ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

April 2020, Volume 29, Number 1 [DOI: 10.13164/re.2020-1]

Show all Hide all

C. Tomassoni, M. Bozzi [references] [full-text] [DOI: 10.13164/re.2020.0001] [Download Citations]
Microwave Components Realized by Additive Manufacturing Techniques

This paper presents an overview of the use of additive manufacturing (AM) technologies for the implementation of microwave components. Two major technological solutions, based on the AM of plastic materials, are discussed: in the former case, the AM plastic is used as a dielectric material that constitutes the component. Conversely, in the latter case, the plastic material is a mere support of the metallization, thus avoiding the contact of the AM plastic with the electromagnetic field and reducing losses. Several examples are illustrated and discussed, to highlight benefits and limitations of AM techniques in the current scenario of microwave applications.

  1. D’AURIA, M., OTTER, W. J., HAZELL, J., et al. 3-D printed metal-pipe rectangular waveguides. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 9, p. 1339–1349. DOI: 10.1109/TCPMT.2015.2462130
  2. MOSCATO, S., BAHR, R., LE, T., et al. Additive manufacturing of 3D substrate integrated waveguide components. Electronics Letters, 2015, vol. 51, no. 18, p. 1426–1428. DOI: 10.1049/el.2015.2298
  3. MIN LIANG, SHEMELYA, C., MACDONALD, E., et al. 3-D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1346–1349. DOI: 10.1109/LAWP.2015.2405054
  4. GUO, C., SHANG, X., LI, J., et al. A lightweight 3-D printed Xband bandpass filter based on spherical dual-mode resonators. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 8, p. 568–570. DOI: 10.1109/LMWC.2016.2587838
  5. MOSCATO, S., BAHR, R., LE, T., et al. Infill dependent 3Dprinted material based on NinjaFlex filament for antenna applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1506–1509. DOI: 10.1109/LAWP.2016.2516101
  6. CHIO, T., HUANG, G., ZHOU, S. Application of direct metal laser sintering to waveguide-based passive microwave components, antennas, and antenna arrays. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 632–644. DOI: 10.1109/JPROC.2016.2617870
  7. PEVERINI, O. A., LUMIA, M., CALIGNANO, F., et al. Selective laser melting manufacturing of microwave waveguide devices. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 620–631. DOI: 10.1109/JPROC.2016.2620148
  8. MAAS, J., LIU, B., HAJELA, S., et al. Laser-based layer-by-layer polymer stereolithography for high-frequency applications. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 645–654. DOI: 10.1109/JPROC.2016.2629179
  9. ROJAS-NASTRUCCI, E. A., NUSSBAUM, J. T., CRANE, N. B., et al. Ka-band characterization of binder jetting for 3-D printing of metallic rectangular waveguide circuits and antennas. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 9, p. 3099–3108. DOI: 10.1109/TMTT.2017.2730839
  10. VERPLOEGH, S., COFFEY, M., GROSSMAN, E., et al. Properties of 50–110-GHz waveguide components fabricated by metal additive manufacturing. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 12, p. 5144–5153. DOI: 10.1109/TMTT.2017.2771446
  11. DAHLE, R., LAFORGE, P., KUHLING, J. 3-D printed customizable inserts for waveguide filter design at X-band. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 12, p. 1080–1082. DOI: 10.1109/LMWC.2017.2754345
  12. VENANZONI, G., DIONIGI, M., TOMASSONI, C., et al. 3-Dprinted quasi-elliptical evanescent mode filter using mixed electromagnetic coupling. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 6, p. 497–499. DOI: 10.1109/LMWC.2018.2829627
  13. ADDAMO, G., PEVERINI, O. A., MANFREDI, D., et al. Additive manufacturing of Ka-band dual-polarization waveguide components. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3589–3596. DOI: 10.1109/TMTT.2018.2854187
  14. SHEN, J., RICKETTS, D. S. Additive manufacturing of complex millimeter-wave waveguides structures using digital light processing. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 3, p. 883–895. DOI: 10.1109/TMTT.2018.2889452
  15. DISTLER, F., SIPPEL, M., SCHUR, J., et al. Additively manufactured dielectric waveguides for advanced concepts for millimeter-wave interconnects. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 11, p. 4298–4307. DOI: 10.1109/TMTT.2019.2939831
  16. TOMASSONI, C., BAHR, R., BOZZI, M., et al. 3D printed substrate integrated waveguide filters with locally controlled dielectric permittivity. In 46th European Microwave Conference (EuMC2016). London (UK), Oct. 4–6, 2016, p. 253–256. DOI: 10.1109/EuMC.2016.7824326
  17. MASSONI, E., SILVESTRI, L., ALAIMO, G., et al. 3D-printed substrate integrated slab waveguide for single-mode bandwidth enhancement. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 6, p. 536–538. DOI: 10.1109/LMWC.2017.2701323
  18. BOZZI, M., DESLANDES, D., ARCIONI, P., et al. Efficient analysis and experimental verification of substrate integrated slab waveguides for wideband microwave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2005, vol. 15, no. 3, p. 296–306. DOI: 10.1002/mmce.20085
  19. BOZZI, M., GEORGIADIS, A., WU, K. Review of substrate integrated waveguide (SIW) circuits and antennas. IET Microwaves, Antennas and Propagation, 2011, vol. 5, no. 8, p. 909–920. DOI: 10.1049/iet-map.2010.0463
  20. GARG, R., BAHL, I., BOZZI, M. Microstrip Lines and Slotlines. 3rd ed. Artech House, 2013. ISBN-13: 978-1608075355
  21. MOSCATO, S., PASIAN, M., BOZZI, M., et al. Exploiting 3D printed substrate for microfluidic SIW sensor. In 45th European Microwave Conference (EuMC2015). Paris (France), Sept. 7–10, 2015, p. 28–31. DOI: 10.1109/EuMC.2015.7345691
  22. ROCCO, G. M., BOZZI, M., SCHREURS, D., et al. 3D-printed microfluidic sensor in SIW technology for liquids characterization. IEEE Transactions on Microwave Theory and Techniques, 2020, vol. 68, p. 1–10. Early access 17 Dec 2019. DOI: 10.1109/TMTT.2019.2953580
  23. DIONIGI, M., TOMASSONI, C., VENANZONI, G., et al. Simple high-performance metal-plating procedure for stereolithographically 3D-printed waveguide components. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 11, p. 953–955. DOI: 10.1109/LMWC.2017.2750090
  24. GETERUD, E. G., BERGMARK, P., YANG, J. Lightweight waveguide and antenna components using plating on plastics. In 7th European Conference on Antennas and Propagation (EuCAP 2013). Gothenburg (Sweden), 2013, p. 1812–1815. ISBN: 978-88- 907018-3-2
  25. TOMASSONI, C., SORRENTINO, R. A new class of pseudoelliptic waveguide filters using resonant posts. In IEEE/MTT-S International Microwave Symposium Digest (IMS 2012). Montreal (QC, Canada), 2012, p. 1–3. DOI: 10.1109/MWSYM.2012.6259395
  26. TOMASSONI, C., SORRENTINO, R. A new class of pseudoelliptic waveguide filters using dual-post resonators. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 6, p. 2332–2339. DOI: 10.1109/TMTT.2013.2258171
  27. GENTILI, F., PELLICCIA, L., SORRENTINO, R., et al. High Qfactor compact filters with wide-band spurious rejection. In 42nd European Microwave Conference (EuMC 2012). Amsterdam (The Netherlands), 2012, p. 160–163. DOI: 10.23919/EuMC.2012.6459271
  28. TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Compact doublet structure for quasi-elliptical filters using stereolitographic 3D printing. In 47th European Microwave Conference (EuMC 2017). Nuremberg (Germany), 2017, p. 993–996. DOI: 10.23919/EuMC.2017.8231013
  29. TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Compact quasi-elliptic filters with mushroom-shaped resonators manufactured with 3-D printer. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3579–3588. DOI: 10.1109/TMTT.2018.2849067
  30. PELLICCIA, L., CACCIAMANI, F., TOMASSONI, C., et al. Ultra-compact high-performance filters based on TM dual-mode dielectric-loaded cavities. International Journal of Microwave and Wireless Technologies, 2014, vol. 6, no. 2, p. 151–159. DOI: 10.1017/S1759078713001001
  31. PELLICCIA, L., CACCIAMANI, F., TOMASSONI, C., et al. Ultra-compact filters using TM dual-mode dielectric-loaded cavities with asymmetric transmission zeros. In IEEE/MTT-S International Microwave Symposium Digest (IMS 2012). Montreal (QC, Canada), 2012, p. 1–3. DOI: 10.1109/MWSYM.2012.6258411
  32. BASTIOLI, S., TOMASSONI, C., SORRENTINO, R. A new class of waveguide dual-mode filters using TM and nonresonating modes. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 12, p. 3909–3917. DOI: 10.1109/TMTT.2010.2086068
  33. BASTIOLI, S., MARCACCIOLI, L., TOMASSONI, C., et al. Ultracompact highly-selective dual-mode pseudoelliptic filters. IET Electronics Letters, 2010, vol. 46, no. 2, p. 147–149. DOI: 10.1049/el.2010.2971
  34. TOMASSONI, C., BASTIOLI, S., SORRENTINO, R. Generalized TM dualmode cavity filters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3338–3346. DOI: 10.1109/TMTT.2011.2172622
  35. TOMASSONI, C., BASTIOLI, S., SNYDER, R. V. Propagating waveguide filters using dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 12, p. 4366–4375. DOI: 10.1109/TMTT.2015.2495284
  36. TOMASSONI, C., BASTIOLI, S., SNYDER, R. V. Compact mixed-mode filter based on TE101 cavity mode and TE01δ dielectric mode. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 12, p. 4434–4443. DOI: 10.1109/TMTT.2016.2623714
  37. KOZAKOWSKI, P., LAMECKI, A., MONGIARDO, M., et al. Computer-aided design of in-line resonator filters with multiple elliptical apertures. In IEEE MTT-S International Microwave Symposium Digest (IMS 2004). Fort Worth (TX, USA), 2004, p. 611–614. DOI: 10.1109/MWSYM.2004.1336058
  38. XIAO, J. K., ZHU, M., TIAN, L., et al. High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 12, p. 781–783. DOI: 10.1109/LMWC.2015.2495194
  39. WANG, H., CHU, Q. X. An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 3, p. 667–673. DOI: 10.1109/TMTT.2009.2013290
  40. BASTIOLI, S., SNYDER, R. V., JOJIC, P. High power in-line pseudoelliptic evanescent mode filter using series lumped capacitors. In Proceedings of the 41st European Microwave Conference (EuMC 2011). Manchester (UK), 2011, p. 87–89. DOI: 10.23919/EuMC.2011.6101723
  41. TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. A very compact 3D-printed doublet structure based on a double iris and a pair of slanting rods. In IEEE MTT-S International Microwave Symposium (IMS 2018). Philadelphia (PA, USA), June 10-15, 2018, p. 1103–1105. DOI: 10.1109/MWSYM.2018.8439368
  42. TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Additive manufacturing of a very compact doublet structure with asymmetric filtering function. In International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018). Ann Arbor (MI, USA), 2018, p. 1–3. DOI: 10.1109/IMWS-AMP.2018.8457127

Keywords: Additeve manufacturing, microwave components, microwave filters, slab waveguides, microwave sensors

M. R. Rufuie, A. Lamecki, P. Sypek, M. Mrozowski [references] [full-text] [DOI: 10.13164/re.2020.0010] [Download Citations]
Residue-Pole Methods for Variability Analysis of S-parameters of Microwave Devices with 3D FEM and Mesh Deformation

This paper presents a new approach for variability analysis of microwave devices with a high dimension of uncertain parameters. The proposed technique is based on modeling an approximation of system by its poles and residues using several modeling methods, including ordinary kriging, Adaptive Polynomial Chaos (APCE), and Support Vector Machine Regression (SVM). The computational cost is compared with the traditional Monte-Carlo method. To improve the efficiency, mesh deformation is applied within 3D FEM framework.

  1. PEVERINI, O. A., LUMIA, M., CALIGNANO, F., et al. Selective laser melting manufacturing of microwave waveguide devices. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 620–631. DOI: 10.1109/jproc.2016.2620148
  2. FISHMAN, G. Monte Carlo: Concepts, Algorithms, and Applications. Springer Science & Business Media, 2013. ISBN: 9780387945279
  3. ZHANG, Q., LIOU, J., MCMACKEN, J., et al. Development of robust interconnect model based on design of experiments and multiobjective optimization. IEEE Transactions on Electron Devices, 2001, vol. 48, no. 9, p. 1885–1891. DOI: 10.1109/16.944173
  4. NIEUWOUDT, A., MASSOUD, Y. On the impact of process variations for carbon nanotube bundles for VLSI interconnect. IEEE Transactions on Electron Devices, 2007, vol. 54, no. 3, p. 446–455. DOI: 10.1109/TED.2006.890364
  5. SWIDZINSKI, J. F., CHANG, K. Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, no. 12, p. 2316–2324. DOI: 10.1109/22.898980
  6. RUFUIE, M. R., GAD, E., NAKHLA, M. S., et al. Generalized hermite polynomial chaos for variability analysis of macromodels embeddedin nonlinear circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, vol. 4, no. 4, p. 673–684. DOI: 10.1109/TCPMT.2013.2285877
  7. PHAM, T., GAD, E., NAKHLA, M. S., et al. Decoupled polynomial chaos and its applications to statistical analysis of high-speed interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, vol. 4, no. 10, p. 1634–1647. DOI: 10.1109/TCPMT.2014.2340815
  8. RUFUIE, M. R., GAD, E., NAKHLA, M. S., et al. Fast variability analysis of general nonlinear circuits using decoupled polynomial chaos. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 12, p. 1860–1871. DOI: 10.1109/TCPMT.2015.2490240
  9. KAINTURA, A., DHAENE, T., SPINA, D. Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits. Electronics, 2018, vol. 7, no. 3, p. 1–30. DOI: 10.3390/electronics7030030
  10. YUCEL, A. C., BAGCđ, H., MICHIELSSEN, E. An ME-PC enhanced HDMR method for efficient statistical analysis of multiconductor transmission line networks. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 5, p. 685–696. DOI: 10.1109/TCPMT.2015.2424679
  11. ZHANG, Z., YANG, X., OSELEDETS, I. V., et al. Enabling highdimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, vol. 34, no. 1, p. 63–76. DOI: 10.1109/TCAD.2014.2369505
  12. KAPSE, I., ROY, S. Anisotropic formulation of hyperbolic polynomial chaos expansion for high-dimensional variability analysis of nonlinear circuits. In Proceedings of the 25th IEEE Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS). San Diego (USA), 2016, p. 123–126. DOI: 10.1109/EPEPS.2016.7835433
  13. AHADI, M., PRASAD, A. K., ROY, S. Hyperbolic polynomial chaos expansion (HPCE) and its application to statistical analysis of nonlinear circuits. In the 20th IEEE Workshop on Signal and Power Integrity (SPI). Turin (Italy), 2016, p. 1–4. DOI: 10.1109/SaPIW.2016.7496282
  14. PRASAD, A. K., ROY, S. Accurate reduced dimensional polynomial chaos for efficient uncertainty quantification of microwave/RF networks. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 10, p. 3697–3708. DOI: 10.1109/TMTT.2017.2689742
  15. TRINCHERO, R., LARBI, M., TORUN, H. M., et al. Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters. IEEE Access, 2019, vol. 7, p. 4056–4066. DOI: 10.1109/ACCESS.2018.2888903
  16. LAMECKI, A., KOZAKOWSKI, P., MROZOWSKI, M. Efficient implementation of the Cauchy method for automated CAD-model construction. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 7, p. 268–270. DOI: 10.1109/LMWC.2003.815185
  17. KOZIEL, S., CHENG, Q. S., BANDLER, J. W. Feature-based surrogates for low-cost microwave modelling and optimisation. IET Microwaves, Antennas Propagation, 2015, vol. 9, no. 15, p. 1706–1712. DOI: 10.1049/iet-map.2015.0246
  18. FERRANTI, F., DHAENE, T., KNOCKAERT, L. Compact and passive parametric macromodeling using reference macromodels and positive interpolation operators. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 2, no. 12, p. 2080–2088. DOI: 10.1109/TCPMT.2012.2213086
  19. FENG, F., ZHANG, C., MA, J., et al. Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 1, p. 60– 77. DOI: 10.1109/TMTT.2015.2504099
  20. LESZCZYNSKA, N., COUCKUYT, I., DHAENE, T., et al. Lowcost surrogate models for microwave filters. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 12, p. 969–971. DOI: 10.1109/LMWC.2016.2623248
  21. LAMECKI, A., BALEWSKI, L., MROZOWSKI, M. An efficient framework for fast computer aided design of microwave circuits based on the higher-order 3D finite-element method. Radioengineering, 2014, vol. 23, no. 4, p. 970–978.
  22. MARELLI, S., SUDRET, B. UQLab: A framework for uncertainty quantification in MATLAB. In the 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014). Liverpool (UK), 2014, p. 1–10. DOI: 10.1061/9780784413609.257
  23. PELCKMANS, K., SUYKENS, J., VANGESTEL, T., et al. LS-SVM Lab. Available at:http://www.esat.kuleuven.ac.be/sista/lssvmlab
  24. GORISSEN, D., COUCKUYT, I., DEMEESTER, P., et al. A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 2010, vol. 11, p. 2051–2055.
  25. LATANIOTIS, C., WICAKSONO, D., MARELLI, S., et al. UQLab User Manual – Kriging (Gaussian Process Modeling). Technical Report #UQLab-V1.3-105, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
  26. MARELLI, S., SUDRET, B. UQLab User Manual – Polynomial Chaos Expansions. Technical Report #UQLab-V1.3-104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
  27. MOUSTAPHA, M., LATANIOTIS, C., MARELLI, S., et al. UQLab User Manual – Support Vector Machines for Regression. Technical Report #UQLab-V1.3-111, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
  28. KLEIJNEN, J. P. Design and Analysis of Simulation Experiments. Springer, 2015. ISBN: 9783319180878
  29. BLATMAN, G., SUDRET, B. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 2011, vol. 230, no. 6, p. 2345–2367. DOI: 10.1016/j.jcp.2010.12.021
  30. GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 1999, vol. 14, no. 3, p. 1052–1061. DOI: 10.1109/61.772353
  31. GUSTAVSEN, B. Improving the pole relocating properties of vector fitting. IEEE Transactions on Power Delivery, 2006, vol. 21, no. 3, p. 1587–1592. DOI: 10.1109/TPWRD.2005.860281
  32. DESCHRIJVER, D., MROZOWSKI, M., DHAENE, T., et al. Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 6, p. 383–385. DOI: 10.1109/LMWC.2008.922585
  33. LAMECKI, A. A mesh deformation technique based on solid mechanics for parametric analysis of high-frequency devices with 3-D FEM. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 11, p. 3400–3408. DOI: 10.1109/TMTT.2016.2605672
  34. LAMECKI, A., DZIEKONSKI, A., BALEWSKI, L., et al. GPUAccelerated 3D mesh deformation for optimization based on the finite element method. Radioengineering, 2017, vol. 26, no. 4, p. 924–929. DOI: 10.13164/re.2017.0924

Keywords: kriging, uncertainty quantification, surrogate models, microwave filters, vector fitting, mesh-morphing

G. Baudoin [references] [full-text] [DOI: 10.13164/re.2020.0021] [Download Citations]
On Segmented Predistortion for Linearization of RF Power Amplifiers

This paper presents a general survey of digital predistortion (DPD) techniques with segmentation. A comparison of global DPD with two segmented approaches namely Vector-Switched DPD and Decomposed Vector Rotation DPD is presented with the support of experimentation on a strongly non-linear 3 ways Doherty PA. It shows the interest of both segmented approaches in terms of linearization performance, complexity and ease of implementation compared to the global DPD. The paper starts with some mathematical generalities on interpolation and splines. It focuses on segmented models derived from Volterra series even if the presented principles can also be applied to neural networks.

  1. BAUDOIN, G., VENARD, O., PHAM D. G. Digital predistortion. In Digitally Enhanced Mixed Signal Systems, Materials, Circuits & Devices, pages 65–123. Institution of Engineering and Technology, 2019. DOI: 10.1049/PBCS040E_ch3
  2. WOOD J. Behavioral Modeling and Linearization of RF Power Amplifiers. United States: Artech House Publishers, 2014. ISBN: 978-1-60807-120-3
  3. DING, L., ZHOU, G. T, MORGAN, D. R., et al. A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 2004, vol. 52, no. 1, p. 159–165. DOI: 10.1109/TCOMM.2003.822188
  4. MORGAN, D.R., MA, Z., KIM, J., et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
  5. GOTTHANS, T., BAUDOIN, G., MBAYE, A. Comparison of modeling techniques for power amplifiers. In Proceedings of the 23rd International Conference Radioelektronika (RADIOELEKTRONIKA). Pardubice (Czech Republic), 2013, p. 232–235. DOI: 10.1109/RadioElek.2013.6530922
  6. ZHU, A., PEDRO, J. C., BRAZIL, T. J. Dynamic deviation reduction-based volterra behavioral modeling of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, p. 4323–4332. DOI: 10.1109/TMTT.2006.883243
  7. BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., PEDRO, J. C. Higher locality non-linear basis functions of Volterra series based models to improve extraction conditioning. In IEEE MTT-S International Microwave Symposium (IMS2014). Tampa (USA), 2014, p. 1–4. DOI: 10.1109/MWSYM.2014.6848447
  8. BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., PEDRO, J. C. Polynomials and LUTs in PA behavioral modeling: A fair theoretical comparison. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 3274–3285. DOI: 10.1109/TMTT.2014.2365188
  9. BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., and PEDRO, J. C. Using spline basis functions in Volterra series based models. In 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC). Leuven (Belgium), 2014, p. 1–3. DOI: 10.1109/INMMIC.2014.6815079
  10. BOOR, DE C. B(asic)-Spline Basics. MRC Technical Summary Report #2952. Mathematics Research Center, University of Wisconsin-Madison, 1986. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a172773.pdf
  11. NARAHARISETTI, N., ROBLIN, P., QUINDROIT, C., GHEITANCHI, S. Efficient least-squares 2-d-cubic spline for concurrent dual-band systems. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 7, p. 2199–2210. DOI: 10.1109/TMTT.2015.2435731
  12. CAVERS, J. K. Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Transactions on Vehicular Technology, 1990, vol. 39, no. 4, p. 374–382. DOI: 10.1109/25.61359
  13. BAUDOIN, G. JARDIN, P. Adaptive polynomial pre-distortion for linearization of power amplifiers in wireless communications and WLAN. In International Conference on Trends in Communications. (EUROCON). Bratislava (Slovakia), 2001, p. 157–160 DOI: 10.1109/EURCON.2001.937787
  14. SAFARI, N., TANEM, J. P., ROSTE, T. Block based predistortion for amplifier linearization in burst type mobile satellite communications. In The European Conference on Wireless Technology (ECWT). Paris (France), 2005, p.325–328. DOI: 10.1109/ECWT.2005.1617723
  15. JIN, M., SHIN, S. K., OH, D. A novel predistorter for power amplifier. In 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT). Beijing (China), 2002, p. 1129–1133. DOI: 10.1109/ICMMT.2002.1187906
  16. LOHTIA, A., GOUD, P. A., ENGLEFIELD, C. G. Power amplifier linearization using cubic spline interpolation. In IEEE 43rd Vehicular Technology Conference (VETEC). Secaucus (USA), 1993, p. 676–679. DOI: 10.1109/VETEC.1993.508782
  17. ACCIARI, G., GIANNINI, F., LIMITI, E., ROSSI, M. Baseband predistortion lineariser using direct spline computation. In 32nd European Microwave Conference (EuMC). Milan (Italy), 2002, p. 1–4. DOI: 10.1109/EUMA.2002.339229
  18. HUSSEIN, M. A., WANG, Y., FEUVRIE, B., et al. Piecewise complex circular approximation of the inverse characteristics of power amplifiers for digital predistortion techniques. In International Conference on Digital Telecommunications (ICDT). Bucharest (Romania), 2008, p. 59–63. DOI: 10.1109/ICDT.2008.33
  19. YANG, W., ZHOU, S., ZHU, W. Adaptive predistortion technology based on piecewise nonlinear function. In IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions (ICCCAS). Chengdu (China), 2002, p. 478–482. DOI: 10.1109/ICCCAS.2002.1180663
  20. FISHER, P. O., AL-SARAWI, S. F. Memoryless AM/AM behavioral model for RF power amplifiers. In 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). Nadi (Fiji), 2016, p. 131–138. DOI: 10.1109/APWC-on-CSE.2016.031
  21. CAVERS, J. K. Optimum table spacing in predistorting amplifier linearizers. IEEE Transactions on Vehicular Technology, 1999, vol. 48, no. 5, p. 1699–1705. DOI: 10.1109/25.790551
  22. BOUMAIZA, S., LI, J., JAIDANE-SAIDANE, M., et al. Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 12, p. 2670–2677. DOI: 10.1109/TMTT.2004.837313
  23. HASSANI, J. Y. and KAMAREI, M. A flexible method of LUT indexing in digital predistortion linearization of RF power amplifiers. In IEEE International Symposium on Circuits and Systems (ISCAS). Sydney (Australia), 2001, vol. 1, p. 53–56 DOI: 10.1109/ISCAS.2001.921786
  24. LIN, C.-H., CHEN, H.-H., WANG, Y.-Y., CHEN, J.-T. Dynamically optimum lookup-table spacing for power amplifier predistortion linearization. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 2118–2127. DOI: 10.1109/TMTT.2006.872808
  25. BA, S. N., WAHEED, K., ZHOU, G. T. Optimal spacing of a linearly interpolated complex-gain LUT predistorter. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 2, p. 673–681. DOI: 10.1109/TVT.2009.2034749
  26. SELVADURAI, D., SIDEK, R. M., VARAHRAM, P., ALI, B. M. A robust non-uniform indexation of a quadratically interpolated LUT predistorter for RF power amplifiers. In IEEE 12th Malaysia International Conference on Communications (MICC). Kuching (Malaysia), 2015, p. 329–332. DOI: 10.1109/MICC.2015.7725457
  27. CHEONG, M. Y., WERNER, S., LAAKSO, T. I., et al. Predistorter design employing parallel piecewise linear structure and inverse coordinate mapping for broadband communications. In 14th European Signal Processing Conference (EUSIPCO). Florence (Italy), 2006, p. 1–5.
  28. JULIAN, P., DESAGES, A., AGAMENNONI, O. High-level canonical piecewise linear representation using a simplicial partition. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, vol. 46, no. 4, p. 463–480. DOI: 10.1109/81.754847
  29. LIU, H. LIU, X. Adaptive piecewise linear predistorter based on PSO and indirect learning architecture. In 2nd International Congress on Image and Signal Processing (CISP). Tianjin (China), 2009, p. 1–3. DOI: 10.1109/CISP.2009.5304678
  30. CHOI, S., JEONG, E., LEE, Y. H. Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity. IEEE Journal of Selected Topics in Signal Processing, 2009, vol. 3, no. 3, p. 397–404. DOI: 10.1109/JSTSP.2009.2020265
  31. WU, X., ZHENG, N., YANG, X., et al. A spline-based hammerstein predistortion for 3g power amplifiers with hard nonlinearities. In 2nd International Conference on Future Computer and Communication (ICFCC). Wuha (China), 2010, p. V3-741–745. DOI: 10.1109/ICFCC.2010.5497423
  32. DEMPSEY, E. J. WESTWICK, D. T. Identification of hammerstein models with cubic spline nonlinearities. IEEE Transactions on Biomedical Engineering, 2004, vol. 51, no. 2, p. 237–245. DOI: 10.1109/TBME.2003.820384
  33. JARDIN, P. BAUDOIN, G. Filter lookup table method for power amplifier linearization. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 3, p. 1076–1087. DOI: 10.1109/TVT.2007.895566
  34. SAFARI, N., FEDORENKO, P., KENNEY, J. S., et al. Splinebased model for digital predistortion of wide-band signals for high power amplifier linearization. In IEEE/MTT-S International Microwave Symposium. Honolulu (USA), 2007, p. 1441–1444. DOI: 10.1109/MWSYM.2007.380504
  35. GIDONI, T., SOCHER, E., COHEN, E. Digital predistortion using piecewise memory polynomial for 802.11 wifi applications. In IEEE International Conference on the Science of Electrical Engineering (ICSEE). Eilat (Israel), 2016, p. 1–3. DOI: 10.1109/ICSEE.2016.7806082
  36. ZHANG, L. FENG, Y. An improved digital predistortion in wideband wireless transmitters using an under-sampled feedback loop. IEEE Communications Letters, 2016, vol. 20, no. 5, p. 910–913. DOI: 10.1109/LCOMM.2016.2546257
  37. JIANG, H. WILFORD, P. A. Digital predistortion for power amplifiers using separable functions. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4121–4130. DOI: 10.1109/TSP.2010.2049742
  38. ZHU, A., DRAXLER, P. J., HSIA, C., et al. Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise Volterra series. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 10, p. 2237–2247. DOI: 10.1109/TMTT.2008.2003529
  39. HEREDIA, E. A. ARCE, G. R. Piecewise Volterra filters based on the threshold decomposition operator. In IEEE International Conference on Acoustics, Speech, and Signal Processing Conference (ICASSP). Atlanta (USA), 1996, p. 1593–1596. DOI: 10.1109/ICASSP.1996.544107
  40. ZHANG, C., WANG, J., WU, W. A piecewise generalized memory polynomial model for envelope tracking power amplifiers. In Asia-Pacific Microwave Conference (APMC). Nanjing (China), 2015, p. 1–3. DOI: 10.1109/APMC.2015.7413559
  41. ABDELAZIZ, M., ANTTILA, L., BRIHUEGA, A., et al. Decorrelation-based piecewise digital predistortion: Operating principle and RF measurements. In 16th International Symposium on Wireless Communication Systems (ISWCS). Oulu (Finland), 2019, p. 340–344. DOI: 10.1109/ISWCS.2019.8877236
  42. AFSARDOOST, S., ERIKSSON, T., FAGER, C. Digital predistortion using a vector-switched model. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 4, p. 1166–1174. DOI: 10.1109/TMTT.2012.2184295
  43. ASCHBACHER, E., CHEONG M. Y., BRUNMAYR, P., et al. Prototype implementation of two efficient low-complexity digital predistortion algorithms. EURASIP Journal on Advances in Signal Processing, 2007, vol. 2008, no. 1, p. 1–15. DOI: 10.1155/2008/473182
  44. SEO, M., JEON, S., IM, S. Compensation for nonlinear distortion in OFDM systems using a digital predistorter based on the SCPWL model. In 6th International Conference on Wireless and Mobile Communications (ICWMC). Valencia (Spain), 2010, p. 27–32. DOI: 10.1109/ICWMC.2010.24
  45. ZHAI, J., ZHANG, L., ZHOU, J., et al. A nonlinear filter-based vVolterra model with low complexity for wideband power amplifiers. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 3, p. 203–205. DOI: 10.1109/LMWC.2013.2293657
  46. CHEONG, M. Y., WERNER, S., BRUNO, M. J., et al. Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 7, p. 1519–1532. DOI: 10.1109/TCSI.2011.2177007
  47. CHUA, L. O. KANG, S. M. Section-wise piecewise-linear functions: Canonical representation, properties, and applications. Proceedings of the IEEE, 1977, vol. 65, no. 6, p. 915–929. DOI: 10.1109/PROC.1977.10589
  48. YU, Z., WANG, W. , SHANG, G. A generalized model based on canonical piecewise linear functions for digital predistortion. In AsiaPacific Microwave Conference (APMC). New Delhi (India), 2016, p. 1–4. DOI: 10.1109/APMC.2016.7931346
  49. ZHU, A. Decomposed vector rotation-based behavioral modeling for digital predistortion of rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 2, p. 737–744. DOI: 10.1109/TMTT.2014.2387853
  50. JULIAN, P., JORDAN, M., DESAGES, A. Canonical piecewiselinear approximation of smooth functions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, vol. 45, no. 5, p. 567–571. DOI: 10.1109/81.668868
  51. ZHU, A. Behavioral modeling for digital predistortion of RF power amplifiers: from Volterra series to CPWL functions. In IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR). Austin (USA), 2016, p. 1–4. DOI: 10.1109/PAWR.2016.7440126
  52. ZHAI, J., ZHANG, L., YU, Z., et al. A modified canonical piecewiselinear function-based behavioral model for wideband power amplifiers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 3, p. 195–197. DOI: 10.1109/LMWC.2016.2524512
  53. MATEO, C., CARRO, P. L., GARCIA-DUCAR, P., et al. Digital predistortion based on B-spline CPWL models in a RoF LTE mobile fronthaul. In 47th European Microwave Conference (EuMC). Nuremberg (Germany), 2017, p. 1136–1139. DOI: 10.23919/EuMC.2017.8231048
  54. BASSAM, S. A., HELAOUI, M., GHANNOUCHI, F. M. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 10, p. 2547–2553. DOI: 10.1109/TMTT.2011.2163802
  55. NARAHARISETTI, N., QUINDROIT, C., ROBLIN, P., et al. 2D cubic spline implementation for concurrent dual-band system. In IEEE MTT-S International Microwave Symposium Digest (MTT). Seattle (USA), 2013, p. 1–4. DOI: 10.1109/MWSYM.2013.6697739
  56. LIU, Y., LI, C., QUAN, X., et al. Multiband linearization technique for broadband signal with multiple closely spaced bands. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 3, p. 1115–1129. DOI: 10.1109/TMTT.2018.2884413
  57. YOUNES, M., KWAN, A., AKBARPOUR, M., et al. Twodimensional piecewise behavioral model for highly nonlinear dualband transmitters. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 11, p. 8666–8675. DOI: 10.1109/TIE.2017.2703683
  58. YU, Z. WANG, W. Concurrent dual-band digital predistortion based on canonical piecewise linear functions. In 47th European Microwave Conference (EuMC). Nuremberg (Germany), 2017, p. 1058–1059. DOI: 10.23919/EuMC.2017.8231028
  59. ZHAI, J., WU, S., ZHANG, L., et al. A 2-D-canonical piecewise linear function-based behavioral model for concurrent dual-band power amplifiers. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 11, p. 1050–1052. DOI: 10.1109/LMWC.2018.2873191
  60. SAFFAR, D., BOULEJFEN, N., GHANNOUCHI, F., et al. Behavioral modeling of MIMO transmitters exhibiting nonlinear distortion and hardware impairements. In 6th European Microwave Integrated Circuit Conference (EuMIC). Manchester (UK), 2011, p. 486–489.
  61. LUO, Q., YU, C., and ZHU, X. A dual-input canonical piecewise-linear function-based model for digital predistortion of multi-antenna transmitters. In IEEE/MTT-S International Microwave Symposium (IMS). Philadelphia (USA), 2018, p. 559–562. DOI: 10.1109/MWSYM.2018.8439236
  62. NIU, J., ZHAI, J., YU, Z., et al. Low-complexity digital predistorter for MIMO transmitters with nonlinear crosstalk. In 2019 IEEE MTT-S International Wireless Symposium (IWS). Guangzhou (China), 2019, p. 1–3. DOI: 10.1109/IEEE-IWS.2019.8804139
  63. CHEN, C., BATSELIER, K., TELESCU, M., et al. Tensornetwork-based predistorter design for multiple-input multipleoutput nonlinear systems. In IEEE 12th International Conference on ASIC (ASICON). Guiyang (China), 2017, p. 1117–1120. DOI: 10.1109/ASICON.2017.8252676
  64. BATSELIER, K., CHEN, Z., WONG, N.. Tensor network alternating linear scheme for MIMO Volterra system identification. Automatica, 2017, vol. 84, no. 07, p. 26–35. DOI: 10.1016/j.automatica.2017.06.033.
  65. WANG, S., HUSSEIN, M. A., VENARD, O., BAUDOIN, G. A novel algorithm for determining the structure of digital predistortion models. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 8, p. 7326–7340. DOI: 10.1109/TVT.2018.2833283
  66. KANTANA, C. , VENARD, O. , BAUDOIN, G. Decomposed vector rotation model sizing by hill-climbing heuristic for digital predistortion of RF power amplifiers. In Radio & Wireless Week (RWW). San Antonio (USA), 2020, p. 232–235.

