ERCEG, V., PERAHIA, E., et al. Channel Models for 60 GHz WLAN Systems. 152 pages. [Online] Cited 2016-01-07. Available at: https://mentor.ieee.org/802.11/dcn/09/11-09-0334-08- 00ad-channel-models-for-60-ghz-wlan-systems.doc
  11. IEEE STANDARD FOR INFORMATION TECHNOLOGY. Local and Metropolitan Area Networks – Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Std 802.11ad-2012. 628 pages. [Online] Cited 2016-01-07. Available at: http://ieeexplore.ieee.org/document/6392842/
  12. COST 207. Digital Land Mobile Radio Communications (Final Report). 404 pages. ISBN: 92-825-9946-9

Keywords: Channel estimation, Golay sequences, R-DFT

M. H. Hachemi, M. Feham, H. E. Adardour [references] [full-text] [DOI: 10.13164/re.2016.0808] [Download Citations]
Predicting the Probability of Spectrum Sensing with LMS Process in Heterogeneous LTE Networks

Mobile communication systems present an actuality subject in academic and industrial research activities due to several phenomena such as interferences, multipath, fading, and shadowing. All this lead to a severe perturbation on handover mechanism which depends on specific reports, essentially, reference signal received power (RSRP) and signal-to-interference and noise ratio(SINR). In this paper, we design a new technique in handover domain; it consists of combining energy detection method used in cognitive radio with least mean square (LMS) process in order to prognosticate the handover impact in a realistic scenario of heterogeneous LTE network. More exactly, technique sense of the word "triggering" will be changed to a probability of detection Pd. The proposed algorithm cycle follows two main steps; Firstly, predict at what time the absence of spectrum (primary user) will occur, using a predicted sensing probability Pˆd (t+p) . Secondly, search others spectrums in this time by calculating Pd(t) for each sensed signal and hand-off secondary user in the best spectrum. The results achieved of the simulation are evaluating, it shows that the proposed method predict the original Pd correctly with minimal errors and select the best spectrum successfully.

  1. HOLMA, H., TOSKALA, A. LTE for UMTS - OFDMA and SCFDMA Based Radio Access. Chippenham (UK): John Wiley & Sons, Ltd. 2009. ISBN-13: 978-0-470-99401-6
  2. GODOR, G., JAKO Z., KNAPP A., et al. A survey of handover management in LTE-based multi-tier femto-cell networks: Requirements, challenges and solutions. ELSEVIER Computer Networks, 15 January 2015, vol. 76, p. 17–41. DOI: 10.1016/j.comnet.2014.10.016
  3. SESIA, S., TOUFIK, I., BAKER, M. LTE – The UMTS Long Term Evolution: From Theory to Practice. 2nd ed. Chippenham (UK): John Wiley & Sons, Ltd. 2011. ePDF ISBN-13: 9780470978511
  4. 3GPP, Technical Report, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (UTRA) (Release 7) TR25.814 V7.1.0. [Online] Cited 09-2006. 132 pages. Available at: www.qtc.jp/3GPP/Specs/25814-710.pdf
  5. GHOSH, A., RATASUK R., MONDAL B., et al. LTE-advanced: next generation wireless broadband technology. IEEE Wireless Communications, June 2010, vol. 17, no. 3, p. 10–22. DOI: 10.1109/MWC.2010.5490974
  6. GHOSH, A., RATASUK R. Essentials of LTE and LTE-A. Cambridge (UK): Cambridge University Press. 2011. ISBN: 9781139098021
  7. AFROZ, F., SANDRASEGARAN, K. GHOSHAL, P. Performance analysis of PF, M-LWDF and EXP/PF packet scheduling algorithms in 3GPP LTE downlink. In Australasian Telecommunication Networks and Applications Conference (ATNAC). Southbank (VIC, Australia), 26-28 Nov. 2014, p. 87–92. DOI: 10.1109/ATNAC.2014.7020879
