April 2020, Volume 29, Number 1 [DOI: 10.13164/re.2020-1]
C. Tomassoni, M. Bozzi
[references] [full-text]
[DOI: 10.13164/re.2020.0001]
[Download Citations]
Microwave Components Realized by Additive Manufacturing Techniques
This paper presents an overview of the use of additive manufacturing (AM) technologies for the implementation of microwave components. Two major technological solutions, based on the AM of plastic materials, are discussed: in the former case, the AM plastic is used as a dielectric material that constitutes the component. Conversely, in the latter case, the plastic material is a mere support of the metallization, thus avoiding the contact of the AM plastic with the electromagnetic field and reducing losses. Several examples are illustrated and discussed, to highlight benefits and limitations of AM techniques in the current scenario of microwave applications.
- D’AURIA, M., OTTER, W. J., HAZELL, J., et al. 3-D printed metal-pipe rectangular waveguides. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 9, p. 1339–1349. DOI: 10.1109/TCPMT.2015.2462130
- MOSCATO, S., BAHR, R., LE, T., et al. Additive manufacturing of 3D substrate integrated waveguide components. Electronics Letters, 2015, vol. 51, no. 18, p. 1426–1428. DOI: 10.1049/el.2015.2298
- MIN LIANG, SHEMELYA, C., MACDONALD, E., et al. 3-D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1346–1349. DOI: 10.1109/LAWP.2015.2405054
- GUO, C., SHANG, X., LI, J., et al. A lightweight 3-D printed Xband bandpass filter based on spherical dual-mode resonators. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 8, p. 568–570. DOI: 10.1109/LMWC.2016.2587838
- MOSCATO, S., BAHR, R., LE, T., et al. Infill dependent 3Dprinted material based on NinjaFlex filament for antenna applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1506–1509. DOI: 10.1109/LAWP.2016.2516101
- CHIO, T., HUANG, G., ZHOU, S. Application of direct metal laser sintering to waveguide-based passive microwave components, antennas, and antenna arrays. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 632–644. DOI: 10.1109/JPROC.2016.2617870
- PEVERINI, O. A., LUMIA, M., CALIGNANO, F., et al. Selective laser melting manufacturing of microwave waveguide devices. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 620–631. DOI: 10.1109/JPROC.2016.2620148
- MAAS, J., LIU, B., HAJELA, S., et al. Laser-based layer-by-layer polymer stereolithography for high-frequency applications. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 645–654. DOI: 10.1109/JPROC.2016.2629179
- ROJAS-NASTRUCCI, E. A., NUSSBAUM, J. T., CRANE, N. B., et al. Ka-band characterization of binder jetting for 3-D printing of metallic rectangular waveguide circuits and antennas. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 9, p. 3099–3108. DOI: 10.1109/TMTT.2017.2730839
- VERPLOEGH, S., COFFEY, M., GROSSMAN, E., et al. Properties of 50–110-GHz waveguide components fabricated by metal additive manufacturing. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 12, p. 5144–5153. DOI: 10.1109/TMTT.2017.2771446
- DAHLE, R., LAFORGE, P., KUHLING, J. 3-D printed customizable inserts for waveguide filter design at X-band. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 12, p. 1080–1082. DOI: 10.1109/LMWC.2017.2754345
- VENANZONI, G., DIONIGI, M., TOMASSONI, C., et al. 3-Dprinted quasi-elliptical evanescent mode filter using mixed electromagnetic coupling. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 6, p. 497–499. DOI: 10.1109/LMWC.2018.2829627
- ADDAMO, G., PEVERINI, O. A., MANFREDI, D., et al. Additive manufacturing of Ka-band dual-polarization waveguide components. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3589–3596. DOI: 10.1109/TMTT.2018.2854187
- SHEN, J., RICKETTS, D. S. Additive manufacturing of complex millimeter-wave waveguides structures using digital light processing. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 3, p. 883–895. DOI: 10.1109/TMTT.2018.2889452
- DISTLER, F., SIPPEL, M., SCHUR, J., et al. Additively manufactured dielectric waveguides for advanced concepts for millimeter-wave interconnects. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 11, p. 4298–4307. DOI: 10.1109/TMTT.2019.2939831
- TOMASSONI, C., BAHR, R., BOZZI, M., et al. 3D printed substrate integrated waveguide filters with locally controlled dielectric permittivity. In 46th European Microwave Conference (EuMC2016). London (UK), Oct. 4–6, 2016, p. 253–256. DOI: 10.1109/EuMC.2016.7824326
- MASSONI, E., SILVESTRI, L., ALAIMO, G., et al. 3D-printed substrate integrated slab waveguide for single-mode bandwidth enhancement. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 6, p. 536–538. DOI: 10.1109/LMWC.2017.2701323
- BOZZI, M., DESLANDES, D., ARCIONI, P., et al. Efficient analysis and experimental verification of substrate integrated slab waveguides for wideband microwave applications. International Journal of RF and Microwave Computer-Aided Engineering, 2005, vol. 15, no. 3, p. 296–306. DOI: 10.1002/mmce.20085
- BOZZI, M., GEORGIADIS, A., WU, K. Review of substrate integrated waveguide (SIW) circuits and antennas. IET Microwaves, Antennas and Propagation, 2011, vol. 5, no. 8, p. 909–920. DOI: 10.1049/iet-map.2010.0463
- GARG, R., BAHL, I., BOZZI, M. Microstrip Lines and Slotlines. 3rd ed. Artech House, 2013. ISBN-13: 978-1608075355
- MOSCATO, S., PASIAN, M., BOZZI, M., et al. Exploiting 3D printed substrate for microfluidic SIW sensor. In 45th European Microwave Conference (EuMC2015). Paris (France), Sept. 7–10, 2015, p. 28–31. DOI: 10.1109/EuMC.2015.7345691
- ROCCO, G. M., BOZZI, M., SCHREURS, D., et al. 3D-printed microfluidic sensor in SIW technology for liquids characterization. IEEE Transactions on Microwave Theory and Techniques, 2020, vol. 68, p. 1–10. Early access 17 Dec 2019. DOI: 10.1109/TMTT.2019.2953580
- DIONIGI, M., TOMASSONI, C., VENANZONI, G., et al. Simple high-performance metal-plating procedure for stereolithographically 3D-printed waveguide components. IEEE Microwave and Wireless Components Letters, 2017, vol. 27, no. 11, p. 953–955. DOI: 10.1109/LMWC.2017.2750090
- GETERUD, E. G., BERGMARK, P., YANG, J. Lightweight waveguide and antenna components using plating on plastics. In 7th European Conference on Antennas and Propagation (EuCAP 2013). Gothenburg (Sweden), 2013, p. 1812–1815. ISBN: 978-88- 907018-3-2
- TOMASSONI, C., SORRENTINO, R. A new class of pseudoelliptic waveguide filters using resonant posts. In IEEE/MTT-S International Microwave Symposium Digest (IMS 2012). Montreal (QC, Canada), 2012, p. 1–3. DOI: 10.1109/MWSYM.2012.6259395
- TOMASSONI, C., SORRENTINO, R. A new class of pseudoelliptic waveguide filters using dual-post resonators. IEEE Transactions on Microwave Theory and Techniques, 2013, vol. 61, no. 6, p. 2332–2339. DOI: 10.1109/TMTT.2013.2258171
- GENTILI, F., PELLICCIA, L., SORRENTINO, R., et al. High Qfactor compact filters with wide-band spurious rejection. In 42nd European Microwave Conference (EuMC 2012). Amsterdam (The Netherlands), 2012, p. 160–163. DOI: 10.23919/EuMC.2012.6459271
- TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Compact doublet structure for quasi-elliptical filters using stereolitographic 3D printing. In 47th European Microwave Conference (EuMC 2017). Nuremberg (Germany), 2017, p. 993–996. DOI: 10.23919/EuMC.2017.8231013
- TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Compact quasi-elliptic filters with mushroom-shaped resonators manufactured with 3-D printer. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 8, p. 3579–3588. DOI: 10.1109/TMTT.2018.2849067
- PELLICCIA, L., CACCIAMANI, F., TOMASSONI, C., et al. Ultra-compact high-performance filters based on TM dual-mode dielectric-loaded cavities. International Journal of Microwave and Wireless Technologies, 2014, vol. 6, no. 2, p. 151–159. DOI: 10.1017/S1759078713001001
- PELLICCIA, L., CACCIAMANI, F., TOMASSONI, C., et al. Ultra-compact filters using TM dual-mode dielectric-loaded cavities with asymmetric transmission zeros. In IEEE/MTT-S International Microwave Symposium Digest (IMS 2012). Montreal (QC, Canada), 2012, p. 1–3. DOI: 10.1109/MWSYM.2012.6258411
- BASTIOLI, S., TOMASSONI, C., SORRENTINO, R. A new class of waveguide dual-mode filters using TM and nonresonating modes. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 12, p. 3909–3917. DOI: 10.1109/TMTT.2010.2086068
- BASTIOLI, S., MARCACCIOLI, L., TOMASSONI, C., et al. Ultracompact highly-selective dual-mode pseudoelliptic filters. IET Electronics Letters, 2010, vol. 46, no. 2, p. 147–149. DOI: 10.1049/el.2010.2971
- TOMASSONI, C., BASTIOLI, S., SORRENTINO, R. Generalized TM dualmode cavity filters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 12, p. 3338–3346. DOI: 10.1109/TMTT.2011.2172622
- TOMASSONI, C., BASTIOLI, S., SNYDER, R. V. Propagating waveguide filters using dielectric resonators. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 12, p. 4366–4375. DOI: 10.1109/TMTT.2015.2495284
- TOMASSONI, C., BASTIOLI, S., SNYDER, R. V. Compact mixed-mode filter based on TE101 cavity mode and TE01δ dielectric mode. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 12, p. 4434–4443. DOI: 10.1109/TMTT.2016.2623714
- KOZAKOWSKI, P., LAMECKI, A., MONGIARDO, M., et al. Computer-aided design of in-line resonator filters with multiple elliptical apertures. In IEEE MTT-S International Microwave Symposium Digest (IMS 2004). Fort Worth (TX, USA), 2004, p. 611–614. DOI: 10.1109/MWSYM.2004.1336058
- XIAO, J. K., ZHU, M., TIAN, L., et al. High selective microstrip bandpass filter and diplexer with mixed electromagnetic coupling. IEEE Microwave and Wireless Components Letters, 2015, vol. 25, no. 12, p. 781–783. DOI: 10.1109/LMWC.2015.2495194
- WANG, H., CHU, Q. X. An inline coaxial quasi-elliptic filter with controllable mixed electric and magnetic coupling. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 3, p. 667–673. DOI: 10.1109/TMTT.2009.2013290
- BASTIOLI, S., SNYDER, R. V., JOJIC, P. High power in-line pseudoelliptic evanescent mode filter using series lumped capacitors. In Proceedings of the 41st European Microwave Conference (EuMC 2011). Manchester (UK), 2011, p. 87–89. DOI: 10.23919/EuMC.2011.6101723
- TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. A very compact 3D-printed doublet structure based on a double iris and a pair of slanting rods. In IEEE MTT-S International Microwave Symposium (IMS 2018). Philadelphia (PA, USA), June 10-15, 2018, p. 1103–1105. DOI: 10.1109/MWSYM.2018.8439368
- TOMASSONI, C., VENANZONI, G., DIONIGI, M., et al. Additive manufacturing of a very compact doublet structure with asymmetric filtering function. In International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP 2018). Ann Arbor (MI, USA), 2018, p. 1–3. DOI: 10.1109/IMWS-AMP.2018.8457127
Keywords: Additeve manufacturing, microwave components, microwave filters, slab waveguides, microwave sensors
M. R. Rufuie, A. Lamecki, P. Sypek, M. Mrozowski
[references] [full-text]
[DOI: 10.13164/re.2020.0010]
[Download Citations]
Residue-Pole Methods for Variability Analysis of S-parameters of Microwave Devices with 3D FEM and Mesh Deformation
This paper presents a new approach for variability analysis of microwave devices with a high dimension of uncertain parameters. The proposed technique is based on modeling an approximation of system by its poles and residues using several modeling methods, including ordinary kriging, Adaptive Polynomial Chaos (APCE), and Support Vector Machine Regression (SVM). The computational cost is compared with the traditional Monte-Carlo method. To improve the efficiency, mesh deformation is applied within 3D FEM framework.
- PEVERINI, O. A., LUMIA, M., CALIGNANO, F., et al. Selective laser melting manufacturing of microwave waveguide devices. Proceedings of the IEEE, 2017, vol. 105, no. 4, p. 620–631. DOI: 10.1109/jproc.2016.2620148
- FISHMAN, G. Monte Carlo: Concepts, Algorithms, and Applications. Springer Science & Business Media, 2013. ISBN: 9780387945279
- ZHANG, Q., LIOU, J., MCMACKEN, J., et al. Development of robust interconnect model based on design of experiments and multiobjective optimization. IEEE Transactions on Electron Devices, 2001, vol. 48, no. 9, p. 1885–1891. DOI: 10.1109/16.944173
- NIEUWOUDT, A., MASSOUD, Y. On the impact of process variations for carbon nanotube bundles for VLSI interconnect. IEEE Transactions on Electron Devices, 2007, vol. 54, no. 3, p. 446–455. DOI: 10.1109/TED.2006.890364
- SWIDZINSKI, J. F., CHANG, K. Nonlinear statistical modeling and yield estimation technique for use in Monte Carlo simulations. IEEE Transactions on Microwave Theory and Techniques, 2000, vol. 48, no. 12, p. 2316–2324. DOI: 10.1109/22.898980
- RUFUIE, M. R., GAD, E., NAKHLA, M. S., et al. Generalized hermite polynomial chaos for variability analysis of macromodels embeddedin nonlinear circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, vol. 4, no. 4, p. 673–684. DOI: 10.1109/TCPMT.2013.2285877
- PHAM, T., GAD, E., NAKHLA, M. S., et al. Decoupled polynomial chaos and its applications to statistical analysis of high-speed interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, vol. 4, no. 10, p. 1634–1647. DOI: 10.1109/TCPMT.2014.2340815
- RUFUIE, M. R., GAD, E., NAKHLA, M. S., et al. Fast variability analysis of general nonlinear circuits using decoupled polynomial chaos. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 12, p. 1860–1871. DOI: 10.1109/TCPMT.2015.2490240
- KAINTURA, A., DHAENE, T., SPINA, D. Review of polynomial chaos-based methods for uncertainty quantification in modern integrated circuits. Electronics, 2018, vol. 7, no. 3, p. 1–30. DOI: 10.3390/electronics7030030
- YUCEL, A. C., BAGCđ, H., MICHIELSSEN, E. An ME-PC enhanced HDMR method for efficient statistical analysis of multiconductor transmission line networks. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2015, vol. 5, no. 5, p. 685–696. DOI: 10.1109/TCPMT.2015.2424679
- ZHANG, Z., YANG, X., OSELEDETS, I. V., et al. Enabling highdimensional hierarchical uncertainty quantification by ANOVA and tensor-train decomposition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, vol. 34, no. 1, p. 63–76. DOI: 10.1109/TCAD.2014.2369505
- KAPSE, I., ROY, S. Anisotropic formulation of hyperbolic polynomial chaos expansion for high-dimensional variability analysis of nonlinear circuits. In Proceedings of the 25th IEEE Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS). San Diego (USA), 2016, p. 123–126. DOI: 10.1109/EPEPS.2016.7835433
- AHADI, M., PRASAD, A. K., ROY, S. Hyperbolic polynomial chaos expansion (HPCE) and its application to statistical analysis of nonlinear circuits. In the 20th IEEE Workshop on Signal and Power Integrity (SPI). Turin (Italy), 2016, p. 1–4. DOI: 10.1109/SaPIW.2016.7496282
- PRASAD, A. K., ROY, S. Accurate reduced dimensional polynomial chaos for efficient uncertainty quantification of microwave/RF networks. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 10, p. 3697–3708. DOI: 10.1109/TMTT.2017.2689742
- TRINCHERO, R., LARBI, M., TORUN, H. M., et al. Machine learning and uncertainty quantification for surrogate models of integrated devices with a large number of parameters. IEEE Access, 2019, vol. 7, p. 4056–4066. DOI: 10.1109/ACCESS.2018.2888903
- LAMECKI, A., KOZAKOWSKI, P., MROZOWSKI, M. Efficient implementation of the Cauchy method for automated CAD-model construction. IEEE Microwave and Wireless Components Letters, 2003, vol. 13, no. 7, p. 268–270. DOI: 10.1109/LMWC.2003.815185
- KOZIEL, S., CHENG, Q. S., BANDLER, J. W. Feature-based surrogates for low-cost microwave modelling and optimisation. IET Microwaves, Antennas Propagation, 2015, vol. 9, no. 15, p. 1706–1712. DOI: 10.1049/iet-map.2015.0246
- FERRANTI, F., DHAENE, T., KNOCKAERT, L. Compact and passive parametric macromodeling using reference macromodels and positive interpolation operators. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, vol. 2, no. 12, p. 2080–2088. DOI: 10.1109/TCPMT.2012.2213086
- FENG, F., ZHANG, C., MA, J., et al. Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 1, p. 60– 77. DOI: 10.1109/TMTT.2015.2504099
- LESZCZYNSKA, N., COUCKUYT, I., DHAENE, T., et al. Lowcost surrogate models for microwave filters. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 12, p. 969–971. DOI: 10.1109/LMWC.2016.2623248
- LAMECKI, A., BALEWSKI, L., MROZOWSKI, M. An efficient framework for fast computer aided design of microwave circuits based on the higher-order 3D finite-element method. Radioengineering, 2014, vol. 23, no. 4, p. 970–978.