Keywords: Digital predistortion, piecewise models, splines, vector-switched DPD, decomposed vector rotation DPD, power amplifiers

M. U. Hadi, J. Nanni, O. Venard, G. Baudoin, J. L. Polleux, G. Tartarini [references] [full-text] [DOI: 10.13164/re.2020.0037] [Download Citations]
Practically Feasible Closed-Loop Digital Predistortion for VCSEL-MMF-Based Radio-over-Fiber links

The article demonstrates a novel Digital Predistortion (DPD) architecture for Mobile Front Haul links for the advanced Long-Term Evolution (LTE) and upcoming 5G networks. Precisely, the use of a feedback approximation method has been proposed and experimentally demonstrated herein that simplifies the complexities in realizing the practical DPD technique for Multi-Mode VCSELs and Multi-Mode Fibers based Radio over Fiber systems. As a figure of merit, linearization efficiency is provided in terms of Adjacent Channel Power Ratio, Normalized Mean Square Error and Error Vector Magnitude referring to a complete LTE frame occupying 10 MHz with 256-QAM modulation format.

  1. GUPTA, A., JHA, R. K. A survey of 5G network: Architecture and emerging technologies. IEEE Access, 2015, vol. 3, p. 1206–1232. DOI: 10.1109/ACCESS.2015.2461602
  2. SHI, Y., VISANI, D., OKONKWO, C. M., et al. First demonstration of HD video distribution over large-core POF employing UWB for in-home networks. In Optical Fiber Communication Conference (OFC). Los Angeles (CA, USA), 2011, p. 1–3.
  3. HADI, M. U., JUNG, H., GHAFFAR, S., et al. Optimized digital radio over fiber system for medium range communication. Optics Communications, 2019, vol. 443, p. 177–185. DOI: 10.1016/j.optcom.2019.03.037
  4. LAU, K. Y. RF transport over optical fiber in urban wireless infrastructures. IEEE/OSA Journal of Optical Communications and Networking, 2012, vol. 4, no. 4, p. 326–335. DOI: 10.1364/JOCN.4.000326
  5. HADI, M. U., HADI, M. U., ASLAM, N., et al. Experimental demonstration of MASH based sigma delta radio over fiber system for 5G C-RAN downlink. Journal of Optical Communication, 2019. DOI: 10.1515/joc-2019-0011
  6. SHI, Y., OKONKWO, C. M., VISANI, D., et al. Ultrawideband signal distribution over large-core POF for in-home networks. Journal of Lightwave Technology, 2012, vol. 30, no. 18, p. 2995 to 3002. DOI: 10.1109/JLT.2012.2210538
  7. KHURSHID, K., KHAN, K. K., SIDDIQUI, H., et al. Big data assisted CRAN enabled 5G SON architecture. Journal of ICT Research and Applications, 2019, vol. 13, no. 2, p. 93–106. DOI: 10.5614/itbj.ict.res.appl.2019.13.2.1
  8. CHINA MOBILE RESEARCH INSTITUTE. C-RAN: the Road towards Green RAN. White Paper, Beijing (China), 2013, p. 1–48.
  9. LI, Y., SATYANARAYANA, K., EL-HAJJAR, M., et al. Analogue radio over fiber aided MIMO design for the learning assisted adaptive C-RAN downlink. IEEE Access, 2019, vol. 7, p. 21359–21371. DOI: 10.1109/ACCESS.2019.2897922
  10. RANAWEERA, C., LIM, C., WONG, E., et al. Planning and dimensioning of optical transport networks for 5G and beyond. In IEEE Photonics Society Summer Topical Meeting Series (SUM). Ft. Lauderdale (FL, USA), 2019, p. 1–2. DOI: 10.1109/PHOSST.2019.8795061
  11. LI, Y., GHAFOOR, S., SATYANARAYANA, K., et al. Analogue wireless beamforming exploiting the fiber-nonlinearity of radio over fiber-based C-RANs. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 3, p. 2802–2813. DOI: 10.1109/TVT.2019.2893589
  12. PESSOA, L. M., TAVARES, J. S., COELHO, D., et al. Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation. Optics Express, 2014, vol. 22, no. 14, p. 17508–17523. DOI: 10.1364/OE.22.017508
  13. ALCARO, G., VISANI, D., TARLAZZI, L., et al. Distortion mechanisms originating from modal noise in radio over multimode fiber links. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 1, p. 185–194. DOI: 10.1109/TMTT.2011.2171982
  14. VISANI, D., TARTARINI, G., PETERSEN, M. N., et al. Link design rules for cost-effective short-range radio over multimode fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 11, p. 3144–3153. DOI: 10.1109/TMTT.2010.2074552
  15. VISANI, D., OKONKWO, C. M., LOQUAI, S., et al. Record 5.3 Gbit/s transmission over 50m 1mm core diameter graded-index plastic optical fiber. In Optical Fiber Communication Conference, (OFC 2010). San Diego (CA, USA), 2010, p. 1–3. DOI: 10.1364/NFOEC.2010.PDPA3
  16. SAUER, M., KOBYAKOV, A., BOH RUFFIN, A. Radio-overfiber transmission with mitigated stimulated brillouin scattering. IEEE Photonics Technology Letters, 2007, vol. 19, no. 19, p. 1487–1489. DOI: 10.1109/LPT.2007.903765
  17. MEDINA SEVILA, P., ALMENAR, V., CORRAL, J. L. Transmission over SSMF at 850 nm: Bimodal propagation and equalization. Journal of Lightwave Technology, 2017, vol. 35, no. 19, p. 4125–4136. DOI: 10.1109/JLT.2017.2726585
  18. VISANI, D., SHI, Y., OKONKWO, C. M., et al. Wired and wireless multi-service transmission over 1mm-core GI-POF for inhome networks. Electronics Letters, 2011, vol. 47, no. 3, p. 203 to 205. DOI: 10.1049/el.2010.7273
  19. AMARI, A., LIN, X., DOBRE, O. A., et al. A machine learning based detection technique for optical fiber nonlinearity mitigation. IEEE Photonics Technology Letters, 2019, vol. 31, no. 8, p. 627 to 630. DOI: 10.1109/LPT.2019.2902973
  20. WEISS, J. Analog optical RF-links for large radio telescopes. In IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). San Diego (CA, USA), 2018, p. 24–27. DOI: 10.1109/BCICTS.2018.8551058
  21. HADI, M. U., TRAVERSO, P. A., TARTARINI, G., et al. Digital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber links. IEEE Microwave and Wirless Components Letters, 2019, vol. 29, no. 2, p. 155–157. DOI: 10.1109/LMWC.2018.2889004
  22. VIEIRA, L. C., GOMES, N. J., NKANSAH, A., ET al. Behavioral modeling of radio-over-fiber links using memory polynomials. In 2010 IEEE International Topical Meeting on Microwave Photonics. Montreal (QC, Canada), 2010, p. 85–88. DOI: 10.1109/MWP.2010.5664204
  23. FUOCHI, F., HADI, M. U., NANNI, J., et al. Digital predistortion technique for the compensation of nonlinear effects in radio over fiber links. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI). Bologna (Italy), 2016, p. 1–6. DOI: 10.1109/RTSI.2016.7740562
  24. MATEO, C., CLEMENTE, J., GARCIA-DUCAR, P., et al. Linearization of a radio-over-fiber mobile fronthaul with feedback loop. In 2017 26th Wireless and Optical Communication Conference (WOCC). Newark (NJ, USA), 2017, p. 1–6. DOI: 10.1109/WOCC.2017.7928986
  25. HEKKALA, A., HIIVALA, M., LASANEN, M., et al. Predistortion of radio over fiber links: Algorithms, implementation, and measurements. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 3, p. 664–672. DOI: 10.1109/TCSI.2011.2167267
  26. MATEO, C., CARRO, P. L., GARCIA-DUCAR, P., et al. Digital predistortion based on B-spline CPWL models in a RoF LTE mobile fronthaul. In 2017 12th European Microwave Integrated Circuits Conference (EuMIC). Nuremberg (Germany), 2017, p. 396–399. DOI: 10.23919/EuMIC.2017.8230742
  27. HADI, M. U., KANTANA, C., TRAVERSO, P. A., et al. Assessment of digital predistortion methods for DFB‐SSMF radio‐ over‐fiber links linearization. Microwave and Optical Technology Letters, 2020, vol. 62, no. 2, p. 540–546. DOI: 10.1002/mop.32073
  28. MORGAN, D. R., MA, Z., KIM, J., et al. A generalized memory polynomial model for digital predistortion of rf power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
  29. HADI, M. U., NANNI, J., VENARD, O., et al. Linearity improvement of VCSELs based radio over fiber systems utilizing digital predistortion. Advances in Science, Technology and Engineering Systems Journal, 2019, vol. 4, no. 3, p. 156–163. DOI: 10.25046/aj040321

Keywords: Radio over Fiber (RoF), Digital Predistortion (DPD), Indirect Learning Architecture (ILA), Adjacent Channel Power Ratio (ACPR), Vertical Cavity Surface Emitting Lasers (VCSEL), Long Term Evolution (LTE)

A. Zaidi, W. A. Awan, N. Hussain, A. Baghdad [references] [full-text] [DOI: 10.13164/re.2020.0044] [Download Citations]
A Wide and Tri-band Flexible Antennas with Independently Controllable Notch Bands for Sub-6-GHz Communication System

A wide-band and tri-band flexible antenna for fifth-generation (5G) sub-6-GHz communication systems is investigated in this paper. The proposed wideband antenna covers the 5G new radio (NR) mid-band, ranging from 2.8 to 5.35 GHz, while the tri-band antenna is resonating at three different allocated frequency bands (2.45 GHz, 3.5 GHz, and 4.7 GHz) for 5G sub-6-GHz communications. This functionality is achieved by introducing hexagonal split-ring resonators in the radiating element, which can be controlled independently without affecting antenna performance to avoid problems of interference in this frequency spectrum. In addition, the antenna also presents a good conformability characteristic, and the simulated results are confirmed with the measurements of the fabricated prototype.

  1. ANDREWS, J. G., BUZZI, S., CHOI, W., et al. What will 5G be? IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1065–1082. DOI: 10.1109/JSAC.2014.2328098
  2. REBHI, S., BARRAK, R., MENIF, M. Flexible and scalable radio over fiber architecture. Radioengineering, 2019, vol. 28, no. 2, p. 357–368. DOI: 10.13164/re.2019.0357
  3. RAPPAPORT, T. S., SUN, S., MAYZUS, R., et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
  4. DEHOS, C., GONZALEZ, J. L., DE DOMENICO, A., et al. Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 2014, vol. 52, no. 9, p.88–95. DOI: 10.1109/MCOM.2014.6894457
  5. ROH, W., SEOL, J. Y., PARK, J., et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 106–113. DOI: 10.1109/MCOM.2014.6736750
  6. RAPPAPORT, T. S., MURDOCK, J. N., GUTIERREZ, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 2011, vol. 99, no. 8, p. 1390–1436. DOI: 10.1109/JPROC.2011.2143650
  7. AKHTAR, F., NAQVI, S. I., ARSHAD, F., et al. A flexible and compact semicircular antenna for multiple wireless communication applications. Radioengineering, 2018, vol. 27, no. 3, p. 671–678. DOI: 10.13164/re.2018.0671
  8. HUSSAIN, N., JEONG, M. J., PARK, J., et al. A broadband circularly polarized Fabry-Perot resonant antenna using a singlelayered PRS for 5G MIMO applications. IEEE Access, 2019, vol. 7, p. 42897–42907. DOI: 10.1109/ACCESS.2019.2908441
  9. JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D. Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering, 2013, vol. 22, no. 3, p. 700–707. ISSN: 1210-2512
  10. JAYASINGHE, J., UDUWAWALA, D. N., ANGUERA, J. Design of a genetic microstrip patch antenna with broadside radiation for GSM applications. International Journal of Scientific World, 2014, vol. 2, no. 2, p. 84–87. DOI: 10.14419/ijsw.v2i2.3703
  11. AWAN, W. A., ZAIDI, A., HUSSAIN, N., et al. Compact size Yshaped broadband antenna for E-band applications. In IEEE International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morrocco), 2019, p. 1–3. DOI: 10.1109/WITS.2019.8723799
  12. HUSSAIN, N., AZIMOV, U., PARK, J. W., et al. A microstrip patch antenna sandwiched between a ground plane and a metasurface for WiMAX applications. In Asia-Pacific Microwave Conference (APMC). Kyoto (Japan), 2018, p. 1016–1018. DOI: 10.23919/APMC.2018.8617342
  13. SARKAR, D., SRIVASTAVA, K. V., SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/LAWP.2014.2306812
  14. BONG, H.-U., HUSSAIN, N., RHEE, S.-Y., et al. Design of an UWB antenna with two slits for 5G /WLAN-notched bands. Microwave and Optical Technology Letters, 2019, vol. 61, no. 5, p. 1295–1300. DOI: 10.1002/mop.31670
  15. CHU, Q. X., YANG, Y. Y. A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3637–3644. DOI: 10.1109/TAP.2008.2007368
  16. GHIMIRE, J., CHOI, D. Y. Design of a compact ultrawideband Ushaped slot etched on a circular patch antenna with notch band characteristics for ultrawideband applications. International Journal of Antennas and Propagation, 2019, p. 1–10. DOI: 10.1155/2019/8090936
  17. TIGHEZZA, M., RAHIM, S. K. A., ISLAM, M. T. Flexible wideband antenna for 5G applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 1, p. 38–44. DOI: 10.1002/mop.30906
  18. ULLAH, S., HAYAT, S., UMAR, A., et al. Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-International Journal of Electronics and Communications, 2017, vol. 81, p. 236–242. DOI: 10.1016/j.aeue.2017.07.028
  19. IQBAL, A., SMIDA, A., MALLAT, N. K., et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems. Electronics, 2019, vol. 8, no. 4, p. 1–12. DOI: 10.3390/electronics8040407
  20. CHATTHA, H. T., HANIF, M., YANG, X., et al. Frequency reconfigurable patch antenna for 4G LTE applications. Progress in Electromagnetics Research M, 2018, vol. 69, p. 1–13. DOI: 10.2528/PIERM18022101
  21. ROGERS CORPORATION. [Online] Cited August 2019. Available at: www.rogerscorp.com.
  22. AWAN, W. A., ZAIDI, A., BAGHDAD, A. Super wide band miniaturized patch antenna design for 5G communications. In International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morrocco), 2019, p. 1–2. DOI: 10.1109/WITS.2019.8723762
  23. AWAN, W. A., HUSSAIN, N., LE, T. T. Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection. AEU-International Journal of Electronics and Communication, 2019, vol. 101, p. 1–7. DOI: 10.1016/j.aeue.2019.152851
  24. AWAN, W. A., ZAIDI, A., HUSSAIN, N., et al. Stub loaded, low profile UWB antenna with independently controllable notch bands. Microwave and Optical Technology Letters, 2019, vol. 61, no. 11, p. 2447–2454. DOI: 10.1002/mop.31915
  25. ARIF, A., ZUBAIR, M., ALI, M., et al. A compact, low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 981–985. DOI: 10.1109/LAWP.2019.2906829
  26. DATTATREYA, G., NAIK, K. K. A low volume flexible CPWfed elliptical-ring with split-triangular patch dual-band antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 8, p. 1–9. DOI: 10.1002/mmce.21766
  27. SAEED, S. M., BALANIS, C. A., BIRTCHER, C. R. Inkjetprinted flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1979–1982. DOI: 10.1109/LAWP.2016.2547338

Keywords: Flexible antenna, sub-6-GHz, tri-bands, 5G mid-band, conformal structure

Sk. N. Islam, S. Das [references] [full-text] [DOI: 10.13164/re.2020.0052] [Download Citations]
Isosceles Triangular Resonator Based Compact Triple Band Quad Element Multi Terminal Antenna

A triple band quad element multi-input-multi-output (MIMO) antenna is proposed for Bluetooth (2.4 GHz), WLAN (2.5/4.9 GHz) and LTE (3.7 GHz) applications. A compact triangular ring-shaped structure is used as an antenna element. An isosceles triangular ring resonator is designed in such a way that it offers dual-band and another ring resonator is placed inside the empty space of the first resonator to obtain the third band. The antenna element is studied in terms of |S11| and also the current distributions are observed at three resonance frequencies to find out the resonance mechanism. The proposed quad element MIMO antenna is compact in total area (0.45λ0×0.45λ0). Isolation better than 20 dB is achieved with minimum inter-element spacing of 0.07λ0 without extra isolation circuit. Gain, radiation patterns, envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL) and total active reflection coefficient (TARC) values are studied to comprehend the MIMO performance of the proposed design.

  1. SHARAWI, M. S. Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 5, p. 218–232. DOI: 10.1109/MAP.2013.6735522
  2. WU, W., YUAN, B., WU, A. A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures. International Journal of Antennas and Propagation, 2018, vol. 2018, p. 1–10. DOI: 10.1155/2018/8490740
  3. NANDI, S., MOHAN, A. A compact dual-band MIMO slot antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, vol. 16, p. 2457–2460. DOI: 10.1109/LAWP.2017.2723927
  4. MORSY, M. M., MORSY, A. M. Dual-band meander-line MIMO antenna with high diversity for LTE/UMTS router. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 3, p. 395–399. DOI: 10.1049/iet-map.2017.0802
  5. POUYANFAR, N., GHOBADI, C., NOURINIA, J., et al. A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radioengineering, 2018, vol. 27, no. 3, p. 686–693. DOI: 10.13164/re.2018.0686
  6. KUMARI, T., DAS, G., SHARMA, A., et al. Design approach for dual element hybrid MIMO antenna arrangement for wideband applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 1, p. 1–10. DOI: 10.1002/mmce.21486
  7. SARKAR, D., SRIVASTAVA, K. V. Compact four-element SRRloaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4GLTE and 5G applications. Electronics Letters, 2017, vol. 53, no. 25, p. 1623–1624. DOI: 10.1049/el.2017.2825
  8. NANDI, S., MOHAN, A. CRLH unit cell loaded triband compact MIMO antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1816–1819. DOI: 10.1109/LAWP.2017.2681178
  9. SUN, J. S., FANG, H. S., LIN, P. Y., et al. Triple-band MIMO antenna for mobile wireless applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 500–503. DOI: 10.1109/LAWP.2015.2454536
  10. KUMAR, A., ANSARI, A. Q., KANAUJIA, B. K., et al. Design of triple-band MIMO antenna with one band-notched characteristic. Progress In Electromagnetics Research C, 2018, vol. 86, p. 41–53. DOI: 10.2528/PIERC18051902
  11. MALVIYA, L., PANIGRAHI, R. K., KARTIKEYAN, M. V. Circularly polarized 2×2 MIMO antenna for WLAN applications. Progress In Electromagnetics Research C, 2016, vol. 66, p. 97–107. DOI: 10.2528/PIERC16051905
  12. ISLAM, S. N., KUMAR, M., SEN, G., et al. Design of a compact triple band antenna with independent frequency tuning for MIMO applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 3, p. 1–10. DOI: 10.1002/MMCE.21620
  13. ISLAM, S. N., GHOSH, A., KUMAR, M., et al. A compact dualband antenna using triangular split ring resonator for Bluetooth/WiMax/LTE applications. In IEEE Indian Conference on Antennas and Propagation (InCAP). Hyderabad (India), 2018, p. 1–3. DOI: 10.1109/INCAP.2018.8770768
  14. SARKAR, D., SINGH, A., SAURAV, K., et al. Four-element quad-band multiple-input–multiple-output antenna employing split-ring resonator and inter-digital capacitor. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 13, p. 1453–1460. DOI: 10.1049/iet-map.2015.0189
  15. THAYSEN, J., JAKOBSEN, K. B. Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microwave and Optical Technology Letters, 2006, vol. 48, no. 5, p. 832–834. DOI: 10.1002/mop.21490
  16. ZHANG, T., ZHANG, Y., HONG, W., et al. Triangular ring antennas for dual-frequency dual-polarization or circularpolarization operations. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 971–974. DOI: 10.1109/LAWP.2014.2319455

Keywords: Isosceles triangular ring resonator, triple band antenna, MIMO antenna, isolation

L. Zou, X. T. Wang, W. Wang, W. Y. Du [references] [full-text] [DOI: 10.13164/re.2020.0059] [Download Citations]
Ku-Band High Performance Monopulse Microstrip Array Antenna Based on Waveguide Coupling Slot Array Feeding Network

A high gain low sidelobe monopulse microstrip array antenna for Ku-band frequency modulated conti-nuous wave (FMCW) radar application is proposed. The design consists of microstrip array radiation front-end and waveguide coupling slot array feeding network back-end. The microstrip array comprises 16×32 series-fed patches etched on the top side and slotted ground on the bottom side. A series of shunt slots in the broad-wall are loaded on a WR51 standard magic Tee waveguide to form a compact low loss monopulse comparator and hybrid feeding network. The radiation front and feeding network is individually fabricated with standard printed circuit board (PCB) and machining process and then can be integrated by advanced assembling process. Precise alignment of waveguide slots and ground slots is obtained during these procedures to achieve accurate excitation. Measured results are in accordance with simulation results and show about 32.5dBi max gain and -25dB sidelobe level (SLL) of sum pattern in E plane and -27dB null-depth of difference pattern at 17 GHz center frequency.