  8. AFROZ, F. Research in 4G Mobile Network. MES Project, University of Technology, Sydney, 2014.
  9. AFROZ, F., SUBRAMANIAN, R., HEIDARY, R., et al. SINR, RSRP, RSSI and RSRQ measurements in Long Term Evolution Networks. International Journal of Wireless & Mobile Networks (IJWMN), August 2015, vol. 7, no. 4, p. 113–123. DOI: 10.5121/ijwmn.2015.7409
  10. SESIA S., TOUFIK I., BAKER, M. LTE- The UMTS Long Term Evolution: From Theory to Practice. Chichester (UK): John Wiley & Sons, Ltd. 2009. ISBN-13: 9780470697160
  11. KIM, R. Y., JUNG, I., YANG, X. Y. et al. Advanced handover schemes in IMT-advanced systems [WiMAX/LTE Update]. IEEE Communications Magazine, August 2010, vol. 48, no. 8, p. 78–85. DOI: 10.1109/MCOM.2010.5534590
  12. LUAN, L., WU, M., SHEN, J. et al. Optimization of handover algorithms in LTE high-speed railway networks. International Journal of Digital Content Technology and Its Applications (JDCTA), March 2012, vol. 6, no. 5, p. 79–87. DOI: 10.4156/jdcta.vol6.issue5.10
  13. TSAI, K-L., LIU, H-Y., LIU, Y-W. Using fuzzy logic to reduce ping-pong handover effects in LTE networks. Soft Computing, May 2016, vol. 20, no. 5, p. 1683–1694 DOI: 10.1007/s00500- 015-1655-z
  14. JEONG, B., SHIN, S., JANG, I., et al. A smart handover decision algorithm using location prediction for hierarchical macro/femtocell networks. In IEEE Vehicular Technology Conference (VTC Fall). San Francisco (CA, USA), 5-8 September 2011, p. 1–5. DOI: 10.1109/VETECF.2011.6093060
  15. WU, C-S., CHU, Y-S., FANG, C-H. The periodic scan and velocity decision handover scheme for next generation femtocell/macro-cell overlay networks. In International Conference on ICT Convergence (ICTC). Jeju (South Korea), 14-16 October 2013, p. 201–206. DOI: 10.1109/ICTC.2013.6675340
  16. CHANG, C-W., LIN, Y-H., JAN, R-H., et al. Efficient measurement procedure for handover in LTE femto-cell networks. In International Conference on Selected Topics in Mobile and Wireless Networking (iCOST). Avignon (France), 2-4 July 2012, p. 119–123. DOI: 10.1109/iCOST.2012.6271278
  17. SAHAI, A., HOVEN, N., MISHRA, S-M., et al. Fundamental Tradeoffs in Robust Spectrum Sensing for Opportunistic Frequency Reuse. Dept. of Electrical Engg. and Computer Science, Univ. of California, Berkeley. [Online] Cited 2006. 75 p. Available at: http://www.eecs.berkeley.edu/~sahai/Papers/CognitiveTechReport 06.pdf
  18. AKYILDIZ, I. F., LO, B. F., BALAKRISHNAN, R. Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, March 2011, vol. 4, no. 1, p. 40–62. DOI: 10.1016/j.phycom.2010.12.003
  19. AKYILDZ, I. F., LEE, W. Y., VURAN, M. C., et al. NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 15 September 2006, vol. 50, no. 13, p. 2127–2159. DOI: 10.1016/j.comnet.2006.05.001
  20. LETAIEF, K. B., ZHANG, W. Cooperative Spectrum Sensing. Chapter in Cognitive Wireless Communications Networks. Eds. Hossain, E., Bhargava, V. Berlin (Germany): Springer, 2007. P. 115–138. Available at: http: //link.springer.com/ chapter/10.1007%2F978-0-387-68832-9_4
  21. GENTNER, C., GROH, I., SAND, S., et al. False alarm and detection probability for NLOS detection in LTE environments. In 8th International Workshop on Multi-Carrier Systems & Solutions (MC-SS). Herrsching (Germany), 3-4 May 2011, p. 1–5. DOI: 10.1109/MC-SS.2011.5910721