- MARELLI, S., SUDRET, B. UQLab: A framework for uncertainty quantification in MATLAB. In the 2nd International Conference on Vulnerability, Risk Analysis and Management (ICVRAM2014). Liverpool (UK), 2014, p. 1–10. DOI: 10.1061/9780784413609.257
- PELCKMANS, K., SUYKENS, J., VANGESTEL, T., et al. LS-SVM Lab. Available at:http://www.esat.kuleuven.ac.be/sista/lssvmlab
- GORISSEN, D., COUCKUYT, I., DEMEESTER, P., et al. A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 2010, vol. 11, p. 2051–2055.
- LATANIOTIS, C., WICAKSONO, D., MARELLI, S., et al. UQLab User Manual – Kriging (Gaussian Process Modeling). Technical Report #UQLab-V1.3-105, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
- MARELLI, S., SUDRET, B. UQLab User Manual – Polynomial Chaos Expansions. Technical Report #UQLab-V1.3-104, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
- MOUSTAPHA, M., LATANIOTIS, C., MARELLI, S., et al. UQLab User Manual – Support Vector Machines for Regression. Technical Report #UQLab-V1.3-111, Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich, 2019.
- KLEIJNEN, J. P. Design and Analysis of Simulation Experiments. Springer, 2015. ISBN: 9783319180878
- BLATMAN, G., SUDRET, B. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 2011, vol. 230, no. 6, p. 2345–2367. DOI: 10.1016/j.jcp.2010.12.021
- GUSTAVSEN, B., SEMLYEN, A. Rational approximation of frequency domain responses by vector fitting. IEEE Transactions on Power Delivery, 1999, vol. 14, no. 3, p. 1052–1061. DOI: 10.1109/61.772353
- GUSTAVSEN, B. Improving the pole relocating properties of vector fitting. IEEE Transactions on Power Delivery, 2006, vol. 21, no. 3, p. 1587–1592. DOI: 10.1109/TPWRD.2005.860281
- DESCHRIJVER, D., MROZOWSKI, M., DHAENE, T., et al. Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microwave and Wireless Components Letters, 2008, vol. 18, no. 6, p. 383–385. DOI: 10.1109/LMWC.2008.922585
- LAMECKI, A. A mesh deformation technique based on solid mechanics for parametric analysis of high-frequency devices with 3-D FEM. IEEE Transactions on Microwave Theory and Techniques, 2016, vol. 64, no. 11, p. 3400–3408. DOI: 10.1109/TMTT.2016.2605672
- LAMECKI, A., DZIEKONSKI, A., BALEWSKI, L., et al. GPUAccelerated 3D mesh deformation for optimization based on the finite element method. Radioengineering, 2017, vol. 26, no. 4, p. 924–929. DOI: 10.13164/re.2017.0924
Keywords: kriging, uncertainty quantification, surrogate models, microwave filters, vector fitting, mesh-morphing
G. Baudoin
[references] [full-text]
[DOI: 10.13164/re.2020.0021]
[Download Citations]
On Segmented Predistortion for Linearization of RF Power Amplifiers
This paper presents a general survey of digital predistortion (DPD) techniques with segmentation. A comparison of global DPD with two segmented approaches namely Vector-Switched DPD and Decomposed Vector Rotation DPD is presented with the support of experimentation on a strongly non-linear 3 ways Doherty PA. It shows the interest of both segmented approaches in terms of linearization performance, complexity and ease of implementation compared to the global DPD. The paper starts with some mathematical generalities on interpolation and splines. It focuses on segmented models derived from Volterra series even if the presented principles can also be applied to neural networks.
- BAUDOIN, G., VENARD, O., PHAM D. G. Digital predistortion. In Digitally Enhanced Mixed Signal Systems, Materials, Circuits & Devices, pages 65–123. Institution of Engineering and Technology, 2019. DOI: 10.1049/PBCS040E_ch3
- WOOD J. Behavioral Modeling and Linearization of RF Power Amplifiers. United States: Artech House Publishers, 2014. ISBN: 978-1-60807-120-3
- DING, L., ZHOU, G. T, MORGAN, D. R., et al. A robust digital baseband predistorter constructed using memory polynomials. IEEE Transactions on Communications, 2004, vol. 52, no. 1, p. 159–165. DOI: 10.1109/TCOMM.2003.822188
- MORGAN, D.R., MA, Z., KIM, J., et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
- GOTTHANS, T., BAUDOIN, G., MBAYE, A. Comparison of modeling techniques for power amplifiers. In Proceedings of the 23rd International Conference Radioelektronika (RADIOELEKTRONIKA). Pardubice (Czech Republic), 2013, p. 232–235. DOI: 10.1109/RadioElek.2013.6530922
- ZHU, A., PEDRO, J. C., BRAZIL, T. J. Dynamic deviation reduction-based volterra behavioral modeling of RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 12, p. 4323–4332. DOI: 10.1109/TMTT.2006.883243
- BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., PEDRO, J. C. Higher locality non-linear basis functions of Volterra series based models to improve extraction conditioning. In IEEE MTT-S International Microwave Symposium (IMS2014). Tampa (USA), 2014, p. 1–4. DOI: 10.1109/MWSYM.2014.6848447
- BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., PEDRO, J. C. Polynomials and LUTs in PA behavioral modeling: A fair theoretical comparison. IEEE Transactions on Microwave Theory and Techniques, 2014, vol. 62, no. 12, p. 3274–3285. DOI: 10.1109/TMTT.2014.2365188
- BARRADAS, F. M., CUNHA, T. R., LAVRADOR, P. M., and PEDRO, J. C. Using spline basis functions in Volterra series based models. In 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC). Leuven (Belgium), 2014, p. 1–3. DOI: 10.1109/INMMIC.2014.6815079
- BOOR, DE C. B(asic)-Spline Basics. MRC Technical Summary Report #2952. Mathematics Research Center, University of Wisconsin-Madison, 1986. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a172773.pdf
- NARAHARISETTI, N., ROBLIN, P., QUINDROIT, C., GHEITANCHI, S. Efficient least-squares 2-d-cubic spline for concurrent dual-band systems. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 7, p. 2199–2210. DOI: 10.1109/TMTT.2015.2435731
- CAVERS, J. K. Amplifier linearization using a digital predistorter with fast adaptation and low memory requirements. IEEE Transactions on Vehicular Technology, 1990, vol. 39, no. 4, p. 374–382. DOI: 10.1109/25.61359
- BAUDOIN, G. JARDIN, P. Adaptive polynomial pre-distortion for linearization of power amplifiers in wireless communications and WLAN. In International Conference on Trends in Communications. (EUROCON). Bratislava (Slovakia), 2001, p. 157–160 DOI: 10.1109/EURCON.2001.937787
- SAFARI, N., TANEM, J. P., ROSTE, T. Block based predistortion for amplifier linearization in burst type mobile satellite communications. In The European Conference on Wireless Technology (ECWT). Paris (France), 2005, p.325–328. DOI: 10.1109/ECWT.2005.1617723
- JIN, M., SHIN, S. K., OH, D. A novel predistorter for power amplifier. In 3rd International Conference on Microwave and Millimeter Wave Technology (ICMMT). Beijing (China), 2002, p. 1129–1133. DOI: 10.1109/ICMMT.2002.1187906
- LOHTIA, A., GOUD, P. A., ENGLEFIELD, C. G. Power amplifier linearization using cubic spline interpolation. In IEEE 43rd Vehicular Technology Conference (VETEC). Secaucus (USA), 1993, p. 676–679. DOI: 10.1109/VETEC.1993.508782
- ACCIARI, G., GIANNINI, F., LIMITI, E., ROSSI, M. Baseband predistortion lineariser using direct spline computation. In 32nd European Microwave Conference (EuMC). Milan (Italy), 2002, p. 1–4. DOI: 10.1109/EUMA.2002.339229
- HUSSEIN, M. A., WANG, Y., FEUVRIE, B., et al. Piecewise complex circular approximation of the inverse characteristics of power amplifiers for digital predistortion techniques. In International Conference on Digital Telecommunications (ICDT). Bucharest (Romania), 2008, p. 59–63. DOI: 10.1109/ICDT.2008.33
- YANG, W., ZHOU, S., ZHU, W. Adaptive predistortion technology based on piecewise nonlinear function. In IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions (ICCCAS). Chengdu (China), 2002, p. 478–482. DOI: 10.1109/ICCCAS.2002.1180663
- FISHER, P. O., AL-SARAWI, S. F. Memoryless AM/AM behavioral model for RF power amplifiers. In 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE). Nadi (Fiji), 2016, p. 131–138. DOI: 10.1109/APWC-on-CSE.2016.031
- CAVERS, J. K. Optimum table spacing in predistorting amplifier linearizers. IEEE Transactions on Vehicular Technology, 1999, vol. 48, no. 5, p. 1699–1705. DOI: 10.1109/25.790551
- BOUMAIZA, S., LI, J., JAIDANE-SAIDANE, M., et al. Adaptive digital/RF predistortion using a nonuniform LUT indexing function with built-in dependence on the amplifier nonlinearity. IEEE Transactions on Microwave Theory and Techniques, 2004, vol. 52, no. 12, p. 2670–2677. DOI: 10.1109/TMTT.2004.837313
- HASSANI, J. Y. and KAMAREI, M. A flexible method of LUT indexing in digital predistortion linearization of RF power amplifiers. In IEEE International Symposium on Circuits and Systems (ISCAS). Sydney (Australia), 2001, vol. 1, p. 53–56 DOI: 10.1109/ISCAS.2001.921786
- LIN, C.-H., CHEN, H.-H., WANG, Y.-Y., CHEN, J.-T. Dynamically optimum lookup-table spacing for power amplifier predistortion linearization. IEEE Transactions on Microwave Theory and Techniques, 2006, vol. 54, no. 5, p. 2118–2127. DOI: 10.1109/TMTT.2006.872808
- BA, S. N., WAHEED, K., ZHOU, G. T. Optimal spacing of a linearly interpolated complex-gain LUT predistorter. IEEE Transactions on Vehicular Technology, 2010, vol. 59, no. 2, p. 673–681. DOI: 10.1109/TVT.2009.2034749
- SELVADURAI, D., SIDEK, R. M., VARAHRAM, P., ALI, B. M. A robust non-uniform indexation of a quadratically interpolated LUT predistorter for RF power amplifiers. In IEEE 12th Malaysia International Conference on Communications (MICC). Kuching (Malaysia), 2015, p. 329–332. DOI: 10.1109/MICC.2015.7725457
- CHEONG, M. Y., WERNER, S., LAAKSO, T. I., et al. Predistorter design employing parallel piecewise linear structure and inverse coordinate mapping for broadband communications. In 14th European Signal Processing Conference (EUSIPCO). Florence (Italy), 2006, p. 1–5.