  1. WANG, S., TSAI, K. H., HUANG, K. K., et al. Design of X-band RF CMOS transceiver for FMCW monopulse radar. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57 no. 1, p. 61–70. DOI: 10.1109/TMTT.2008.2008942
  2. MAHAFZA, B. R., ELSHERBENI, A. Z. MATLAB Simulations for Radar Systems Design. 1st ed., rev. New York (US): Chapman and Hall/CRC, 2003. (Radar Waveforms, p. 157–202) ISBN: 1584883928
  3. SKOLNIK, M. I. Introduction to Radar Systems. 3rd ed., rev. McGraw-Hill Education, 2003. (Monopulse Tracking Radar, p. 160–167) ISBN: 0072881380
  4. JAKOBY, R. A novel quasi-optical monopulse-tracking system for millimeter-wave application. IEEE Transactions on Antennas and Propagation, 1996, vol. 44, no. 4, p. 466–477. DOI: 10.1109/8.489298
  5. LING, C. C., REBEIZ, G. M. 94 GHz integrated horn monopulse antennas. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 8, p. 981–984. DOI: 10.1109/8.163437
  6. KELLY, K. C., GOEBELS, F. J. Annular slot monopulse antennas. IEEE Transactions on Antennas and Propagation, 1964, vol. 12, no. 4, p. 391–403. DOI: 10.1109/TAP.1964.1138263
  7. ZHU, J. F., LIAO, S. W., LI, S. F., XUE, Q. 60 GHz substrateintegrated waveguide-based monopulse slot antenna arrays. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 9, p. 4860–4865. DOI: 10.1109/TAP.2018.2847324
  8. CAO, F. F., YANG, D. G., PAN, J., et al. A compact single-layer substrate-integrated waveguide (SIW) monopulse slot antenna array. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2755–2758. DOI: 10.1109/LAWP.2017.2744668
  9. CHENG, Y. J., HONG, W., WU, K. 94 GHz substrate integrated monopulse antenna arrays. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 121–129. DOI: 10.1109/TAP.2011.2167945
  10. ZHANG, H. Z., GRANET, C., SPREY, M. A. A compact Ku-band monopulse horn. Microwave and Optical Technology Letters, 2002, vol. 34, no. 1, p. 9–13. DOI: 10.1002/mop.10357
  11. WANG, H., FANG, D. G., CHEN, X. G. A compact single layer monopulse microstrip antenna array. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 503–509. DOI: 10.1109/TAP.2005.863103
  12. HUANG, H. Y., WANG, B. Z., LI, F., et al. A Ka-band monopulse microstrip antenna array. In IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components (IMWS). Chengdu (China), 2008, p. 124–127. DOI: 10.1109/IMWS.2008.4782278
  13. KIM, S. G., CHANG, K. Low-cost monopulse antenna using bidirectionally-fed microstrip patch array. Electronics Letters, 2003, vol. 39, no. 20, p. 1428–1429. DOI: 10.1049/el:20030963
  14. XU, Q., SUN, H. J., YANG, H. Z., et al. A digital sum-difference millimeter wave monopulse system based on microstrip array antenna. In 20th Asia Pacific Microwave Conference (APMC 2008). Hong Kong (China), 2008, p. 97–100. DOI: 10.1109/APMC.2008.4957876
  15. VOSOOGH, A., HADDADI, A., ZAMAN, A. U., et al. W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 6997–7009. DOI: 10.1109/TAP.2018.2874427
  16. LIU, Y., YANG, H., HE, Y., ZHU, J. Compact monopulse sumdifference comparator based on double-layer substrate integrated waveguide. Electronics Letters, 2017, vol. 53 no. 22 p. 1477-1478. DOI: 10.1049/el.2017.2064
  17. HUANG, G. L., ZHOU, S. G., CHIO, T. H. Highly-efficient selfcompact monopulse antenna system with integrated comparator network for RF industrial applications. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 1, p. 674–681. DOI: 10.1109/TIE.2016.2608769
  18. WANG, W., ZOU, L., WANG, X. T. A novel 94 GHz planar integrated monopulse array antenna with hybrid feeding networks. IEICE Electronics Express, 2018, vol. 15, no. 12, p. 1–9. DOI: 10.1587/elex.15.20180381
  19. KUMAR, H., KUMAR, G. Monopulse comparators. IEEE Microwave Magazine, 2019, vol. 20, no. 3, p. 13–23. DOI: 10.1109/MMM.2018.2885670
  20. ALVAREZ-FOLGUEIRAS, M., RODRIGUEZ-GONZALEZ, J. A., ARES-PENA, F. Synthesising Taylor and Bayliss linear distributions with common aperture tail. Electronics Letters, 2009, vol. 45, no. 1, p. 18–19. DOI: 10.1049/el:20093322
  21. HUANG, J. A parallel series fed microstrip array with high efficiency and low cross polarization. Microwave and Optical Technology Letters, 1992, vol. 5, no. 5, p. 230–233. DOI: 10.1002/mop.4650050509
  22. RAO, J. S., JOSHI, K. K., DAS, B. N. Analysis of small aperture coupling between rectangular waveguide and microstrip line. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 2, p. 150–154. DOI: 10.1109/TMTT.1981.1130312
  23. NIE, X. H., HONG, W., FAN, K. K. Monopulse array and low side-lobe level array with a novel feed network. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 12, p. 1978–1985. DOI: 10.1049/iet-map.2018.5212

Keywords: FMCW radar, monopulse antenna, high performance, microstrip array, waveguide coupling slot array, array feeding network

A. Siahcheshm, J. Nourinia, Ch. Ghobadi, M. Shokri [references] [full-text] [DOI: 10.13164/re.2020.0067] [Download Citations]
Circularly Polarized Printed Helix Antenna for L- and S-Bands Applications

The first aim of this work is to design a new geometry of printed helix antennas in a simple structure that only uses planar FR4 substrates, unlike conventional wire helix antennas. The main body of helix comprises four rectangular substrates containing helix arms forming a box. The printed helix arms are designed in a way that they meet each other in the edges of substrates when placed next to one another. The most important advantages of this work are introducing a method that makes the helix antenna fabrication and also the impedance matching procedure simpler. The presented helix antenna has end-fire radiation in Z-direction with circular polarization suitable for L- and S-bands applications. Simulated and measured results show that the proposed antenna has a wide impedance bandwidth of 1.37 GHz from 1.56 GHz to 2.93 GHz (more than 61%), the 3 dB axial ratio bandwidth of 1.18 GHz from 1.58 GHz to 2.76 GHz (more than 54%) and a maximum gain of 11.3 dBiC at 1.6 GHz.

  1. MOHAMMADI, S., NOURINIA, J., GHOBADI, C., et al. Compact broadband circularly polarized slot antenna using two linked elliptical slots for C-band applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1094–1097. DOI: 10.1109/lawp.2013.2280457
  2. SIAHCHESHM, A., NOURINIA, J., GHOBADI, C., et al. A broadband circularly polarized cavity-backed Archimedean spiral array antenna for C-band applications. AEU - International Journal of Electronics and Communications, 2017, vol. 81, p. 218–226. DOI: 10.1016/j.aeue.2017.08.052
  3. SHOKRI, M., VIRDEE, B., RAFII, V., et al. Miniaturised ultrawideband circularly polarised antenna with modified ground plane. Electronics Letters, 2014, vol. 50, no. 24, p. 1786–1788. DOI: 10.1049/el.2014.3278
  4. SHOKRI, M., SHIRZAD, H., MOVAGHARNIA, S., et al. Planar monopole antenna with dual interference suppression functionality. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1554–1557. DOI: 10.1109/lawp.2013.2292921
  5. KRAUS, J. D., MARHEFKA, R. J. Antennas for All Applications. Boston (MA, USA): McGraw-Hill, 2008.
  6. CHEN, Z., SHEN, Z. Planar helical antenna of circular polarization. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 10, p. 4315–4323. DOI: 10.1109/tap.2015.2463746
  7. LIU, X., YAO, S., COOK, B. S., et al. An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 12, p. 5897–5903. DOI: 10.1109/tap.2015.2481922
  8. TANG, X., HE, Y., FENG, B. Design of a wideband circularly polarized strip-helical antenna with a parasitic patch. IEEE Access, 2016, vol. 4, p. 7728–7735. DOI: 10.1109/access.2016.2628044
  9. FARTOOKZADEH, M., MOHSENI ARMAKI, S. H. Multi-band conical and inverted conical printed quadrifilar helical antennas with compact feed networks. AEU - International Journal of Electronics and Communications, 2016, vol. 70, no. 1, p. 33–39. DOI: 10.1016/j.aeue.2015.09.018
  10. JIMISHA, K., KUMAR, S. Optimum design of exponentially varying helical antenna with non uniform pitch profile. Procedia Technology, 2012, vol. 6, p. 792–798. DOI: 10.1016/j.protcy.2012.10.096
  11. ABDERRAHMANE, L. H., SWEETING, M., COOKSLEY, J., et al. Design of a quadrafilar helix antenna used on Alsat-1 S band transmitter. AEU - International Journal of Electronics and Communications, 2006, vol. 60, no. 8, p. 606–612. DOI: 10.1016/j.aeue.2005.11.011
  12. WONGPAIBOOL, V. Improved axial-mode-helical-antenna impedance matching utilizing triangular copper strip for 2.4-GHz WLAN. In 2008 International Wireless Communications and Mobile Computing Conference. Crete Island (Greece), 2008, p. 869–873. DOI: 10.1109/iwcmc.2008.150
  13. WONG, J., KING, H. Broadband quasi-taper helical antennas. IEEE Transactions on Antennas and Propagation, 1979, vol. 27, no. 1, p. 72–78. DOI: 10.1109/tap.1979.1142033
  14. ANGELAKOS, D., KAJFEZ, D. Modifications on the axial-mode helical antenna. Proceedings of the IEEE, 1967, vol. 55, no. 4, p. 558–559. DOI: 10.1109/proc.1967.5583
  15. KRAUS, J. D. The Helical Antenna: Axial and Other Modes. Part II, In Antenna for All Applications. 3rd ed. McGraw-Hill (New York), 2003. Ch. 8, p. 250−303.
  16. BALANIS, C. A. Traveling Wave and Broadband Antennas. In Antenna Theory, Analysis and Design. 3rd ed. New York: John Wiley & Sons, 1997. Ch. 10, p. 549−610.
  17. KRAUS, J. A 50-ohm input impedance for helical beam antennas. IEEE Transactions on Antennas and Propagation, 1977, vol. 25, no. 6, p. 913–913. DOI: 10.1109/tap.1977.1141687
  18. BARTS, R. M. The Stub Loaded Helix: A Reduced Size Helical Antenna. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003.
  19. MATHUR, S. P., SINHA, A. K., SINHA, A. K. Technical memorandum: Design of microstrip exponentially tapered lines to match helical antennas to standard coaxial transmission lines. IEE Proceedings H Microwaves, Antennas and Propagation, 1988, vol. 135, no. 4, p. 272–274. DOI: 10.1049/ip-h-2.1988.0055
  20. TSANDOULAS, G. N. The linearly tapered transmission line as a matching section—High- and low-frequency behavior. Proceedings of the IEEE, 1967, vol. 55, no. 9, p. 1658–1659. DOI: 10.1109/proc.1967.5950
  21. MANOOCHEHRI, O., ABBASINIAZARE, S., FOROORAGHI, K. Design of a 2×2 tapered dielectric-loaded helical antenna array for INMARSAT-M satellite system. Microwave and Optical Technology Letters, 2013, vol. 55, no. 11, p. 2600–2604. DOI: 10.1002/mop.27904
  22. NAKANO, H., TAKEDA, H., HONMA, T., et al. Extremely lowprofile helix radiating a circularly polarized wave. IEEE Transactions on Antennas and Propagation, 1991, vol. 39, no. 6, p. 754–757. DOI: 10.1109/8.86872

Keywords: Helix antenna, end-fire radiation pattern, circular polarization, L- and S-bands applications

P. Saha, D. Mitra, S. K. Parui [references] [full-text] [DOI: 10.13164/re.2020.0074] [Download Citations]
A Frequency and Polarization Agile Disc Monopole Wearable Antenna for Medical Applications

A combined frequency and polarization reconfigurable textile based wearable disc monopole antenna is proposed in this paper. The antenna consists of a disc monopole as the radiator and four PIN diodes for realizing the agility property. By varying the different switching combination of the PIN diodes, frequency reconfigurability is achieved between the GSM and ISM band. Two circular polarization states, right hand circular polarization (RHCP) and left hand circular polarization (LHCP) are also realized in each operating frequency band. The upper band polarization state is controlled by a L shaped stub introduced in the ground plane whereas the lower band polarization agility depends on the length of the parasitic arc placed around the main radiator. The antenna is fabricated and its performance is measured to validate the proposed design.

  1. QIN, P.Y., GUO, Y. J., CAI, Y., et al. A reconfigurable antenna with frequency and polarization agility. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1373–1376. DOI: 10.1109/LAWP.2011.2178226
  2. GRAU, A., ROMEU, J., LEE, M. J., et al. Dual-linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication systems. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 1, p. 4–17. DOI: 10.1109/TAP.2009.2036197
  3. LI, P. K., SHAO, Z. H., WANG, Q., et al. Frequency and pattern reconfigurable antenna for multi-standard wireless applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 333–336. DOI: 10.1109/LAWP.2014.2359196
  4. LIN, W., WONG, H. Polarization reconfigurable wheel-shaped antenna with conical-beam radiation pattern. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no 2, p. 491–499. DOI: 10.1109/TAP.2014.2381263
  5. LI, T., ZHAI, H., WANG, X., et al. Frequency-reconfigurable bow-tie antenna for Bluetooth, WIMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 171–147. DOI: 10.1109/LAWP.2014.2359199
  6. KIM, B., PAN, B., NIKOLAOU, S., et al. A novel single-feed circular microstrip antenna with reconfigurable polarization capability. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, p. 630–638. DOI: 10.1109/TAP.2008.916894
  7. SARASWAT, K., HARISH, A. R. A polarization reconfigurable CPW fed monopole antenna with L-shaped parasitic element. International Journal of RF and Microwave Computer Aided Engineering, 2018, vol. 28, no. 6, p. 1–6. DOI: 10.1002/mmce.21285
  8. CHEN, C. C., SIM, C. Y. D., LIN, H. L. Annular ring slot antenna design with reconfigurable polarization. International Journal of RF and Microwave Computer-Aided Engineering, 2015, vol. 26, no. 2, p. 110–120. DOI: 10.1002/mmce.20944
  9. BHATTACHARJEE, A., DWARI, S., MANDAL, M. K. Polarization-reconfigurable compact monopole antenna with wide effective bandwidth. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 1040–1045. DOI: 10.1109/LAWP.2019.2908661
  10. CUI, Y., QI, C., LI, R. A low-profile broadband quad-polarization reconfigurable omnidirectional antenna. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 4178–4183. DOI: 10.1109/TAP.2019.2905987
  11. QIN, P. Y., GUO, Y. J., DING, C. A dual-band polarization reconfigurable antenna for WLAN systems. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 11, p. 5706–5713. DOI: 10.1109/TAP.2013.2279219
  12. SIMORANGKIR, R. B. V. B., YANG, Y., ESSELLE, K. P., et al. A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 50–58. DOI: 10.1109/TAP.2017.2772036
  13. TAHIR, F. A., JAVED, A. A compact dual-band frequency reconfigurable textile antenna for wearable applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 10, p. 2251–2257. DOI: 10.1002/mop.29311
  14. YAN, S., VANDENBOSCH G. A. E. Radiation patternreconfigurable wearable antenna based on metamaterial structure. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1715–1718. DOI: 10.1109/LAWP.2016.2528299
  15. TONG, X., LIU, C., LIU, X., et al. Switchable ON-/OFF-body antenna for 2.45 GHz WBAN applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 967–971. DOI: 10.1109/TAP.2017.2780984
  16. SALLEH, S. M., JUSOH, M., ISMAIL, A. H., et al. Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN. IEEE Access, 2017, vol. 6, p. 7350 to 7358. DOI: 10.1109/access.2017.2787018
  17. Data Sheet of BAP64-03 Silicon PIN diode.

Keywords: Wearable antenna, frequency reconfigurable antenna, polarization reconfigurable antenna, disc monopole, medical applications

W. P. Zhao, J. Li, J. Zhao, D. Zhao, J. Lu, X. Wang [references] [full-text] [DOI: 10.13164/re.2020.0081] [Download Citations]
XGB Model : Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm

Evaporation duct is a specific atmospheric structure at sea, which has an important influence on the propagation path of electromagnetic waves (EW). Considering the limit of existing evaporation duct height (EDH) prediction models and aiming at prpoposing more accurate and stronger generalization ability of EDH models, we applied eXtreme Gradient Boosting (XGBoosting) algorithm to the field of evaporation duct for the first time. And we proposed the new EDH prediction model using XGBoost algorithm(XGB model). Simultaneously, traditional Paulus-Jeske (PJ) model and deep learning Multilayer Perceptron (MLP) model were introduced into the experiment to make a comparison. In terms of comprehensive performance, XGB model is optimal in all sub-regions and total area. Finally, cross-learning experiments were carried out to test the generalization ability of XGB model. The results show that the generalization ability of XGB model is better than that of MLP model.

  1. KANG, S. F., ZHANG, Y. S., WANG, H. G. Tropospheric Atmospheric Duct. Zhang Z. 1st ed. Beijing (China): Science Press, 2014. ISBN: 9787030422576 (in Chinese)
  2. JIANG, B., WANG, H. Q., LI, X., et al. A novel method of target detection based on the sea clutter. Acta Physica Sinica, 2006, vol. 55, no. 8, p. 3985–3991. DOI: 10.7498/aps.55.3985 (In Chinese)
  3. LI, Y. B., ZHANG, Y. G., TANG, H. C., et al. Application of airsea flux algorithms in diagnosis of evaporation duct at sea. Journal of Applied Meteorology, 2009, vol. 20, no. 5, p. 628–633. DOI: 10.11898/1001-7313.20090515 (in Chinese)
  4. YAO, Z. Y., ZHAO, B. L., LI, W. B., et al. The analysis on characteristics of atmospheric duct and its effect on the propagation of electromagnetic wave. Journal of Meteorology, 2000, vol. 58, no. 5, p. 605–616. DOI: 10.11676/qxxb2000.062 (in Chinese)
  5. GUO, X. M., KANG, S. F., ZHANG, Y. S., et al. Study on characteristics and applicability of evaporation duct model. Marine Forecast, 2013, vol. 30, no. 5, p. 75–83. DOI: 10.11737/j.issn.1003-0239.2013.05.012 (in Chinese)
  6. YANG, K. D., MA, Y. L., SHI, Y. Spatial-temporal distributions of evaporation duct for the West Pacific Ocean. Acta Physica Sinica, 2009, vol. 58, no. 10, p. 7339–7350. DOI: 10.7498/aps.58.7339 (in Chinese)
  7. FAN, J. Y., GUO, S. H., KANG, S. F., et al. Evaporation duct detection based on meteorological grads tower. Radio Engineering, 2012, vol. 42, no. 11, p. 32–33+47. DOI: 10.3969/j.issn.1003-3106.2012.11.011 (in Chinese)
  8. CRAIN, C. M. Survey of airborne microwave refractometer measurements. Proceedings of the IRE, 2007, vol. 43, no. 10, p. 1405–1411. DOI: 10.1109/JRPROC.1955.277956
  9. BIN, T., CHA, H., ZHANG, Y. S., et al. Study on the applicability of evaporation duct Model A in Chinese sea areas. Chinese Journal of Radio Science, 2009, vol. 37, no. 5, p. 1100–1103. (in Chinese)
  10. ZHANG, J. P., ZHANG, Y. S., WU, Z. S., et al. Inversion of regional range-dependent evaporation duct from radar sea clutter. Acta Physica Sinica, 2015, vol. 64, no. 12, p. 136–146. DOI: 10.7498/aps.64.124101 (in Chinese)
  11. SHENG, Z., CHEN, J. Q., XU, R. H. Tracking refractivity from radar clutter using particle filter. Acta Physica Sinica, 2012, vol. 61, no. 6, p. 523–528. DOI: 10.7498/aps.61.069301 (in Chinese)
  12. LOWRY, A. R., ROCKEN, C., SOKOLOVSKIY, S. V., et al. Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Science, 2002, vol. 37, no. 3, p. 13-1–13-19. DOI: 10.1029/2000RS002565
  13. LIU, L. J., XIA, J. M., BAI, W. H., et al. Effect of evaporation duct on effective scattering zone of GNSS sea surface reflection signal. Chinese Journal of Geophysics, 2019, vol. 62, no. 2, p. 59 to 67. DOI: 10.6038/cjg2019L0689 (in Chinese)
  14. LI, S.M., CHEN, Z., QIAO, R., et al. Progress and problems of evaporation duct modes at sea. Marine Forecast, 2005, Vol. 22, no. z1, p. 128—139. DOI: 10.3969/j.issn.1003-0239.2005.z1.019
  15. WESELY, M. L. Comments on ''Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 1980, vol. 37, no. 12, p. 2798–2800. DOI: 10.1175/1520- 0469(1980)0372.0.CO;2
  16. PAULUS, R. A. Practical application of an evaporation duct model. Radio Science, 1985, vol. 20, no. 4, p. 887–896. DOI: 10.1029/RS020i004p00887
  17. COOK, J. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms. Radio Science, 1991, vol. 26, no. 3, p. 731–746. DOI: 10.1029/91rs00835
  18. COOK, J., BURK, S. Potential refractivity as a similarity variable. Boundary-Layer Meteorology, 1992, vol. 58, no. 1–2, p. 151 to 159. DOI: 10.1007/BF00120756
  19. MUSSON-GENON, L., GAUTHIER, S., BRUTH, E. A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Science, 1992, vol. 27, no. 5, p. 635–644. DOI: 10.1029/92rs00926
  20. BABIN, S. M., YOUNG, G. S., CARTON, J. A. A new model of the oceanic evaporation duct. Journal of Applied Meteorology, 1997, vol. 36, no. 3, p. 193–204. DOI: 10.1175/1520- 0450(1997)036<0193:ANMOTO>2.0.CO;2
  21. BABIN, S. M., DOCKERY, G. D. LKB-based evaporation duct model comparison with buoy data. Journal of Applied Meteorology, 2002, vol. 41, no. 4, p. 434–446. DOI: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2
  22. FAIRALL, C. W., BRADLEY, E. F., HARE, J. E., et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 2003, vol. 16, no. 4, p. 571–591. DOI: 10.1175/1520- 0442(2003)016<0571:bpoasf>2.0.co;2
  23. LIU, C. G., HUANG, J. Y., JIANG, C. Y., et al. Modeling evaporation duct over sea with pseudo-refractivity and similarity theory. Journal of Electronic Science, 2001, vol. 29, no. 7, p. 970 to 972. DOI: 10.3321/j.issn:0372-2112.2001.07.030 (in Chinese)
  24. DING, J. L., FEI, J. F., HUANG, X. G. Development and validation of an evaporation duct model. PartⅠ: Model establishment and sensitivity experiments. Journal of Meteorological Research, 2015, vol. 29, no. 3, p. 467–481. DOI: 10.1007/s13351-015-3238-3
  25. LIU, L. H., LI, Y. B., GAO, Z. Q., et al. Research on evaporation duct prediction model based on non-iterative air-sea flux algorithms. Journal of Applied Oceanography, 2017, vol. 4, p. 23 to 35. DOI: 10.3969/J.ISSN.2095-4972.2017.04.003 (in Chinese)
  26. HITNEY, H. V., RICHTER, J. H., SCHEFER, M. H. Integrated refractive effects prediction system. US. Naval Engineers Journal, 1976, vol. 88, no. 2, p. 257–262. DOI: 10.1111/j.1559- 3584.1976.tb03831.x
  27. BAUMGARTNER, G.B., HITNEY, H. V., PAPPERT, R. A. Duct propagation modelling for the integrated-refractive-effects prediction system (Ireps). Communications Radar, 1983, vol. 130, no. 7, p. 630–642. DOI: 10.1049/ip-f-1.1983.0096
  28. LI, J., WANG, H., ZHAO, Z. Statistical method of evaporation duct propagation based on marine meteorological data. Chinese Journal of Radio Science, 2013, vol. 28, no.5, p. 891–896. DOI: 10.3969/j.issn.1005-0388.2013.05.015 (in Chinese)
  29. TIAN, B., YU, S. J., LI, J., et al. Study on the adaptability of PJ model of evaporation duct in subtropical sea area. Ship Science and Technology, 2009, vol. 9, p. 96–99. DOI: 10.3404/j.issn.1672—7649.2009.09.017 (in Chinese)
  30. YAO, J. S., YANG, S. Y. Application of PJ evaporation duct model in coastal sea area. Fire and Command Control, 2010, vol. 35, no. 6, p. 121–124. DOI: 10.3969/j.issn.1002- 0640.2010.06.034 (in Chinese)
  31. BREIMAN, L. Stacked regressions. Machine Learning, 1996, vol. 24, no. 1, p. 49–64. DOI: 10.1023/a:1018046112532
  32. PROVOST, F., FAWCETT, T. Robust classification for imprecise environment. Machine Learning, 2001, vol. 42, no. 3, p. 203–231. DOI: 10.1023/a:1007601015854
  33. DOUVENOT, R., FABBRO, V., GERSTOFT, P., et al. A duct mapping method using least squares support vector machines. Radio Science, 2008, vol. 43, no. 6, p. 1–12. DOI: 10.1029/2008rs003842
  34. DOUVENOT, R., FABBRO, V., BOURLIER, C., et al. Retrieve the evaporation duct height by least-squares support vector machine algorithm. Journal of Applied Remote Sensing, 2009, vol. 3, no. 1, p. 1–15. DOI: 10.1117/1.3081546
  35. YANG, C. A comparison of the machine learning algorithm for evaporation duct estimation. Radioengineering, 2013, vol. 22, no. 2, p. 657–661. ISSN: 1210-2512
  36. GEORGANOS, S., GRIPPA, T., VANHUYSSE, S., et al. Very high resolution object-based land use – land cover urban classification using extreme gradient boosting. IEEE Geoscience and Remote Sensing Letters, 2018, vol. 15, no. 4, p. 607–611. DOI: 10.1109/LGRS.2018.2803259
  37. ZHU, X. Y., LI, J. C., ZHU, M., et al. An evaporation duct height prediction method based on deep learning. IEEE Geoscience and Remote Sensing Letters, 2018, vol. 15, no. 9, p. 1307–1311. DOI: 10.1109/LGRS.2018.2842235
  38. ZHU, X. Y., ZHU, M., LI, J. C., et al. An optimization research of evaporation duct prediction models based on a deep learning method. In IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC 2018). Xi’an (China), 2018, p. 1818–1822. DOI: 10.1109/IMCEC.2018.8469552
  39. CHEN, W., FU, K., ZUO, J., et al. Radar emitter classification for large data set based on weighted-xgboost. IET Radar, Sonar & Navigation, 2017, vol. 11, no. 8, p. 1203–1207. DOI: 10.1049/ietrsn.2016.0632
  40. NATEKIN, A., KNOLL, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013, vol. 7, no. 7, p. 1–21. DOI: 10.3389/fnbot.2013.00021
  41. JESKE, H. State and Limits of Prediction Methods of Radar Wave Propagation Conditions Over Sea. Modern Topics in Microwave Propagation and Air-Sea Interaction, 1973, vol. 5, p. 130–148. DOI: 10.1007/978-94-010-2681-9_13

Keywords: Evaporation duct, machine learning, XGBoost algorithm, XGB model, Paulus-Jeske (PJ) model

R. K. Barik, Q. S. Cheng, N. C. Pradhan, K. S. Subramanian [references] [full-text] [DOI: 10.13164/re.2020.0094] [Download Citations]
A Compact SIW Power Divider for Dual-Band Applications

In this paper, a novel design of highly compact power divider employing substrate-integrated waveguide (SIW) is proposed for dual-band applications. The double-ring asymmetric complimentary split-ring resonators (CSRRs) are utilized to obtain dual-band operation. The asymmetric double-ring CSRRs create mixed magnetic and electric coupling resulting two distinct resonating frequencies which exhibits bandpass behaviour below the resonating frequency of the cavity. The resonating passbands can be designed individually by varying the dimensions of the proposed CSRRs. In addition, the position of output ports can be varied to achieve arbitrary power division. To demonstrate the proposed analysis, three prototypes (two equal power division and one unequal power division) of dual-band SIW power dividers are designed and fabricated. Measurement performance provides a good consistency with that of simulated one. The circuit areas of the fabricated prototypes 1, 2 and 3 excluding microstrip transitions are 0.053λg2, 0.088λg2 and 0.033λg2, respectively. The proposed design process exhibits dual-band performance with smaller circuit-area, suitable isolation and hence appropriate for dual-band communication services.