  22. FODOR, V., GLAROPOULOS, I., PESCOSOLIDO, L. Detecting low-power primary signals via distributed sensing to support opportunistic spectrum access. In IEEE International Conference on Communications ICC '09. Dresden (Germany), 14-18 June 2009, p. 1–6. DOI: 10.1109/ICC.2009.5198909
  23. MAZROOEI SEBDANI, M., JAVAD OMIDI, M. Detection of an LTE signal based on constant false alarm rate methods and Constant Amplitude Zero Autocorrelation sequence. In International Conference on Intelligent and Advanced Systems (ICIAS). Kuala Lumpur (Malaysia), 15-17 June 2010, p. 1–6. DOI: 10.1109/ICIAS.2010.5716190
  24. YOO, S.-J. Efficient traffic prediction scheme for real-tTime VBR MPEG video transmission over high-speed networks. IEEE Transactions on Broadcasting, March 2002, vol. 48, no. 1, p. 10 to 18. DOI: 10.1109/11.992849
  25. JANSEN, T., BALAN, I., TURK, J., et al. Handover parameter optimization in LTE self-organizing networks. In IEEE 72nd Conference on Vehicular Technology Conference Fall (VTC 2010- Fall). Ottawa (ON, Canada), 6-9 September 2010. p. 1–5. DOI: 10.1109/VETECF.2010.5594245
  26. DASHTI, M., CHEN, J. Handover strategies between femto and macro-cells, the results of this work submitted in July 2014 to the IEEE International Conference on Computer Communications (IEEE INFOCOM 2014). 11 p. Available at: iplan.project.citilab.fr /files/D2-4-heterogeneous.pdf
  27. 3GPP, Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer; Measurements (Release 8) TS 36.214 V8.0.0. [Online] Cited 09-2007. 11 pages. Available at: www.qtc.jp/3GPP/Specs/36214- 800.pdf
  28. ANPALAGAN, A., BENNIS M., VANNITHAMBY, R. Design and Deployment of Small Cell Networks. Cambridge (UK): 2016. ISBN-13: 978-1-107-05671-8
  29. BECVAR, Z., MACH., P, VONDRA, M. Handover Procedure in Femto-cells. Chapter 9 in Femto-cell Communications and Technologies: Business Opportunities and Deployment Challenges. Eds. Saeed, R-A., Chaudhari B-S., Mokhtar, R-A. Hershey (USA): Information Science Reference IGI Global. January 2012. P. 157–179. DOI: 10.4018/978-1-4666-0092- 8.ch010
  30. VARDHAN, C.S., RATNAM, D.V., BHAGYASREE, N., et al. Analysis of path loss models of 4G femto-cells. In Eleventh International Conference on Wireless and Optical Communications Networks (WOCN). Vijayawada (India), 11-13 Sept. 2014, p. 1–6. DOI: 10.1109/WOCN.2014.6923071
  31. ALEXIOU, A., BOURAS, C., KOKKINOS, V., et al. Interference behavior of integrated femto and macro-cell environments. In 2011 IFIP Wireless Days (WD). Niagara Falls (ON, Canada), 10-12 Oct. 2011, p. 1–5. DOI: 10.1109/WD.2011.6098161
  32. RAPPAPORT, T. S. Wireless Communications: Principles and Practice. 2nd ed. NJ (USA): Prentice Hall, 2002. ISBN-13: 9780130422323
  33. ADARDOUR, H. E., MELIANI, M., HACHEMI, M. H. Estimation of the spectrum sensing for the cognitive radios: Test analysing using Kalman filter. Wireless Personal Communications, September 2015, vol. 84, no. 2, p. 1535–1549. DOI: 10.1007/s11277-015-2701-y