- JULIAN, P., DESAGES, A., AGAMENNONI, O. High-level canonical piecewise linear representation using a simplicial partition. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1999, vol. 46, no. 4, p. 463–480. DOI: 10.1109/81.754847
- LIU, H. LIU, X. Adaptive piecewise linear predistorter based on PSO and indirect learning architecture. In 2nd International Congress on Image and Signal Processing (CISP). Tianjin (China), 2009, p. 1–3. DOI: 10.1109/CISP.2009.5304678
- CHOI, S., JEONG, E., LEE, Y. H. Adaptive predistortion with direct learning based on piecewise linear approximation of amplifier nonlinearity. IEEE Journal of Selected Topics in Signal Processing, 2009, vol. 3, no. 3, p. 397–404. DOI: 10.1109/JSTSP.2009.2020265
- WU, X., ZHENG, N., YANG, X., et al. A spline-based hammerstein predistortion for 3g power amplifiers with hard nonlinearities. In 2nd International Conference on Future Computer and Communication (ICFCC). Wuha (China), 2010, p. V3-741–745. DOI: 10.1109/ICFCC.2010.5497423
- DEMPSEY, E. J. WESTWICK, D. T. Identification of hammerstein models with cubic spline nonlinearities. IEEE Transactions on Biomedical Engineering, 2004, vol. 51, no. 2, p. 237–245. DOI: 10.1109/TBME.2003.820384
- JARDIN, P. BAUDOIN, G. Filter lookup table method for power amplifier linearization. IEEE Transactions on Vehicular Technology, 2007, vol. 56, no. 3, p. 1076–1087. DOI: 10.1109/TVT.2007.895566
- SAFARI, N., FEDORENKO, P., KENNEY, J. S., et al. Splinebased model for digital predistortion of wide-band signals for high power amplifier linearization. In IEEE/MTT-S International Microwave Symposium. Honolulu (USA), 2007, p. 1441–1444. DOI: 10.1109/MWSYM.2007.380504
- GIDONI, T., SOCHER, E., COHEN, E. Digital predistortion using piecewise memory polynomial for 802.11 wifi applications. In IEEE International Conference on the Science of Electrical Engineering (ICSEE). Eilat (Israel), 2016, p. 1–3. DOI: 10.1109/ICSEE.2016.7806082
- ZHANG, L. FENG, Y. An improved digital predistortion in wideband wireless transmitters using an under-sampled feedback loop. IEEE Communications Letters, 2016, vol. 20, no. 5, p. 910–913. DOI: 10.1109/LCOMM.2016.2546257
- JIANG, H. WILFORD, P. A. Digital predistortion for power amplifiers using separable functions. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4121–4130. DOI: 10.1109/TSP.2010.2049742
- ZHU, A., DRAXLER, P. J., HSIA, C., et al. Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise Volterra series. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 10, p. 2237–2247. DOI: 10.1109/TMTT.2008.2003529
- HEREDIA, E. A. ARCE, G. R. Piecewise Volterra filters based on the threshold decomposition operator. In IEEE International Conference on Acoustics, Speech, and Signal Processing Conference (ICASSP). Atlanta (USA), 1996, p. 1593–1596. DOI: 10.1109/ICASSP.1996.544107
- ZHANG, C., WANG, J., WU, W. A piecewise generalized memory polynomial model for envelope tracking power amplifiers. In Asia-Pacific Microwave Conference (APMC). Nanjing (China), 2015, p. 1–3. DOI: 10.1109/APMC.2015.7413559
- ABDELAZIZ, M., ANTTILA, L., BRIHUEGA, A., et al. Decorrelation-based piecewise digital predistortion: Operating principle and RF measurements. In 16th International Symposium on Wireless Communication Systems (ISWCS). Oulu (Finland), 2019, p. 340–344. DOI: 10.1109/ISWCS.2019.8877236
- AFSARDOOST, S., ERIKSSON, T., FAGER, C. Digital predistortion using a vector-switched model. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 4, p. 1166–1174. DOI: 10.1109/TMTT.2012.2184295
- ASCHBACHER, E., CHEONG M. Y., BRUNMAYR, P., et al. Prototype implementation of two efficient low-complexity digital predistortion algorithms. EURASIP Journal on Advances in Signal Processing, 2007, vol. 2008, no. 1, p. 1–15. DOI: 10.1155/2008/473182
- SEO, M., JEON, S., IM, S. Compensation for nonlinear distortion in OFDM systems using a digital predistorter based on the SCPWL model. In 6th International Conference on Wireless and Mobile Communications (ICWMC). Valencia (Spain), 2010, p. 27–32. DOI: 10.1109/ICWMC.2010.24
- ZHAI, J., ZHANG, L., ZHOU, J., et al. A nonlinear filter-based vVolterra model with low complexity for wideband power amplifiers. IEEE Microwave and Wireless Components Letters, 2014, vol. 24, no. 3, p. 203–205. DOI: 10.1109/LMWC.2013.2293657
- CHEONG, M. Y., WERNER, S., BRUNO, M. J., et al. Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 7, p. 1519–1532. DOI: 10.1109/TCSI.2011.2177007
- CHUA, L. O. KANG, S. M. Section-wise piecewise-linear functions: Canonical representation, properties, and applications. Proceedings of the IEEE, 1977, vol. 65, no. 6, p. 915–929. DOI: 10.1109/PROC.1977.10589
- YU, Z., WANG, W. , SHANG, G. A generalized model based on canonical piecewise linear functions for digital predistortion. In AsiaPacific Microwave Conference (APMC). New Delhi (India), 2016, p. 1–4. DOI: 10.1109/APMC.2016.7931346
- ZHU, A. Decomposed vector rotation-based behavioral modeling for digital predistortion of rf power amplifiers. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 2, p. 737–744. DOI: 10.1109/TMTT.2014.2387853
- JULIAN, P., JORDAN, M., DESAGES, A. Canonical piecewiselinear approximation of smooth functions. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, vol. 45, no. 5, p. 567–571. DOI: 10.1109/81.668868
- ZHU, A. Behavioral modeling for digital predistortion of RF power amplifiers: from Volterra series to CPWL functions. In IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR). Austin (USA), 2016, p. 1–4. DOI: 10.1109/PAWR.2016.7440126
- ZHAI, J., ZHANG, L., YU, Z., et al. A modified canonical piecewiselinear function-based behavioral model for wideband power amplifiers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 3, p. 195–197. DOI: 10.1109/LMWC.2016.2524512
- MATEO, C., CARRO, P. L., GARCIA-DUCAR, P., et al. Digital predistortion based on B-spline CPWL models in a RoF LTE mobile fronthaul. In 47th European Microwave Conference (EuMC). Nuremberg (Germany), 2017, p. 1136–1139. DOI: 10.23919/EuMC.2017.8231048
- BASSAM, S. A., HELAOUI, M., GHANNOUCHI, F. M. 2-D digital predistortion (2-D-DPD) architecture for concurrent dual-band transmitters. IEEE Transactions on Microwave Theory and Techniques, 2011, vol. 59, no. 10, p. 2547–2553. DOI: 10.1109/TMTT.2011.2163802
- NARAHARISETTI, N., QUINDROIT, C., ROBLIN, P., et al. 2D cubic spline implementation for concurrent dual-band system. In IEEE MTT-S International Microwave Symposium Digest (MTT). Seattle (USA), 2013, p. 1–4. DOI: 10.1109/MWSYM.2013.6697739
- LIU, Y., LI, C., QUAN, X., et al. Multiband linearization technique for broadband signal with multiple closely spaced bands. IEEE Transactions on Microwave Theory and Techniques, 2019, vol. 67, no. 3, p. 1115–1129. DOI: 10.1109/TMTT.2018.2884413
- YOUNES, M., KWAN, A., AKBARPOUR, M., et al. Twodimensional piecewise behavioral model for highly nonlinear dualband transmitters. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 11, p. 8666–8675. DOI: 10.1109/TIE.2017.2703683
- YU, Z. WANG, W. Concurrent dual-band digital predistortion based on canonical piecewise linear functions. In 47th European Microwave Conference (EuMC). Nuremberg (Germany), 2017, p. 1058–1059. DOI: 10.23919/EuMC.2017.8231028
- ZHAI, J., WU, S., ZHANG, L., et al. A 2-D-canonical piecewise linear function-based behavioral model for concurrent dual-band power amplifiers. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 11, p. 1050–1052. DOI: 10.1109/LMWC.2018.2873191
- SAFFAR, D., BOULEJFEN, N., GHANNOUCHI, F., et al. Behavioral modeling of MIMO transmitters exhibiting nonlinear distortion and hardware impairements. In 6th European Microwave Integrated Circuit Conference (EuMIC). Manchester (UK), 2011, p. 486–489.
- LUO, Q., YU, C., and ZHU, X. A dual-input canonical piecewise-linear function-based model for digital predistortion of multi-antenna transmitters. In IEEE/MTT-S International Microwave Symposium (IMS). Philadelphia (USA), 2018, p. 559–562. DOI: 10.1109/MWSYM.2018.8439236
- NIU, J., ZHAI, J., YU, Z., et al. Low-complexity digital predistorter for MIMO transmitters with nonlinear crosstalk. In 2019 IEEE MTT-S International Wireless Symposium (IWS). Guangzhou (China), 2019, p. 1–3. DOI: 10.1109/IEEE-IWS.2019.8804139
- CHEN, C., BATSELIER, K., TELESCU, M., et al. Tensornetwork-based predistorter design for multiple-input multipleoutput nonlinear systems. In IEEE 12th International Conference on ASIC (ASICON). Guiyang (China), 2017, p. 1117–1120. DOI: 10.1109/ASICON.2017.8252676
- BATSELIER, K., CHEN, Z., WONG, N.. Tensor network alternating linear scheme for MIMO Volterra system identification. Automatica, 2017, vol. 84, no. 07, p. 26–35. DOI: 10.1016/j.automatica.2017.06.033.
- WANG, S., HUSSEIN, M. A., VENARD, O., BAUDOIN, G. A novel algorithm for determining the structure of digital predistortion models. IEEE Transactions on Vehicular Technology, 2018, vol. 67, no. 8, p. 7326–7340. DOI: 10.1109/TVT.2018.2833283
- KANTANA, C. , VENARD, O. , BAUDOIN, G. Decomposed vector rotation model sizing by hill-climbing heuristic for digital predistortion of RF power amplifiers. In Radio & Wireless Week (RWW). San Antonio (USA), 2020, p. 232–235.
Keywords: Digital predistortion, piecewise models, splines, vector-switched DPD, decomposed vector rotation DPD, power amplifiers
M. U. Hadi, J. Nanni, O. Venard, G. Baudoin, J. L. Polleux, G. Tartarini
[references] [full-text]
[DOI: 10.13164/re.2020.0037]
[Download Citations]
Practically Feasible Closed-Loop Digital Predistortion for VCSEL-MMF-Based Radio-over-Fiber links
The article demonstrates a novel Digital Predistortion (DPD) architecture for Mobile Front Haul links for the advanced Long-Term Evolution (LTE) and upcoming 5G networks. Precisely, the use of a feedback approximation method has been proposed and experimentally demonstrated herein that simplifies the complexities in realizing the practical DPD technique for Multi-Mode VCSELs and Multi-Mode Fibers based Radio over Fiber systems. As a figure of merit, linearization efficiency is provided in terms of Adjacent Channel Power Ratio, Normalized Mean Square Error and Error Vector Magnitude referring to a complete LTE frame occupying 10 MHz with 256-QAM modulation format.
- GUPTA, A., JHA, R. K. A survey of 5G network: Architecture and emerging technologies. IEEE Access, 2015, vol. 3, p. 1206–1232. DOI: 10.1109/ACCESS.2015.2461602
- SHI, Y., VISANI, D., OKONKWO, C. M., et al. First demonstration of HD video distribution over large-core POF employing UWB for in-home networks. In Optical Fiber Communication Conference (OFC). Los Angeles (CA, USA), 2011, p. 1–3.
- HADI, M. U., JUNG, H., GHAFFAR, S., et al. Optimized digital radio over fiber system for medium range communication. Optics Communications, 2019, vol. 443, p. 177–185. DOI: 10.1016/j.optcom.2019.03.037
- LAU, K. Y. RF transport over optical fiber in urban wireless infrastructures. IEEE/OSA Journal of Optical Communications and Networking, 2012, vol. 4, no. 4, p. 326–335. DOI: 10.1364/JOCN.4.000326
- HADI, M. U., HADI, M. U., ASLAM, N., et al. Experimental demonstration of MASH based sigma delta radio over fiber system for 5G C-RAN downlink. Journal of Optical Communication, 2019. DOI: 10.1515/joc-2019-0011
- SHI, Y., OKONKWO, C. M., VISANI, D., et al. Ultrawideband signal distribution over large-core POF for in-home networks. Journal of Lightwave Technology, 2012, vol. 30, no. 18, p. 2995 to 3002. DOI: 10.1109/JLT.2012.2210538
- KHURSHID, K., KHAN, K. K., SIDDIQUI, H., et al. Big data assisted CRAN enabled 5G SON architecture. Journal of ICT Research and Applications, 2019, vol. 13, no. 2, p. 93–106. DOI: 10.5614/itbj.ict.res.appl.2019.13.2.1
- CHINA MOBILE RESEARCH INSTITUTE. C-RAN: the Road towards Green RAN. White Paper, Beijing (China), 2013, p. 1–48.
- LI, Y., SATYANARAYANA, K., EL-HAJJAR, M., et al. Analogue radio over fiber aided MIMO design for the learning assisted adaptive C-RAN downlink. IEEE Access, 2019, vol. 7, p. 21359–21371. DOI: 10.1109/ACCESS.2019.2897922
- RANAWEERA, C., LIM, C., WONG, E., et al. Planning and dimensioning of optical transport networks for 5G and beyond. In IEEE Photonics Society Summer Topical Meeting Series (SUM). Ft. Lauderdale (FL, USA), 2019, p. 1–2. DOI: 10.1109/PHOSST.2019.8795061
- LI, Y., GHAFOOR, S., SATYANARAYANA, K., et al. Analogue wireless beamforming exploiting the fiber-nonlinearity of radio over fiber-based C-RANs. IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 3, p. 2802–2813. DOI: 10.1109/TVT.2019.2893589
- PESSOA, L. M., TAVARES, J. S., COELHO, D., et al. Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation. Optics Express, 2014, vol. 22, no. 14, p. 17508–17523. DOI: 10.1364/OE.22.017508
- ALCARO, G., VISANI, D., TARLAZZI, L., et al. Distortion mechanisms originating from modal noise in radio over multimode fiber links. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 1, p. 185–194. DOI: 10.1109/TMTT.2011.2171982
- VISANI, D., TARTARINI, G., PETERSEN, M. N., et al. Link design rules for cost-effective short-range radio over multimode fiber systems. IEEE Transactions on Microwave Theory and Techniques, 2010, vol. 58, no. 11, p. 3144–3153. DOI: 10.1109/TMTT.2010.2074552
- VISANI, D., OKONKWO, C. M., LOQUAI, S., et al. Record 5.3 Gbit/s transmission over 50m 1mm core diameter graded-index plastic optical fiber. In Optical Fiber Communication Conference, (OFC 2010). San Diego (CA, USA), 2010, p. 1–3. DOI: 10.1364/NFOEC.2010.PDPA3
- SAUER, M., KOBYAKOV, A., BOH RUFFIN, A. Radio-overfiber transmission with mitigated stimulated brillouin scattering. IEEE Photonics Technology Letters, 2007, vol. 19, no. 19, p. 1487–1489. DOI: 10.1109/LPT.2007.903765
- MEDINA SEVILA, P., ALMENAR, V., CORRAL, J. L. Transmission over SSMF at 850 nm: Bimodal propagation and equalization. Journal of Lightwave Technology, 2017, vol. 35, no. 19, p. 4125–4136. DOI: 10.1109/JLT.2017.2726585
- VISANI, D., SHI, Y., OKONKWO, C. M., et al. Wired and wireless multi-service transmission over 1mm-core GI-POF for inhome networks. Electronics Letters, 2011, vol. 47, no. 3, p. 203 to 205. DOI: 10.1049/el.2010.7273
- AMARI, A., LIN, X., DOBRE, O. A., et al. A machine learning based detection technique for optical fiber nonlinearity mitigation. IEEE Photonics Technology Letters, 2019, vol. 31, no. 8, p. 627 to 630. DOI: 10.1109/LPT.2019.2902973
- WEISS, J. Analog optical RF-links for large radio telescopes. In IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS). San Diego (CA, USA), 2018, p. 24–27. DOI: 10.1109/BCICTS.2018.8551058
- HADI, M. U., TRAVERSO, P. A., TARTARINI, G., et al. Digital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber links. IEEE Microwave and Wirless Components Letters, 2019, vol. 29, no. 2, p. 155–157. DOI: 10.1109/LMWC.2018.2889004
- VIEIRA, L. C., GOMES, N. J., NKANSAH, A., ET al. Behavioral modeling of radio-over-fiber links using memory polynomials. In 2010 IEEE International Topical Meeting on Microwave Photonics. Montreal (QC, Canada), 2010, p. 85–88. DOI: 10.1109/MWP.2010.5664204
- FUOCHI, F., HADI, M. U., NANNI, J., et al. Digital predistortion technique for the compensation of nonlinear effects in radio over fiber links. In 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI). Bologna (Italy), 2016, p. 1–6. DOI: 10.1109/RTSI.2016.7740562
- MATEO, C., CLEMENTE, J., GARCIA-DUCAR, P., et al. Linearization of a radio-over-fiber mobile fronthaul with feedback loop. In 2017 26th Wireless and Optical Communication Conference (WOCC). Newark (NJ, USA), 2017, p. 1–6. DOI: 10.1109/WOCC.2017.7928986
- HEKKALA, A., HIIVALA, M., LASANEN, M., et al. Predistortion of radio over fiber links: Algorithms, implementation, and measurements. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, vol. 59, no. 3, p. 664–672. DOI: 10.1109/TCSI.2011.2167267
- MATEO, C., CARRO, P. L., GARCIA-DUCAR, P., et al. Digital predistortion based on B-spline CPWL models in a RoF LTE mobile fronthaul. In 2017 12th European Microwave Integrated Circuits Conference (EuMIC). Nuremberg (Germany), 2017, p. 396–399. DOI: 10.23919/EuMIC.2017.8230742
- HADI, M. U., KANTANA, C., TRAVERSO, P. A., et al. Assessment of digital predistortion methods for DFB‐SSMF radio‐ over‐fiber links linearization. Microwave and Optical Technology Letters, 2020, vol. 62, no. 2, p. 540–546. DOI: 10.1002/mop.32073
- MORGAN, D. R., MA, Z., KIM, J., et al. A generalized memory polynomial model for digital predistortion of rf power amplifiers. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 10, p. 3852–3860. DOI: 10.1109/TSP.2006.879264
- HADI, M. U., NANNI, J., VENARD, O., et al. Linearity improvement of VCSELs based radio over fiber systems utilizing digital predistortion. Advances in Science, Technology and Engineering Systems Journal, 2019, vol. 4, no. 3, p. 156–163. DOI: 10.25046/aj040321
Keywords: Radio over Fiber (RoF), Digital Predistortion (DPD), Indirect Learning Architecture (ILA), Adjacent Channel Power Ratio (ACPR), Vertical Cavity Surface Emitting Lasers (VCSEL), Long Term Evolution (LTE)
A. Zaidi, W. A. Awan, N. Hussain, A. Baghdad
[references] [full-text]
[DOI: 10.13164/re.2020.0044]
[Download Citations]
A Wide and Tri-band Flexible Antennas with Independently Controllable Notch Bands for Sub-6-GHz Communication System
A wide-band and tri-band flexible antenna for fifth-generation (5G) sub-6-GHz communication systems is investigated in this paper. The proposed wideband antenna covers the 5G new radio (NR) mid-band, ranging from 2.8 to 5.35 GHz, while the tri-band antenna is resonating at three different allocated frequency bands (2.45 GHz, 3.5 GHz, and 4.7 GHz) for 5G sub-6-GHz communications. This functionality is achieved by introducing hexagonal split-ring resonators in the radiating element, which can be controlled independently without affecting antenna performance to avoid problems of interference in this frequency spectrum. In addition, the antenna also presents a good conformability characteristic, and the simulated results are confirmed with the measurements of the fabricated prototype.