  1. DONG, Y., YANG, T., ITOH, T. Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2211–2223. DOI: 10.1109/tmtt.2009.2027156
  2. MXIMO-GUTIERREZ, C., HINOJOSA, J., ALVAREZ-MELCON, A. Design of wide band-pass substrate integrated waveguide (SIW) filters based on stepped impedances. AEU - International Journal of Electronics and Communications, 2018, vol. 100, p. 1–8. DOI: 10.1016/j.aeue.2018.12.022
  3. AGHAYARI, H., NOURINIA, J., GHOBADI, C. Incorporated substrate integrated waveguide filters in propagative and evanescent mode: Realization and comparison. AEU - International Journal of Electronics and Communications, 2018, vol. 91, p. 150–159. DOI: 10.1016/j.aeue.2018.05.008
  4. ZHOU, K., ZHOU, C., WU, W. Substrate integrated waveguide dual-band filter with wide-stopband performance. Electronics Letters, 2017, vol. 53, no. 16, p. 1121–1123. DOI: 10.1049/el.2017.1556
  5. ZHANG, H., KANG, W., WU, W. Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators. Electronics Letters, 2018, vol. 54, no. 2, p. 85–87. DOI: 10.1049/el.2017.3478
  6. DONG, Y., WU, C. M., ITOH, T. Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 6, p. 611–620. DOI: 10.1049/iet-map.2011.0448
  7. DONG, Y., ITOH, T. Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators. In Proceedings of the IEEE MTT-S International Microwave Symposium. Baltimore (USA), 2011, p. 1–4. DOI: 10.1109/mwsym.2011.5973189
  8. MOULAY, A., DJERA, T. Wilkinson power divider with fixed width substrate integrated waveguide line and a distributed isolation resistance. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 2, p. 114–116. DOI: 10.1109/lmwc.2018.2790706
  9. KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/lmwc.2016.2615005
  10. PASIAN, M., SILVESTRI, L., RAVE, C., et al. Substrate-integratedwaveguide E-plane 3-dB power-divider/combiner based on resistive layers. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 5, p. 1498–1510. DOI: 10.1109/tmtt.2016.2642938
  11. CHEN, Q. , XU, J. Out-of-phase power divider based on two-layer SIW. Electronics Letters, 2014, vol. 50, no. 14, p. 1005–1007. DOI: 10.1049/el.2014.0406
  12. CHEN, S. Y., ZHANG, D. S., YU, Y. T. Wideband SIW power divider with improved out-of-band rejection. Electronics Letters, 2013, vol. 49, no. 15, p. 943–944. DOI: 10.1049/el.2013.0979
  13. WANG, X., ZHU, X. Quarter-mode circular cavity substrate integrated waveguide filtering power divider with via-holes perturbation. Electronics Letters, 2017, vol. 53, no. 12, p. 791–793. DOI: 10.1049/el.2017.0697
  14. HE, Z., JIANG, Y.C., LENG, S., LI, X. Compact power divider with improved isolation and bandpass response. Microwave and Optical Technology Letters, 2017, vol. 59, no. 7, p. 1776–1781. DOI: 10.1002/mop.30621
  15. LI, T., DOU, W. Broadband substrate-integrated waveguide T-junction with arbitrary power-dividing ratio. Electronics Letters, 2015, vol. 51, no. 3. p. 259–260. DOI: 10.1049/el.2014.3928
  16. CHEN, S., SU, C., YU, Y., WU, Y. A compact two-way equal power divider with enhanced out-of-band rejection based on SIW technology. Microwave and Optical Technology Letters, 2013, vol. 55, no. 7, p. 1638–1640. DOI: 10.1002/mop.27641
  17. CHOUDHARY, D. K., CHAUDHARY, R. K., A compact SIW based filtering power divider with improved selectivity using CSRR. In Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). Singapore (Singapore), 2017, p. 1334–1337. DOI: 10.1109/piers-fall.2017.8293337
  18. MOZNEBI, A. R., AFROOZ, K. Compact power divider based on half mode substrate integrated waveguide (HMSIW) with arbitrary power dividing ratio. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 3, p. 515–521. DOI: 10.1017/s1759078716000544
  19. SONG, K., FAN, Y., ZHANG, Y. Eight-way substrate integrated waveguide power divider with low insertion loss. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 6, p. 1473–1477. DOI: 10.1109/tmtt.2008.923897
  20. ZOU, X., TONG, C., YU, D. Y-junction power divider based on substrate integrated waveguide. Electronics Letters, 2011, vol. 47, no. 25, p. 1375–1376. DOI: 10.1049/el.2011.2953
  21. EOM, D., BYUN, J., LEE, H. Multilayer substrate integrated waveguide four-way out-of-phase power divider. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57 no. 12, p. 3469–3476. DOI: 10.1109/tmtt.2009.2034311
  22. ZHU, F., HONG, W., CHEN, J., WU, K. Design and implementation of a broadband substrate integrated waveguide magic-T. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 12, p. 630–632. DOI: 10.1109/lmwc.2012.2226936
  23. SONG, K., ZHU, Y., ZHANG, F. Single- and dual-band filteringresponse power dividers embedded SIW filter with improved output isolation. Scientific Reports, 2017, vol. 7, no. 3361, p. 1529–1533. DOI: 10.1038/s41598-017-03312-9
  24. WANG, Y., ZHOU, C., ZHOU, K., WU, K. Compact dual-band filtering power divider based on SIW triangular cavities. Electronics Letters, 2018, vol. 54, no. 2, p. 1072–1074. DOI: 10.1049/el.2018.5611

Keywords: Dual-band, SIW, compact, power divider

H.P. Li, I. Hussain, Y. Wang, Q. S. Cao [references] [full-text] [DOI: 10.13164/re.2020.0101] [Download Citations]
Smart-Mesh Strategy in DGTD Method for Partially Filled Cavity with Uncertain Interface Parameters

To achieve high quality localization of nodes, a smart-mesh strategy is employed in the discontinuous Galerkin time-domain (DGTD) simulation. The strategy is able to adjust adaptively the nodes defined on the unstructured triangular element in real-time simulation, thus an arbitrary or uncertain shaped object can be modeled accurately. The benefits of smart-mesh strategy are demonstrated for a partially dielectric filled cavity with microscale random material height and uncertain rough interface. Numerical experiments show that the smart-mesh approach can capture fine structural information and achieve more effective positions to match variable shapes.

  1. POZAR, D. M. Microwave Engineering. 4th ed. John Wiley & Sons, Inc., Nov 2011. ISBN: 978-0-470-63155-3
  2. BALANIS, C. A. Advanced Engineering Electromagnetics. 2nd ed. Wiley, 2012. ISBN: 978-0-470-58948-9
  3. HARRINGTON, R. F. Time-Harmonic Electromagnetic Fields. McGraw-Hill, 2001. ISBN: 0-471-20806-X
  4. MARCUVITZ, N. Waveguide Handbook. 3rd ed. Peter Peregrinus Ltd., 2009.
  5. YUCEL, A. C. Uncertainty Quantification for Electromagnetic Analysis via Efficient Collocation Methods. Dissertations & Theses, Gradworks, 2013.
  6. HARRINGTON, R. F. Field Computation by Moment Methods. New York: Wiley-IEEE Press, 1993. ISBN: 0-7803-1014-4
  7. EDWARDS, R. S., MARVIN, A. C., POTER, S. J. Uncertainty analyses in the finite-difference time-domain method. IEEE Transactions on Electromagnetic Compatibility, 2010, vol. 52, no. 1, p. 155–163. DOI: 10.1109/temc.2009.2034645
  8. SMITH, S. M., FURSE, C. Stochastic FDTD for analysis of statistical variation in electromagnetic fields. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3343–3350. DOI: 10.1109/TAP.2012.2196962
  9. AKYURTLU, A., WERNER, D. H., VEREMEY, V., et al. Staircasing errors in FDTD at an air-dielectric interface. IEEE Microwave and Guided Wave Letters, 2002, vol. 9, no. 11, p. 444–446. DOI: 10.1109/75.808028
  10. CHAUVIÈRE, C., HESTHAVEN, J. S., LURATI, L. Computational modeling of uncertainty in time-domain electromagnetics. SIAM Journal on Scientific Computing, 2006, vol. 28, no. 2, p. 751–775. DOI: 10.1137/040621673
  11. DE MENEZES, L. R. A. X., PAREDES, A. O., ABDALLA, H., et al. Modeling device manufacturing uncertainty in electromagnetic simulations. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest. Atlanta (GA, USA), 2008, p. 1385–1388. DOI: 10.1109/MWSYM.2008.4633036
  12. NHAT PHAM, M., MULLER, J., JACOB, A. F. Measurement and fabrication uncertainties in high-directivity microstrip couplers. In Proceedings of the 42nd European Microwave Conference. Amsterdam (Netherlands), 2012, p. 479–482. DOI: 10.23919/EuMC.2012.6459184
  13. HESTHAVEN, J. S., WARBURTON, T. Nodal high-order methods on unstructured grids. Journal of Computational Physics, 2002, vol. 181, no. 1, p. 186–221. DOI: 10.1006/jcph.2002.7118
  14. HESTHAVEN, J. S., WARBURTON, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, 2008. ISBN: 978-0-387-72067-8
  15. JI, X., LU, T., CAI, W., et al. Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring resonators. Journal of Lightwave Technology, 2005, vol. 23, no. 11, p. 3864–3874. DOI: 10.1109/JLT.2005.855858
  16. GAO, S., LIU, M., CAO, Q. Discontinuous Galerkin time domain method for scattering analysis of air-inlets. Applied Computational Electromagnetics Society (ACES) Journal, 2013, vol. 28, no. 6, p. 449–482.
  17. ANGULO, L. D., ALVAREZ, J., PANTOJA, M. F., et al. Discontinuous Galerkin time domain methods in computational electrodynamics: State of the art. In Proceedings of the Forum for Electromagnetic Research Methods and Application Technologies, 2015, vol. 10, no. 004, p. 34–59.
  18. HASTINGS, F. D., SCHNEIDER, J. B., BROSCHAT, S. L. A Monte-Carlo FDTD technique for rough surface scattering. IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 11, p. 1183–1191. DOI: 10.1109/TAP.1995.481168
  19. FISHMAN, G. S. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer, 1996. ISBN: 0-387-94527-X
  20. CHAUVIERE, C., HESTHAVEN, J. S., WILCOX, L. C. Efficient computation of RCS from scatterers of uncertain shapes. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 5, p. 1437–1448. DOI: 10.1109/TAP.2007.895629
  21. HUSSAIN, I., LI, H., WANG, Y., et al. Modeling of structures using adaptive mesh in DGTD method for EM solver. In Proceedings of the 38th Progress in Electromagnetics Research Symposium. St Petersburg (Russia), 2017, p. 383–388. DOI: 10.1109/PIERS.2017.8261769
  22. HUSSAIN, I., LI, H., CAO, Q. Multiscale structure simulation using adaptive mesh using DGTD method. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2017, vol. 2, p. 115–123. DOI: 10.1109/JMMCT.2017.2723261
  23. ARNOLD, D. N., MUKHERJEE, A., POULY, L. Locally adapted tetrahedral meshes using bisection. SIAM Journal on Scientific Computing, 2000, vol. 22, no. 2, p. 431–448. DOI: 10.1137/S1064827597323373
  24. LOGAN, D. L. A First Course in the Finite Element Method. 6th ed. CL Engineering, 2016. ISBN: 0-534-55298-6
  25. DULAR, P., LE MENACH, Y., TANG, Z., et al. Finite element mesh adaptation strategy from residual and hierarchical error estimators in eddy current problems. IEEE Transactions on Magnetics, 2015, vol. 51, no. 3, p. 1–4. DOI: 10.1109/TMAG.2014.2352553

Keywords: DGTD, partially filled cavity, smart mesh, uncertain interface parameters, resonant frequency

I. M. Mashriki, S. M. J. Razavi, S. H. M. Armaki [references] [full-text] [DOI: 10.13164/re.2020.0109] [Download Citations]
Analyzing the Resonance Resultant from the Capacitive Effects in Bulk Current Injection Probe

In this paper, the effect of the slot distance, existed between the two parts of BCI-probe shield, on its performance is studied, therefore, two ferrite materials with the same size and different characteristics are used to implement two identical BCI-probes. The input impedance and reflection coefficient are measured for four different values of slot distance 0.5, 1, 2 and 3 mm. Practical results show a notable effect of the slot distance on measured quantities. Measured impedance analysis shows the appearance of three capacitive regions in its spectra, therefore, a three dimensional electromagnetic (EM) model is implemented in CST-Microwave Studio (MWS) software to disclose the main source parameters responsible for it. Results of achieved study, using developed EM model, were in accordance with measured data for the implemented prototypes, and showed the same resonance phenomena.

  1. RADIO TECHNICAL COMMISSION FOR AERONAUTICS (RTCA). DO-160F. Environmental Conditions and Test Procedures for Airborne Equipment. 2007.
  2. ELECTROMAGNETIC COMPATIBILITY (EMC). Part 4–6: Testing and Measurement Techniques— Immunity to Conducted Disturbances, Induced by Radio-frequency Fields. IEC Standard 61000-4-6, Ed. 4, 2013.
  3. ISO STANDARD 11451-4. Road Vehicles-Vehicle Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy-Part 4: Bulk Current Injection (BCI). June 2006.
  4. ISO STANDARD 11452-4. Road Vehicles- Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy-Part 4. Dec. 2011.
  5. IEC 62132-3, Ed.1. Integrated Circuit Measurements of Electromagnetic Immunity 150 kHz to 1 GHz, Part 3: Bulk Current Injection (BCI) Method. 2007.
  6. DEPARTEMENT OF DEFENSE INTERFACE STANDARD. Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment. MIL-STD-461E, Aug. 20, 1999.
  7. CERRI, G., DE LEO, R., PRIMIANI, V. M., et al. Wide-band characterization of current probes. IEEE Transactions on Electromagnetic Compatibility, 2003, vol. 45, no. 4, p. 616–625. DOI: 10.1109/TEMC.2003.819061
  8. GRASSI, F., PIGNARI, S. A., MARLIANI, F. Improved lumpedPi circuit model for bulk current injection probes. In IEEE Symposium on Electromagnetic Compatibility. Chicago (IL, USA), 2005, p. 451–456. DOI: 10.1109/ISEMC.2005.1513557
  9. GRASSI, F., MARLIANI, F., PIGNARI, S. A. Circuit modeling of injection probes for bulk current injection. IEEE Transactions on Electromagnetic Compatibility, 2007, vol. 49, no. 3, p. 563–576. DOI: 10.1109/TEMC.2007.902385
  10. NAYAK, B. P., DAS, A., VEDICHERLA, S. R., et al. Circuit models for bulk current injection (BCI) clamps with multiple cables. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Singapore, May. 2018, p. 1160–1163. DOI: 10.1109/ISEMC.2018.8393970
  11. ZHAO, W., YAN, Z., LIU, W. Two methods for BCI probe to improve the high frequency performance. In The 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Guilin (China), Oct. 2016, p. 815–819. DOI: 10.1109/ISAPE.2016.7834082
  12. MURANO, K., TAKATA, N., TAYARANI, M., et al. Analysis of transmission line loaded with BCI probe using circuit concept approach. IEICE Communications Express, 2015, vol. 4, no. 7, p. 223–227. DOI: 10.1587/comex.4.223
  13. MURANO, K., KAMI, Y., TAYARANI, M., et al. Theoretical analysis of BCI test system using circuit concept approach. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Ottawa (ON, Canada), 2016, p. 600–603. DOI: 10.1109/ISEMC.2016.7571716
  14. MURANO, K., HOSHINO, M., TAYARANI, M., et al. Modeling of transmission line loaded with BCI probe using circuit concept approach. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Angers (France), 2017, p. 1–4. DOI: 10.1109/EMCEurope.2017.8094697
  15. LAFON, F., BELAKHOUY, Y., DE DARAN, F. Injection probe modeling for bulk current injection test on multi conductor transmission lines. In Proceedings of the IEEE Symposium on Embedded EMC. Rouen (France), 2007.
  16. GRASSI, F., MARLIANI, F., PIGNARI, S. A. SPICE modeling of BCI probes accounting for the frequency-dependent behavior of the ferrite core. In XIXth General Assembly of International Union of Radio Science (URSI). Chicago (IL, USA), 2008, p. 1–4.
  17. DIOP, M. S., CLAVEL, E., CHEAITO, H., et al. 2D modeling of bulk current injection probe and validation with measurements. In The 32nd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal (Canada), 2017, p. 1–4. DOI: 10.23919/URSIGASS.2017.8105244
  18. DE ROY, P., PIPER, S. Full-wave modeling of bulk current injection probe coupling to multi-conductor cable bundles. In IEEE International Symposium on Electromagnetic Compatibility. Ottawa (Canada), 2016, p. 770–774. DOI: 10.1109/ISEMC.2016.7571746
  19. TOSCANI, N., GRASSI, F., SPADACINI, G., et al. Circuit and electromagnetic modeling of bulk current injection test setups involving complex wiring harnesses. IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, no. 6, p. 1752–1760. DOI: 10.1109/TEMC.2018.2794823
  20. FISCHER CUSTOM COMMUNICATIONS. BCI Brochure.
  21. FAIR-RITE PRODUCTS CORPORATION. FairRite_Catalog_17th_Edition.
  22. RAMA KRISHNA, K., RAVINDER, D., VIJAYA KUMAR, K., et al. Dielectric properties of Ni-Zn ferrites synthesized by citrate gel method. World Journal of Condensed Matter Physics, 2012, vol. 2, no. 2, p. 57–60. DOI: 10.4236/wjcmp.2012.22010
  23. GHODAKE, U. R., KAMBALE, R. C., SURYAVANSHI, S.S. Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceramics International, 2017, vol. 43, no. 1, part B, p. 1129–1134. DOI: 10.1016/ j.ceramint.2016.10.053
  24. FAHIRUDDIN ESA, ZULKIFLY ABBAS, FADZIDAH MOHD IDRIS, et al. Characterization of Nix Zn1-x Fe2 O4 and permittivity of solid material of NiO, ZnO, Fe2O3, and Nix Zn1- x Fe2 O4 at microwave frequency using open ended coaxial probe. International Journal of Microwave Science and Technology, 2015, vol. 3, p. 1–8. DOI: 10.1155/2015/219195

Keywords: Bulk current injection (BCI) probe, electromagnetic compatibility (EMC), shield effect, slot capacitance, dielectric constant of ferrite

K. Sarmah , S. Goswami, S. Baruah [references] [full-text] [DOI: 10.13164/re.2020.0117] [Download Citations]
Surrogate Model Assisted Design of CSRR Structure using Genetic Algorithm for Microstrip Antenna Application

Soft-computational approaches have enabled quicker and more efficient means for antenna design. In the present work, a genetic algorithm (GA) based method is reported for the design of complementary split ring resonator (CSRR) structures for antenna design. A multi-objective optimization problem is formulated to design the antenna. The cost function of the optimization problem is calculated from a surrogate model of the CSRR structure. The surrogate model is created first using an analytical model of the CSRR structure and then using an artificial neural network (ANN). A comparative study of the result shows that the ANN based surrogate model is more accurate compared to the surrogate model using an analytical model. An antenna with an integrated filter is built using a CSRR structure designed using the proposed method. The performance of the antenna is validated from simulation and measurement results.

  1. DEB, K. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. New York (USA): John Wiley & Sons, 2001. ISBN:047187339X
  2. BHATTACHARYA, S., CHATTOPADHYAY, S., TALUKDER, S., et al. Optimization of inset-fed microstrip patch antenna using genetic algorithm. In The proceedings of the International Conference and Workshop on Computing and Communication (IEMCON). Vancouver (BC, Canada), 2015, p. 1–4. DOI: 10.1109/IEMCON.2015.7344525
  3. LAMSALLI, M., EL HAMICHI, A., BOUSSOUIS, M., et al. Genetic algorithm optimization for microstrip patch antenna miniaturization. Progress In Electromagnetics Research Letters, 2016, vol. 60, p. 113–120. DOI: 10.2528/PIERL16041907
  4. WANG, N. Z., WANG, X. B., XU, J. D. Design of a novel compact broadband patch antenna using binary PSO. Microwave and Optical Technology Letters, 2012, vol. 54, no. 2, p. 434–438. DOI: 10.1002/mop.26552
  5. PRATAP, P., BHATIA, R. S., KUMAR, B. Design and simulation of equilateral triangular microstrip antenna using particle swarm optimization (PSO) and advanced particle swarm optimization (APSO). Sadhana, 2016, vol. 41, no. 7, p. 721–725. DOI: 10.1007/s12046-016-0510-y
  6. GOUDOS, S. K., SIAKAVARA, K., SAMARAS, T., et al. Selfadaptive differential evolution applied to real-valued antenna and microwave design problems. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 4, p. 1286–1298. DOI: 10.1109/TAP.2011.2109678
  7. GANGOPADHYAYA, M., MUKHERJEE, P., SHARMA, U., et al. Design optimization of microstrip fed rectangular microstrip antenna using differential evolution algorithm. In The 2nd IEEE International Conference on Recent Trends in Information Systems (ReTIS). Kolkata (India), 2015, p. 49–52. DOI: 10.1109/ReTIS.2015.7232851
  8. FALCONE, F., LOPETEGI, T., BAENA, J. D., et al. Effective negative –ε stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 6, p. 280–282. DOI: 10.1109/LMWC.2004.828029
  9. SARMAH, K., GOSWAMI, S., SARMA, A., et al. An experimental study on designing of a dual band antenna using CSRR structure with a single band antenna. In The Proceedings of the 2nd IEEE International Conference on Computational Electromagnetics (ICCEM). Guangzhou (China), 2016, p. 141–143. DOI: 10.1109/COMPEM.2016.7588563
  10. SARKAR, D., SAURAV, K., SRIVASTAVA, K. V. Design of a novel dual-band microstrip patch antenna for WLAN/WiMAX applications using complementary split ring resonators and partially defected ground structure. In Progress in Electromagnetic Research Symposium Proceedings. Taipei (Taiwan), 2013, p. 821–825. ISBN: 978-1-934142-24-0
  11. SARMAH, K., GOSWAMI, S., SARMA, K. K., et al. Design of a CSRR based dual band rectangular patch antenna with predictable far field radiation pattern. In Proceedings of the 6th International Conference on Computers and Devices for Communication (CODEC). Kolkata (India), 2015, p. 1–4. ISBN: 978-1-4673-9513-7/15
  12. KIM, D. O., JO, N. I., JANG, H. A., et al. Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators. Progress In Electromagnetics Research, 2011, vol. 112, p. 93–107. DOI: 10.2528/PIER10111607
  13. ZHANG, Y., HONG, W., YU, C., et al. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 9, p. 3063–3068. DOI: 10.1109/TAP.2008.928815
  14. GOSWAMI, S., SARMAH, K., SARMA, A., et al. Design of a CSRR based compact microstrip antenna for image rejection in RF down-converter based WLAN receivers. AEU International Journal of Electronics and Communications, 2017, vol. 74, p. 128–134. DOI: 10.1016/j.aeue.2017.02.004
  15. LIU, B., ALIAKBARIAN, H., MA, Z., et al. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 7–18. DOI: 10.1109/TAP.2013.2283605
  16. TENUTI, L., SALUCCI, M., OLIVERI, G., et al. Surrogateassisted optimization of metamaterial devices for advanced antenna systems. In Proceedings of IEEE Symposium Series on Computational Intelligence. Cape Town (South Africa), 2015, p. 1154–1156. DOI: 10.1109/SSCI.2015.165
  17. SINGH, P., ROSSI, M., COUCKUYT, I., et al. Constrained multiobjective antenna design optimization using surrogates. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, vol. 30, no. 6, p. 1–5. DOI: 10.1002/jnm.2248
  18. KOZIEL, S., OGURTSOV S. Antenna Design by SimulationDriven Optimization. New York (USA): Springer, 2014. ISBN: 978-3-319-04367-8
  19. BAENA, J. D., BONACHE, J., MARTIN, F., et al. Equivalentcircuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1451–1461. DOI: 10.1109/TMTT.2005.845211
  20. MARQUES, R., MESA, F., MARTEL, J., et al. Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design – theory and experiments. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2572–2581. DOI: 10.1109/TAP.2003.817562
  21. BURDEN, F., WINKLER, D. Bayesian regularization of neural networks. Methods in Molecular Biology, 2008, vol. 458, p. 23–42. DOI: 10.1007/978-1-60327-101-1_3

Keywords: Artificial neural network, surrogate model, complementary split ring resonator, microstrip antenna, genetic algorithm, soft-computational design

S. Wu, J. Wang, J. Liu, D. Y Cheng, Y. B. Wu, R. F. Li, M. Q. Li [references] [full-text] [DOI: 10.13164/re.2020.0125] [Download Citations]
A Novel Design of Single Branch Wideband Rectifier for Low-Power Application

This paper proposes a novel design of single branch wideband rectifier working at low input power level. Both the impedance tuning part and a dual-band matching network are adopted for wideband impedance matching. Theoretical analysis of the proposed wideband rectifier is presented and its closed-form design equations are derived. As an illustrated example, a wideband rectifier is designed and fabricated. Experimental results show that the fabricated rectifier features wide operated fractional bandwidth of more than 50%, low input power level from -5.0 dBm to 5 dBm, as well as a simple circuit structure and design procedure.

  1. CANSIZ, M., ALTINEL, D., KARABULUT KURT, G. Efficiency in RF energy harvesting systems: a comprehensive review. Energy, 2019, vol. 174, p. 292–309. DOI: 10.1016/j.energy.2019.02.100
  2. TAKHEDMIT, H., MERABET, B., CIRIO, L., et al. A 2.45-GHz dual-diode RF-to-DC rectifier for rectenna applications. In The 40th European Microwave Conference, Paris (France), 2010, p. 37–40. DOI: 10.23919/EUMC.2010.5616541
  3. SUN, H., ZHONG, Z., GUO, Y.-X. An adaptive reconfigurable rectifier for wireless power transmission. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 9, p. 492–494. DOI: 10.1109/LMWC.2013.2250272
  4. PALAZZI, V., HESTER, J., BITO, J., et al. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 1, p. 366–379. DOI: 10.1109/TMTT.2017.2721399
  5. KUHN, V., LAHUEC, C., SEGUIN, F., et al. A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 5, p. 1768–1778. DOI: 10.1109/TMTT.2015.2416233
  6. SONG, C., HUANG, Y., CARTER, P., et al. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3486–3495. DOI: 10.1109/TAP.2015.2431719
  7. SONG, C., HUANG, Y., CARTER, P., et al. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 7, p. 3160–3171. DOI: 10.1109/TAP.2016.2565697
  8. NIE, M. J., YANG, X. X., TAN, G. N. A broad band rectifier with wide input power range for electromagnetic energy harvesting. In Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation. Harbin (China), 2014, p. 1187–1189. DOI: 10.1109/APCAP.2014.6992726
  9. LIN, Y. L., ZHANG, X. Y., DU, Z. X., et al. High-efficiency microwave rectifier with extended operating bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, vol. 65, no. 7, p. 819–823. DOI: 10.1109/TCSII.2017.2716538
  10. SONG, C., HUANG, Y., ZHOU, J., et al. Improved ultrawideband rectennas using hybrid resistance compression technique. IEEE Transactions on Antennas and Propagation, 2017, vol. 64, no. 4, p. 2057–2062. DOI: 10.1109/TAP.2017.2670359
  11. DASKALAKIS, S. N., GEORGIADIS, A., COLLADO, A., et al. An UHF rectifier with 100% bandwidth based on a ladder LC impedance matching network. In 2017 12th European Microwave Integrated Circuits Conference (EuMIC). Nuremberg (Germany), 2017, p. 411–414. DOI: 10.23919/EuMIC.2017.8230746
  12. SAKAKI, H., NISHIKAWA, K. Broadband rectifier design based on quality factor of input matching circuit. In 2014 Proceedings of Asia–Pacific Microwave Conference. Sendai (Japan), 2014, p. 1205–1207.
  13. WU, P., HUANG S. Y., ZHOU, W., et al. Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 66, no. 8, p. 1316–1320. DOI: 10.1109/TCSII.2018.2886432
  14. WU, Y. B., WANG, J., LIU, Y. Y., et al. A novel wideband rectifier design with two-stage matching network for ambient wireless energy harvesting. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). Toyama (Japan), 2018, p. 1351–1354. DOI: 10.23919/PIERS.2018.8597623
  15. WU, Y., LIU, Y., LI, S., et al. A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 12, p. 792–794. DOI: 10.1109/LMWC.2009.2034034
  16. KEYSIGHT ADS (for 2011 and later) – Library. Available at: https://www.murata.com/en-us/tool/librarydata/library-keysight2?i ntcid5=com_xxx_xxx_cmn_hd_xxx
  17. CCI_RF_Library.zip. [Online] Available at: https://www.coilcraft.com/models_ads_library.cfm

Keywords: Wideband, rectifier, wireless energy harvesting, impedance matching

M. Prieto, M. A. de Pablo, M. Ramos, J. J. Jimenez [references] [full-text] [DOI: 10.13164/re.2020.0132] [Download Citations]
Experimental Tests and Performance Evaluation of a VHF Data Transceiver Prototype for Operation in the Antarctic Regions

This paper presents the study and implementation results of a point to point radio data link carried out by the PERMASNOW project Research Team in the Gabriel de Castilla (GdC) Spanish Antarctic Station (Deception Island, South Shetland archipelago, Antarctica) under challenging Non Line-of Sight (NLOS) conditions. Our final goal is to succeed in the remote data access of the multiple and dispersed measurement stations deployed in the surrounding area of the Antarctic Stations without the use of costly satellite communication systems. For so, a wireless sensor network scheme is proposed in which the key element is the node radio data transceiver characterized in this paper. The main design driver is the harsh Antarctic environmental conditions, which leads to a low power and rugged wireless solution. This study confirms the usefulness of the amateur-radio bands and equipment, which mainly give versatility in frequencies, modulations and power configurations. The terrain topography shows to be the key factor in the short-range segment, notably affecting the propagation conditions. For the long-range segment, the best solution still shows to be a satellite link but promising ionospheric data link has been successfully tested.