  34. SURESH BABU, R., SUGANTHI, M. Review of energy detection for spectrum sensing in various channels and its performance for cognitive radio applications. American Journal of Engineering and Applied Sciences, 2012, vol. 5, no. 2, p. 151–156. DOI: 10.3844/ajeassp.2012.151.156
  35. WU, S-W., ZHU, J-K., QIU, L., et al. SNR-based weighted cooperative spectrum sensing in cognitive radio networks. Journal of China Universities of Posts and Telecommunications, April 2010, vol. 17, no. 2, p. 1–7. DOI: 10.1016/S1005-8885(09)60437-4
  36. DIGHAM, F. F., ALOUINI, M. S., SIMON, M. K. On the energy detection of unknown signals over fading channels. In IEEE International Conference on Communications 2003 (ICC '03). Anchorage (USA), 11-15 May 2003, vol. 5, no. 1, p. 3575–3579. DOI: 10.1109/ICC.2003.1204119
  37. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series, and Products. 5th ed. Academic Press, January 1994. ISBN-13: 978-0122947551
  38. NUTTALL, A. H. Some integrals involving the QM function (Corresp.). IEEE Transactions on Information Theory, vol. 21, no. 1, p. 95–96. DOI: 10.1109/TIT.1975.1055327
  39. GRADSHTEYN, I. S., RYZHIK, I. M. Table of Integrals, Series, and Products. 6th ed. San Diego (CA, USA): Academic Press, July 2000. ISBN-10: 0122947576
  40. ZHANG, X., XIAO, Z., BABU MAHATO, S, et al. Dynamic user equipment-based hysteresis-adjusting algorithm in LTE femtocell networks. IET Communications, 27 November 2014, vol. 8, p. 3050–3060 DOI: 10.1049/iet-com.2014.0277
  41. BECVAR, Z., MACH, P. Adaptive hysteresis margin for handover in femtocell networks. In 6th International Conference on Wireless and Mobile Communications (ICWMC). Valencia (Spain), 20-25 September 2010, p. 256–261. DOI: 10.1109/ICWMC.2010.17
  42. AZIZ, D., SIGLE, R. Improvement of LTE handover performance through interference coordination. In IEEE 69th Vehicular Technology Conference (VTC). Barcelona (Spain), 26-29 April 2009, p. 1–5. DOI: 10.1109/VETECS.2009.5073597
  43. LIN, C-C., SANDRASEGARAN, K., REEVES, S. Handover algorithm with joint processing in LTE-advanced. In 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). Phetchaburi (Thailand), 16-18 May 2012, p. 1–4. DOI: 10.1109/ECTICon.2012.6254240
  44. LIN, C-C., SANDRASEGARAN, K., ADIBAH MOHD RAMLI, H., et al. Optimized performance evaluation of LTE hard handover algorithm with average RSRP constraint. International Journal of Wireless & Mobile Networks (IJWMN), April 2011, vol. 3, no. 2, p. 1–16. DOI: 10.5121/ijwmn.2011.3201
  45. WANG, Y-C., CHUANG, C-A. Efficient eNB deployment strategy for heterogeneous cells in 4G LTE systems. Computer Networks, 14 March 2015, vol. 79, p. 297–312. DOI: 10.1016/j.comnet.2015.01.013
  46. Mobile and wireless communications Enablers for Twenty-twenty (2020) Information Society (METIS). Available at: https://www.metis2020.com/documents/simulations/
  47. 3GPP, LTE; Evolved Universal Terrestrial Radio Access (EUTRA); Radio Resource Control (RRC); Protocol specification (3GPP TS 36.331 version 9.1.0 Release 9) TS 136 331 V9.1.0. [Online] Cited 02-2010. 235 pages. Available at: www.3gpp.org/dynareport/36331.htm

Keywords: Adaptive filters, LMS process, LTE/LTE-A, energy detection, handover, spectrum sensing.