- ANDREWS, J. G., BUZZI, S., CHOI, W., et al. What will 5G be? IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1065–1082. DOI: 10.1109/JSAC.2014.2328098
- REBHI, S., BARRAK, R., MENIF, M. Flexible and scalable radio over fiber architecture. Radioengineering, 2019, vol. 28, no. 2, p. 357–368. DOI: 10.13164/re.2019.0357
- RAPPAPORT, T. S., SUN, S., MAYZUS, R., et al. Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 2013, vol. 1, p. 335–349. DOI: 10.1109/ACCESS.2013.2260813
- DEHOS, C., GONZALEZ, J. L., DE DOMENICO, A., et al. Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 2014, vol. 52, no. 9, p.88–95. DOI: 10.1109/MCOM.2014.6894457
- ROH, W., SEOL, J. Y., PARK, J., et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 106–113. DOI: 10.1109/MCOM.2014.6736750
- RAPPAPORT, T. S., MURDOCK, J. N., GUTIERREZ, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 2011, vol. 99, no. 8, p. 1390–1436. DOI: 10.1109/JPROC.2011.2143650
- AKHTAR, F., NAQVI, S. I., ARSHAD, F., et al. A flexible and compact semicircular antenna for multiple wireless communication applications. Radioengineering, 2018, vol. 27, no. 3, p. 671–678. DOI: 10.13164/re.2018.0671
- HUSSAIN, N., JEONG, M. J., PARK, J., et al. A broadband circularly polarized Fabry-Perot resonant antenna using a singlelayered PRS for 5G MIMO applications. IEEE Access, 2019, vol. 7, p. 42897–42907. DOI: 10.1109/ACCESS.2019.2908441
- JAYASINGHE, J., ANGUERA, J., UDUWAWALA, D. Genetic algorithm optimization of a high-directivity microstrip patch antenna having a rectangular profile. Radioengineering, 2013, vol. 22, no. 3, p. 700–707. ISSN: 1210-2512
- JAYASINGHE, J., UDUWAWALA, D. N., ANGUERA, J. Design of a genetic microstrip patch antenna with broadside radiation for GSM applications. International Journal of Scientific World, 2014, vol. 2, no. 2, p. 84–87. DOI: 10.14419/ijsw.v2i2.3703
- AWAN, W. A., ZAIDI, A., HUSSAIN, N., et al. Compact size Yshaped broadband antenna for E-band applications. In IEEE International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morrocco), 2019, p. 1–3. DOI: 10.1109/WITS.2019.8723799
- HUSSAIN, N., AZIMOV, U., PARK, J. W., et al. A microstrip patch antenna sandwiched between a ground plane and a metasurface for WiMAX applications. In Asia-Pacific Microwave Conference (APMC). Kyoto (Japan), 2018, p. 1016–1018. DOI: 10.23919/APMC.2018.8617342
- SARKAR, D., SRIVASTAVA, K. V., SAURAV, K. A compact microstrip-fed triple band-notched UWB monopole antenna. IEEE Antennas Wireless Propagation Letters, 2014, vol. 13, p. 396–399. DOI: 10.1109/LAWP.2014.2306812
- BONG, H.-U., HUSSAIN, N., RHEE, S.-Y., et al. Design of an UWB antenna with two slits for 5G /WLAN-notched bands. Microwave and Optical Technology Letters, 2019, vol. 61, no. 5, p. 1295–1300. DOI: 10.1002/mop.31670
- CHU, Q. X., YANG, Y. Y. A compact ultrawideband antenna with 3.4/5.5 GHz dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 12, p. 3637–3644. DOI: 10.1109/TAP.2008.2007368
- GHIMIRE, J., CHOI, D. Y. Design of a compact ultrawideband Ushaped slot etched on a circular patch antenna with notch band characteristics for ultrawideband applications. International Journal of Antennas and Propagation, 2019, p. 1–10. DOI: 10.1155/2019/8090936
- TIGHEZZA, M., RAHIM, S. K. A., ISLAM, M. T. Flexible wideband antenna for 5G applications. Microwave and Optical Technology Letters, 2018, vol. 60, no. 1, p. 38–44. DOI: 10.1002/mop.30906
- ULLAH, S., HAYAT, S., UMAR, A., et al. Design, fabrication and measurement of triple band frequency reconfigurable antennas for portable wireless communications. AEU-International Journal of Electronics and Communications, 2017, vol. 81, p. 236–242. DOI: 10.1016/j.aeue.2017.07.028
- IQBAL, A., SMIDA, A., MALLAT, N. K., et al. Frequency and pattern reconfigurable antenna for emerging wireless communication systems. Electronics, 2019, vol. 8, no. 4, p. 1–12. DOI: 10.3390/electronics8040407
- CHATTHA, H. T., HANIF, M., YANG, X., et al. Frequency reconfigurable patch antenna for 4G LTE applications. Progress in Electromagnetics Research M, 2018, vol. 69, p. 1–13. DOI: 10.2528/PIERM18022101
- ROGERS CORPORATION. [Online] Cited August 2019. Available at: www.rogerscorp.com.
- AWAN, W. A., ZAIDI, A., BAGHDAD, A. Super wide band miniaturized patch antenna design for 5G communications. In International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS). Fez (Morrocco), 2019, p. 1–2. DOI: 10.1109/WITS.2019.8723762
- AWAN, W. A., HUSSAIN, N., LE, T. T. Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection. AEU-International Journal of Electronics and Communication, 2019, vol. 101, p. 1–7. DOI: 10.1016/j.aeue.2019.152851
- AWAN, W. A., ZAIDI, A., HUSSAIN, N., et al. Stub loaded, low profile UWB antenna with independently controllable notch bands. Microwave and Optical Technology Letters, 2019, vol. 61, no. 11, p. 2447–2454. DOI: 10.1002/mop.31915
- ARIF, A., ZUBAIR, M., ALI, M., et al. A compact, low-profile fractal antenna for wearable on-body WBAN applications. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 981–985. DOI: 10.1109/LAWP.2019.2906829
- DATTATREYA, G., NAIK, K. K. A low volume flexible CPWfed elliptical-ring with split-triangular patch dual-band antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2019, vol. 29, no. 8, p. 1–9. DOI: 10.1002/mmce.21766
- SAEED, S. M., BALANIS, C. A., BIRTCHER, C. R. Inkjetprinted flexible reconfigurable antenna for conformal WLAN/WiMAX wireless devices. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1979–1982. DOI: 10.1109/LAWP.2016.2547338
Keywords: Flexible antenna, sub-6-GHz, tri-bands, 5G mid-band, conformal structure
Sk. N. Islam, S. Das
[references] [full-text]
[DOI: 10.13164/re.2020.0052]
[Download Citations]
Isosceles Triangular Resonator Based Compact Triple Band Quad Element Multi Terminal Antenna
A triple band quad element multi-input-multi-output (MIMO) antenna is proposed for Bluetooth (2.4 GHz), WLAN (2.5/4.9 GHz) and LTE (3.7 GHz) applications. A compact triangular ring-shaped structure is used as an antenna element. An isosceles triangular ring resonator is designed in such a way that it offers dual-band and another ring resonator is placed inside the empty space of the first resonator to obtain the third band. The antenna element is studied in terms of |S11| and also the current distributions are observed at three resonance frequencies to find out the resonance mechanism. The proposed quad element MIMO antenna is compact in total area (0.45λ0×0.45λ0). Isolation better than 20 dB is achieved with minimum inter-element spacing of 0.07λ0 without extra isolation circuit. Gain, radiation patterns, envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL) and total active reflection coefficient (TARC) values are studied to comprehend the MIMO performance of the proposed design.
- SHARAWI, M. S. Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]. IEEE Antennas and Propagation Magazine, 2013, vol. 55, no. 5, p. 218–232. DOI: 10.1109/MAP.2013.6735522
- WU, W., YUAN, B., WU, A. A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures. International Journal of Antennas and Propagation, 2018, vol. 2018, p. 1–10. DOI: 10.1155/2018/8490740
- NANDI, S., MOHAN, A. A compact dual-band MIMO slot antenna for WLAN applications. IEEE Antennas and Wireless Propagation Letters, vol. 16, p. 2457–2460. DOI: 10.1109/LAWP.2017.2723927
- MORSY, M. M., MORSY, A. M. Dual-band meander-line MIMO antenna with high diversity for LTE/UMTS router. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 3, p. 395–399. DOI: 10.1049/iet-map.2017.0802
- POUYANFAR, N., GHOBADI, C., NOURINIA, J., et al. A compact multi-band MIMO antenna with high isolation for C and X bands using defected ground structure. Radioengineering, 2018, vol. 27, no. 3, p. 686–693. DOI: 10.13164/re.2018.0686
- KUMARI, T., DAS, G., SHARMA, A., et al. Design approach for dual element hybrid MIMO antenna arrangement for wideband applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 1, p. 1–10. DOI: 10.1002/mmce.21486
- SARKAR, D., SRIVASTAVA, K. V. Compact four-element SRRloaded dual-band MIMO antenna for WLAN/WiMAX/WiFi/4GLTE and 5G applications. Electronics Letters, 2017, vol. 53, no. 25, p. 1623–1624. DOI: 10.1049/el.2017.2825
- NANDI, S., MOHAN, A. CRLH unit cell loaded triband compact MIMO antenna for WLAN/WiMAX applications. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 1816–1819. DOI: 10.1109/LAWP.2017.2681178
- SUN, J. S., FANG, H. S., LIN, P. Y., et al. Triple-band MIMO antenna for mobile wireless applications. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 15, p. 500–503. DOI: 10.1109/LAWP.2015.2454536
- KUMAR, A., ANSARI, A. Q., KANAUJIA, B. K., et al. Design of triple-band MIMO antenna with one band-notched characteristic. Progress In Electromagnetics Research C, 2018, vol. 86, p. 41–53. DOI: 10.2528/PIERC18051902
- MALVIYA, L., PANIGRAHI, R. K., KARTIKEYAN, M. V. Circularly polarized 2×2 MIMO antenna for WLAN applications. Progress In Electromagnetics Research C, 2016, vol. 66, p. 97–107. DOI: 10.2528/PIERC16051905
- ISLAM, S. N., KUMAR, M., SEN, G., et al. Design of a compact triple band antenna with independent frequency tuning for MIMO applications. International Journal of RF and Microwave Computer‐Aided Engineering, 2019, vol. 29, no. 3, p. 1–10. DOI: 10.1002/MMCE.21620
- ISLAM, S. N., GHOSH, A., KUMAR, M., et al. A compact dualband antenna using triangular split ring resonator for Bluetooth/WiMax/LTE applications. In IEEE Indian Conference on Antennas and Propagation (InCAP). Hyderabad (India), 2018, p. 1–3. DOI: 10.1109/INCAP.2018.8770768
- SARKAR, D., SINGH, A., SAURAV, K., et al. Four-element quad-band multiple-input–multiple-output antenna employing split-ring resonator and inter-digital capacitor. IET Microwaves, Antennas & Propagation, 2015, vol. 9, no. 13, p. 1453–1460. DOI: 10.1049/iet-map.2015.0189
- THAYSEN, J., JAKOBSEN, K. B. Envelope correlation in (N, N) MIMO antenna array from scattering parameters. Microwave and Optical Technology Letters, 2006, vol. 48, no. 5, p. 832–834. DOI: 10.1002/mop.21490
- ZHANG, T., ZHANG, Y., HONG, W., et al. Triangular ring antennas for dual-frequency dual-polarization or circularpolarization operations. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 971–974. DOI: 10.1109/LAWP.2014.2319455
Keywords: Isosceles triangular ring resonator, triple band antenna, MIMO antenna, isolation
L. Zou, X. T. Wang, W. Wang, W. Y. Du
[references] [full-text]
[DOI: 10.13164/re.2020.0059]
[Download Citations]
Ku-Band High Performance Monopulse Microstrip Array Antenna Based on Waveguide Coupling Slot Array Feeding Network
A high gain low sidelobe monopulse microstrip array antenna for Ku-band frequency modulated conti-nuous wave (FMCW) radar application is proposed. The design consists of microstrip array radiation front-end and waveguide coupling slot array feeding network back-end. The microstrip array comprises 16×32 series-fed patches etched on the top side and slotted ground on the bottom side. A series of shunt slots in the broad-wall are loaded on a WR51 standard magic Tee waveguide to form a compact low loss monopulse comparator and hybrid feeding network. The radiation front and feeding network is individually fabricated with standard printed circuit board (PCB) and machining process and then can be integrated by advanced assembling process. Precise alignment of waveguide slots and ground slots is obtained during these procedures to achieve accurate excitation. Measured results are in accordance with simulation results and show about 32.5dBi max gain and -25dB sidelobe level (SLL) of sum pattern in E plane and -27dB null-depth of difference pattern at 17 GHz center frequency.