  1. RAMOS, M., DE PABLO, M.A., MOLINA, A., et al. Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). Catena, 2017, vol. 149, no. 2, p. 519–528. DOI: 10.1016/j.catena.2016.07.019
  2. RAMOS, M. Automatic device to measure the active permafrost layer near the Spanish Antarctic Station. Terra Antarctica, 1995, vol. 3, no. 1, p. 61–63.
  3. DE PABLO, M.A., RAMOS, M., MOLINA, A., et al. Thaw depth spatial and temporal variability at the Limnopolar Lake CALM-S site, Byers Peninsula, Livingston Island, Antarctica. Science of the Total Environment, 2018, vol. 615, p. 814–827. DOI: 10.1016/j.scitotenv.2017.09.284
  4. GARCIA, M. B., LOPEZ, F. V. AEMET en la Antartida Climatologia y Meteorologia Sinoptica en las Estaciones Meteorologicas Españolas en la Antartida. (AEMET in the Antarctica. Synoptic Climatology and Meteorology in the Spanish Weather Stations in the Antarctica. Ministry of Agriculture, Feeding and Environment). (in Spanish) Ministerio de Agricultura, Alimentacion y Medio Ambiente, 2015. ISBN: 9788478370931
  5. SARKAR, T. K., JI, Z., KIM, K., et al. Survey of various propagation models for mobile communications. IEEE Antennas and Propagation Magazine, 2003, vol. 45, no. 3, p. 51–82. DOI: 10.1109/MAP.2003.1232163
  6. ARRL Inc. The ARRL Handbook for Radio Communications. Amer Radio Relay League, 2017. ISBN: 9781625950727
  7. GAELENS, J., VAN TORRE, P., VERHAEVERTET, J., al. LoRa mobile-to-base-station channel characterization in the Antarctic. Sensors, 2017, vol. 17, no. 8, p. 1–18. DOI: 10.3390/s17081903
  8. JOVALEKIC, N., DRNDAREVIC, V., PIETROSEMOLI, E., et al. Experimental study of LoRa transmission over seawater. Sensors 2018, vol. 18, no. 9, p. 1–23. DOI: 10.3390/s18092853
  9. ITU-T Recommendation V23. 600/1200-Baud Modem Standardized for Use in the General Switched 670 Telephone Network. 1988, 1993
  10. RICE, P.L., LONGLEY, A.G., NORTON, K. A., et al. Transmission Loss Predictions for Tropospheric Communications Circuits. Technical Note 101, revised 1/1/1967, U.S. Department of Commerce NBS-NIST.
  11. POSHALA, P., RUSHIL, K.K., GUPTA, R. Signal Chain Noise Figure Analysis. Application Report SLAA652, Texas Instruments, 2014.
  12. SANTILLI, G., VENDITTOZZI, C, CAPPELLETTI, C., et al. CubeSat constellations for disaster management in remote areas. Acta Astronautica, 2018, vol. 145, p. 11–17. DOI: 10.1016/j.actaastro.2017.12.050
  13. BAUER, F. H., TAYLOR, D., WHITE, R. A., et al. Educational outreach and international collaboration through ARISS: Amateur radio on the International Space Station. Chapter in Space Operations: Inspiring Humankind’s Future. Springer, 2019. ISBN: 9783030115364. DOI: 10.1007/978-3-030-11536-4_33

Keywords: Data-link, Sensor network, APRS, Antarctica, NLOS

V. T. Pham, D. S. Ali, N. M. G. Al-Saidi, K. Rajagopal, F. E. Alsaadi, S. Jafari [references] [full-text] [DOI: 10.13164/re.2020.0140] [Download Citations]
A Novel Mega-stable Chaotic Circuit

In recent years designing new multistable chaotic oscillators has been of noticeable interest. A multistable system is a double-edged sword which can have many benefits in some applications while in some other situations they can be even dangerous. In this paper, we introduce a new multistable two-dimensional oscillator. The forced version of this new oscillator can exhibit chaotic solutions which makes it much more exciting. Also, another scarce feature of this system is the complex basins of attraction for the infinite coexisting attractors. Some initial conditions can escape the whirlpools of nearby attractors and settle down in faraway destinations. The dynamical properties of this new system are investigated by the help of equilibria analysis, bifurcation diagram, Lyapunov exponents’ spectrum, and the plot of basins of attraction. The feasibility of the proposed system is also verified through circuit implementation.

  1. PISARCHIK, A.N., FEUDEL, U. Control of multistability. Physics Reports, 2014, vol. 540, no. 4, p. 167–218. DOI: 10.1016/j.physrep.2014.02.007
  2. SHARMA, P., M. SHRIMALI, M., PRASAD, A., et al. Control of multistability in hidden attractors. The European Physical Journal Special Topics, 2015, vol. 224, no. 8. p. 1485–91. DOI: 10.1140/epjst/e2015-02474-y
  3. WEI. Z. Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 2011, vol. 376, no. 2, p. 102–108. DOI: 10.1016/j.physleta.2011.10.040
  4. JAFARI, S., SPROTT, J. C., HASHEMI GOLPAYEGANI, S. M. R. Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 2013, vol. 377, no. 9, p. 699–702. DOI: 10.1016/j.physleta.2013.01.009
  5. WEI, Z., ZHANG., W. Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium.International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 10, p. 1450127. DOI: 10.1142/S0218127414501272
  6. MOLAIE, M., JAFARI, S., SPROTT, J. C., et al. Simple chaotic flows with one stable equilibrium. International Journal of Bifurcation and Chaos, 2013, vol. 23, no. 11, p. 1350188. DOI: 10.1142/S0218127413501885
  7. GOTTHANS, T., PETRZELA, J. New class of chaotic systems with circular equilibrium. Nonlinear Dynamics, 2015, vol. 81, no. 3, p. 1143–1149. DOI: 10.1007/s11071-015-2056-7
  8. GOTTHANS, T., SPROTT J. C., PETRZELA, J. Simple chaotic flow with circle and square equilibrium. International Journal of Bifurcation and Chaos, 2016, vol. 26, no. 8, p. 1650137. DOI: 10.1142/S0218127416501376
  9. PETRZELA, J., GOTTHANS, T. New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure. Applied Sciences, 2017, vol. 7, no. 10, p. 976. DOI: 10.3390/app7100976
  10. PETRZELA, J., GOTTHANS, T., GUZAN, M. Current-mode network structures dedicated for simulation of dynamical systems with plane continuum of equilibrium. Journal of Circuits, Systems and Computers, 2018, vol. 27, no. 9, p. 1830004-1–39. DOI: 10.1142/S0218126618300040
  11. JAFARI, S., SPROTT, J. C., PHAM, V.-T., et al. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dynamics, 2016, vol. 86, no. 2, p. 1349–1358. DOI: 10.1007/s11071-016-2968-x
  12. SINGH, J. P., ROY, B. K., JAFARI, S. New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria. Chaos, Solitons & Fractals, 2018, vol. 106, p. 243–257. DOI: 10.1016/j.chaos.2017.11.030
  13. MA, J., ZHOU, P., AHMAD, B., et al. Chaos and multiscroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PloS One, 2018, vol. 13, no. 1, p. 1–21. DOI: 10.1371/journal.pone.0191120
  14. DANCA, M.-F., KUZNETSOV, N., CHEN, G. Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system. Nonlinear Dynamics, 2017, vol. 88, no. 1, p. 791–805. DOI: 10.1007/s11071-016-3276-1
  15. KUZNETSOV, N., LEONOV, G., YULDASHEV, M., et al. Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 51, p. 39–49. DOI: 10.1016/j.cnsns.2017.03.010
  16. LI, C., SPROTT, J. C., YUAN, Z., et al. Constructing chaotic systems with total amplitude control. International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 10, p. 1530025-1–14. IDOI: 10.1142/S0218127415300256
  17. LI, C., SPROTT, J. C., AKGUL, A., et al. A new chaotic oscillator with free control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, vol. 27, no. 8, p. 083101-1–6. DOI: 10.1063/1.4997051
  18. ZHANG, L.-M., SUN, K.-H., LIU, W.-H., et al. A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations. Chinese Physics B, 2017, vol. 26, no. 10, p. 100504-1–9. DOI: 10.1088/1674-1056/26/10/100504.
  19. YU, M., SUN, K., LIU, W., et al. A hyperchaotic map with grid sinusoidal cavity. Chaos, Solitons & Fractals, 2018, vol. 106, p. 107–117. DOI: 10.1016/j.chaos.2017.11.004
  20. CHEN, C., SUN, K., HE, S. A class of higher-dimensional hyperchaotic maps. The European Physical Journal Plus, 2019, vol. 134, no. 8, p. 1–13. DOI: 10.1140/epjp/i2019-12776-9
  21. PENG, D., SUN, K.H., ALAMODI, A.O. Dynamics analysis of fractional-order permanent magnet synchronous motor and its DSP implementation. International Journal of Modern Physics B, 2019, vol. 33, no. 6, p. 1950031-1–15. DOI: 10.1142/S0217979219500310
  22. PENG, Y., SUN, K., HE, S., et al. Parameter identification of fractional-order discrete chaotic systems. Entropy, 2019, vol. 21, no. 1, p. 1–27. DOI: 10.3390/e21010027
  23. PENG, Y., SUN, K., PENG, D., et al. Dynamics of a higher dimensional fractional-order chaotic map. Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, p. 96–107. DOI: 10.1016/j.physa.2019.03.058
  24. ZHOU, P., KE, M. A new 3D autonomous continuous system with two isolated chaotic attractors and its topological horseshoes. Complexity, 2017, vol. 2017, p. 1–7. DOI: 10.1155/2017/4037682
  25. ZHOU, P., YANG, F. Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dynamics, 2014, vol. 76, no. 1, p. 473–480. DOI: 10.1007/s11071-013-1140-0
  26. CHEN, M., FENG, Y., BAO, H., et al. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity. Complexity, 2019, vol. 2019, p. 1–16. DOI: 10.1155/2019/8549472
  27. CHEN, M., SUN, M., BAO, H., et al. Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Transactions on Industrial Electronics, 2019, vol. 67, no. 3, p. 2197–2206. DOI: 10.1109/TIE.2019.2907444
  28. PROUSALIS, D.A., VOLOS, C.K., BAO, B., et al. Extreme multistability in a hyperjerk memristive system with hidden attractors. Chapter in Recent Advances in Chaotic Systems and Synchronization, Elsevier, 2019, p. 89–103. ISBN: 9780128162668. DOI: 10.1016/B978-0-12-815838-8.00006-6
  29. ZHANG, Y., LIU, Z., WU, H., et al. Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos, Solitons & Fractals, 2019, vol. 127, p. 354–63. DOI: 10.1016/j.chaos.2019.07.004
  30. SPROTT, J. C. Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, 2010. ISBN: 9812838821
  31. WANG, Z., ABDOLMOHAMMADI, H.R., ALSAADI, F.E., et al. A new oscillator with infinite coexisting asymmetric attractors. Chaos, Solitons & Fractals, 2018, vol. 110, p. 252–258. DOI: 10.1016/j.chaos.2018.03.031
  32. LI, C., SPROTT, J. C., HU, W., et al. Infinite multistability in a self-reproducing chaotic system. International Journal of Bifurcation and Chaos, 2017, vol. 27, no. 10, p. 1750160. DOI: 10.1142/S0218127417501607
  33. SPROTT, J. C., JAFARI, S., KHALAF, A.J.M., et al. Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. The European Physical Journal Special Topics, 2017, vol. 226, no. 9, p. 1979–1985. DOI: 10.1140/epjst/e2017-70037-1
  34. PRAKASH, P., RAJAGOPAL, K., SINGH, J., et al. Megastability in a quasi-periodically forced system exhibiting multistability, quasi-periodic behaviour, and its analogue circuit simulation. AEUInternational Journal of Electronics and Communications, 2018, vol. 92, p. 111–115. DOI: 10.1016/j.aeue.2018.05.021
  35. TANG, Y., ABDOLMOHAMMADI, H.R., KHALAF, A.J.M., et al. Carpet oscillator: A new megastable nonlinear oscillator with infinite islands of self-excited and hidden attractors. Pramana, 2018, vol. 91, no. 1, p. 1–6. DOI: 10.1007/s12043-018-1581-6
  36. WEI, Z., PHAM, V.-T., KHALAF, A.J.M., et al. A modified multistable chaotic oscillator. International Journal of Bifurcation and Chaos, 2018, vol. 28, no. 07, p. 1850085. DOI: 10.1142/S0218127418500852
  37. TANG, Y.X., KHALAF, A.J.M., RAJAGOPAL, K., et al. A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors. Chinese Physics B, 2018, vol. 27, no. 4, p. 40502-1–6. DOI: 10.1088/1674-1056/27/4/040502
  38. LI, C., SPROTT, J. C., KAPITANIAK, T. et al. Infinite lattice of hyperchaotic strange attractors. Chaos, Solitons & Fractals, 2018, vol. 109, p. 76–82. DOI: 10.1016/j.chaos.2018.02.022
  39. LI, C., THIO, W.J.C., SPROTT, J. C. et al. Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access, 2018, vol. 6, p. 29003–29012. DOI: 10.1109/ACCESS.2018.2824984
  40. KAHN, P.B., ZARMI, Y. Nonlinear Dynamics: Exploration Through Normal Forms. Courier Corporation, 2014. ISBN: 0486780457.
  41. WOLF, A., SWIFT, J.B., SWINNEY, H.L. et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, vol. 16, no. 3, p. 285–317. DOI: 10.1016/0167-2789(85)90011-9
  42. ITOH, M. Synthesis of electronic circuits for simulating nonlinear dynamics. International Journal of Bifurcation and Chaos, 2001, vol. 11, no. 3, p. 605–653. DOI: 10.1142/S0218127401002341
  43. BUSCARINO, A., FORTUNA, L., FRASCA, M. The jerk dynamics of Chua’s circuit. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 6, p. 1450085. DOI: 10.1142/S0218127414500850
  44. XU, Q., LIN, Y., BAO, B., et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos, Solitons & Fractals, 2016, vol. 83, p. 186–200. DOI: 10.1016/j.chaos.2015.12.007
  45. PETRZELA, J. Strange attractors generated by multiple-valued static memory cell with polynomial approximation of resonant tunneling diodes. Entropy, 2018, vol. 20, no. 9, p. 697-1–23. DOI: 10.3390/e20090697
  46. PETRZELA, J. Multi-valued static memory with resonant tunneling diodes as natural source of chaos. Nonlinear Dynamics, 2018, vol. 94, no. 3, p. 1867–1887. DOI: 10.1007/s11071-018-4462-0
  47. RAJAGOPAL, K., LI, C., NAZARIMEHR, F. et al. Chaotic dynamics of modified wien bridge oscillator with fractional order memristor. Radioengineering, 2019, vol. 28, no. 1, p. 165–174. DOI: 10.13164/re.2019.0165
  48. PETRZELA, J., KOLKA, Z., HANUS, S. Simple chaotic oscillator: From mathematical model to practical experiment. Radioengineering, 2006, vol. 15, no. 1, p. 6–11. DOI: 10.1201/b11408-27
  49. GOTTHANS, T., PETRZELA, J. Experimental study of the sampled labyrinth chaos. Radioengineering, 2011, vol. 20, no. 4, p. 873–879.
  50. PETRZELA, J., HRUBOS, Z., GOTTHANS, T. Modeling deterministic chaos using electronic circuits. Radioengineering, 2011, vol. 20, no. 2, p. 438–444.
  51. YENER S. C., KUNTMAN, H. H. Fully CMOS memristor based chaotic circuit. Radioengineering, 2014, vol. 23, no. 4, p. 1140–1149.
  52. SHEN, C., YU, S., LU, J. A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 61, no. 3, p. 854–864. DOI: 10.1109/TCSI.2013.2283994
  53. TANG, W.K., ZHONG, G.Q., CHEN, G., et al. Generation of n-scroll attractors via sine function. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, vol. 48, no. 11, p. 1369–1372. DOI: 10.1109/81.964432

Keywords: Multistability, chaotic oscillators, basin of attraction, coexisting attractors

S. Dautovic, N. Samardzic, A. Juhas [references] [full-text] [DOI: 10.13164/re.2020.0147] [Download Citations]
Takacs Model of Hysteresis in Mathematical Modeling of Memristors

In this paper, the mathematical modeling of memristor via Takacs model of hysteresis is presented along with a modification of this model tailored to describe the asymmetric hysteresis loop and first order reversal curves. In particular, it is shown that there is a class of differential equations of the Duhem model of hysteresis where every member of the class could play a role of the state equation of memristor. Within this class of Duhem differential equations, there are two distinct subclasses: one corresponding to the Takacs model and the other one corresponding to the state equations of the memristor model with the Biolek window function of various degrees p. These two subclasses have a non-empty intersection, which contains the state equation of the memristor model with the Biolek window function for p=1. To demonstrate the proposed approach, three examples are presented.

  1. TAN, X., IYER, R. V. Modeling and control of hysteresis. IEEE Control Systems Magazine, 2009, vol. 29, no. 1, p. 26–28. DOI: 10.1109/mcs.2008.930921
  2. SMITH, R. C. Smart Material Systems: Model Development. Philadelphia, PA (USA): SIAM, 2005. ISBN: 9780898715835
  3. KRASNOSEL’SKII, M. A., POKROVSKII, A. V. Systems with Hysteresis. Berlin (Germany): Springer-Verlag, 1989. ISBN: 9783642613029
  4. MAYERGOYZ, I. D. Mathematical Models of Hysteresis. Berlin (Germany): Springer-Verlag, 1991. ISBN: 9781461230281
  5. VISINTIN, A. Differential Models of Hysteresis. Berlin (Germany): Springer-Verlag, 1994. ISBN: 9783662115572
  6. BROKATE, M., SPREKELS, J. Hysteresis and Phase Transitions. Berlin (Germany): Springer-Verlag, 1996. ISBN: 9781461240488
  7. IVANYI, A. Hysteresis Models in Electromagnetic Computation. Budapest (Hungary): ISBSI, 1997. ISBN: 9630574160
  8. HADJIPANAYIS. G. C. (Ed.). Magnetic Hysteresis in Novel Magnetic Materials. Dordrecht (Netherlands): Springer Netherlands, 1997. ISBN: 9789401154789
  9. BERTOTTI, G. Hysteresis in Magnetism. Boston (USA): Academic Press, 1998. ISBN: 9780080534374
  10. DELLA TORRE, E. Magnetic Hysteresis. New York (USA): Wiley-IEEE Press, 1999. ISBN: 9780780347199
  11. TAKACS, J. Mathematics of Hysteretic Phenomena. Weinheim (Germany): Wiley-VCH, 2006. ISBN: 9783527404018
  12. DIMIAN, M., ANDREI, P. Noise-Driven Phenomena in Hysteretic Systems. New York (USA): Springer, 2014. ISBN: 9781461413745
  13. TEAPE, J. W., SIMPSON, R. R. S., SLATER, R. D., et al. Representation of magnetic characteristic, including hysteresis, by exponential series. Proceedings of the IEEE, 1974, vol. 121, no. 1, p. 1019–1020. DOI: 10.1049/piee.1974.0235
  14. OSSART, F., MEUNIER, G. Comparison between various hysteresis models and experimental data. IEEE Transactions on Magnetics, 1990, vol. 26, no. 5, p. 2837–2839. DOI: 10.1109/20.104893
  15. DE LEON, F., SEMLYEN, A. A simple representation of dynamic hysteresis losses in power transformers. IEEE Transactions on Power Delivery, 1995, vol. 10, no. 1, p. 315–321. DOI: 10.1109/61.368383
  16. WIDGER, G. F. T. Representation of magnetisation curves over extensive range by rational fraction approximations. Proceedings of the IEEE, 1969, vol. 116, no. 1, p. 156–160. DOI: 10.1049/piee.1969.0032
  17. RIVAS, J., ZAMARRO, J. M., MARTIN, E., et al Simple approximation for magnetization curves and hysteresis loops. IEEE Transactions on Magnetics, 1981, vol. 17, no. 4, p. 1498–1502. DOI: 10.1109/TMAG.1981.1061241
  18. BATTISTELLI, L., GENTILE, G., PICCOLO, A. Representation of hysteresis loops by rational fraction approximations. Physica Scripta, 1989, vol. 40, no. 4, p. 502–507. DOI: 10.1088/0031- 8949/40/4/012
  19. SYKULSKI, J. K. Computational Magnetics. Dordrecht (Netherlands): Springer Netherlands, 1995. ISBN: 9789401112789
  20. SAITO, Y., HAYANO, S., NAKAMURA, H., et al. A representation of magnetic hysteresis by Fourier series. Journal of Magnetism and Magnetic Materials, 1986, vol. 54-57, Part 3, p. 1613–1614. DOI: 10.1016/0304-8853(86)90947-9
  21. WLODARSKI, Z., WLODARSKA, J., BRYKALSKI, A. Application of different saturation curves in a mathematical model of hysteresis. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, vol. 24, no. 4, p. 1367–1380. DOI: 10.1108/03321640510615661
  22. WLODARSKI, Z. Modeling hysteresis by analytical reversal curves. Physica B: Condensed Matter, 2007, vol. 398, no. 1, p. 159–163. DOI: 10.1016/j.physb.2007.05.012
  23. AVANAKI, Z. A., HASSANZADEH, A. J. Modified Brillouin function to explain the ferromagnetic behavior of surfactant-aided synthesized α-Fe2O3 nanostructures. Journal of Theoretical and Applied Physics, 2013, vol. 7, no. 19, p. 1–7. DOI: 10.1186/2251- 7235-7-19
  24. POTTER, R. I., SCHMULIAN, R. J. Self-consistently computed magnetization patterns in thin magnetic recording media. IEEE Transactions on Magnetics, 1971, vol. 7, no. 4, p. 873–880. DOI: 10.1109/TMAG.1971.1067251
  25. TRUJILLO, H., CRUZ, J., RIVERO, M., et al. Analysis of the fluxgate response through a simple spice model. Sensors and Actuators A: Physical, 1999, vol. 75, no. 1, p. 1–7. DOI: 10.1016/S0924-4247(98)00280-5
  26. WANG, Y., WU, S., ZHOU, Z., et al. Research on the dynamic hysteresis loop model of the residence times difference (RTD)- fluxgate. Sensors, 2013, vol. 13, no. 9, p. 11539–11552. DOI: 10.3390/s130911539
  27. MILOVANOVIC, A. M., KOPRIVICA, B. M. Mathematical model of major hysteresis loop and transient magnetizations. Electromagnetics, 2015, vol. 35, no. 3, p. 155–166. DOI: 10.1080/02726343.2015.1005202
  28. KOPRIVICA, B., MILOVANOVIC, A., MITROVIC, N. Mathematical modeling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy. Journal of Magnetism and Magnetic Materials, 2017, vol. 422, p. 37–42. DOI: 10.1016/j.jmmm.2016.08.061
  29. TAKACS, J. A phenomenological mathematical model of hysteresis. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, vol. 20, no. 4, p. 1002–1014. DOI: 10.1108/EUM0000000005771
  30. PETRESCU, L., CAZACU, E., PETRESCU, C. Sigmoid functions used in hysteresis phenomenon modeling. In 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE). Bucharest (Romania), 2015, p. 521–524. DOI: 10.1109/ATEE.2015.7133863
  31. ADHIKARI, S. P., SAH, M. P., KIM, H., CHUA, L. O. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
  32. CHUA, L. O. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 1–42. DOI: 10.1088/0268-1242/29/10/104001
  33. CHUA, L. O. Everything you wish to know about memristors but are afraid to ask. Radioengineering, 2015, vol. 24, no. 2, p. 319–368. DOI: 10.13164/re.2015.0319
  34. BIOLEK, D., BIOLEK, Z. About fingerprints of Chua’s memristors. IEEE Circuits and Systems Magazine, 2018, vol. 18, no. 2, p. 35–47. DOI: 10.1109/MCAS.2018.2821759
  35. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing'. Electronics Letters, 2011, vol. 47, no. 25, p. 1385–1387. DOI: 10.1049/el.2011.2913
  36. BIOLEK, Z., BIOLEK, D. How can the hysteresis loop of the ideal memristor be pinched? IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, vol. 61, no. 7, p. 491–495. DOI: 10.1109/TCSII.2014.2327303
  37. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V., et al. Comments on pinched hysteresis loops of memristive elements. Radioengineering, 2015, vol. 24, no. 4, p. 962–967. DOI: 10.13164/re.2015.0962
  38. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V., et al. Variation of a classical fingerprint of ideal memristor. International Journal of Circuit Theory and Applications, 2016, vol. 44, no. 5, p. 1202–1207. DOI: 10.1002/cta.2121
  39. BIOLEK, D., BIOLEK, Z. BIOLKOVA, V. Every nonlinear element from Chua’s table can generate pinched hysteresis loops: generalised homothety theorem. Electronics Letters, 2016, vol. 52, no. 21, p. 1744–1746. DOI: 10.1049/el.2016.2961
  40. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., et al. About v-i pinched hysteresis of some non-memristive systems. Mathematical Problems in Engineering, 2018, vol. 2018, p. 1–10. DOI: 10.1155/2018/1747865
  41. BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Interpreting area of pinched memristor hysteresis loop. Electronics Letters, 2014, vol. 50, no. 2, p. 74–75. DOI: 10.1049/el.2013.3108
  42. SAH, M. P., KIM, H., CHUA, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine, 2014, vol. 14, no. 1, p. 12–36. DOI: 10.1109/MCAS.2013.2296414
  43. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Computation of the area of memristor pinched hysteresis loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, vol. 59, no. 9, p. 607–611. DOI: 10.1109/TCSII.2012.2208670
  44. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Analytical computation of the area of pinched hysteresis loops of ideal memelements. Radioengineering, 2013, vol. 22, no. 1, p. 132–135. ISSN: 1210-2512
  45. JUHAS, A., DAUTOVIC, S. Computation of pinched hysteresis loop area from memristance-vs-state map. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 66, no. 4, p. 677–681. DOI: 10.1109/TCSII.2018.2868384
  46. ELWAKIL, A. S., FOUDA, M. E., RADWAN, A. G. A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, vol. 60, no. 8, p. 487–491. DOI: 10.1109/TCSII.2013.2268376
  47. MAUNDY, B., ELWAKIL, A. S., PSYCHALINOS, C. Correlation between the theory of Lissajous figures and the generation of pinched hysteresis loops in nonlinear circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, vol. 66, no. 7, p. 2606–2614. DOI: 10.1109/TCSI.2019.2900944
  48. WANG, X., RON HUI, S. Y. Graphical modelling of pinched hysteresis loops of memristors. IET Science, Measurement & Technology, 2017, vol. 11, no. 1, p. 86–96. DOI: 10.1049/ietsmt.2016.0210
  49. MIRANDA, E. Compact model for the major and minor hysteretic I–V loops in nonlinear memristive devices. IEEE Transactions on Nanotechnology, 2015, vol. 14, no. 5, p. 787–789. DOI: 10.1109/TNANO.2015.2455235
  50. PATTERSON, A. G., SUNE, J., MIRANDA, E. Voltage-driven hysteresis model for resistive switching: SPICE modeling and circuit applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, vol. 36, no. 12, p. 2044–2051. DOI: 10.1109/TCAD.2017.2756561
  51. BAO, B., QIAN, H., XU, Q., et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Frontiers in Computational Neuroscience, 2017, vol. 11, no. 81, p. 1–14. DOI: 10.3389/fncom.2017.00081
  52. ASCOLI, A., TETZLAFF, R., BIOLEK, Z., et al. The art of finding accurate memristor model solutions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, vol. 5, no. 2, p. 133–142. DOI: 10.1109/JETCAS.2015.2426493
  53. KRZYSTECZKO, P., REISS, G., THOMAS, A. Memristive switching of MgO based magnetic tunnel junctions. Applied Physics Letters, 2009, vol. 95, no. 11, p. 1–3. DOI: 10.1063/1.3224193
  54. CHANTHBOUALA, A., GARCIA, V., CHERIFI, R. O., et al. A ferroelectric memristor. Nature Materials, 2012, vol. 11, no. 10, p. 860–864. DOI: 10.1038/NMAT3415
  55. MIRANDA, E., JIMENEZ, D., SUNE, J. The quantum pointcontact memristor. IEEE Electron Device Letters, 2012, vol. 33, no. 10, p. 1474–1476. DOI: 10.1109/LED.2012.2210185
  56. FUKAMI, S., ZHANG, C., DUTTAGUPTA, S., et al. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nature Materials, 2016, vol. 15, no. 5, p. 535–541. DOI: 10.1038/NMAT4566
  57. FUKAMI, S., OHNO, H. Perspective: Spintronic synapse for artificial neural network. Journal of Applied Physics, 2018, vol. 124, no. 15, p. 1–8. DOI: 10.1063/1.5042317
  58. DUENAS, S., CASTAN, H., GARCIA, H., et al. Study of the admittance hysteresis cycles in TiN/Ti/HfO2/W-based RRAM devices. Microelectronic Engineering, 2017, vol. 178, p. 30–33. DOI: 10.1016/j.mee.2017.04.020
  59. CASTAN, H., DUENAS, S., GARCIA, H., et al. Analysis and control of the intermediate memory states of RRAM devices by means of admittance parameters. Journal of Applied Physics, 2018, vol. 124, no. 15, p. 1–8. DOI: 10.1063/1.5024836
  60. YAN, Z. B., LIU, J. M. Coexistence of high performance resistance and capacitance memory based on multilayered metaloxide structures. Scientific Reports, 2013, vol. 3, p. 1–7. DOI: 10.1038/srep02482
  61. BESSONOV, A. A., KIRIKOVA, M. N., PETUKHOV, D. I., et al. Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 2015, vol. 14, no. 2, p. 199–204. DOI: 10.1038/NMAT4135
  62. LIN, D., RON HUI, S. Y., CHUA, L. O. Gas discharge lamps are volatile memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, vol. 61, no. 7, p. 2066–2073. DOI: 10.1109/TCSI.2014.2304659
  63. BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512
  64. PARKER, T. S., CHUA, L. O. Practical Numerical Algorithms for Chaotic Systems. New York (USA): Springer-Verlag, 1989. ISBN: 9781461234869
  65. SLIPKO, V. A., PERSHIN, Y. V. Transient dynamics of pulsedriven memristors in the presence of a stable fixed point. Physica E: Low-dimensional Systems and Nanostructures, 2019, vol. 114, p. 1–5. DOI: 10.1016/j.physe.2019.113561
  66. SLIPKO, V. A., PERSHIN, Y. V. Importance of the window function choice for the predictive modelling of memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, early access, p. 1–5. DOI: 10.1109/TCSII.2019.2906295
  67. CORINTO, F., ASCOLI, A. A boundary condition-based approach to the modeling of memristor nano-structures. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2012, vol. 59, no. 11, p. 2713–2726. DOI: 10.1109/TCSI.2012.2190563

Keywords: Hysteresis loop, Takacs model, pinched hysteresis loop, memristor

A. Lomayev, V. Kravtsov, M. Genossar, A. Maltsev, A. Khoryaev [references] [full-text] [DOI: 10.13164/re.2020.0159] [Download Citations]
Method for Phase Noise Impact Compensation in 60 GHz OFDM Receivers

This paper presents a method for phase noise impact compensation in 60 GHz OFDM receivers and provides the results of performance evaluation using OFDM PHY parameters defined in the IEEE 802.11ay standard. It is shown that the phase noise in 60 GHz band has a critical impact on the OFDM performance for high data rate transmission employing high order modulation constellations. The proposed compensation method combines time domain algorithm predicting the linear average phase trend on the OFDM symbol duration and estimation in frequency domain of phase noise spectrum realization and convolution with correction filter response. Both algorithms use Maximum A Posteriori Probability (MAP) estimation approach to find the optimal solution and are applied successively. The proposed algorithms have moderate implementation complexity which is especially important for high speed 11ay hardware modem architecture. The performance of the proposed algorithms is evaluated in the frequency flat and frequency selective channels with phase noise model adopted in the IEEE 802.11ay.