M. Agarwal, T. K. Rawat [references] [full-text] [DOI: 10.13164/re.2016.0821] [Download Citations]
VLSI Implementation of Fixed-Point Lattice Wave Digital Filters for Increased Sampling Rate

Low complexity and high speed are the key requirements of the digital filters. These filters can be realized using allpass filters. In this paper, design and minimum multiplier implementation of a fixed point lattice wave digital filter (WDF) based on three port parallel adaptor allpass structure is proposed. Here, the second-order allpass sections are implemented with three port parallel adaptor allpass structures. A design-level area optimization is done by converting constant multipliers into shifts and adds using canonical signed digit (CSD) techniques. The proposed implementation reduces the latency of the critical loop by reducing the number of components (adders and multipliers). Three design examples are included to analyze the effectiveness of the proposed approach. These are implemented in verilog HDL language and mapped to a standard cell library in a 0.18 μm CMOS process. The functionality of the implementations have been verified by applying number of different input vectors. Results and simulations demonstrate that the proposed design method leads to an efficient lattice WDF in terms of maximum sampling frequency. The cost to pay is small area overhead. The postlayout simulations have been done by HSPICE with CMOS transistors.

  1. JOHANSSON, H., WANHAMMAR, L. Wave digital filter structures for high-speed narrow-band and wide-band filtering. IEEE Transaction of Circuits and Systems-II: Analog and Digital Signal Processing, 1999, vol. 46, no. 6, p. 726–741. ISSN: 1057-7130. DOI: 10.1109/82.769781
  2. FETTWEIS, A. Wave digital filters: Theory and practice. In Proceedings of the IEEE. 1986, p. 270–327. DOI: 10.1109/PROC.1986.13458
  3. WICKS, T., SUMMERFIELD, S. VLSI implementation of high speed wave digital filters based on a restricted coefficient set. In IEEE International Symposium on Circuits and Systems (ISCAS ’93). Chicago (USA), 1993, p. 603–606. DOI: 10.1109/ISCAS.1993.393793
  4. SUMMERFIELD, S., WICKS, T., LAWSON, S. Design and VLSI architecture and implementation of wave digital filters using short signed digit coefficients. In IEE Proceedings-Circuits Devices Systems. Oct. 1996, p. 259–266. DOI: 10.1049/ip-cds:19960705
  5. SUMMERFIELD, S., LAWSON, S. The design of wave digital filter using fully pipelined bit-level systolic arrays. Journal of VLSI Signal Processing, Sep. 1990, vol. 2, p. 51-–64. DOI: 10.1007/BF00931036
  6. SINGH, R. J., MCCANNY, J. V. High performance VLSI architecture for Wave Digital Filtering. Journal of VLSI Signal Processing, 1992, vol. 4, p. 269–278. DOI: 10.1007/BF00930640
  7. ANDERSON, M. S. , SUMMERFIELD, S., LAWSON, S. Realization of lattice wave digital filters using three-port adaptors.Electronics Letters, 1995, vol. 31, no. 8, p. 628–629. DOI: 10.1049/el:19950459
  8. AGARWAL, M., RAWAT, T. K. VLSI implementation of lattice wave digital filters using fixed point arithmetic for increased maximum sampling frequency. Journal of Computer Engineering and Informention Technology, 2015, vol. 4, no. 4. DOI: 10.4172/2324- 9307.1000138
  9. OHLSSON, H. Studies on implementation of digital filters with high throughput and low power consumption. Thesis no. 1031, Linkoping University, Sweden, 2003.