- WANG, S., TSAI, K. H., HUANG, K. K., et al. Design of X-band RF CMOS transceiver for FMCW monopulse radar. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57 no. 1, p. 61–70. DOI: 10.1109/TMTT.2008.2008942
- MAHAFZA, B. R., ELSHERBENI, A. Z. MATLAB Simulations for Radar Systems Design. 1st ed., rev. New York (US): Chapman and Hall/CRC, 2003. (Radar Waveforms, p. 157–202) ISBN: 1584883928
- SKOLNIK, M. I. Introduction to Radar Systems. 3rd ed., rev. McGraw-Hill Education, 2003. (Monopulse Tracking Radar, p. 160–167) ISBN: 0072881380
- JAKOBY, R. A novel quasi-optical monopulse-tracking system for millimeter-wave application. IEEE Transactions on Antennas and Propagation, 1996, vol. 44, no. 4, p. 466–477. DOI: 10.1109/8.489298
- LING, C. C., REBEIZ, G. M. 94 GHz integrated horn monopulse antennas. IEEE Transactions on Antennas and Propagation, 1992, vol. 40, no. 8, p. 981–984. DOI: 10.1109/8.163437
- KELLY, K. C., GOEBELS, F. J. Annular slot monopulse antennas. IEEE Transactions on Antennas and Propagation, 1964, vol. 12, no. 4, p. 391–403. DOI: 10.1109/TAP.1964.1138263
- ZHU, J. F., LIAO, S. W., LI, S. F., XUE, Q. 60 GHz substrateintegrated waveguide-based monopulse slot antenna arrays. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 9, p. 4860–4865. DOI: 10.1109/TAP.2018.2847324
- CAO, F. F., YANG, D. G., PAN, J., et al. A compact single-layer substrate-integrated waveguide (SIW) monopulse slot antenna array. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2755–2758. DOI: 10.1109/LAWP.2017.2744668
- CHENG, Y. J., HONG, W., WU, K. 94 GHz substrate integrated monopulse antenna arrays. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 1, p. 121–129. DOI: 10.1109/TAP.2011.2167945
- ZHANG, H. Z., GRANET, C., SPREY, M. A. A compact Ku-band monopulse horn. Microwave and Optical Technology Letters, 2002, vol. 34, no. 1, p. 9–13. DOI: 10.1002/mop.10357
- WANG, H., FANG, D. G., CHEN, X. G. A compact single layer monopulse microstrip antenna array. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 503–509. DOI: 10.1109/TAP.2005.863103
- HUANG, H. Y., WANG, B. Z., LI, F., et al. A Ka-band monopulse microstrip antenna array. In IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components (IMWS). Chengdu (China), 2008, p. 124–127. DOI: 10.1109/IMWS.2008.4782278
- KIM, S. G., CHANG, K. Low-cost monopulse antenna using bidirectionally-fed microstrip patch array. Electronics Letters, 2003, vol. 39, no. 20, p. 1428–1429. DOI: 10.1049/el:20030963
- XU, Q., SUN, H. J., YANG, H. Z., et al. A digital sum-difference millimeter wave monopulse system based on microstrip array antenna. In 20th Asia Pacific Microwave Conference (APMC 2008). Hong Kong (China), 2008, p. 97–100. DOI: 10.1109/APMC.2008.4957876
- VOSOOGH, A., HADDADI, A., ZAMAN, A. U., et al. W-band low-profile monopulse slot array antenna based on gap waveguide corporate-feed network. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 12, p. 6997–7009. DOI: 10.1109/TAP.2018.2874427
- LIU, Y., YANG, H., HE, Y., ZHU, J. Compact monopulse sumdifference comparator based on double-layer substrate integrated waveguide. Electronics Letters, 2017, vol. 53 no. 22 p. 1477-1478. DOI: 10.1049/el.2017.2064
- HUANG, G. L., ZHOU, S. G., CHIO, T. H. Highly-efficient selfcompact monopulse antenna system with integrated comparator network for RF industrial applications. IEEE Transactions on Industrial Electronics, 2017, vol. 64, no. 1, p. 674–681. DOI: 10.1109/TIE.2016.2608769
- WANG, W., ZOU, L., WANG, X. T. A novel 94 GHz planar integrated monopulse array antenna with hybrid feeding networks. IEICE Electronics Express, 2018, vol. 15, no. 12, p. 1–9. DOI: 10.1587/elex.15.20180381
- KUMAR, H., KUMAR, G. Monopulse comparators. IEEE Microwave Magazine, 2019, vol. 20, no. 3, p. 13–23. DOI: 10.1109/MMM.2018.2885670
- ALVAREZ-FOLGUEIRAS, M., RODRIGUEZ-GONZALEZ, J. A., ARES-PENA, F. Synthesising Taylor and Bayliss linear distributions with common aperture tail. Electronics Letters, 2009, vol. 45, no. 1, p. 18–19. DOI: 10.1049/el:20093322
- HUANG, J. A parallel series fed microstrip array with high efficiency and low cross polarization. Microwave and Optical Technology Letters, 1992, vol. 5, no. 5, p. 230–233. DOI: 10.1002/mop.4650050509
- RAO, J. S., JOSHI, K. K., DAS, B. N. Analysis of small aperture coupling between rectangular waveguide and microstrip line. IEEE Transactions on Microwave Theory and Techniques, 1981, vol. 29, no. 2, p. 150–154. DOI: 10.1109/TMTT.1981.1130312
- NIE, X. H., HONG, W., FAN, K. K. Monopulse array and low side-lobe level array with a novel feed network. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 12, p. 1978–1985. DOI: 10.1049/iet-map.2018.5212
Keywords: FMCW radar, monopulse antenna, high performance, microstrip array, waveguide coupling slot array, array feeding network
A. Siahcheshm, J. Nourinia, Ch. Ghobadi, M. Shokri
[references] [full-text]
[DOI: 10.13164/re.2020.0067]
[Download Citations]
Circularly Polarized Printed Helix Antenna for L- and S-Bands Applications
The first aim of this work is to design a new geometry of printed helix antennas in a simple structure that only uses planar FR4 substrates, unlike conventional wire helix antennas. The main body of helix comprises four rectangular substrates containing helix arms forming a box. The printed helix arms are designed in a way that they meet each other in the edges of substrates when placed next to one another. The most important advantages of this work are introducing a method that makes the helix antenna fabrication and also the impedance matching procedure simpler. The presented helix antenna has end-fire radiation in Z-direction with circular polarization suitable for L- and S-bands applications. Simulated and measured results show that the proposed antenna has a wide impedance bandwidth of 1.37 GHz from 1.56 GHz to 2.93 GHz (more than 61%), the 3 dB axial ratio bandwidth of 1.18 GHz from 1.58 GHz to 2.76 GHz (more than 54%) and a maximum gain of 11.3 dBiC at 1.6 GHz.
- MOHAMMADI, S., NOURINIA, J., GHOBADI, C., et al. Compact broadband circularly polarized slot antenna using two linked elliptical slots for C-band applications. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1094–1097. DOI: 10.1109/lawp.2013.2280457
- SIAHCHESHM, A., NOURINIA, J., GHOBADI, C., et al. A broadband circularly polarized cavity-backed Archimedean spiral array antenna for C-band applications. AEU - International Journal of Electronics and Communications, 2017, vol. 81, p. 218–226. DOI: 10.1016/j.aeue.2017.08.052
- SHOKRI, M., VIRDEE, B., RAFII, V., et al. Miniaturised ultrawideband circularly polarised antenna with modified ground plane. Electronics Letters, 2014, vol. 50, no. 24, p. 1786–1788. DOI: 10.1049/el.2014.3278
- SHOKRI, M., SHIRZAD, H., MOVAGHARNIA, S., et al. Planar monopole antenna with dual interference suppression functionality. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 1554–1557. DOI: 10.1109/lawp.2013.2292921
- KRAUS, J. D., MARHEFKA, R. J. Antennas for All Applications. Boston (MA, USA): McGraw-Hill, 2008.
- CHEN, Z., SHEN, Z. Planar helical antenna of circular polarization. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 10, p. 4315–4323. DOI: 10.1109/tap.2015.2463746
- LIU, X., YAO, S., COOK, B. S., et al. An origami reconfigurable axial-mode bifilar helical antenna. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 12, p. 5897–5903. DOI: 10.1109/tap.2015.2481922
- TANG, X., HE, Y., FENG, B. Design of a wideband circularly polarized strip-helical antenna with a parasitic patch. IEEE Access, 2016, vol. 4, p. 7728–7735. DOI: 10.1109/access.2016.2628044
- FARTOOKZADEH, M., MOHSENI ARMAKI, S. H. Multi-band conical and inverted conical printed quadrifilar helical antennas with compact feed networks. AEU - International Journal of Electronics and Communications, 2016, vol. 70, no. 1, p. 33–39. DOI: 10.1016/j.aeue.2015.09.018
- JIMISHA, K., KUMAR, S. Optimum design of exponentially varying helical antenna with non uniform pitch profile. Procedia Technology, 2012, vol. 6, p. 792–798. DOI: 10.1016/j.protcy.2012.10.096
- ABDERRAHMANE, L. H., SWEETING, M., COOKSLEY, J., et al. Design of a quadrafilar helix antenna used on Alsat-1 S band transmitter. AEU - International Journal of Electronics and Communications, 2006, vol. 60, no. 8, p. 606–612. DOI: 10.1016/j.aeue.2005.11.011
- WONGPAIBOOL, V. Improved axial-mode-helical-antenna impedance matching utilizing triangular copper strip for 2.4-GHz WLAN. In 2008 International Wireless Communications and Mobile Computing Conference. Crete Island (Greece), 2008, p. 869–873. DOI: 10.1109/iwcmc.2008.150
- WONG, J., KING, H. Broadband quasi-taper helical antennas. IEEE Transactions on Antennas and Propagation, 1979, vol. 27, no. 1, p. 72–78. DOI: 10.1109/tap.1979.1142033
- ANGELAKOS, D., KAJFEZ, D. Modifications on the axial-mode helical antenna. Proceedings of the IEEE, 1967, vol. 55, no. 4, p. 558–559. DOI: 10.1109/proc.1967.5583
- KRAUS, J. D. The Helical Antenna: Axial and Other Modes. Part II, In Antenna for All Applications. 3rd ed. McGraw-Hill (New York), 2003. Ch. 8, p. 250−303.
- BALANIS, C. A. Traveling Wave and Broadband Antennas. In Antenna Theory, Analysis and Design. 3rd ed. New York: John Wiley & Sons, 1997. Ch. 10, p. 549−610.
- KRAUS, J. A 50-ohm input impedance for helical beam antennas. IEEE Transactions on Antennas and Propagation, 1977, vol. 25, no. 6, p. 913–913. DOI: 10.1109/tap.1977.1141687
- BARTS, R. M. The Stub Loaded Helix: A Reduced Size Helical Antenna. Ph.D. dissertation. Virginia Polytechnic Institute and State University, Blacksburg, VA, 2003.
- MATHUR, S. P., SINHA, A. K., SINHA, A. K. Technical memorandum: Design of microstrip exponentially tapered lines to match helical antennas to standard coaxial transmission lines. IEE Proceedings H Microwaves, Antennas and Propagation, 1988, vol. 135, no. 4, p. 272–274. DOI: 10.1049/ip-h-2.1988.0055
- TSANDOULAS, G. N. The linearly tapered transmission line as a matching section—High- and low-frequency behavior. Proceedings of the IEEE, 1967, vol. 55, no. 9, p. 1658–1659. DOI: 10.1109/proc.1967.5950
- MANOOCHEHRI, O., ABBASINIAZARE, S., FOROORAGHI, K. Design of a 2×2 tapered dielectric-loaded helical antenna array for INMARSAT-M satellite system. Microwave and Optical Technology Letters, 2013, vol. 55, no. 11, p. 2600–2604. DOI: 10.1002/mop.27904
- NAKANO, H., TAKEDA, H., HONMA, T., et al. Extremely lowprofile helix radiating a circularly polarized wave. IEEE Transactions on Antennas and Propagation, 1991, vol. 39, no. 6, p. 754–757. DOI: 10.1109/8.86872
Keywords: Helix antenna, end-fire radiation pattern, circular polarization, L- and S-bands applications
P. Saha, D. Mitra, S. K. Parui
[references] [full-text]
[DOI: 10.13164/re.2020.0074]
[Download Citations]
A Frequency and Polarization Agile Disc Monopole Wearable Antenna for Medical Applications
A combined frequency and polarization reconfigurable textile based wearable disc monopole antenna is proposed in this paper. The antenna consists of a disc monopole as the radiator and four PIN diodes for realizing the agility property. By varying the different switching combination of the PIN diodes, frequency reconfigurability is achieved between the GSM and ISM band. Two circular polarization states, right hand circular polarization (RHCP) and left hand circular polarization (LHCP) are also realized in each operating frequency band. The upper band polarization state is controlled by a L shaped stub introduced in the ground plane whereas the lower band polarization agility depends on the length of the parasitic arc placed around the main radiator. The antenna is fabricated and its performance is measured to validate the proposed design.
- QIN, P.Y., GUO, Y. J., CAI, Y., et al. A reconfigurable antenna with frequency and polarization agility. IEEE Antennas and Wireless Propagation Letters, 2011, vol. 10, p. 1373–1376. DOI: 10.1109/LAWP.2011.2178226
- GRAU, A., ROMEU, J., LEE, M. J., et al. Dual-linearly-polarized MEMS-reconfigurable antenna for narrowband MIMO communication systems. IEEE Transactions on Antennas and Propagation, 2010, vol. 58, no. 1, p. 4–17. DOI: 10.1109/TAP.2009.2036197
- LI, P. K., SHAO, Z. H., WANG, Q., et al. Frequency and pattern reconfigurable antenna for multi-standard wireless applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 333–336. DOI: 10.1109/LAWP.2014.2359196
- LIN, W., WONG, H. Polarization reconfigurable wheel-shaped antenna with conical-beam radiation pattern. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no 2, p. 491–499. DOI: 10.1109/TAP.2014.2381263
- LI, T., ZHAI, H., WANG, X., et al. Frequency-reconfigurable bow-tie antenna for Bluetooth, WIMAX, and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 14, p. 171–147. DOI: 10.1109/LAWP.2014.2359199
- KIM, B., PAN, B., NIKOLAOU, S., et al. A novel single-feed circular microstrip antenna with reconfigurable polarization capability. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 3, p. 630–638. DOI: 10.1109/TAP.2008.916894
- SARASWAT, K., HARISH, A. R. A polarization reconfigurable CPW fed monopole antenna with L-shaped parasitic element. International Journal of RF and Microwave Computer Aided Engineering, 2018, vol. 28, no. 6, p. 1–6. DOI: 10.1002/mmce.21285
- CHEN, C. C., SIM, C. Y. D., LIN, H. L. Annular ring slot antenna design with reconfigurable polarization. International Journal of RF and Microwave Computer-Aided Engineering, 2015, vol. 26, no. 2, p. 110–120. DOI: 10.1002/mmce.20944
- BHATTACHARJEE, A., DWARI, S., MANDAL, M. K. Polarization-reconfigurable compact monopole antenna with wide effective bandwidth. IEEE Antennas and Wireless Propagation Letters, 2019, vol. 18, no. 5, p. 1040–1045. DOI: 10.1109/LAWP.2019.2908661
- CUI, Y., QI, C., LI, R. A low-profile broadband quad-polarization reconfigurable omnidirectional antenna. IEEE Transactions on Antennas and Propagation, 2019, vol. 67, no. 6, p. 4178–4183. DOI: 10.1109/TAP.2019.2905987
- QIN, P. Y., GUO, Y. J., DING, C. A dual-band polarization reconfigurable antenna for WLAN systems. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 11, p. 5706–5713. DOI: 10.1109/TAP.2013.2279219
- SIMORANGKIR, R. B. V. B., YANG, Y., ESSELLE, K. P., et al. A method to realize robust flexible electronically tunable antennas using polymer-embedded conductive fabric. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 50–58. DOI: 10.1109/TAP.2017.2772036
- TAHIR, F. A., JAVED, A. A compact dual-band frequency reconfigurable textile antenna for wearable applications. Microwave and Optical Technology Letters, 2015, vol. 57, no. 10, p. 2251–2257. DOI: 10.1002/mop.29311
- YAN, S., VANDENBOSCH G. A. E. Radiation patternreconfigurable wearable antenna based on metamaterial structure. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1715–1718. DOI: 10.1109/LAWP.2016.2528299
- TONG, X., LIU, C., LIU, X., et al. Switchable ON-/OFF-body antenna for 2.45 GHz WBAN applications. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 2, p. 967–971. DOI: 10.1109/TAP.2017.2780984
- SALLEH, S. M., JUSOH, M., ISMAIL, A. H., et al. Textile antenna with simultaneous frequency and polarization reconfiguration for WBAN. IEEE Access, 2017, vol. 6, p. 7350 to 7358. DOI: 10.1109/access.2017.2787018
- Data Sheet of BAP64-03 Silicon PIN diode.