  1. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications – amendment 7: enhanced throughput for operation in license-exempt bands above 45 GHz, P802.11ay™/D4.0, Jun., 2019.
  2. CARIOU, L., VENKATESAN, G. TGay evaluation methodology. IEEE Document 802.11-15/0866r4, 2015. [Online] Available at: https://mentor.ieee.org/802.11/documents?is_dcn=866&is_group= 00ay.
  3. ROBERTSON, P., KAISER, S. Analysis of the effects of phase noise in OFDM systems. In Proceedings of IEEE International Conference on Communications ICC '95. Seattle (WA, USA), 1995, p. 1652–1657. DOI: 10.1109/ICC.1995.524481
  4. POLLET, T., VAN BLADEL, M., MOENECLAEY, M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications, 1995, vol. 43, no. 2, p. 191–193. DOI: 10.1109/26.380034
  5. ARMADA, A. G., CALVO, M. Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system. IEEE Communication Letters, 1998, vol. 2, p. 11–13. DOI: 10.1109/4234.658613
  6. TOMBA, L. On the effect of Wiener phase noise in OFDM systems. IEEE Transactions on Communications, 1998, vol. 46, no. 5, p. 580–583. DOI: 10.1109/26.668721
  7. SPEITH, M., FECHTEL, S. A., FOCK, G., et al. Optimum receiver design for wireless broad-band systems using OFDM - part I. IEEE Transactions on Communications, 1999, vol. 47, no. 11, p. 1668–1677. DOI: 10.1109/26.803501
  8. EL-TANANY, M. S., WU, Y., HAZY, L. Analytical modelling and simulation of phase noise interference in OFDM-based digital television terrestrial broadcasting systems. IEEE Transactions on Broadcasting, 2001, vol. 47, no. 3, p. 20–31. DOI: 10.1109/11.920777
  9. ARMADA, A. G. Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Transactions on Broadcasting, 2001, vol. 47, no. 2, p. 153–159. DOI: 10.1109/11.948268
  10. WU, S., BAR-NESS, Y. OFDM systems in the presence of phase noise: consequences and solutions. IEEE Transactions on Communications, 2004, vol. 52, no. 11, p. 1988–1996. DOI: 10.1109/TCOMM.2004.836441
  11. SCHENK, T. C. W., VAN DER HOFSTAD, R. W., FLEDDERUS, E. R., et al. Distribution of the ICI term in phase noise impaired OFDM systems. IEEE Transactions on Wireless Communication, 2007, vol. 6, no. 4, p. 1488–1500. DOI: 10.1109/TWC.2007.348345
  12. PETROVIC, D., RAVE, W., FETTWEIS, G. Phase noise suppression in OFDM including inter-carrier interference. In Proceedings of the 8th International OFDM Workshop. Hamburg (Germany), 2003, p. 219–224.
  13. PETROVIC, D., RAVE, W., FETTWEIS, G. Effects of phase noise on OFDM systems with and without PLL: characterization and compensation. IEEE Transactions on Communication, 2007, vol. 55, no. 8, p. 1607–1616. DOI: 10.1109/TCOMM.2007.902593
  14. GHOLAMI, M. R., NADER-ESFAHANI, S., EFTEKHAR, A. A. A new method of phase noise compensation in OFDM. In Proceedings of IEEE International Conference on Communication (ICC). Anchorage (AK, USA), 2003, p. 3443–3446. DOI: 10.1109/ICC.2003.1204094
  15. LIU, G., ZHU, W. Compensation of phase noise in OFDM systems using an ICI reduction scheme. IEEE Transactions on Broadcasting, 2004, vol. 50, no. 4, p. 399–407. DOI: 10.1109/TBC.2004.837884
  16. MATSUMOTO, K., CHANG, Y., GIA KHANH, T., et al. Frequency domain phase noise compensation employing adaptive algorithms for millimeter-wave OFDM systems. In IEEE Proceedings of Asia-Pacific Microwave Conference. Sendai (Japan), 2014, p. 1262–1264. Electronic ISBN: 978-4-9023-3931-4
  17. RABIEI, P., NAMGOONG, W., AL-DHAHIR, N. A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 11, p. 5945–5950. DOI: 10.1109/TSP.2010.2057250
  18. MALTSEV, A., MASLENNIKOV, R., KHORYAEV, A. Influence of phase noise on OFDM data transmission systems. Radiophysics and Quantum Electronics, 2011, vol. 53, no. 8, p. 475–487. DOI: 10.1007/s11141-011-9244-1
  19. PREYSS, N., PANTIC, R. D., BURG, A. Correlation based phase noise compensation in 60 GHz wireless systems. In IEEE 28-th Convention of Electrical and Electronics Engineers in Israel. Eilat (Israel), 2014, p. 1–5. DOI: 10.1109/EEEI.2014.7005755
  20. MA, C-Y., WU, C-Y., HUANG, C-C. A simple ICI suppression method utilizing cyclic prefix for OFDM systems in the presence of phase noise. IEEE Transactions on Communication, 2013, vol. 61, no. 11, p. 4539–4550. DOI: 10.1109/TCOMM.2013.091513.130197
  21. LIU, W.-C., WEI, T.-C., HUANG, Y.-S., et al. All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, vol. 62, no. 2, p. 545–553. DOI: 10.1109/TCSI.2014.2361035
  22. HUANG, L. Y., WU, C. Y., LIU, C. Y., et al. A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication system. In Proceedings of IEEE International Symposium on. VLSI Design, Automation and Test. Hsinchu (Taiwan), 2015, p. 1–4. DOI: 10.1109/VLSI-DAT.2015.7114575
  23. LIU, C.-Y., SIE, M.-S., LEONG, E. W. J., et al. Dual-mode alldigital baseband receiver with feed-forward and shared-memory architecture for dual-standard over 60 GHz NLOS channel. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 64, no. 3, p. 608–618. DOI: 10.1109/TCSI.2016.2615084
  24. Channel models for 60 GHz WLAN systems. IEEE 802.11, TGad. [Online] Available at: https: //mentor.ieee.org/802.11/documents?is_dcn=334&is_group=00ad.
  25. MASLENNIKOV, R., LOMAYEV, A. Implementation of 60 GHz WLAN Channel Model. IEEE Document 802.11-10/0854r3, 2010. [Online] Available at: https: //mentor.ieee.org/802.11/documents?is_dcn=854&is_group=00ad.
  26. OPPENHEIM, A. V., SCHAFER, R. Discrete-time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 0-13-754920-2
  27. HORLIN, F., BOURDOUX, A. Digital Compensation for Analog Front-Ends: A New Approach to Wireless Transceiver Design. John Wiley & Sons, 2008. ISBN: 978-0-470-51708-6
  28. KAY, S. M. Fundamentals of Statistical Signal Processing. Vol. 1. Englewood Cliffs, NJ: Prentice-Hall, 1998. ISBN: 0-13-345711-7
  29. STRANG, G. Introduction to Linear Algebra. Wellesley, MA: Cambridge Press, 2009. ISBN: 978-0-9802327-1-4

Keywords: Phase noise, 60 GHz, OFDM, linear phase trend, deconvolution, Maximum A Posteriori Probability, MAP, IEEE 802.11ay

P. Kurada, S. Maruvada, K. R. Sanagapallea [references] [full-text] [DOI: 10.13164/re.2020.0174] [Download Citations]
Speech Bandwidth Extension Using DWT-FFT-Based Data Hiding

A novel transform-domain speech bandwidth extension algorithm is proposed to transmit information about the missing speech frequencies over a hidden channel, i.e., the related encoded spectral envelope parameters are hidden within the narrowband speech signal using discrete wavelet transform-fast Fourier transform-based data hiding (DWTFFTBDH) technique. The hidden information is recovered reliably at the receiver to produce a wideband speech signal of much higher quality. Obtained results confirm the excellent reconstructed wideband speech quality of the proposed algorithm over traditional methods.

  1. JAX, P., VARY, P. Bandwidth extension of speech signals: A catalyst for the introduction of wideband speech coding? IEEE Communications Magazine, 2006, vol. 44, no. 5, p. 106–111. DOI: 10.1109/MCOM.2006.1637954
  2. JAX, P. Enhancement of bandlimited speech signals: Algorithms and theoretical bounds. PhD Thesis. RWTH Aachen University, Aachen, Germany, 2002.
  3. PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of speech signals: A comprehensive review. International Journal of Intelligent Systems and Applications, 2016, vol. 8, no. 2, p. 45–52. DOI: 10.5815/ijisa.2016.02.06
  4. ABEL, J., FINGSCHEIDT, T. Artificial speech bandwidth extension using deep neural networks for wideband spectral envelope estimation. IEEE Transactions on Audio, Speech, and Language Processing, 2018, vol. 26, no. 1, p. 71–83. DOI: 10.1109/TASLP.2017.2761236
  5. LI, Y., KANG, S. Artificial bandwidth extension using deep neural network-based spectral envelope estimation and enhanced excitation estimation. IET Signal Processing, 2016, vol. 10, no. 4, p. 422–427, DOI: 10.1049/iet-spr.2015.0375
  6. WANG, Y., ZHAO, S., QU, D., et al., Speech bandwidth extension using recurrent temporal restricted Boltzmann machines. IET Signal Processing Letters, 2016, vol. 23, no. 12, p. 1877–1881. DOI: 10.1109/LSP.2016.2621053
  7. JAX, P., VARY, P. An upper bound on the quality of artificial bandwidth extension of narrowband speech signals. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando (USA), 2002, p. 237–240. DOI: 10.1109/ICASSP.2002.5743698
  8. CHEN, S., LEUNG, H. Artificial bandwidth extension of telephony speech by data hiding. In Proceedings of the IEEE International. Symposium on Circuits and Systems. Kobe (Japan), 2005, p. 3151–3154. DOI: 10.1109/ISCAS.2005.1465296
  9. CHEN, S., LEUNG, H. Speech bandwidth extension by data hiding and phonetic classification. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu (Hawaii, USA), 2007, p. 593–596. DOI: 10.1109/ICASSP.2007.366982
  10. CHEN, Z., ZHAO, C., GENG, G., et al. An audio watermark based speech bandwidth extension method. EURASIP Journal on Audio, Speech and Music Processing, 2013, vol. 2013, no. 10, p. 1–8. DOI: 10.1186/1687-4722-2013-10
  11. SAGI, A., MALAH, D. Bandwidth extension of telephone speech aided by data embedding. EURASIP Journal on Advances in Signal Processing, 2007, vol. 2007, no. 1, p. 37–52. DOI: 10.1155/2007/64921
  12. CHEN, S., LEUNG, H., DING, H. Telephony speech enhancement by data hiding. IEEE Transactions on Instrumentation and Measurement, 2007, vol. 56, no. 1, p. 63–74. DOI: 10.1109/TIM.2006.887409
  13. GEISER, B., VARY, P. Speech bandwidth extension based on inband transmission of higher frequencies. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver (Canada), 2013, p. 7507–7511. DOI: 10.1109/ICASSP.2013.6639122
  14. GEISER, B., VARY, P. Backwards compatible wideband telephony in mobile networks: CELP watermarking and bandwidth extension. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu (Hawaii, USA), 2007, p. 533–536. DOI: 10.1109/ICASSP.2007.366967
  15. BHATT, N., KOSTA, Y. A novel approach for artificial bandwidth extension of speech signals by LPC technique over proposed GSM FR NB coder using high band feature extraction and various extension of excitation methods. International Journal of Speech Technology, 2015, vol. 18, no. 1, p. 57–64. DOI: 10.1007/s10772-014-9249-1
  16. BHATT, N. Simulation and overall comparative evaluation of performance between different techniques for high band feature extraction based on artificial bandwidth extension of speech over proposed global system for mobile full rate narrow band coder. International Journal of Speech Technology, 2016, vol. 19, no. 4, p. 881–893. DOI: 10.1007/s10772-016-9378-9
  17. REKIK, S., GUERCHI, D., SELOUANI, S. A., et al. Speech steganography using wavelet and Fourier transforms. EURASIP Journal on Audio, Speech, and Music Processing, 2012, vol. 2012, no. 20, p. 1–14. DOI: 10.1186/1687-4722-2012-20
  18. PROAKIS, J. G. Digital Communications. New York: McGrawHill, 1989. ISBN: 978-0070509375
  19. HANZO, L. L., SOMERVILLE, F. C. A., WOODARD, J. P. Voice Compression and Communications: Principles and Applications for Fixed and Wireless Channels. New York: John Wiley & Sons, 2001. ISBN: 978-0-471-15039-8 (electronic)
  20. NILSSON, M., KLEIJN, W. B. Avoiding overestimation in bandwidth extension of telephony speech. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City (UT, USA), 2001, vol. 2, p. 869–872. DOI: 10.1109/ICASSP.2001.941053
  21. BEZDEK, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum, 1981. DOI: 10.1007/978-1-4757-0450-1
  22. JAX, P., VARY, P. On artificial bandwidth extension of telephone speech. Signal Processing, 2003, vol. 83, no. 8, p. 1707–1719. DOI: 10.1016/S0165-1684(03)00082-3
  23. EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI) Standard. Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech recognition; Frontend feature extraction algorithm; Compression algorithms, ETSI ES 201 108 V1.1.2, April 2000.
  24. GAROFOLO, J. S., LAMEL, L. F., FISHER, W. M, et al. Getting Started with the DARPA TIMIT CD-ROM: An Acoustic Phonetic Continuous Speech Database. Gaithersburg (MD, USA): National Institute of Standards and Technology (NIST). ISBN: 1-58563- 019-5
  25. INTERNATIONAL TELECOMMUNICATIONS UNION. Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End to-end Speech Quality Assessment of Narrowband Telephone Networks and Speech Codecs. ITU-T Recommendation P.862, February 2001.
  26. KEISER, B. E., STRANGE, E. Digital Telephony and Network Integration. New York: Van Nostrand Reinhold, 1995. ISBN 978-1-4615-1787-0 (electronic)
  27. PRASAD, N., KISHORE KUMAR, T. Speech bandwidth extension aided by spectral magnitude data hiding. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 11, p. 4512–4540. DOI: 10.1007/s00034-017-0526-5
  28. CHEN, S., LEUNG, H. Concurrent data transmission through analog speech channel using data hiding. IEEE Signal Processing Letters, 2005, vol. 12, no. 8, p. 581–584. DOI: 10.1109/LSP.2005.851259
  29. PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of narrowband speech using integer Wavelet transform. IET Signal Processing, 2017, vol. 11, no. 4, p. 437-445. DOI: 10.1049/ietspr.2016.0453
  30. PRASAD, N., KISHORE KUMAR, T., Bandwidth extension of telephone speech using magnitude spectrum data hiding. International Journal of Speech Technology, 2017, vol. 20, no. 1, p. 151–162. DOI: 10.1007/s10772-016-9393-x
  31. CHEN, S., LEUNG, H. A bandwidth extension technique for signal transmission using chaotic data hiding. Circuits, Systems, and Signal Processing, 2008, vol. 27, no. 6, p. 893–913. DOI: 10.1007/s00034-008-9066-3
  32. GEISER, B., JAX, P., VARY, P. Artificial bandwidth extension of speech supported by watermark-transmitted side information. In Proceedings of the 9th European Conference on Speech Communication and Technology. Lisbon (Portugal), 2005, p. 1497–1500.
  33. INTERNATIONAL TELECOMMUNICATIONS UNION. Wideband Extension to Recommendation P.862 for the Assessment of Wideband Telephone Networks and Speech Codecs. ITU-T Recommendation P.862.2, November 2005
  34. INTERNATIONAL TELECOMMUNICATIONS UNION. Methods for Subjective Determination of Transmission Quality. ITU-T Recommendation P.800, August 1996.
  35. INTERNATIONAL TELECOMMUNICATIONS UNION. Software Tools for Speech and Audio Coding Standardization. ITU-T Rec. G.191, September 2005.

Keywords: Public Switched Telephone Network (PSTN), bandwidth extension of narrowband speech, DWT-FFT-based data hiding, speech quality, spread spectrum

X. Fan, Z. Tan, P. Song, L. Chen [references] [full-text] [DOI: 10.13164/re.2020.0182] [Download Citations]
A Variable Step-size CLMS Algorithm and Its Analysis

In this paper, a hyperbolic tangent variable step-size convex combination of the least mean square (HTVSCLMS) algorithm is proposed and analyzed. This work avoids the compromise between the convergence speed and the steady-state error for two filters in convex combination of the least mean square (CLMS) algorithm. In the proposed algorithm, the big step-size filter is replaced by a filter whose iteration step-size is a modified function based on hyperbolic tangent function. Thus it constructs hyperbolic tangent nonlinear relationship between step-size and error. At the same time, the small step-size filter remains unchanged but fixed. So, it conquers the slow convergence speed and the weak anti-interference ability of fixed step-size CLMS. Simulation results show that HTVSCLMS algorithm, compared with CLMS algorithm and variable step-size CLMS (VSCLMS) algorithm, not only has superior capability of tracking in the presence of noise and in a stable and even non-stable environment, but also can maintain a better convergence.

  1. MANOLAKIS, D. G., INGLE, V. K., KOGON, S. M. Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing. London (UK): Artech House, 2005. ISBN: 978-1580536103
  2. LI, Z., LI, D., XU, X., et al. New normalized LMS adaptive filter with a variable regularization factor. Journal of Systems Engineering and Electronics, 2019, vol. 30, no. 2, p. 259–269. DOI: 10.21629/JSEE.2019.02.05
  3. HAYKIN, S. O. Adaptive Filter Theory. 5th ed., rev. London (UK): Kluwer Academic Publishers, 2016. ISBN: 9787121250521
  4. ANAND, A., KAR, A., SWAMY, M. N. S. An improved CLMS algorithm for feedback cancellation in hearing aids. Applied Acoustics, 2018, vol. 129, p. 417–426. DOI: 10.1016/J.APACOUST.2017.09.002
  5. ARENAS-GARCIA, J., FIGUEIRAS-VIDAL, A. R., SAYED, A. H. Steady-state performance of convex combinations of adaptive filters. In Proceedings of IEEE International Conference Acoustics, Speech, and Signal Processing. Philadelphia (USA), 2005, vol. 4, p. 33–36. DOI: 10.1109/ICASSP.2005.1415938
  6. ARENAS-GARCIA, J., FIGUEIRAS-VIDAL, A. R., SAYED, A. H. Mean-square performance of a convex combination of two adaptive filters. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 1078–1090. DOI: 10.1109/TSP.2005.863126
  7. HONG, D., MIAO, J., SU, J., et al. An improved variable step-size convex combination of LMS adaptive filtering algorithm and its analysis. Acta Electronica Sinica, 2014, vol. 42, no. 11, p. 2225 to 2230. DOI: 10.3969/J.ISSN.0372-2112.2014.11.015 (in Chinese)
  8. KOZAT, S. S., SINGER, A. C. Multi-stage adaptive signal processing algorithms. In Proceedings of Sensor Array and Multichannel Signal Processing Workshop. Cambridge (USA), 2000, p. 380–384. DOI: 10.1109/SAM.2000.878034
  9. REN, C., WANG, Z., ZHAO, Z. A new variable step-size affine projection sign algorithm based on a posteriori estimation error analysis. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 5, p. 1989–2011. DOI: 10.1007/S00034-016-0389-1
  10. YU, X., LIU, J., LI, H. A convex combination of variable step-size adaptive filter and its mean-square performance analysis. Acta Electronica Sinica, 2010, vol. 38, no. 2, p. 480–484. (in Chinese)
  11. LIU, J., ZHAO, H., QUAN, H., et al. Iteration-based variable stepsize LMS algorithm and its performance analysis. Journal of Electronics & Information Technology, 2015, vol. 37, no. 7, p. 1674–1680. DOI: 10.11999/JEIT141501 (in Chinese)
  12. FUMIYASU, M., FUMIHIKO, I., YOSHI, A. Enhancing a tsunami evacuation simulation for a multi-scenario analysis using parallel computing. Simulation Modelling Practice & Theory, 2018, vol. 83, p. 36–50. DOI: 10.1016/J.SIMPAT.2017.12.016
  13. SAYED, A. H. Fundamentals of Adaptive Filtering. New York (USA): Wiley, 2003. ISBN: 978-0471461265

Keywords: Least mean square (LMS) filters, convex combination, variable step-size, hyperbolic tangent function

J. Kolar, J. Sykora, U. Spagnolini [references] [full-text] [DOI: 10.13164/re.2020.0189] [Download Citations]
Distributed Network Tomography Applied to Stochastic Delay Profile Estimation

In this paper is shown, how delay properties of the edges of a network with stochastic properties can be estimated cooperatively by individual nodes that retain the delay profiles of the entire network. The proposed algorithm adopts null-space projection-based consensus among agents to find individual entries from a set of arbitrary sum-cumulative entities associated with graph edges (e.g., delays associated with edges) based on sums over the network paths. The local estimates of delay profile are estimated using Least Squares (LS). A modified, tailored, iterative consensus algorithm is then employed to distribute information among the neighbors. The distributed network tomography is compared to the conventional centralized solution and also to iterative solvers based on Cimmino, CAV, and Landweber methods applied in a distributed manner.

  1. COATES, A., HERO III, A. O., NOWAK, R., et al. Internet tomography. IEEE Signal Processing Magazine, 2002, vol. 19, no. 3, p. 47–65. DOI: 10.1109/79.998081
  2. TSANG, Y., COATES, M., NOWAK, R. D. Network delay tomography. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 8, p. 2125–2136. DOI: 10.1109/TSP.2003.814520
  3. MOLOISANE, A., GANCHEV, I., O’DROMA, M. Internet Tomography: An Introduction to Concepts, Techniques, Tools and Applications. 1st ed., Newcastle upon Tyne (UK): Cambridge Scholars Publishing, 2013. ISBN: 978-1-4438-4421-5
  4. CHEN, A., CAO, J. Network tomography based on 1-D projections. Lecture Notes-Monograph Series, 2007, vol. 54, p. 45–61. DOI: 10.1214/074921707000000238
  5. MOU, S., LIU, J., MORSE, A. S. A distributed algorithm for solving a linear algebraic equation. IEEE Transactions on Automatic Control, 2015, vol. 60, no. 11, p. 2863–2878. DOI: 10.1109/tac.2015.2414771
  6. ZHAO, L., SONG, W. Z. Decentralized consensus in distributed networks. International Journal of Parallel, Emergent and Distributed Systems, 2018, vol. 33, no. 6, p. 550–569. DOI: 10.1080/17445760.2016.1233552
  7. MATEI, I., BARAS, J. Performance evaluation of the consensusbased distributed subgradient method under random communication topologies. IEEE Journal of Selected Topics in Signal Processing, 2011, vol. 5, no. 1, p. 754–771. DOI: 10.1109/JSTSP.2011.2120593
  8. NEDIC, A., OZDAGLAR, A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, vol. 54, no. 1, p. 48–61. DOI: 10.1109/TAC.2008.2009515
  9. OLFATI-SABER, R., MURRAY, R. M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2009, vol. 49, no. 9, p. 1520–1533. DOI: 10.1109/TAC.2004.834113
  10. YU, H., JIAN, J. Multi-agent consensus with a time-varying reference state in directed network with switching topology and time-delay. In International Conference on Wavelet Analysis and Pattern Recognition. Baoding (China), 2009, p. 476–481. DOI: 10.1109/ICWAPR.2009.5207458
  11. NEDIC, A., PANG, J., SCUTARI, G., et al. Multi-agent Optimization. 1st ed., rev. Cetraro (IT): Springer International Publishing, 2018. ISBN: 3319971417
  12. KAMATH, G. Decentralized Convex Optimization for Wireless Sensor Networks. PhD. Thesis, Georgia State University, 2016. 73 pages. [Online] Cited 2019-12-06. Available at: https://scholarworks. gsu.edu/cs_diss/117
  13. CHUA, D. B., KOLACZYK, E. D., CROVELLA, M. Network Kriging. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 12, p. 2263–2272. DOI: 10.1109/JSAC.2006.884025
  14. RAJAWAT, K., DALL’ANESE, E., GIANNAKIS, M. B. Dynamic network delay cartography. IEEE Transactions on Information Theory, 2014, vol. 60, no. 5, p. 2910–2920. DOI: 10.1109/TIT.2014.2311802
  15. HANSEN, P. R. AIR Tools II: algebraic iterative reconstruction methods, improved implementation. Numerical Algorithms, 2018, vol. 79, no. 1, p. 107–137. DOI: 10.1007/s11075-017-0430-x
  16. CIMMINO, G. Approximate Solutions for Systems of Linear Equations (in Italian). La Ricerca Scientifica, 1938, vol. 9, p. 326–333.
  17. CENSOR, Y., GORDON, D., GORDON, R. R. Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Computing, 2001, vol. 27, no. 1, p. 777–808. DOI: 10.1016/S0167-8191(00)00100-9
  18. LANDWEBER, L. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 1951, vol. 73, no. 3, p. 615–624. DOI: 10.2307/2372313
  19. SCHARF, L. L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. 1st ed., rev. Boston (USA): AddisonWesley, 1991. ISBN: 9780201190380
  20. AZZIAN-RUHI, N., LAHOUTI, F., AVESTIMEHR, S., HASSIBI, B. Distributed solution of large-scale linear systems via accelerated projection-based consensus. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary (Canada), 2018, p. 6358–6362. DOI: 10.1109/ICASSP.2018.8462630
  21. OLFATI-SABER, R., FAX, J. A., MURRAY, R. M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, vol. 95, no. 1, p. 215–233. DOI: 10.1109/JPROC.2006.887293
  22. ARIOLI, M., DUFF, I., NOAILLES, I., et al. A block projection method for sparse matrices. SIAM Journal on Scientific and Statistical Computing, 1992, vol. 13, no. 1, p. 47–70. DOI: 10.1137/0913003
  23. GARBELETTO, C., DONINI, M., RAGAZZONI, R., et al. Kaczmarz and Cimmino: Iterative and layer-oriented approaches to atmospheric tomography. Proceedings SPIE, 2016, vol. 9909, no. 1, p. 1327–1345. DOI: 10.1117/12.2232494
  24. KOLAR, J. Implementation of Distributed Network Tomography Applied to Stochastic Delay Profile Estimation. Matlab script, [Online] Cited 2019-12-8. Available at: https://www.dropbox.com/sh/ gdl6rf1ynzhzdvv/AAAcXwsXh4N1n4iI386ULbOda?dl=0

Keywords: Network tomography, network delay profile, distributed consensus algorithm, projection-based consensus.

X. Y. Pan, Q. P. Xie, J. Y. Chen, S. P. Xiao [references] [full-text] [DOI: 10.13164/re.2020.0197] [Download Citations]
Two-Dimensional Underdetermined DOA Estimation of Quasi-Stationary Signals using Parallel Nested Array

In this paper, a two dimensional underdetermined direction of arrival estimation (DOA) of quasi-stationary signals using a parallel nested array structure is investigated. The quasi-stationary signals have the statistical property that they remain locally static over one frame but exhibit differences from one time frame to others. The special time domain property enables us to perform underdetermined direction-of-arrival estimation in time domain. By exploiting the temporary diversity of the quasi-stationary signals and effective difference coarray virtual array aperture provided inherently in the parallel nested array, more degrees of freedom can be used to resolve DOA estimation. The Khatri-Rao operation for the cross covariance matrix of the subarrays received data is adopted to convert the 2-D DOA estimation problem into two separate one-dimensional DOA estimation problems. Then, a subspace-based estimation of signal parameters via rotational invariance technique and a sparsity-based sparse Bayesian learning are proposed to realize the according one-dimensional DOA estimation. And the estimated azimuth and elevation angles can be properly automatically paired. Simulation results are carried out to demonstrate the effectiveness of the proposed algorithms for the 2-D underdetermined DOA estimation.