  10. YLI-KAAKINEN, J., SARAMAKI, T. A systematic algorithm for the design of lattice wave digital filters with short-coefficient wordlength. IEEE Transaction on Circuits and Systems-I, 2007, vol. 54, no. 8, p. 1838–1851. DOI: 10.1109/TCSI.2007.902513
  11. OHLSSON, H., GUSTAFSSON, O., JOHANSSON, H., et al. Implementation of bit-parallel lattice wave digital filters with increased maximal sample rate. In Proceedings of 8th IEEE Conference on Electronics, Circuits and Systems (ICECS), 2001, vol. 1, p. 71–74. DOI: 10.1109/ICECS.2001.957672
  12. JOHANSSON, K., GUSTAFSSON, O., WANHAMMAR, L. Multiple constant multiplication for digit-serial implementation of low power FIR filters. WSEAS Transaction on Circuits and Systems, 2006, vol. 5, no. 7, p. 1001–1008.
  13. GAZSI, L. Explicit formulas for lattice wave digital filters. IEEE Transactions on Circuits and Systems, 1985, vol. 32, no. 1, p. 68–88. DOI: 10.1109/TCS.1985.1085595
  14. AGARWAL, M., BARSAINYA, R., RAWAT, T. K. FPGA implementation of Hilbert transformer based on lattice wave digital filters. In Proceedings of 4th IEEE Conference on Reliability, Infocom Technologies and Optimization (ICRITO). 2015, p. 1–5. DOI: 10.1109/ICRITO.2015.7359331
  15. BARSAINYA, R., AGARWAL, M., RAWAT, T. K. Multiplier-less implementation of quadrature mirror filter. In Proceedings of 4th IEEE Conference on Reliability, Infocom Technologies and Optimization (ICRITO). 2015, p. 1–6. DOI: 10.1109/ICRITO.2015.7359328
  16. VENKAT, K. Wave Digital Filtering Using MSP430 – Application Report, Texas Instruments. 25 pages. 2006.
  17. WANHAMMAR, L. DSP Integrated Circuits. New York (USA): Academic Press, 1999.
  18. GUSTAFSSON, O., WANHAMMAR, L. Maximally fast scheduling of bit-serial lattice wave digital filters using three-port adaptor allpass sections. In Proceeding of Nordic Signal Processing Symposium. 2000, p. 441–444.
  19. OHLSSON, H., WANHAMMAR, L. Implementation of bit-parallel lattice wave digital filters. In Proceeding of Swedish System-on-Chip Conference. 2001, p. 71–74.
  20. GOETTE, J. On fixed-point filter realizations. Bern University of Applied Sciences, Biel/Bienne Institute of Human Centered Engineering - microLab, Feb. 2015.
  21. VOLKOVA, A., HILAIRE, T. Fixed-point implementation of lattice wave digital filter: comparison and error analysis. In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO). 2015, p. 1118–1122. DOI: 10.1109/EUSIPCO.2015.7362557
  22. YATES, R. Practical Considerations in Fixed-Point FIR Filter Implementations. Sep. 2010.
  23. MATHWORKS. Fixed-Point Filter Design in MATLAB (documentation). [online] Cited 2015-08-14. Available at: http://in.mathworks.com/help/dsp/ug/fixed-point-filter-design.html
  24. DOLECEK, G. J., LADDOMADA, M. An improved class of multiplierless decimation filters: Analysis and design. Digital Signal Processing, 2013, vol. 23, no. 5, p. 1773–1782. DOI: 10.1016/j.dsp.2013.05.011
  25. Constant Multiplier Optimization to Reduce Area (MATLAB Examples). [Online] Cited 2015-08-20. Available at: http://www.mathworks.com/examples/matlab-hdl-coder/1311- constant-multiplier-optimization-to-reduce-area
  26. NELSON, B. Test Generation and Design for Test (Mentor Graphics) Document. [Online] Cited 2016-03-10. Available at: http://www.eng.auburn.edu/ strouce/class/elec6970/NelsonBIST.pdf

Keywords: VLSI implementation, lattice wave digital filters, three port adaptor, canonical signed digit coefficient, fixed point arithmetic