Keywords: Wearable antenna, frequency reconfigurable antenna, polarization reconfigurable antenna, disc monopole, medical applications
W. P. Zhao, J. Li, J. Zhao, D. Zhao, J. Lu, X. Wang
[references] [full-text]
[DOI: 10.13164/re.2020.0081]
[Download Citations]
XGB Model : Research on Evaporation Duct Height Prediction Based on XGBoost Algorithm
Evaporation duct is a specific atmospheric structure at sea, which has an important influence on the propagation path of electromagnetic waves (EW). Considering the limit of existing evaporation duct height (EDH) prediction models and aiming at prpoposing more accurate and stronger generalization ability of EDH models, we applied eXtreme Gradient Boosting (XGBoosting) algorithm to the field of evaporation duct for the first time. And we proposed the new EDH prediction model using XGBoost algorithm(XGB model). Simultaneously, traditional Paulus-Jeske (PJ) model and deep learning Multilayer Perceptron (MLP) model were introduced into the experiment to make a comparison. In terms of comprehensive performance, XGB model is optimal in all sub-regions and total area. Finally, cross-learning experiments were carried out to test the generalization ability of XGB model. The results show that the generalization ability of XGB model is better than that of MLP model.
- KANG, S. F., ZHANG, Y. S., WANG, H. G. Tropospheric Atmospheric Duct. Zhang Z. 1st ed. Beijing (China): Science Press, 2014. ISBN: 9787030422576 (in Chinese)
- JIANG, B., WANG, H. Q., LI, X., et al. A novel method of target detection based on the sea clutter. Acta Physica Sinica, 2006, vol. 55, no. 8, p. 3985–3991. DOI: 10.7498/aps.55.3985 (In Chinese)
- LI, Y. B., ZHANG, Y. G., TANG, H. C., et al. Application of airsea flux algorithms in diagnosis of evaporation duct at sea. Journal of Applied Meteorology, 2009, vol. 20, no. 5, p. 628–633. DOI: 10.11898/1001-7313.20090515 (in Chinese)
- YAO, Z. Y., ZHAO, B. L., LI, W. B., et al. The analysis on characteristics of atmospheric duct and its effect on the propagation of electromagnetic wave. Journal of Meteorology, 2000, vol. 58, no. 5, p. 605–616. DOI: 10.11676/qxxb2000.062 (in Chinese)
- GUO, X. M., KANG, S. F., ZHANG, Y. S., et al. Study on characteristics and applicability of evaporation duct model. Marine Forecast, 2013, vol. 30, no. 5, p. 75–83. DOI: 10.11737/j.issn.1003-0239.2013.05.012 (in Chinese)
- YANG, K. D., MA, Y. L., SHI, Y. Spatial-temporal distributions of evaporation duct for the West Pacific Ocean. Acta Physica Sinica, 2009, vol. 58, no. 10, p. 7339–7350. DOI: 10.7498/aps.58.7339 (in Chinese)
- FAN, J. Y., GUO, S. H., KANG, S. F., et al. Evaporation duct detection based on meteorological grads tower. Radio Engineering, 2012, vol. 42, no. 11, p. 32–33+47. DOI: 10.3969/j.issn.1003-3106.2012.11.011 (in Chinese)
- CRAIN, C. M. Survey of airborne microwave refractometer measurements. Proceedings of the IRE, 2007, vol. 43, no. 10, p. 1405–1411. DOI: 10.1109/JRPROC.1955.277956
- BIN, T., CHA, H., ZHANG, Y. S., et al. Study on the applicability of evaporation duct Model A in Chinese sea areas. Chinese Journal of Radio Science, 2009, vol. 37, no. 5, p. 1100–1103. (in Chinese)
- ZHANG, J. P., ZHANG, Y. S., WU, Z. S., et al. Inversion of regional range-dependent evaporation duct from radar sea clutter. Acta Physica Sinica, 2015, vol. 64, no. 12, p. 136–146. DOI: 10.7498/aps.64.124101 (in Chinese)
- SHENG, Z., CHEN, J. Q., XU, R. H. Tracking refractivity from radar clutter using particle filter. Acta Physica Sinica, 2012, vol. 61, no. 6, p. 523–528. DOI: 10.7498/aps.61.069301 (in Chinese)
- LOWRY, A. R., ROCKEN, C., SOKOLOVSKIY, S. V., et al. Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Science, 2002, vol. 37, no. 3, p. 13-1–13-19. DOI: 10.1029/2000RS002565
- LIU, L. J., XIA, J. M., BAI, W. H., et al. Effect of evaporation duct on effective scattering zone of GNSS sea surface reflection signal. Chinese Journal of Geophysics, 2019, vol. 62, no. 2, p. 59 to 67. DOI: 10.6038/cjg2019L0689 (in Chinese)
- LI, S.M., CHEN, Z., QIAO, R., et al. Progress and problems of evaporation duct modes at sea. Marine Forecast, 2005, Vol. 22, no. z1, p. 128—139. DOI: 10.3969/j.issn.1003-0239.2005.z1.019
- WESELY, M. L. Comments on ''Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 1980, vol. 37, no. 12, p. 2798–2800. DOI: 10.1175/1520- 0469(1980)0372.0.CO;2
- PAULUS, R. A. Practical application of an evaporation duct model. Radio Science, 1985, vol. 20, no. 4, p. 887–896. DOI: 10.1029/RS020i004p00887
- COOK, J. A sensitivity study of weather data inaccuracies on evaporation duct height algorithms. Radio Science, 1991, vol. 26, no. 3, p. 731–746. DOI: 10.1029/91rs00835
- COOK, J., BURK, S. Potential refractivity as a similarity variable. Boundary-Layer Meteorology, 1992, vol. 58, no. 1–2, p. 151 to 159. DOI: 10.1007/BF00120756
- MUSSON-GENON, L., GAUTHIER, S., BRUTH, E. A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Science, 1992, vol. 27, no. 5, p. 635–644. DOI: 10.1029/92rs00926
- BABIN, S. M., YOUNG, G. S., CARTON, J. A. A new model of the oceanic evaporation duct. Journal of Applied Meteorology, 1997, vol. 36, no. 3, p. 193–204. DOI: 10.1175/1520- 0450(1997)036<0193:ANMOTO>2.0.CO;2
- BABIN, S. M., DOCKERY, G. D. LKB-based evaporation duct model comparison with buoy data. Journal of Applied Meteorology, 2002, vol. 41, no. 4, p. 434–446. DOI: 10.1175/1520-0450(2002)041<0434:LBEDMC>2.0.CO;2
- FAIRALL, C. W., BRADLEY, E. F., HARE, J. E., et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 2003, vol. 16, no. 4, p. 571–591. DOI: 10.1175/1520- 0442(2003)016<0571:bpoasf>2.0.co;2
- LIU, C. G., HUANG, J. Y., JIANG, C. Y., et al. Modeling evaporation duct over sea with pseudo-refractivity and similarity theory. Journal of Electronic Science, 2001, vol. 29, no. 7, p. 970 to 972. DOI: 10.3321/j.issn:0372-2112.2001.07.030 (in Chinese)
- DING, J. L., FEI, J. F., HUANG, X. G. Development and validation of an evaporation duct model. PartⅠ: Model establishment and sensitivity experiments. Journal of Meteorological Research, 2015, vol. 29, no. 3, p. 467–481. DOI: 10.1007/s13351-015-3238-3
- LIU, L. H., LI, Y. B., GAO, Z. Q., et al. Research on evaporation duct prediction model based on non-iterative air-sea flux algorithms. Journal of Applied Oceanography, 2017, vol. 4, p. 23 to 35. DOI: 10.3969/J.ISSN.2095-4972.2017.04.003 (in Chinese)
- HITNEY, H. V., RICHTER, J. H., SCHEFER, M. H. Integrated refractive effects prediction system. US. Naval Engineers Journal, 1976, vol. 88, no. 2, p. 257–262. DOI: 10.1111/j.1559- 3584.1976.tb03831.x
- BAUMGARTNER, G.B., HITNEY, H. V., PAPPERT, R. A. Duct propagation modelling for the integrated-refractive-effects prediction system (Ireps). Communications Radar, 1983, vol. 130, no. 7, p. 630–642. DOI: 10.1049/ip-f-1.1983.0096
- LI, J., WANG, H., ZHAO, Z. Statistical method of evaporation duct propagation based on marine meteorological data. Chinese Journal of Radio Science, 2013, vol. 28, no.5, p. 891–896. DOI: 10.3969/j.issn.1005-0388.2013.05.015 (in Chinese)
- TIAN, B., YU, S. J., LI, J., et al. Study on the adaptability of PJ model of evaporation duct in subtropical sea area. Ship Science and Technology, 2009, vol. 9, p. 96–99. DOI: 10.3404/j.issn.1672—7649.2009.09.017 (in Chinese)
- YAO, J. S., YANG, S. Y. Application of PJ evaporation duct model in coastal sea area. Fire and Command Control, 2010, vol. 35, no. 6, p. 121–124. DOI: 10.3969/j.issn.1002- 0640.2010.06.034 (in Chinese)
- BREIMAN, L. Stacked regressions. Machine Learning, 1996, vol. 24, no. 1, p. 49–64. DOI: 10.1023/a:1018046112532
- PROVOST, F., FAWCETT, T. Robust classification for imprecise environment. Machine Learning, 2001, vol. 42, no. 3, p. 203–231. DOI: 10.1023/a:1007601015854
- DOUVENOT, R., FABBRO, V., GERSTOFT, P., et al. A duct mapping method using least squares support vector machines. Radio Science, 2008, vol. 43, no. 6, p. 1–12. DOI: 10.1029/2008rs003842
- DOUVENOT, R., FABBRO, V., BOURLIER, C., et al. Retrieve the evaporation duct height by least-squares support vector machine algorithm. Journal of Applied Remote Sensing, 2009, vol. 3, no. 1, p. 1–15. DOI: 10.1117/1.3081546
- YANG, C. A comparison of the machine learning algorithm for evaporation duct estimation. Radioengineering, 2013, vol. 22, no. 2, p. 657–661. ISSN: 1210-2512
- GEORGANOS, S., GRIPPA, T., VANHUYSSE, S., et al. Very high resolution object-based land use – land cover urban classification using extreme gradient boosting. IEEE Geoscience and Remote Sensing Letters, 2018, vol. 15, no. 4, p. 607–611. DOI: 10.1109/LGRS.2018.2803259
- ZHU, X. Y., LI, J. C., ZHU, M., et al. An evaporation duct height prediction method based on deep learning. IEEE Geoscience and Remote Sensing Letters, 2018, vol. 15, no. 9, p. 1307–1311. DOI: 10.1109/LGRS.2018.2842235
- ZHU, X. Y., ZHU, M., LI, J. C., et al. An optimization research of evaporation duct prediction models based on a deep learning method. In IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC 2018). Xi’an (China), 2018, p. 1818–1822. DOI: 10.1109/IMCEC.2018.8469552
- CHEN, W., FU, K., ZUO, J., et al. Radar emitter classification for large data set based on weighted-xgboost. IET Radar, Sonar & Navigation, 2017, vol. 11, no. 8, p. 1203–1207. DOI: 10.1049/ietrsn.2016.0632
- NATEKIN, A., KNOLL, A. Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 2013, vol. 7, no. 7, p. 1–21. DOI: 10.3389/fnbot.2013.00021
- JESKE, H. State and Limits of Prediction Methods of Radar Wave Propagation Conditions Over Sea. Modern Topics in Microwave Propagation and Air-Sea Interaction, 1973, vol. 5, p. 130–148. DOI: 10.1007/978-94-010-2681-9_13
Keywords: Evaporation duct, machine learning, XGBoost algorithm, XGB model, Paulus-Jeske (PJ) model
R. K. Barik, Q. S. Cheng, N. C. Pradhan, K. S. Subramanian
[references] [full-text]
[DOI: 10.13164/re.2020.0094]
[Download Citations]
A Compact SIW Power Divider for Dual-Band Applications
In this paper, a novel design of highly compact power divider employing substrate-integrated waveguide (SIW) is proposed for dual-band applications. The double-ring asymmetric complimentary split-ring resonators (CSRRs) are utilized to obtain dual-band operation. The asymmetric double-ring CSRRs create mixed magnetic and electric coupling resulting two distinct resonating frequencies which exhibits bandpass behaviour below the resonating frequency of the cavity. The resonating passbands can be designed individually by varying the dimensions of the proposed CSRRs. In addition, the position of output ports can be varied to achieve arbitrary power division. To demonstrate the proposed analysis, three prototypes (two equal power division and one unequal power division) of dual-band SIW power dividers are designed and fabricated. Measurement performance provides a good consistency with that of simulated one. The circuit areas of the fabricated prototypes 1, 2 and 3 excluding microstrip transitions are 0.053λg2, 0.088λg2 and 0.033λg2, respectively. The proposed design process exhibits dual-band performance with smaller circuit-area, suitable isolation and hence appropriate for dual-band communication services.