  1. WANG, A., LIU, L., ZHANG, J. Low complexity direction of arrival (DOA) estimation for 2D massive MIMO systems. In IEEE Globecom Workshops. Anaheim (CA, USA), 2012, p. 703–707. DOI: 10.1109/GLOCOMW.2012.6477660
  2. WAN, L., HAN, G., SHU, L., et al. The application of DOA estimation approach in patient tracking systems with high patient density. IEEE Transactions on Industrial Informatics, 2016, vol. 12, no. 6, p. 2353–2364. DOI: 10.1109/TII.2016.2569416
  3. CHEN, H., HOU, C., LIU, W., et al. Efficient two-dimensional direction-of-arrival estimation for a mixture of circular and noncircular sources. IEEE Sensors Journal, 2016, vol. 16, no. 8, p. 2527–2536. DOI: 10.1109/JSEN.2016.2517128
  4. MA, W. K., HSIEH, T. H., CHI, C. Y. Underdetermined DOA estimation of quasi-stationary signals with unknown spatial noise covariance: a Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 4, p. 2168–2180. DOI: 10.1109/TSP.2009.2034935
  5. CAO, M., HUANG, L., QIAN, C., et al. Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array. Signal Processing, 2015, vol. 106, p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012
  6. WANG, Y., HASHEMI-SAKHATSARI, A., TRINKLE, M., et al. Sparsity-aware DOA estimation of quasi-stationary signals using nested arrays. Signal Processing, 2018, vol. 144, p. 87–98. DOI: 10.1016/j.sigpro.2017.09.029
  7. WANG, B., WANG, W., GU. Y., et al. Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array. Sensors, 2017, vol. 17, p. 1–14. DOI: 10.3390/s17040702
  8. LI, J., ZHANG, X. Direction of arrival estimation of quasistationary signals using unfold coprime array. IEEE Access, 2017, vol. 5, p. 6538–6545. DOI: 10.1109/ACCESS.2017.2695581
  9. HU, J., LI, W., CHEN, Y. 2-D DOA estimation of quasi-stationary signals via tensor modeling. Applied Mechanics and Materials, 2015, p. 458–462. DOI: 10.4028/www.scientific.net/AMM.743.458
  10. PALANISAMY, P., KISHORE, C. 2-D DOA estimation of quasistationary signals based on Khatri-Rao subspace approach. In IEEE International Conference on Recent Trends in Information Technology (ICRTIT). Chennai (India), 2011, p. 798–803. DOI: 10.1109/ICRTIT.2011.5972295
  11. DONG, Y., DONG, C., LIU, W., et al. 2-D DOA estimation for Lshaped array with array aperture and snapshots extension techniques. IEEE Signal Processing Letters, 2017, vol. 24, no. 4, p. 495–499. DOI: 10.1109/LSP.2017.2676124
  12. GOOSSENS, R., ROGIER, H. A hybrid UCA-RARE/RootMUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 841–849. DOI: 10.1109/TAP.2007.891848
  13. CHEN, H., HOU, C., WANG, Q., et al. Improved azimuth/elevation angle estimation algorithm for three-parallel uniform linear array. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 329–332. DOI: 10.1109/LAWP.2014.2360419
  14. SHI, J., HU. G., ZHANG, X., et al. Computationally efficient 2D DOA estimation with uniform rectangular array in low-grazing angle. Sensors, 2017, vol. 17, p. 1–13. DOI: 10.3390/s17030470
  15. MARCOS, S., MARSAL, A., BENIDIE, M. The propagator method for source bearing estimation. Signal Processing, 1995, vol. 42, no. 2, p. 121–138. DOI: 10.1016/j.sigpro.0165- 1684(94)00122-G
  16. PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4167–4181. DOI: 10.1109/TSP.2010.2049264
  17. PAL, P., VAIDYANATHAN, P. P. Coprime sampling and the MUSIC algorithm. In 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE). Sedona (AZ, USA), 2011. DOI: 10.1109/DSP-SPE.2011.5739227
  18. LIU, C., VAIDYANATHAN, P. P. Cramer-Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digital Signal Processing, 2016, vol. 61, p. 43–61. DOI: 10.1016/j.dsp.2016.04.011
  19. LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear sparse arrays with reduced mutual coupling-Part I: Fundamentals. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 15, p. 3997–4012. DOI: 10.1109/TSP.2016.2558159
  20. LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear sparse arrays with reduced mutual coupling-Part II: High-order extensions. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 16, p. 4203–4217. DOI: 10.1109/TSP.2016.2558159
  21. ZHAO, T., ELDAE, Y. C, NEHORAI, A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 21, p. 5565–5576. DOI: 10.1109/TSP.2014.2354316
  22. QIN, S., ZHANG, Y. D., AMIN, M. G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 6, p. 1377–1390. DOI: 10.1109/TSP.2015.2393838
  23. MOFFET, A. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, p. 172–175. DOI: 10.1109/TAP.1968.1139138
  24. VERTATSCHITSCH, E., HAYKIN, S. Nonredundant arrays. Proceeding of the IEEE, 2005, vol. 74, no. 1, p. 217–217. DOI: 10.1109/PROC.1986.13435
  25. LI, J., JIANG, D., ZHANG, X. Sparse representation based twodimensional direction of arrival estimation using co-prime array. Multidimensional Systems and Signal Processing, 2018, vol. 29, no. 1, p. 35–47. DOI: 10.1007/s11045-016-0453-9
  26. CHENG, Z., ZHAO, Y., LI, H., et al. Two-dimensional DOA estimation algorithm with co-prime array via sparse representation. Electronics Letters, 2015, vol. 51, no. 25, p. 2084–2086. DOI: 10.1049/el.2015.0293
  27. SUN, F., LAN, P., GAO, B., et al. An efficient dictionary learningbased 2-D DOA estimation without pair matching for co-prime parallel arrays. IEEE Access, 2018, vol. 6, p. 8510–8518. DOI: 10.1109/ACCESS.2018.2805168
  28. HAARDT, M., NOSSEK, J. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 5, p.1232–1242. DOI: 10.1109/78.382406
  29. TRIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, vol. 1, no. 9, p. 211–244. DOI: 10.1162/15324430152748236
  30. BABACAN, S. D., MOLINA, R., KATSAGGELOS, A. K. Bayesian compressive sensing using Laplace prior. IEEE Transactions on Image Processing, 2010, vol. 19, no. 1, p. 53–63. DOI: 10.1109/TIP.2009.2032894
  31. YANG, Z., XIE, L., ZHANG, C. Off-grid direction-of-arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 10.1109/TSP.2012.2222378

Keywords: 2-D DOA estimation, parallel nested subarrays, quasi-stationary signals, ESPRIT, SBL, Khatri-Rao operation

Y. Wang, H. Chen, W. Liu, Z. Liu, F. Wang [references] [full-text] [DOI: 10.13164/re.2020.0206] [Download Citations]
Real-Time Triple-Frequency Cycle Slip Detection and Repair Algorithm Based on the Optimal Fixing Probability

Global Navigation Satellite System (GNSS) is now being speedily expanded to our daily life, but the positioning precision still can hardly meet the demands of many applications, such as approaching landing system on airports. Due to the development of GNSS, triple-frequency signals are now available which can contribute to positioning precision. Positioning precision cannot be improved by triple-frequency carrier phases until cycle slips are detected and repaired. Traditional cycle slip detection and repair algorithms choose detection combinations with long wavelength, weak ionospheric delay and small combination noise separately. However, these three conditions cannot be satisfied simultaneously. In this paper, these three conditions are not considered separately. On the contrary, the eventual fixing probability of cycle slip is set as the optimal goal to determine the three detection combinations. The combined ionospheric delay and noise in cycles can be regard as bias and variance respectively. The proposed algorithm has been tested on observations with simulated and real cycle slips. The results show that the proposed algorithm can detect and repair even single cycle slips in real time effectively.

  1. CHEN, D., YE, S., ZHOU, W., et al. A double-differenced cycle slip detection and repair method for GNSS CORS network. GPS Solution, 2016, vol. 20, no. 3, p. 439–450. DOI: 10.1007/s10291- 015-0452-6
  2. HATCH, R. The synergism of GPS code and carrier measurements. In Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning. Physical Sciences Lab. of New Mexico State University, 1982, vol. 2, p. 1213–1231.
  3. CAI, C., LIU, Z., XIA, P., et al. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solutions, 2013, vol. 17, no. 2 p. 247–260. DOI: 10.1007/s10291-012-0275-7
  4. BLEWITT, G. An automatic editing algorithm for GPS data. Geophysical Research Letters, 1990, vol. 17, no. 3, p. 199–202. DOI: 10.1029/GL017i003p00199
  5. LIU, Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. Journal of Geodesy, 2011, vol. 85, no. 3, p. 171–183. DOI: 10.1007/s00190-010-0426-y
  6. BANVILLE, S., LANGLEY, R. B. Mitigating the impact of ionospheric cycle slips in GNSS observations. Journal of Geodesy, 2013, vol. 87, no. 2, p. 179–193. DOI: 10.1007/s00190-012-0604-1
  7. RICHERT, T., EL-SHEIMY, N. Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solutions, 2007, vol. 11, no. 1, p. 11–19. DOI: 10.1007/s10291-006-0024-x
  8. HATCH, R., JUNG, J., ENGE, P., et al. Civilian GPS: The benefits of three frequencies. GPS Solutions, 2000, vol. 3, no. 4, p. 1–9. DOI: 10.1007/PL00012810
  9. DAI, Z., KNEDLIK, S., LOFFELD, O. Instantaneous triplefrequency GPS cycle-slip detection and repair. International Journal of Navigation and Observation, 2009, article ID 407231, p. 1–15. DOI: 10.1155/2009/407231
  10. DE LACY, M. C., REGUZZONI, M., SANSÒ, F. Real-time cycle slip detection in triple-frequency GNSS. GPS Solutions, 2012, vol. 16, no. 3, p. 353–362. DOI: 10.1007/s10291-011-0237-5
  11. HUANG, L., LU, Z., ZHAI, G., et al. A new triple-frequency cycle slip detecting algorithm validated with BDS data. GPS Solutions, 2015, vol. 20, no. 4, p. 761–769. DOI: 10.1007/s10291-015-0487-8
  12. ZHAO, Q., SUN, B., DAI, Z., et al. Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solutions, 2015, vol. 19, no. 3, p. 381–391. DOI: 10.1007/s10291- 014-0396-2
  13. ZENG, T., SUI, L., XU, Y., et al. Real-time triple-frequency cycle slip detection and repair method under ionospheric disturbance validated with BDS data. GPS Solutions, 2018, vol. 22, p. 1–13. DOI: 10.1007/s10291-018-0727-9
  14. ZHANG, X., WU, M., LIU, W., et al. Initial assessment of the COMPASS/BeiDou-3: New-generation navigation signals. Journal of Geodesy, 2017, vol. 91, no. 10, p. 1225–1240. DOI: 10.1007/s00190-017-1020-3
  15. LIU, Z., WU, C. Study of the ionospheric TEC rate in Hong Kong region and its GPS/GNSS application. In Proceedings of the International Technical Meeting on GNSS Global Navigation Satellite System: Technology Innovation and Application. Beijing (China), 2009, p. 129–137. ISBN: 978-1-935068-03-7
  16. LIU, W., JIN, X., WU, M., et al. A new real-time cycle slip detection and repair method under high ionospheric activity for a triple-frequency GPS/BDS receiver. Sensors, 2018, vol. 18, no. 2, p. 427–446. DOI: 10.3390/s18020427

Keywords: GNSS, triple-frequency, cycle slip, fixing probability

B. Vondra, D. Bonefacić [references] [full-text] [DOI: 10.13164/re.2020.0215] [Download Citations]
Mitigation of the Effects of Unknown Sea Clutter Statistics by Using Radial Basis Function Network

In this paper, we investigate feasibility of employing Radial Basis Function (RBF) network into non-coherent detection process, for detection of targets embedded in sea clutter of unknown statistics. We particularly have in mind Croatian part of Adriatic Sea, the local sea whose clutter statistic properties are not available in open literature. Performance of the detection process employing proposed RBF network is tested with simulated clutter samples based on real sea clutter data. These data were collected under sea state conditions that represent two thirds of the total wave heights in Adriatic and textcolor{red}{are} chosen to represent unknown clutter statistics due to the fact that no single probability density function equally well fits amplitude distribution of the range bins under test. It is demonstrated that, compared to the traditional [zlog(z)] method, RBF network with just four components and lognormal basis function, yields operating characteristics that better match designed ones.

  1. GINI, F., GRECO, M. Texture modeling and validation using recorded high resolution sea clutter data. In Proceedings of the 2001 IEEE Radar Conference. Atlanta, GA (USA), 2001, p. 387–392. DOI: 10.1109/NRC.2001.923010
  2. MEZACHE, A., SOLTANI, F., SAHED, M., CHALABI, I. Model for non-Rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 1, p. 142–153. DOI: 10.1109/TAES.2014.130332
  3. LEFAIDA, S., SOLTANI, F., MEZACHE, A. Radar seaclutter modelling using fractional generalised Pareto distribution. Electronics Letters, 2018, vol. 54, no. 16, p. 999–1001. DOI: 10.1049/el.2018.5233
  4. OLLILA, E., TYLER, D. E., KOIVUNEN, V., POOR, H. V. Complex elliptically symmetric distributions: Survey, new results and applications. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 11, p. 5597–5625. DOI: 10.1109/TSP.2012.2212433
  5. MELIEF, H. W., GREIDANUS, H., GENDEREN, VAN, P., HOOGEBOOM, P. Analysis of sea spikes in radar sea clutter data. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 4, p. 985-993. DOI: 10.1109/TGRS.2005.862497
  6. KATALINIC, M., CORAK, M., PARUNOV, J. Maritime Technology and Engineering. London (UK): Taylor & Francis Group, 2015. (Analysis of wave heights and wind speeds in the Adriatic Sea.) ISBN: 978-1-138-02727-5
  7. CRISP, D. J., ROSENBERG, L., STACY, N. J., DONG, Y. Modelling X-band sea clutter with the K-distribution: Shape parameter variation. In International Radar Conference "Surveillance for a Safer World". Bordeaux (France), 2009, p. 1–6. ISSN: 1097-5764
  8. JOHNSEN, T. Characterization of X-band radar sea-clutter in a limited fetch condition from low to high grazing angles. In IEEE Radar Conference. Johannesburg (South Africa), 2015, p. 109–114. DOI: 10.1109/RadarConf.2015.7411864
  9. DONG, Y. Distribution of X-band high resolution and high grazing angle sea clutter. Research report DSTO-RR-0316, Defence Science and Technology Organisation (Australia), 2006, 88 pages. [Online] Cited 2019-04-27. Available at: http://cradpdf.drdcrddc.gc.ca/PDFS/unc56/p527164.pdf
  10. BERRY, P., VENKATARAMAN, K., ROSENBERG, L. Adaptive detection of low-observable targets in correlated sea clutter using Bayesian track-before-detect. In IEEE Radar Conference. Seattle, WA (USA), 2017, p. 398–403. DOI: 10.1109/RADAR.2017.7944235
  11. PARK, J., SANDBERG, I. W. Universal approximation using radialbasis-function networks. Neural Computation, 1991, vol. 3, no. 2, p. 246–257. DOI: 10.1162/neco.1991.3.2.246
  12. VONDRA, B., BONEFACIC, D. Estimation of heavy-tailed clutter density using adaptive RBF network. In 22nd International Conference on Applied Electromagnetics and Communications (ICECom). Dubrovnik (Croatia), 2016, p. 1–6. DOI: 10.1109/ICECom.2016.7843876
  13. MEZACHE, A., CHALABI, I. Estimation of the RiIG-distribution parameters using the artificial neural networks. In IEEE International Conference on Signal and Image Processing Applications. Melaka (Malaysia), 2013, p. 291–296. DOI: 10.1109/ICSIPA.2013.6708020
  14. VICEN-BUENO, R., CARRASCO-ALVAREZ, R., ROSAZURERA, M., NIETO-BORGE, J. C. Sea clutter reduction and target enhancement by neural networks in a marine radar system. Sensors, 2009, vol. 9, no. 3, p. 1913–1936. DOI: 10.3390/s90301913
  15. CUI, Y., YANG, J., YAMAGUCHI, Y., et al. On semiparametric clutter estimation for ship detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 2013, vol. 51, no. 5, p. 3170–3180. DOI: 10.1109/TGRS.2012.2218659
  16. PARZEN, E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 1962, vol. 33, no. 3, p. 1065–1076. DOI :10.1214/aoms/1177704472
  17. ZHOU, H., LI, Y., JIANG, T. Sea clutter distribution modeling: a kernel density estimation approach. In 10th International Conference on Wireless Communications and Signal Processing (WCSP). Hangzhou (China), 2018, p. 1–6. DOI: 10.1109/WCSP.2018.8555876
  18. HENNESSEY, G., LEUNG, H., DROSOPOULOS, A., YIP, P. C. Seaclutter modeling using a radial-basis-function neural network. IEEE Journal of Oceanic Engineering, 2001, vol. 26, no. 3, p. 358–372. DOI: 10.1109/48.946510
  19. CHEIKH, K., SOLTANI, F. Application of neural networks to radar signal detection in K-distributed clutter. IEE Proceedings - Radar, Sonar and Navigation, 2006, vol. 153, no. 5, p. 460–466. DOI: 10.1049/ip-rsn:20050103
  20. VICEN-BUENO, R., ROSA-ZURERA, M., JARABO-AMORES, M. P., MATA-MOYA, DE LA, D. Coherent detection of Swerling 0 targets in sea-ice Weibull-distributed clutter using neural networks. IEEE Transactions on Instrumentation and Measurement, 2010, vol. 59, no. 12, p. 3139–3151. DOI: 10.1109/TIM.2010.2047579
  21. SARIKAYA, T. B., SOYSAL, G., EFE, M., et al. Sea-land classification using radar clutter statistics for shore-based surveillance radars. In International Conference on Radar Systems (Radar 2017). Belfast (UK), 2017, p. 1–4. DOI: 10.1049/cp.2017.0488
  22. PAN, M., CHEN, J., WANG, S., DONG, Z. A novel approach for marine small target detection based on deep learning. In IEEE 4th International Conference on Signal and Image Processing (ICSIP). Wuxi (China), 2019, p. 395–399. DOI: 10.1109/SIPROCESS.2019.8868862
  23. ZHU, L., XIONG, G., YU, W. Radar HRRP group-target recognition based on combined methods in the background of sea clutter. In International Conference on Radar. Brisbane, QLD (Australia), 2018, p. 1–6. DOI: 10.1109/RADAR.2018.8557334
  24. MAESTRE, DEL-REY, N., MATA-MOYA, D., JARABOAMORES, P., et al. Single MLP-CFAR for a radar Doppler processor based on the ML criterion. Validation on real data. In European Radar Conference. Paris (France), 2015, p. 53–56. DOI: 10.1109/EuRAD.2015.7346235
  25. CHEN, X., GUAN, J., HE, Y., ZHANG, J. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain. IET Radar, Sonar & Navigation, 2013, vol. 7, no. 6, p. 635–651. DOI: 10.1049/iet-rsn.2012.0116
  26. DROSOPOULOS, A. Description of the OHGR database. Technical Note 94-14, National Defence Canada, 1994, 42 pages. [Online] Cited 2019-03-13. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a290146.pdf
  27. BOCQUET, S. Parameter estimation for Pareto and K distributed clutter with noise. IET Radar, Sonar & Navigation, 2015, vol. 9, no. 1, p. 104–113. DOI: 10.1049/iet-rsn.2014.0148
  28. MEZACHE, A., CHALABI, I., SOLTANI, F., SAHED, M. Estimating the Pareto plus noise distribution parameters using non-integer order moments and [zlog(z)] approaches. IET Radar, Sonar & Navigation, 2016, vol. 10, no. 1, p. 192–204. DOI: 10.1049/iet-rsn.2015.0170
  29. FELLER, W. An Introduction to Probability Theory and its Applications. Vol. II. 2nd ed. New York (USA): John Wiley & Sons Inc., 1971. ISBN: 978-0-471-25709-7
  30. TRAVEN, H. G. C. A neural network approach to statistical pattern classification by "semiparametric" estimation of probability density functions. IEEE Transactions on Neural Networks, 1991, vol. 2, no. 3, p. 366–377. DOI: 10.1109/72.97913
  31. ZEEVI, A., MEIR, R. Density estimation through convex combinations of densities: Approximation and estimation bounds. Neural Networks, 1997, vol. 10, no. 1, p. 99–109. DOI: 10.1016/S0893-6080(96)00037-8
  32. GHAHRAMANI, Z. Proceedings of the 1993 Connectionist Models Summer School. Hillsdale, NJ (USA): Lawrence Erlbaum Associates, 1994. (Solving inverse problems using an EM approach to density estimation.) ISBN: 9780805815900
  33. DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 1977, vol. 39, p. 1–38. DOI: 10.1111/j.2517-6161.1977.tb01600.x
  34. GLASSER, L., KOHL, K., KOUTSCHAN, C., et al. The integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions. Scientia, Series A: Mathematical Sciences, 2012, vol. 22, p. 129–151. ISSN: 0716-8446
  35. ZOROVIC, D., MOHOVIC, R., MOHOVIC, D. Towards determining the length of the wind waves of the Adriatic Sea (In Croatian). Nase more, 2003, vol. 60, no. 3-4, p. 145–150. ISSN: 0469-6255
  36. BALLERI, A., NEHORAI, A., WANG, J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 2, p. 775–779. DOI: 10.1109/TAES.2007.4285370
  37. PULFORD, G. W., LA SCALA, B. F. Multihypothesis Viterbi data association. Algorithm development and assessment. IEEE Transactions On Aerospace And Electronic Systems, 2010, vol. 46, no. 2, p. 583–609. DOI: 10.1109/TAES.2010.5461643
  38. ROY, L. P., KUMAR, R. V. R. Accurate K-distributed clutter model for scanning radar application. IET Radar, Sonar and Navigation, 2010, vol. 4, no. 2, p. 158–167. DOI: 10.1049/iet-rsn.2009.0108
  39. NEYMAN, J., PEARSON, E. S. On the problem of the most efficient test of statistical hypotheses. Philosophical Transactions of the Royal Society of London, 1933, Series A, p. 289–337. DOI: 10.1098/rsta.1933.0009
  40. BREKKE, E. F., HALLINGSTAD, O., GLATTETRE, J. H. Target tracking in heavy-tailed clutter using amplitude information. In 12th International Conference on Information Fusion. Seattle, WA (USA), 2009, p. 2153–2160. ISBN: 978-0-9824-4380-4
  41. WEINBERG, G. V., HOWARD, S. D., TRAN, C. A Bayesianbased CFAR detector for Pareto Type II clutter. In International Conference on Radar. Brisbane, QLD (Australia), 2018, p. 1–6. DOI: 10.1109/RADAR.2018.8557282
  42. WEINBERG, G. V., BATEMAN, L., HAYDEN, P. Constant false alarm rate detection in Pareto Type II clutter. Digital Signal Processing, 2017, vol. 68, p. 192–198. DOI: 10.1016/j.dsp.2017.06.014
  43. ESI GROUP. Scilab: Free and Open Source software for numerical computation. [Online] Cited 2019-11-17. Available at: https://www.scilab.org
  44. SUSE LLC. Reference: openSUSE Leap 15.1. [Online] Cited 2019-11-19. Available at: https://doc.opensuse.org/documentation /leap/reference/book.opensuse.reference_color_en.pdf
  45. INTEL. Intel Core i5-3210M Processor. [Online] Cited 2019- 11-19. Available at: https://ark.intel.com/content/www/us/en/ark/ products/65708/intel-core-i5-3210m-processor-3m-cache-up-to-3- 10-ghz-bga.html
  46. SWERLING, P. Probability of detection for fluctuating targets. Research Memorandum RM-1217, Santa Monica, CA (USA): RAND Corporation, 1954, 45 pages. [Online] Cited 2019-03-22. Available at: https://www.rand.org/pubs/research_memoranda/RM1217.html
  47. HAZEWINKEL, M. (Ed.) Encyclopaedia of Mathematics: Supplement Volume II. Dordrecht (Nederlands): Kluwer Academic Publishers, 2012. ISBN: 978-90-481-5378-7
  48. JIANG, H., YI, W., CUI, G., KONG, L., YAN, X. Knowledge-based track-before-detect strategies for fluctuating targets in K-distributed clutter. IEEE Sensors, 2016, vol. 16, no. 19, p. 7124–7132. DOI: 10.1109/JSEN.2016.2597320

Keywords: Sea clutter, Adriatic sea, lognormal, non-coherent detection, RBF, [zlog(z)] method

B. Amin, M. M. Riaz, A.Ghafoor [references] [full-text] [DOI: 10.13164/re.2020.0228] [Download Citations]
Automatic Image Matting of Synthetic Aperture Radar Target Chips

A matting technique to extract the targets from synthetic aperture radar (SAR) images is presented. Binary segmentation is performed initially for rough identification of target boundaries. Trimap is then estimated by combining the boundary structures of the input and segmented images using guided filter. In order to improve the accuracy of estimated trimap, super-pixels based segmentation is performed. A propagation based matting algorithm is then applied to separate the target from non-target region. Simulations conducted on different SAR images from MSTAR database show significance of proposed technique.

  1. MIDDELMANN, W., EBERT, A., THOENNESSEN. A. Automatic target recognition in SAR images based on a SVM classification scheme. In International Conference on Adaptive and Natural Computing Algorithms. Berlin (Germany), 2007, p. 492–499. DOI: 10.1007/978-3-540-71629-7-55
  2. CHO, H.-W., CHO, Y.-R., KIM, B.-K., et al. Image matting for automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, 2017, vol. 53, no. 5, p. 2233–2250. DOI: 10.1109/TAES.2017.2690529
  3. SAMANTA, D., SANYAL, G. An approach of segmentation technique of SAR images using adaptive thresholding technique. International Journal of Engineering Research and Technology, 2012, vol. 1, no. 7, p. 1–4.
  4. AMOON, M., REZAI-RAD, G.-A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features. IET Computer Vision, 2014, vol. 8, no. 2, p. 77–85. DOI: 0.1049/iet-cvi.2013.0027
  5. TAN, J., FAN, X., WANG, S., et al. Target recognition of SAR images via matching attributed scattering centers with binary target region. Sensors, 2018, vol. 18, no. 9, p. 3019. DOI: 10.3390/s18093019
  6. ANAGNOSTOPULOS, G. C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors. Nonlinear Analysis, 2009, vol. 71, no. 12, p. e2934–e2939. DOI: 10.1016/j.na.2009.07.030
  7. DING, B., WEN, G., MA, C., et al. Target recognition in synthetic aperture radar images using binary morphological operations. Journal of Applied Remote Sensing, 2016, vol. 10, no. 4, p. 1–14. DOI: 10.1117/1.JRS.10.046006
  8. HUANG, S., HUANG, W., ZHANG, T. A new SAR image segmentation algorithm for the detection of target and shadow regions. Scientific Reports, 2016, vol. 6, no. 1, p. 1–15. DOI: 10.1038/srep38596
  9. HAN, Y., LI, Y., YU, W. SAR target segmentation based on shape prior. In IEEE International Geoscience and Remote Sensing Symposium. Quebec City (Canada), 2014, p. 3738–3741. DOI: 10.1109/IGARSS.2014.6947296
  10. ZHANG, R., ZHANG, M. SAR target recognition based on active contour without edges. Journal of Systems Engineering and Electronics, 2017, vol. 28, no. 2, p. 276–281. DOI: 10.21629/JSEE.2017.02.09
  11. HU, Y., FAN, J., WANG, J. Target recognition of floating raft aquaculture in SAR image based on statistical region merging. In International Conference on Information Science and Technology. Da Nang (Vietnam), 2017, p. 429–432. DOI: 10.1109/ICIST.2017.7926798
  12. LANG, F., YANG, J., LI, D., et al. Polarimetric SAR image segmentation using statistical region merging. IEEE Geoscience and Remote Sensing Letters, 2014, vol. 11, no. 2, p. 509–513. DOI: 10.1109/LGRS.2013.2271040
  13. DA CUNHA, A. L., ZHOU, J., DO, M. N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Transactions on Image Processing, 2006, vol. 15, no. 10, p. 3089–3101. DOI: 10.1109/TIP.2006.877507
  14. WU, K.-L., YU, J., YANG. M.-S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, vol. 26, no. 5, p. 639–652. DOI: 10.1016/j.patrec.2004.09.016
  15. PEI, J., HUANG, Y., HUO, W., et al. Synthetic aperture radar processing approach for simultaneous target detection and image formation. Sensors, 2018, vol. 10, no. 18, p. 3377. DOI: 10.3390/s18103377
  16. WANG, Z., DU, L., SU, H. Target detection via Bayesianmorphological saliency in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 100, p. 5455–5466. DOI: 10.1109/TGRS.2017.2707672
  17. AMBROSANIO, M., BASELICE, F., FERRAIOLI, G., et al. Kolgomorov Smirnov test based approach for SAR automatic target recognition. In IEEE International Geoscience and Remote Sensing Symposium. Fort Worth (USA), 2017, p. 1660–1663. DOI: 10.1109/IGARSS.2017.8127292
  18. ACHANTA, R., SHAJI, A., SMITH, K., et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, vol. 34, no. 11, p. 2274–2282. DOI: 10.1109/TPAMI.2012.120
  19. LEVIN, A., LISCHINSKI, D., WEISS, Y. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, vol. 30, no. 2, p. 228–242. DOI: 10.1109/TPAMI.2007.1177
  20. KARACAN, L., ERDEM, A., ERDEM, E. Alpha matting with KL-Divergence based sparse sampling. IEEE Transactions on Image Processing, 2017, vol. 26, no. 9, p. 4523–4536. DOI: 10.1109/TIP.2017.2718664
  21. CHEN, Q., LI, D., TANG, C. K. KNN matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, no. 9, p. 2175-2188. DOI: 10.1109/TPAMI.2013.18
  22. ROSS, T., WORRELL, S., VELTEN, V., et al. Standard SAR ATR evaluation experiments using the MSTAR public release dataset. In SPIE, Algorithms for Synthetic Aperture Radar Imagery V. Orlando (Florida), 1998, p. 566–573. DOI: 10.1117/12.321859

Keywords: Image matting, Trimaps, SAR target detection, Superpixels

K. Zyka [references] [full-text] [DOI: 10.13164/re.2020.0235] [Download Citations]
DAB+ Network Implementation in the Czech Republic and Impact of the Audio Coding on Subjective Perception of Sound Quality

Digital Audio Broadcasting (DAB+) is becoming a reality in the Czech Republic. The first nationwide DAB+ network, based on the regular broadcasting, is being completed. This paper presents the principles that were used to achieve a quick and efficient penetration of the DAB+ signal in the Czech population and the highways. Attention is focused on practical experience with the use of High-Efficiency Advanced Audio Coding (HE-AAC) emphasizing maximum efficiency of the multiplex. This is done with respect to the subjective perception of sound quality by the audience. Final audio processing and appropriate signal pre-processing are considered. The paper also focuses on how to use Forward Error Correction (FEC) coding to increase the reach of transmitters and the reasons for employing the specific transmitter network configuration, including indoor reception. The results of this complex method are demonstrated on the network rollout in particular periods, while the key assumptions were verified. The entire development process can be monitored on the maps of coverage.

  1. HOEG, W., LAUTERBACH, T. (Eds.) Digital Audio Broadcasting: Principles and Applications of DAB. DAB+ and DMB. 3. ed. John Wiley & Sons, 2009. ISBN: 978-0-470-51037-7
  2. ETSI ETSI European Standard EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers, 01/2017.
  3. ZYKA, K. The digital audio broadcasting journey from the lab to listeners - the Czech Republic case study. Radioengineering, 2019, vol. 28, no. 2, p. 483–490. DOI: 10.13164/re.2019.0483
  4. ETSI ETSI Technical Specification TS 102 563, Digital Audio Broadcasting (DAB); Transport of Advanced Audio Coding (AAC) Audio, Sophia Antipolis Cedex, France, 2010.
  5. HERRE, J., DIETZ, M. MPEG-4 high-efficiency AAC coding [Standards in a nutshell]. IEEE Signal Processing Magazine, 2008, vol. 25, no. 3, p. 137–142. DOI: 10.1109/MSP.2008.918684
  6. ETSI ETSI Technical Specification TS 103 466 V1.1.1. Digital Audio Broadcasting (DAB); DAB Audio Coding (MPEG Layer II), 10/2016.
  7. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for the Subjective Assessment of Intermediate Quality Levels of Coding Systems. Recommendation ITU-R BS.1534. 2001-2015. Approved in 2015-10.
  8. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for Point-to-Area Predictions for Terrestrial Services in the Frequency Range 30 MHz to 3000 MHz. Recommendation ITU-R P.1546-2. Approved in 2013–09.
  9. WORLD DAB – The official Database of the Latest Information on Regulatory Frameworks, DAB+ Network Coverage, Services on Air. [Online] Available at: https://www.worlddab.org/countries
  10. NATIONAL REGULATORY AUTHORITY (CTO) Press Release about the Experimental Broadcasting “DAB Prague”. Czech Republic, 2015. [Online] Available at: https://www.ctu.cz/tiskova-zprava-ctu-podporil-experimentalnivysilani-t-dab
  11. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. A Path-specific Propagation Prediction Method for Point-to-Area Terrestrial Services in the VHF and UHF Bands. Recommendation ITU-R P.1812-3. Approved in 2013-09.
  12. CRC DATA - RADIOLAB version 4.3.1. The Software Modeling System. [Online] Available at: https://www.crcdata.cz/index.php/radiokomunikace/radiolab-4
  13. NATIONAL REGULATORY AUTHORITY (CTO) Regulation No. 22/2011 on the Method of Setting the Coverage of Terrestrial Radio Broadcasting in Selected Bands, Czech Republic, 2011.
  14. GE06, Final Acts of the Regional Radiocommunication Conference for Planning of the Digital Terrestrial Broadcasting Service in Parts of Regions 1 and 3, in the Frequency Bands 174–230 MHz and 470–862 MHz (RRC-06). Geneva, 2006.
  15. STRANAK, P. New methods of stereo encoding for FM radio broadcasting based on digital technology. Radioengineering, 2007, vol. 16, no. 4, p. 12–17. ISSN: 1210-2512
  16. EBU TECH 3250, GENEVA SWITZERLAND. Specification of the Digital Audio Interface (AES/EBU). European Broadcasting Union, 3rd ed., 2004.
  17. AVT MAGIC AE1 DAB+ Go. The High Quality and Professional DSP-based Hardware Audio Encoder. [Online] Available at: https://www.avt-nbg.de/en/products/magic-ae1-dab-go
  18. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Planning Standards for Terrestrial FM Sound Broadcasting at VHF. Recommendation ITU-R BS.412-9. Approved in 1998-12.
  19. BONELLO, O. J. Multiband audio processing and its influence on the coverage area of the FM stereo transmission. Journal of Audio Engineering Society, 2007, vol. 55, no. 3, p. 145–156.
  20. STRANAK, P. Interfering DC component, suppression and influence to digital signal processing. Radioengineering, 2008, vol. 17, no. 3, p. 121–123. ISSN: 1210-2512
  21. GILSKI, P. DAB vs DAB+ radio broadcasting: A subjective comparative study. Archives of Acoustics, 2017, vol. 42, no. 4, p. 715–723. DOI: 10.1515/aoa-2017-0074
  22. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Audio Coding for Digital Broadcasting. BS Series Broadcasting Service (Sound). Recommendation ITU-R BS.1196-7. Approved in 2019-01.
  23. STRANAK, P., DOBES, J. Controlling peaks of the audio signal by dynamically allocated scale factor for lossy psychoacoustic encoder. In 53rd IEEE International Midwest Symposium on Circuits and Systems. Seattle (USA), 2010, p. 388–391. DOI: 10.1109/MWSCAS.2010.5548874

Keywords: DAB, DAB+, Digital Audio Broadcasting, network, non-entropic audio coding, HE-AAC, transmitter, FEC, implementation, broadcast audio processing

G. Ilievski, P. Latkoski [references] [full-text] [DOI: 10.13164/re.2020.0243] [Download Citations]
Efficiency of Supervised Machine Learning Algorithms in Regular and Encrypted VoIP Classification within NFV Environment

Cloudification of all computing environments is an undergoing process. The process has overpassed the classical Virtual Machines (VM) and Software-Defined Networking (SDN) approach and has moved towards dockerizing, microservices, app functions, network functions etc. 5G penetration is another trend, and it is built on such platforms. In this environment we are investigating the efficiency of supervised machine learning algorithms for classification of regular and encrypted Voice over IP (VoIP) traffic that 5G relies on, within a virtualized Network Functions Virtualization (NFV) environment and an east-west based network traffic. We are using statistical methods for classification of network packets without the need of inspecting the payload data and without the source, destination and port information of the packets. The efficiency is analyzed from a point of precision of the classification, but also from a point of time consumption, as adding delay to the original traffic may cause a problem, especially within 5G environments where packet delay is crucial.

  1. CHIOSI, M., et al. Network Functions Virtualisation - Introductory White Paper. 2012. [Online] Cited 2019-10-10 Available at: https://portal.etsi.org/nfv/nfv_white_paper.pdf
  2. EIMAN, M. Minimum Technical Performance Requirements for IMT-2020 Radio Interface(s). Presentation. 2018. [Online] Cited 2019-10-10. Available at https://www.itu.int/en/ITU-R/studygroups/rsg5/rwp5d/imt-2020/Documents/S01- 1_Requirements%20for%20IMT-2020_Rev.pdf
  3. SHANKARA, U. Communication between Virtual Machines. US Patent US20070220217A1 Mar. 16 2007
  4. VERGARA-REYES, J., MARTINEZ-ORDONEZ, M. C., ORDONEZ, A., et al. IP traffic classification in NFV: A benchmarking of supervised Machine Learning algorithms. In IEEE Colombian Conference on Communications and Computing. Cartagena (Colombia), 2017, p. 1–6. DOI: 10.1109/ColComCon.2017.8088199
  5. ALSHAMMARI, R., NUR ZINCIR-HEYWOOD, A. Identification of VoIP encrypted traffic using a machine learning approach. Journal of King Saud University - Computer and Information Sciences archive, 2015, vol. 27, no. 1, p. 77–92. DOI: 10.1016/j.jksuci.2014.03.013
  6. MA, B., ZHANG, H., GUO, Y., et al. A summary of traffic identification method depended on machine learning. In International Conference on Sensor Networks and Signal Processing (SNSP). Xian (China), 2018, p. 469–474. DOI: 10.1109/SNSP.2018.00094
  7. TRIVEDI, U., PATEL, M. A fully automated deep packet inspection verification system with machine learning. In IEEE International Conference on Advanced Networks and Telecommunications Systems. Bangalore (India), 2016, p. 1–6. DOI: 10.1109/ANTS.2016.7947802
  8. REZAEI, S., LIU, X. Deep learning for encrypted traffic classification: An overview. IEEE Communication Magazine, 2019, vol. 57, no. 5, p. 76–81. DOI: 10.1109/MCOM.2019.1800819
  9. SHAFIQ, M., YU, X., LAGHARI, A. A., et al. Network Traffic Classification techniques and comparative analysis using Machine Learning algorithms. In The 2nd IEEE International Conference on Computer and Communications (ICCC). Chengdu (China), 2016, p. 2451–2455. DOI: 10.1109/CompComm.2016.7925139
  10. FRANK, E., HALL, M. A., WITTEN, I. H. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. San Francisco (CA, USA): Morgan Kaufmann, 2016. ISBN: 0128042915 9780128042915
  11. HUANG, U., LI, P., GUO, S. Traffic scheduling for deep packet inspection in software-defined networks. Concurrency and Computation: Practice and Experience. 2017, vol. 29, no. 16 (special issue), p. 1–8. DOI: 10.1002/cpe.3967
  12. MOUSA, M., BAHAA-ELDIN, A., SOBH, M. Software Defined Networking concepts and challenges. In 11th International Conference on Computer Engineering & Systems (ICCES). Cairo (Egypt), 2016, p. 79–90. DOI: 10.1109/ICCES.2016.7821979
  13. POLCAK, L., CALDAROLA, L., CHOUKIR, A., et al. High level policies in SDN. In International Conference on E-Business and Telecommunications. 2016, p. 39–57. DOI: 10.1007/978-3-319- 30222-5_2
  14. AREVALO HERRERA, J., CAMARGO, J. E. A Survey on Machine Learning Applications for Software Defined Network Security. In: Zhou J. et al. (eds) Applied Cryptography and Network Security Workshops. Lecture Notes in Computer Science, 2019, vol. 11605, Springer, p. 70–93. DOI: 10.1007/978-3-030- 29729-9_4
  15. CHOWDHARY, A., HUANG, D., ALSHAMRANI, A., et al. SDFW: SDN-based Stateful Distributed Firewall. 2018. DOI: 10.13140/RG.2.2.11001.93281
  16. CHOUDHURY S., BHOWAL, A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). Chennai (Tamil Nadu, India), 2015, p. 89–95. DOI: 10.1109/ICSTM.2015.7225395
  17. SHAFIQ, M. YU, X. LAGHARI, A. A., et al. WeChat text and picture messages service flow traffic classification using machine learning technique. In IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Sydney (Australia), 2016, p. 58–62. DOI: 10.1109/HPCCSmartCity-DSS.2016.0019
  18. HE, L., XU, C., LUO, Y. vTC: Machine Learning based traffic classification as a virtual network function. In ACM International Workshop, 2016, p. 53–56. DOI: 10.1145/2876019.2876029
  19. LI, Z., GE, Z., MAHIMKAR, A., et al. Predictive analysis in network function virtualization. In Proceedings of the Internet Measurement Conference. Boston (USA), 2018, p. 161–167. DOI: 10.1145/3278532.3278547
  20. ZANDER S., ARMITAGE, G. Practical machine learning based multimedia traffic classification for distributed QOS management. In IEEE 36th Conference on Local Computer Networks (IEEE LCN). Bonn (Germany), 2011, p. 399–406. DOI: 10.1109/LCN.2011.6115322
  21. MA, W., MEDINA, C., PAN, D. Traffic-aware placement of NFV middleboxes. In IEEE Global Communications Conference (GLOBECOM). San Diego (CA, USA), 2015, p. 1–6. DOI: 10.1109/GLOCOM.2015.7417851
  22. BONFIGLIO, D., MELLIA, M., MEO, M., et al. Revealing skype traffic: when randomness plays with you. ACM SIGCOMM Computer Communication Review, 2007, vol. 37, no. 4, p. 37–48. DOI: 10.1145/1282427.1282386
  23. LE, L., LIN, B., DO, S. Applying big data, machine learning, and SDN/NFV for 5G early-stage traffic classification and network QoS control. Transactions on Networks and Communications, 2016, vol. 6, no. 2, p. 36–50. DOI: 10.14738/tnc.62.4446
  24. Oracle VirtualBox. 2019 [Online] Cited 2019-09-10. Available at: https://www.virtualbox.org
  25. BERNAL, M. V., CERRATO, I., RISSO, F., et al. Transparent optimization of inter-virtual network function communication in open vSwitch. In IEEE International Conference on Cloud Networking (Cloudnet). Pisa (Italy), 2016, p. 76–82. DOI: 10.1109/CloudNet.2016.26
  26. Linux Foundatrion, Open vSwitch Project, 2016 [Online] Available at: http://www.openvswitch.org
  27. Wireshark, 2006 [Online] Cited 2019-09-10. Available at: https://www.wireshark.org/
  28. M. Team, 2017 Mininet: An instant virtual network on your laptop (or other pc) - mininet. [Online] Cited 2019-09-12. Available at: http://mininet.org
  29. Ryu Framework, 2019. [Online] Cited 2019-09-10. Available at: http://osrg.github.io/ryu/
  30. BOTTA, A., DAINOTTI, A., PESCAPÈ, A. A tool for the generation of realistic network workload for emerging networking scenarios. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2012, vol. 56, no. 15, p. 3531–3547. DOI: 10.1016/j.comnet.2012.02.019
  31. Argus Quosient, 2015. [Online] Cited 2019-09-10. Available at: https://qosient.com/argus/
  32. HALL, M., FRANK, E., HOLMES, G., et al. The WEKA data mining software: An update. In ACM SIGKDD Explorations Newsletter, 2009, vol. 11, no. 1, p. 10–18. DOI: 10.1145/1656274.1656278

Keywords: VoIP, classification, supervised algorithms, machine learning, NFV, 5G

A. Ghassemi, K. Kazemi, S. Sefidbakht, H. Danyali [references] [full-text] [DOI: 10.13164/re.2020.0251] [Download Citations]
Reliable Estimation of the Intra-Voxel Incoherent Motion Parameters of Brain Diffusion Imaging Using θ-Teaching-Learning-Based Optimization

Intra-voxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of tissues. Traditionally, the least-square method has been used to determine IVIM parameters consisting of pure diffusion coefficient (D), pseudo-diffusion coefficient (D*) and the micro-vascular volume fraction (f). This paper proposes an accurate estimation method for IVIM parameters in human brain tissues using θ-teaching-learning-based-optimization (θ-TLBO). θ-TLBO as an evolutionary algorithm provides high quality solutions for parameter estimations in curve fitting problems. Evaluation of the proposed method was performed on simulated data with different levels of noise and experimental data. The estimated parameters were compared with the results of TLBO and three conventional algorithms: Segmented-Unconstrained (“SU”), Segmented-Constrained (“SC”) and “Full”. The results show that the proposed θ-TLBO has higher accuracy, precision and robustness than other methods in estimating parameters of simulated and experimental data in human brain images especially in low SNR images according to analysis of variance (ANOVA), coefficient of variation (CV), relative bias and relative root mean square errors.

  1. LE BIHAN, D., BRETON, E., LALLEMAND, D., et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, vol. 168, no. 2, p. 497–505. DOI: 10.1148/radiology.168.2.3393671
  2. HEUSCH, P., WITTSACK, H.-J., PENTANG, G., et al. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiologica, 2013, vol. 54, no. 10, p. 1210–1217. DOI: 10.1177/0284185113491090
  3. BARBIERI, S., DONATI, O. F., FROEHLICH, J. M., et al. Impact of the calculation algorithm on biexponential fitting of diffusionweighted MRI in upper abdominal organs. Magnetic Resonance in Medicine, 2015, vol. 75, no. 5, p. 2175–2184. DOI: 10.1002/mrm.25765
  4. JALNEFJORD, O., ANDERSSON, M., MONTELIUS, M., et al. Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). Magnetic Resonance Materials in Physics, Biology and Medicine, 2018, vol. 31, no. 6, p. 715–723. DOI: 10.1007/s10334-018-0697-5
  5. FUSCO, R., SANSONE, M., PETRILLO, A. A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model. Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, vol. 30, no. 2, p. 113–120. DOI: 10.1007/s10334-016-0591-y
  6. SUO, S., LIN, N., WANG, H., et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: Comparison of different curve-fitting methods. Journal of Magnetic Resonance Imaging, 2015, vol. 42, no. 2, p. 362–370. DOI: 10.1002/jmri.24799
  7. FEDERAU, C., O’BRIEN, K., MEULI, R., et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. Journal of Magnetic Resonance Imaging, 2014, vol. 39, no. 3, p. 624–632. DOI: 10.1002/jmri.24195
  8. FEDERAU, C., MAEDER, P., O’BRIEN, K., et al. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology, 2012, vol. 265, no. 3, p. 874–881. DOI: 10.1148/radiol.12120584
  9. FREIMAN, M., PEREZ-ROSSELLO, J. M., CALLAHAN, M. J., et al. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Medical Image Analysis, 2013, vol. 17, no. 3, p. 325–336. DOI: 10.1016/j.media.2012.12.001
  10. SASAKI, M., SUMI, M., EIDA, S., et al. Simple and reliable determination of intravoxel incoherent motion parameters for the differential diagnosis of head and neck tumors. PloS one, 2014, vol. 9, no. 11, p. e112866. DOI: 10.1371/journal.pone.0112866
  11. CHO, G. Y., MOY, L., ZHANG, J. L., et al. Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magnetic Resonance in Medicine, 2015, vol. 74, no. 4, p. 1077–1085. DOI: 10.1002/mrm.25484
  12. TRANSTRUM, M. K., SETHNA, J. P. Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. arXiv preprint, 2012. arXiv:1201.5885
  13. SBALZARINI, I. F., MULLER, S., KOUMOUTSAKOS, P. Multiobjective optimization using evolutionary algorithms. In Proceedings of the Summer Program, 2000, vol. 2000, p. 63–74.
  14. RAO, R. V, SAVSANI, V. J., VAKHARIA, D. P. Teachinglearning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, vol. 43, no. 3, p. 303–315. DOI: 10.1016/j.cad.2010.12.015
  15. NIKNAM, T., GOLESTANEH, F., SADEGHI, M. S. θmultiobjective teaching-learning-based optimization for dynamic economic emission dispatch. IEEE Systems Journal, 2012, vol. 6, no. 2, p. 341–352. DOI: 10.1109/JSYST.2012.2183276
  16. LEVENBERG, K. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 1944, vol. 2, no. 2, p. 164–168. DOI: 10.1090/qam/10666
  17. MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, vol. 11, no. 2, p. 431–441. DOI: 10.1137/0111030
  18. MEEUS, E. M., NOVAK, J., WITHEY, S. B., et al. Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue. Journal of Magnetic Resonance Imaging, 2017, vol. 45, no. 5, p. 1325–1334. DOI: 10.1002/jmri.25411
  19. LIU, C., LIANG, C., LIU, Z., et al. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. European Journal of Radiology, 2013, vol. 82, no. 12, p. e782–e789. DOI: 10.1016/j.ejrad.2013.08.006
  20. FUSCO, R., SANSONE, M., PETRILLO, A. The use of the Levenberg-Marquardt and variable projection curve-fitting algorithm in intravoxel incoherent motion method for DW-MRI data analysis. Applied Magnetic Resonance, 2015, vol. 46, no. 5, p. 551–558. DOI: 10.1007/s00723-015-0654-7
  21. RAO, R. V. Teaching-learning-based optimization algorithm. In Teaching Learning Based Optimization Algorithm, Springer, 2016, p. 9–39. DOI: 10.1007/978-3-319-22732-0
  22. AJA-FERNANDEZ, S., ALBEROLA-LOPEZ, C., WESTIN, C.-F. Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Transactions on Image Processing, 2008, vol. 17, no. 8, p. 1383–1398. DOI: 10.1109/TIP.2008.925382

Keywords: Human brain, Intra-Voxel Incoherent Motion (IVIM), diffusion, perfusion, θ-Teaching-Learning-Based Optimization (θ-TLBO).

B. Yang , Z. LI, E. Cao [references] [full-text] [DOI: 10.13164/re.2020.0259] [Download Citations]
Facial Expression Recognition Based on Multi-dataset Neural Network

Facial activity is the most powerful and natural means for understanding emotional expression for humans. Recent years, extensive efforts have been devoted to facial expression recognition by using neural networks. However, automated emotion recognition in the wild from facial images remains a challenging problem. In this paper, an effective facial expression recognition scheme is proposed. A multi-dataset neural network is developed to learn facial expression features in several different but related datasets. The novel multi-dataset network fuses the intermediate layers of a deep convolutional neural network (CNN) by using separate CNNs and a multi-dataset loss function. Experimental results performed on emotion database demonstrate that our proposed method outperforms state-of-the-art.

  1. PIANA, S., STAGLIANÒ, A., ODONE, F., et al. Adaptive body gesture representation for automatic emotion recognition. ACM Transactions on Interactive Intelligent Systems, 2016, vol. 6, no. 1, p. 1–31. DOI:10.1145/2818740
  2. TIAN, Y., KANADE, T., COHN, J. F. Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, vol. 23, no. 2, p. 97–115. DOI: 10.1109/34.908962
  3. LI, S., DENG, W. Deep Facial Expression Recognition: A Survey. 2018, p. 1–25. arXiv:1804.08348v2
  4. MOLLAHOSSEINI, A., CHAN, D., MAHOOR, M. H. Going deeper in facial expression recognition using deep neural networks. In IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid (NY, USA), 2016, p. 1–10. DOI: 10.1109/WACV.2016.7477450
  5. JUNG, H., LEE, S., YIM, J., et al., Joint fine-tuning in deep neural networks for facial expression recognition. In IEEE International Conference on Computer Vision. Santiago (Chile), 2015, p. 2983–2991. DOI: 10.1109/ICCV.2015.341
  6. FASEL, B. Head-pose invariant facial expression recognition using convolutional neural networks. In Proceedings of the IEEE International Conference on Multimodal Interfaces. Pittsburgh (PA, USA), 2002, p. 1–6. DOI: 10.1109/ICMI.2002.1167051
  7. MATSUGU, M., MORI, K., MITARI, Y., et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks, 2003, vol. 16, no. 5, p. 555–559. DOI: 10.1016/S0893- 6080(03)00115-1
  8. SIKKA, K., DYKSTRA, K., SATHYANARAYANA, S., et al., Multiple kernel learning for emotion recognition in the wild. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. Sydney (Australia), 2013, p. 517–524. DOI: 10.1145/2522848.2531741
  9. CHEN, J., CHEN, Z., CHI, Z., et al., Emotion recognition in the wild with feature fusion and multiple kernel learning. In International Conference on Multimodal Interaction. Istanbul (Turkey), 2014, p. 508–513. DOI: 10.1145/2663204.2666277
  10. GIRSHICK, R., DONAHUE, J., DARRELL, T., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition. Columbus (OH, USA), 2013, p. 580–587. DOI: 10.1109/CVPR.2014.81
  11. SUN, B., LI, L., ZHOU, G., et al. Facial expression recognition in the wild based on multimodal texture features. Journal of Electronic Imaging, 2016, vol. 25, no. 6, p. 1–8. DOI: 10.1117/1.JEI.25.6.061407
  12. PONS, G., MASIP, D. Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition. 2018, p. 1–9. arXiv:1802.06664
  13. YANG, Y., HOSPEDALES, T. M. Unifying multi-domain multitask learning: Tensor and neural network perspectives. Chapter in CSURKA, G. (ed.) Domain Adaptation in Computer Vision Applications, 2017, p. 291–309. DOI: 10.1007/978-3-319- 58347-1_16
  14. THRUN, S., PRATT, L. Learning to Learn. Boston, MA: Springer US, 1998. DOI: 10.1007/978-1-4615-5529-2
  15. FOURURE, D., EMONET, R., FROMONT, E., et al. Multi-task, multi-domain learning: Application to semantic segmentation and pose regression. Neurocomputing, 2017, vol. 251, no. C, p. 68–80. DOI: 10.1016/j.neucom.2017.04.014
  16. OBERWEGER, M., LEPETIT, V. DeepPrior++: Improving fast and accurate 3D hand pose estimation. In IEEE International Conference on Computer Vision Workshops (ICCVW). Venice (Italy), 2018. p. 585–594. DOI: 10.1109/ICCVW.2017.75
  17. ZHANG, K., ZHANG, Z., LI, Z., et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, vol. 23, no. 10, p. 1499–1503. DOI: 10.1109/LSP.2016.2603342
  18. XIAN, Y., HU, H. Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy, IET Computer Vision, 2018, vol. 12, no. 8, p. 1219–1227. DOI: 10.1049/iet-cvi.2018.5103
  19. RANJAN, R., PATEL, V. M., CHELLAPPA, R. HyperFace: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 41, no. 1, p. 121–135. DOI: 10.1109/TPAMI.2017.2781233
  20. GOODFELLOW, I., ERHAN, D., LUC CARRIER, P., et al. Challenges in representation learning: a report on three machine learning contests. Neural Networks, 2015, vol. 64, p. 59–63. DOI: 10.1016/j.neunet.2014.09.005
  21. DHALL, A., GOECKE, R., LUCEY, S., et al. Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark. In IEEE International Conference on Computer Vision Workshops. Barcelona (Spain), 2011, p. 2106–2112. DOI: 10.1109/ICCVW.2011.6130508
  22. ASTHANA, A., ZAFEIRIOU, S., CHENG, S., et al. Incremental face alignment in the wild. In IEEE Conference on Computer Vision and Pattern Recognition. Columbus (OH, USA), 2014, p. 1859–1866. DOI: 10.1109/CVPR.2014.240
  23. NAIR, V., HINTON, G. E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10). Haifa (Israel), 2010, p. 807–814
  24. SHANG, W., SOHN, K., ALMEIDA, D., et al. Understanding and improving convolutional neural networks via concatenated rectified linear units. In Proceedings of the 33rd International Conference on Machine Learning. New York (USA), 2016, p. 2217–2225.
  25. SZEGEDY, C., LIU, W., JIA, Y., et al. Going deeper with convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston (MA, USA), 2015, p. 1–9. DOI: 10.1109/CVPR.2015.7298594
  26. WEN, Y., ZHANG, K., LI, Z., et al. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision. Munich (Germany), 2016, p. 499–515. DOI: 10.1007/978-3-319-46478-7_31
  27. SAKR, C., PATIL, A., ZHANG, S., et al. Minimum precision requirements for the SVM-SGD learning algorithm. In IEEE International Conference on Acoustics. New Orleans (LA, USA), 2017, p. 1138–1142. DOI: 10.1109/ICASSP.2017.7952334
  28. LUCEY, P., COHN, J. F., KANADE, T., et al. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops. San Frencisco (CA, USA), 2010, p. 94–101. DOI: 10.1109/CVPRW.2010.5543262
  29. PANTIC, M., VALSTAR, M., RADEMAKER, R., et al. Webbased database for facial expression analysis. In IEEE International Conference on Multimedia and Expo. Amsterdam (Netherlands), 2005, p. 5–13. DOI: 10.1109/ICME.2005.1521424
  30. ZHANG, Z., LUO, P., LOY, C. C., et al. Learning social relation traits from face images. In IEEE International Conference on Computer Vision. Santiago (Chile), 2015, p. 3631–3639. DOI: 10.1109/ICCV.2015.414
  31. KIM, B. K., ROH, J., DONG, S. Y., et al. Hierarchical committee of deep convolutional neural networks for robust facial expression recognition. Journal on Multimodal User Interfaces, 2016, vol. 10, no. 2, p. 173–189. DOI: 10.1007/s12193-015-0209-0
  32. MENG, Z., LIU, P., CAI, J., et al. Identity-aware convolutional neural network for facial expression recognition. In IEEE International Conference on Automatic Face & Gesture Recognition. Washington (DC, USA), 2017, p. 558–565. DOI: 10.1109/FG.2017.140
  33. LI, H., HUA, G., LIN, Z., et al. Probabilistic elastic part model for unsupervised face detector adaptation. In IEEE International Conference on Computer Vision. Sydney (Australia), 2014, p. 793–800. DOI: 10.1109/ICCV.2013.103
  34. CHEN, D., REN, S., WEI, Y., et al. Joint cascade face detection and alignment. In European Conference on Computer Vision. Zurich (Switzerland), 2014, p. 109–122. DOI: 10.1007/978-3-319- 10599-4_8

Keywords: Facial expression recognition, design of network architecture, deep learning, human–computer interaction, convolutional neural network