- DONG, Y., YANG, T., ITOH, T. Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 9, p. 2211–2223. DOI: 10.1109/tmtt.2009.2027156
- MXIMO-GUTIERREZ, C., HINOJOSA, J., ALVAREZ-MELCON, A. Design of wide band-pass substrate integrated waveguide (SIW) filters based on stepped impedances. AEU - International Journal of Electronics and Communications, 2018, vol. 100, p. 1–8. DOI: 10.1016/j.aeue.2018.12.022
- AGHAYARI, H., NOURINIA, J., GHOBADI, C. Incorporated substrate integrated waveguide filters in propagative and evanescent mode: Realization and comparison. AEU - International Journal of Electronics and Communications, 2018, vol. 91, p. 150–159. DOI: 10.1016/j.aeue.2018.05.008
- ZHOU, K., ZHOU, C., WU, W. Substrate integrated waveguide dual-band filter with wide-stopband performance. Electronics Letters, 2017, vol. 53, no. 16, p. 1121–1123. DOI: 10.1049/el.2017.1556
- ZHANG, H., KANG, W., WU, W. Dual-band substrate integrated waveguide bandpass filter utilising complementary split-ring resonators. Electronics Letters, 2018, vol. 54, no. 2, p. 85–87. DOI: 10.1049/el.2017.3478
- DONG, Y., WU, C. M., ITOH, T. Miniaturised multi-band substrate integrated waveguide filters using complementary split-ring resonators. IET Microwaves, Antennas & Propagation, 2012, vol. 6, no. 6, p. 611–620. DOI: 10.1049/iet-map.2011.0448
- DONG, Y., ITOH, T. Miniaturized dual-band substrate integrated waveguide filters using complementary split-ring resonators. In Proceedings of the IEEE MTT-S International Microwave Symposium. Baltimore (USA), 2011, p. 1–4. DOI: 10.1109/mwsym.2011.5973189
- MOULAY, A., DJERA, T. Wilkinson power divider with fixed width substrate integrated waveguide line and a distributed isolation resistance. IEEE Microwave and Wireless Components Letters, 2018, vol. 28, no. 2, p. 114–116. DOI: 10.1109/lmwc.2018.2790706
- KHAN, A. A., MANDAL, M. K. Miniaturized substrate integrated waveguide (SIW) power dividers. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 11, p. 888–890. DOI: 10.1109/lmwc.2016.2615005
- PASIAN, M., SILVESTRI, L., RAVE, C., et al. Substrate-integratedwaveguide E-plane 3-dB power-divider/combiner based on resistive layers. IEEE Transactions on Microwave Theory and Techniques, 2017, vol. 65, no. 5, p. 1498–1510. DOI: 10.1109/tmtt.2016.2642938
- CHEN, Q. , XU, J. Out-of-phase power divider based on two-layer SIW. Electronics Letters, 2014, vol. 50, no. 14, p. 1005–1007. DOI: 10.1049/el.2014.0406
- CHEN, S. Y., ZHANG, D. S., YU, Y. T. Wideband SIW power divider with improved out-of-band rejection. Electronics Letters, 2013, vol. 49, no. 15, p. 943–944. DOI: 10.1049/el.2013.0979
- WANG, X., ZHU, X. Quarter-mode circular cavity substrate integrated waveguide filtering power divider with via-holes perturbation. Electronics Letters, 2017, vol. 53, no. 12, p. 791–793. DOI: 10.1049/el.2017.0697
- HE, Z., JIANG, Y.C., LENG, S., LI, X. Compact power divider with improved isolation and bandpass response. Microwave and Optical Technology Letters, 2017, vol. 59, no. 7, p. 1776–1781. DOI: 10.1002/mop.30621
- LI, T., DOU, W. Broadband substrate-integrated waveguide T-junction with arbitrary power-dividing ratio. Electronics Letters, 2015, vol. 51, no. 3. p. 259–260. DOI: 10.1049/el.2014.3928
- CHEN, S., SU, C., YU, Y., WU, Y. A compact two-way equal power divider with enhanced out-of-band rejection based on SIW technology. Microwave and Optical Technology Letters, 2013, vol. 55, no. 7, p. 1638–1640. DOI: 10.1002/mop.27641
- CHOUDHARY, D. K., CHAUDHARY, R. K., A compact SIW based filtering power divider with improved selectivity using CSRR. In Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). Singapore (Singapore), 2017, p. 1334–1337. DOI: 10.1109/piers-fall.2017.8293337
- MOZNEBI, A. R., AFROOZ, K. Compact power divider based on half mode substrate integrated waveguide (HMSIW) with arbitrary power dividing ratio. International Journal of Microwave and Wireless Technologies, 2017, vol. 9, no. 3, p. 515–521. DOI: 10.1017/s1759078716000544
- SONG, K., FAN, Y., ZHANG, Y. Eight-way substrate integrated waveguide power divider with low insertion loss. IEEE Transactions on Microwave Theory and Techniques, 2008, vol. 56, no. 6, p. 1473–1477. DOI: 10.1109/tmtt.2008.923897
- ZOU, X., TONG, C., YU, D. Y-junction power divider based on substrate integrated waveguide. Electronics Letters, 2011, vol. 47, no. 25, p. 1375–1376. DOI: 10.1049/el.2011.2953
- EOM, D., BYUN, J., LEE, H. Multilayer substrate integrated waveguide four-way out-of-phase power divider. IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57 no. 12, p. 3469–3476. DOI: 10.1109/tmtt.2009.2034311
- ZHU, F., HONG, W., CHEN, J., WU, K. Design and implementation of a broadband substrate integrated waveguide magic-T. IEEE Microwave and Wireless Components Letters, 2012, vol. 22, no. 12, p. 630–632. DOI: 10.1109/lmwc.2012.2226936
- SONG, K., ZHU, Y., ZHANG, F. Single- and dual-band filteringresponse power dividers embedded SIW filter with improved output isolation. Scientific Reports, 2017, vol. 7, no. 3361, p. 1529–1533. DOI: 10.1038/s41598-017-03312-9
- WANG, Y., ZHOU, C., ZHOU, K., WU, K. Compact dual-band filtering power divider based on SIW triangular cavities. Electronics Letters, 2018, vol. 54, no. 2, p. 1072–1074. DOI: 10.1049/el.2018.5611
Keywords: Dual-band, SIW, compact, power divider
H.P. Li, I. Hussain, Y. Wang, Q. S. Cao
[references] [full-text]
[DOI: 10.13164/re.2020.0101]
[Download Citations]
Smart-Mesh Strategy in DGTD Method for Partially Filled Cavity with Uncertain Interface Parameters
To achieve high quality localization of nodes, a smart-mesh strategy is employed in the discontinuous Galerkin time-domain (DGTD) simulation. The strategy is able to adjust adaptively the nodes defined on the unstructured triangular element in real-time simulation, thus an arbitrary or uncertain shaped object can be modeled accurately. The benefits of smart-mesh strategy are demonstrated for a partially dielectric filled cavity with microscale random material height and uncertain rough interface. Numerical experiments show that the smart-mesh approach can capture fine structural information and achieve more effective positions to match variable shapes.
- POZAR, D. M. Microwave Engineering. 4th ed. John Wiley & Sons, Inc., Nov 2011. ISBN: 978-0-470-63155-3
- BALANIS, C. A. Advanced Engineering Electromagnetics. 2nd ed. Wiley, 2012. ISBN: 978-0-470-58948-9
- HARRINGTON, R. F. Time-Harmonic Electromagnetic Fields. McGraw-Hill, 2001. ISBN: 0-471-20806-X
- MARCUVITZ, N. Waveguide Handbook. 3rd ed. Peter Peregrinus Ltd., 2009.
- YUCEL, A. C. Uncertainty Quantification for Electromagnetic Analysis via Efficient Collocation Methods. Dissertations & Theses, Gradworks, 2013.
- HARRINGTON, R. F. Field Computation by Moment Methods. New York: Wiley-IEEE Press, 1993. ISBN: 0-7803-1014-4
- EDWARDS, R. S., MARVIN, A. C., POTER, S. J. Uncertainty analyses in the finite-difference time-domain method. IEEE Transactions on Electromagnetic Compatibility, 2010, vol. 52, no. 1, p. 155–163. DOI: 10.1109/temc.2009.2034645
- SMITH, S. M., FURSE, C. Stochastic FDTD for analysis of statistical variation in electromagnetic fields. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 7, p. 3343–3350. DOI: 10.1109/TAP.2012.2196962
- AKYURTLU, A., WERNER, D. H., VEREMEY, V., et al. Staircasing errors in FDTD at an air-dielectric interface. IEEE Microwave and Guided Wave Letters, 2002, vol. 9, no. 11, p. 444–446. DOI: 10.1109/75.808028
- CHAUVIÈRE, C., HESTHAVEN, J. S., LURATI, L. Computational modeling of uncertainty in time-domain electromagnetics. SIAM Journal on Scientific Computing, 2006, vol. 28, no. 2, p. 751–775. DOI: 10.1137/040621673
- DE MENEZES, L. R. A. X., PAREDES, A. O., ABDALLA, H., et al. Modeling device manufacturing uncertainty in electromagnetic simulations. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest. Atlanta (GA, USA), 2008, p. 1385–1388. DOI: 10.1109/MWSYM.2008.4633036
- NHAT PHAM, M., MULLER, J., JACOB, A. F. Measurement and fabrication uncertainties in high-directivity microstrip couplers. In Proceedings of the 42nd European Microwave Conference. Amsterdam (Netherlands), 2012, p. 479–482. DOI: 10.23919/EuMC.2012.6459184
- HESTHAVEN, J. S., WARBURTON, T. Nodal high-order methods on unstructured grids. Journal of Computational Physics, 2002, vol. 181, no. 1, p. 186–221. DOI: 10.1006/jcph.2002.7118
- HESTHAVEN, J. S., WARBURTON, T. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, 2008. ISBN: 978-0-387-72067-8
- JI, X., LU, T., CAI, W., et al. Discontinuous Galerkin time domain (DGTD) methods for the study of 2-D waveguide-coupled microring resonators. Journal of Lightwave Technology, 2005, vol. 23, no. 11, p. 3864–3874. DOI: 10.1109/JLT.2005.855858
- GAO, S., LIU, M., CAO, Q. Discontinuous Galerkin time domain method for scattering analysis of air-inlets. Applied Computational Electromagnetics Society (ACES) Journal, 2013, vol. 28, no. 6, p. 449–482.
- ANGULO, L. D., ALVAREZ, J., PANTOJA, M. F., et al. Discontinuous Galerkin time domain methods in computational electrodynamics: State of the art. In Proceedings of the Forum for Electromagnetic Research Methods and Application Technologies, 2015, vol. 10, no. 004, p. 34–59.
- HASTINGS, F. D., SCHNEIDER, J. B., BROSCHAT, S. L. A Monte-Carlo FDTD technique for rough surface scattering. IEEE Transactions on Antennas and Propagation, 1995, vol. 43, no. 11, p. 1183–1191. DOI: 10.1109/TAP.1995.481168
- FISHMAN, G. S. Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer, 1996. ISBN: 0-387-94527-X
- CHAUVIERE, C., HESTHAVEN, J. S., WILCOX, L. C. Efficient computation of RCS from scatterers of uncertain shapes. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 5, p. 1437–1448. DOI: 10.1109/TAP.2007.895629
- HUSSAIN, I., LI, H., WANG, Y., et al. Modeling of structures using adaptive mesh in DGTD method for EM solver. In Proceedings of the 38th Progress in Electromagnetics Research Symposium. St Petersburg (Russia), 2017, p. 383–388. DOI: 10.1109/PIERS.2017.8261769
- HUSSAIN, I., LI, H., CAO, Q. Multiscale structure simulation using adaptive mesh using DGTD method. IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2017, vol. 2, p. 115–123. DOI: 10.1109/JMMCT.2017.2723261
- ARNOLD, D. N., MUKHERJEE, A., POULY, L. Locally adapted tetrahedral meshes using bisection. SIAM Journal on Scientific Computing, 2000, vol. 22, no. 2, p. 431–448. DOI: 10.1137/S1064827597323373
- LOGAN, D. L. A First Course in the Finite Element Method. 6th ed. CL Engineering, 2016. ISBN: 0-534-55298-6
- DULAR, P., LE MENACH, Y., TANG, Z., et al. Finite element mesh adaptation strategy from residual and hierarchical error estimators in eddy current problems. IEEE Transactions on Magnetics, 2015, vol. 51, no. 3, p. 1–4. DOI: 10.1109/TMAG.2014.2352553
Keywords: DGTD, partially filled cavity, smart mesh, uncertain interface parameters, resonant frequency
I. M. Mashriki, S. M. J. Razavi, S. H. M. Armaki
[references] [full-text]
[DOI: 10.13164/re.2020.0109]
[Download Citations]
Analyzing the Resonance Resultant from the Capacitive Effects in Bulk Current Injection Probe
In this paper, the effect of the slot distance, existed between the two parts of BCI-probe shield, on its performance is studied, therefore, two ferrite materials with the same size and different characteristics are used to implement two identical BCI-probes. The input impedance and reflection coefficient are measured for four different values of slot distance 0.5, 1, 2 and 3 mm. Practical results show a notable effect of the slot distance on measured quantities. Measured impedance analysis shows the appearance of three capacitive regions in its spectra, therefore, a three dimensional electromagnetic (EM) model is implemented in CST-Microwave Studio (MWS) software to disclose the main source parameters responsible for it. Results of achieved study, using developed EM model, were in accordance with measured data for the implemented prototypes, and showed the same resonance phenomena.
- RADIO TECHNICAL COMMISSION FOR AERONAUTICS (RTCA). DO-160F. Environmental Conditions and Test Procedures for Airborne Equipment. 2007.
- ELECTROMAGNETIC COMPATIBILITY (EMC). Part 4–6: Testing and Measurement Techniques— Immunity to Conducted Disturbances, Induced by Radio-frequency Fields. IEC Standard 61000-4-6, Ed. 4, 2013.
- ISO STANDARD 11451-4. Road Vehicles-Vehicle Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy-Part 4: Bulk Current Injection (BCI). June 2006.
- ISO STANDARD 11452-4. Road Vehicles- Component Test Methods for Electrical Disturbances from Narrowband Radiated Electromagnetic Energy-Part 4. Dec. 2011.
- IEC 62132-3, Ed.1. Integrated Circuit Measurements of Electromagnetic Immunity 150 kHz to 1 GHz, Part 3: Bulk Current Injection (BCI) Method. 2007.
- DEPARTEMENT OF DEFENSE INTERFACE STANDARD. Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment. MIL-STD-461E, Aug. 20, 1999.
- CERRI, G., DE LEO, R., PRIMIANI, V. M., et al. Wide-band characterization of current probes. IEEE Transactions on Electromagnetic Compatibility, 2003, vol. 45, no. 4, p. 616–625. DOI: 10.1109/TEMC.2003.819061
- GRASSI, F., PIGNARI, S. A., MARLIANI, F. Improved lumpedPi circuit model for bulk current injection probes. In IEEE Symposium on Electromagnetic Compatibility. Chicago (IL, USA), 2005, p. 451–456. DOI: 10.1109/ISEMC.2005.1513557
- GRASSI, F., MARLIANI, F., PIGNARI, S. A. Circuit modeling of injection probes for bulk current injection. IEEE Transactions on Electromagnetic Compatibility, 2007, vol. 49, no. 3, p. 563–576. DOI: 10.1109/TEMC.2007.902385
- NAYAK, B. P., DAS, A., VEDICHERLA, S. R., et al. Circuit models for bulk current injection (BCI) clamps with multiple cables. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Singapore, May. 2018, p. 1160–1163. DOI: 10.1109/ISEMC.2018.8393970
- ZHAO, W., YAN, Z., LIU, W. Two methods for BCI probe to improve the high frequency performance. In The 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE). Guilin (China), Oct. 2016, p. 815–819. DOI: 10.1109/ISAPE.2016.7834082
- MURANO, K., TAKATA, N., TAYARANI, M., et al. Analysis of transmission line loaded with BCI probe using circuit concept approach. IEICE Communications Express, 2015, vol. 4, no. 7, p. 223–227. DOI: 10.1587/comex.4.223
- MURANO, K., KAMI, Y., TAYARANI, M., et al. Theoretical analysis of BCI test system using circuit concept approach. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Ottawa (ON, Canada), 2016, p. 600–603. DOI: 10.1109/ISEMC.2016.7571716
- MURANO, K., HOSHINO, M., TAYARANI, M., et al. Modeling of transmission line loaded with BCI probe using circuit concept approach. In IEEE International Symposium on Electromagnetic Compatibility (EMC). Angers (France), 2017, p. 1–4. DOI: 10.1109/EMCEurope.2017.8094697
- LAFON, F., BELAKHOUY, Y., DE DARAN, F. Injection probe modeling for bulk current injection test on multi conductor transmission lines. In Proceedings of the IEEE Symposium on Embedded EMC. Rouen (France), 2007.
- GRASSI, F., MARLIANI, F., PIGNARI, S. A. SPICE modeling of BCI probes accounting for the frequency-dependent behavior of the ferrite core. In XIXth General Assembly of International Union of Radio Science (URSI). Chicago (IL, USA), 2008, p. 1–4.
- DIOP, M. S., CLAVEL, E., CHEAITO, H., et al. 2D modeling of bulk current injection probe and validation with measurements. In The 32nd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). Montreal (Canada), 2017, p. 1–4. DOI: 10.23919/URSIGASS.2017.8105244
- DE ROY, P., PIPER, S. Full-wave modeling of bulk current injection probe coupling to multi-conductor cable bundles. In IEEE International Symposium on Electromagnetic Compatibility. Ottawa (Canada), 2016, p. 770–774. DOI: 10.1109/ISEMC.2016.7571746
- TOSCANI, N., GRASSI, F., SPADACINI, G., et al. Circuit and electromagnetic modeling of bulk current injection test setups involving complex wiring harnesses. IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, no. 6, p. 1752–1760. DOI: 10.1109/TEMC.2018.2794823
- FISCHER CUSTOM COMMUNICATIONS. BCI Brochure.
- FAIR-RITE PRODUCTS CORPORATION. FairRite_Catalog_17th_Edition.
- RAMA KRISHNA, K., RAVINDER, D., VIJAYA KUMAR, K., et al. Dielectric properties of Ni-Zn ferrites synthesized by citrate gel method. World Journal of Condensed Matter Physics, 2012, vol. 2, no. 2, p. 57–60. DOI: 10.4236/wjcmp.2012.22010
- GHODAKE, U. R., KAMBALE, R. C., SURYAVANSHI, S.S. Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg-Zn ferrites. Ceramics International, 2017, vol. 43, no. 1, part B, p. 1129–1134. DOI: 10.1016/ j.ceramint.2016.10.053
- FAHIRUDDIN ESA, ZULKIFLY ABBAS, FADZIDAH MOHD IDRIS, et al. Characterization of Nix Zn1-x Fe2 O4 and permittivity of solid material of NiO, ZnO, Fe2O3, and Nix Zn1- x Fe2 O4 at microwave frequency using open ended coaxial probe. International Journal of Microwave Science and Technology, 2015, vol. 3, p. 1–8. DOI: 10.1155/2015/219195
Keywords: Bulk current injection (BCI) probe, electromagnetic compatibility (EMC), shield effect, slot capacitance, dielectric constant of ferrite
K. Sarmah , S. Goswami, S. Baruah
[references] [full-text]
[DOI: 10.13164/re.2020.0117]
[Download Citations]
Surrogate Model Assisted Design of CSRR Structure using Genetic Algorithm for Microstrip Antenna Application
Soft-computational approaches have enabled quicker and more efficient means for antenna design. In the present work, a genetic algorithm (GA) based method is reported for the design of complementary split ring resonator (CSRR) structures for antenna design. A multi-objective optimization problem is formulated to design the antenna. The cost function of the optimization problem is calculated from a surrogate model of the CSRR structure. The surrogate model is created first using an analytical model of the CSRR structure and then using an artificial neural network (ANN). A comparative study of the result shows that the ANN based surrogate model is more accurate compared to the surrogate model using an analytical model. An antenna with an integrated filter is built using a CSRR structure designed using the proposed method. The performance of the antenna is validated from simulation and measurement results.
- DEB, K. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. New York (USA): John Wiley & Sons, 2001. ISBN:047187339X
- BHATTACHARYA, S., CHATTOPADHYAY, S., TALUKDER, S., et al. Optimization of inset-fed microstrip patch antenna using genetic algorithm. In The proceedings of the International Conference and Workshop on Computing and Communication (IEMCON). Vancouver (BC, Canada), 2015, p. 1–4. DOI: 10.1109/IEMCON.2015.7344525
- LAMSALLI, M., EL HAMICHI, A., BOUSSOUIS, M., et al. Genetic algorithm optimization for microstrip patch antenna miniaturization. Progress In Electromagnetics Research Letters, 2016, vol. 60, p. 113–120. DOI: 10.2528/PIERL16041907
- WANG, N. Z., WANG, X. B., XU, J. D. Design of a novel compact broadband patch antenna using binary PSO. Microwave and Optical Technology Letters, 2012, vol. 54, no. 2, p. 434–438. DOI: 10.1002/mop.26552
- PRATAP, P., BHATIA, R. S., KUMAR, B. Design and simulation of equilateral triangular microstrip antenna using particle swarm optimization (PSO) and advanced particle swarm optimization (APSO). Sadhana, 2016, vol. 41, no. 7, p. 721–725. DOI: 10.1007/s12046-016-0510-y
- GOUDOS, S. K., SIAKAVARA, K., SAMARAS, T., et al. Selfadaptive differential evolution applied to real-valued antenna and microwave design problems. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 4, p. 1286–1298. DOI: 10.1109/TAP.2011.2109678
- GANGOPADHYAYA, M., MUKHERJEE, P., SHARMA, U., et al. Design optimization of microstrip fed rectangular microstrip antenna using differential evolution algorithm. In The 2nd IEEE International Conference on Recent Trends in Information Systems (ReTIS). Kolkata (India), 2015, p. 49–52. DOI: 10.1109/ReTIS.2015.7232851
- FALCONE, F., LOPETEGI, T., BAENA, J. D., et al. Effective negative –ε stopband microstrip lines based on complementary split ring resonators. IEEE Microwave and Wireless Components Letters, 2004, vol. 14, no. 6, p. 280–282. DOI: 10.1109/LMWC.2004.828029
- SARMAH, K., GOSWAMI, S., SARMA, A., et al. An experimental study on designing of a dual band antenna using CSRR structure with a single band antenna. In The Proceedings of the 2nd IEEE International Conference on Computational Electromagnetics (ICCEM). Guangzhou (China), 2016, p. 141–143. DOI: 10.1109/COMPEM.2016.7588563
- SARKAR, D., SAURAV, K., SRIVASTAVA, K. V. Design of a novel dual-band microstrip patch antenna for WLAN/WiMAX applications using complementary split ring resonators and partially defected ground structure. In Progress in Electromagnetic Research Symposium Proceedings. Taipei (Taiwan), 2013, p. 821–825. ISBN: 978-1-934142-24-0
- SARMAH, K., GOSWAMI, S., SARMA, K. K., et al. Design of a CSRR based dual band rectangular patch antenna with predictable far field radiation pattern. In Proceedings of the 6th International Conference on Computers and Devices for Communication (CODEC). Kolkata (India), 2015, p. 1–4. ISBN: 978-1-4673-9513-7/15
- KIM, D. O., JO, N. I., JANG, H. A., et al. Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators. Progress In Electromagnetics Research, 2011, vol. 112, p. 93–107. DOI: 10.2528/PIER10111607
- ZHANG, Y., HONG, W., YU, C., et al. Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed line. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 9, p. 3063–3068. DOI: 10.1109/TAP.2008.928815
- GOSWAMI, S., SARMAH, K., SARMA, A., et al. Design of a CSRR based compact microstrip antenna for image rejection in RF down-converter based WLAN receivers. AEU International Journal of Electronics and Communications, 2017, vol. 74, p. 128–134. DOI: 10.1016/j.aeue.2017.02.004
- LIU, B., ALIAKBARIAN, H., MA, Z., et al. An efficient method for antenna design optimization based on evolutionary computation and machine learning techniques. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 1, p. 7–18. DOI: 10.1109/TAP.2013.2283605
- TENUTI, L., SALUCCI, M., OLIVERI, G., et al. Surrogateassisted optimization of metamaterial devices for advanced antenna systems. In Proceedings of IEEE Symposium Series on Computational Intelligence. Cape Town (South Africa), 2015, p. 1154–1156. DOI: 10.1109/SSCI.2015.165
- SINGH, P., ROSSI, M., COUCKUYT, I., et al. Constrained multiobjective antenna design optimization using surrogates. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2016, vol. 30, no. 6, p. 1–5. DOI: 10.1002/jnm.2248
- KOZIEL, S., OGURTSOV S. Antenna Design by SimulationDriven Optimization. New York (USA): Springer, 2014. ISBN: 978-3-319-04367-8
- BAENA, J. D., BONACHE, J., MARTIN, F., et al. Equivalentcircuit models for split-ring resonators and complementary splitring resonators coupled to planar transmission lines. IEEE Transactions on Microwave Theory and Techniques, 2005, vol. 53, no. 4, p. 1451–1461. DOI: 10.1109/TMTT.2005.845211
- MARQUES, R., MESA, F., MARTEL, J., et al. Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design – theory and experiments. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 10, p. 2572–2581. DOI: 10.1109/TAP.2003.817562
- BURDEN, F., WINKLER, D. Bayesian regularization of neural networks. Methods in Molecular Biology, 2008, vol. 458, p. 23–42. DOI: 10.1007/978-1-60327-101-1_3
Keywords: Artificial neural network, surrogate model, complementary split ring resonator, microstrip antenna, genetic algorithm, soft-computational design
S. Wu, J. Wang, J. Liu, D. Y Cheng, Y. B. Wu, R. F. Li, M. Q. Li
[references] [full-text]
[DOI: 10.13164/re.2020.0125]
[Download Citations]
A Novel Design of Single Branch Wideband Rectifier for Low-Power Application
This paper proposes a novel design of single branch wideband rectifier working at low input power level. Both the impedance tuning part and a dual-band matching network are adopted for wideband impedance matching. Theoretical analysis of the proposed wideband rectifier is presented and its closed-form design equations are derived. As an illustrated example, a wideband rectifier is designed and fabricated. Experimental results show that the fabricated rectifier features wide operated fractional bandwidth of more than 50%, low input power level from -5.0 dBm to 5 dBm, as well as a simple circuit structure and design procedure.
- CANSIZ, M., ALTINEL, D., KARABULUT KURT, G. Efficiency in RF energy harvesting systems: a comprehensive review. Energy, 2019, vol. 174, p. 292–309. DOI: 10.1016/j.energy.2019.02.100
- TAKHEDMIT, H., MERABET, B., CIRIO, L., et al. A 2.45-GHz dual-diode RF-to-DC rectifier for rectenna applications. In The 40th European Microwave Conference, Paris (France), 2010, p. 37–40. DOI: 10.23919/EUMC.2010.5616541
- SUN, H., ZHONG, Z., GUO, Y.-X. An adaptive reconfigurable rectifier for wireless power transmission. IEEE Microwave and Wireless Components Letters, 2013, vol. 23, no. 9, p. 492–494. DOI: 10.1109/LMWC.2013.2250272
- PALAZZI, V., HESTER, J., BITO, J., et al. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Transactions on Microwave Theory and Techniques, 2018, vol. 66, no. 1, p. 366–379. DOI: 10.1109/TMTT.2017.2721399
- KUHN, V., LAHUEC, C., SEGUIN, F., et al. A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%. IEEE Transactions on Microwave Theory and Techniques, 2015, vol. 63, no. 5, p. 1768–1778. DOI: 10.1109/TMTT.2015.2416233
- SONG, C., HUANG, Y., CARTER, P., et al. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 8, p. 3486–3495. DOI: 10.1109/TAP.2015.2431719
- SONG, C., HUANG, Y., CARTER, P., et al. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 7, p. 3160–3171. DOI: 10.1109/TAP.2016.2565697
- NIE, M. J., YANG, X. X., TAN, G. N. A broad band rectifier with wide input power range for electromagnetic energy harvesting. In Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation. Harbin (China), 2014, p. 1187–1189. DOI: 10.1109/APCAP.2014.6992726
- LIN, Y. L., ZHANG, X. Y., DU, Z. X., et al. High-efficiency microwave rectifier with extended operating bandwidth. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, vol. 65, no. 7, p. 819–823. DOI: 10.1109/TCSII.2017.2716538
- SONG, C., HUANG, Y., ZHOU, J., et al. Improved ultrawideband rectennas using hybrid resistance compression technique. IEEE Transactions on Antennas and Propagation, 2017, vol. 64, no. 4, p. 2057–2062. DOI: 10.1109/TAP.2017.2670359
- DASKALAKIS, S. N., GEORGIADIS, A., COLLADO, A., et al. An UHF rectifier with 100% bandwidth based on a ladder LC impedance matching network. In 2017 12th European Microwave Integrated Circuits Conference (EuMIC). Nuremberg (Germany), 2017, p. 411–414. DOI: 10.23919/EuMIC.2017.8230746
- SAKAKI, H., NISHIKAWA, K. Broadband rectifier design based on quality factor of input matching circuit. In 2014 Proceedings of Asia–Pacific Microwave Conference. Sendai (Japan), 2014, p. 1205–1207.
- WU, P., HUANG S. Y., ZHOU, W., et al. Compact high-efficiency broadband rectifier with multi-stage-transmission-line matching. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 66, no. 8, p. 1316–1320. DOI: 10.1109/TCSII.2018.2886432
- WU, Y. B., WANG, J., LIU, Y. Y., et al. A novel wideband rectifier design with two-stage matching network for ambient wireless energy harvesting. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). Toyama (Japan), 2018, p. 1351–1354. DOI: 10.23919/PIERS.2018.8597623
- WU, Y., LIU, Y., LI, S., et al. A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances. IEEE Microwave and Wireless Components Letters, 2009, vol. 19, no. 12, p. 792–794. DOI: 10.1109/LMWC.2009.2034034
- KEYSIGHT ADS (for 2011 and later) – Library. Available at: https://www.murata.com/en-us/tool/librarydata/library-keysight2?i ntcid5=com_xxx_xxx_cmn_hd_xxx
- CCI_RF_Library.zip. [Online] Available at: https://www.coilcraft.com/models_ads_library.cfm
Keywords: Wideband, rectifier, wireless energy harvesting, impedance matching
M. Prieto, M. A. de Pablo, M. Ramos, J. J. Jimenez
[references] [full-text]
[DOI: 10.13164/re.2020.0132]
[Download Citations]
Experimental Tests and Performance Evaluation of a VHF Data Transceiver Prototype for Operation in the Antarctic Regions
This paper presents the study and implementation results of a point to point radio data link carried out by the PERMASNOW project Research Team in the Gabriel de Castilla (GdC) Spanish Antarctic Station (Deception Island, South Shetland archipelago, Antarctica) under challenging Non Line-of Sight (NLOS) conditions. Our final goal is to succeed in the remote data access of the multiple and dispersed measurement stations deployed in the surrounding area of the Antarctic Stations without the use of costly satellite communication systems. For so, a wireless sensor network scheme is proposed in which the key element is the node radio data transceiver characterized in this paper. The main design driver is the harsh Antarctic environmental conditions, which leads to a low power and rugged wireless solution. This study confirms the usefulness of the amateur-radio bands and equipment, which mainly give versatility in frequencies, modulations and power configurations. The terrain topography shows to be the key factor in the short-range segment, notably affecting the propagation conditions. For the long-range segment, the best solution still shows to be a satellite link but promising ionospheric data link has been successfully tested.
- RAMOS, M., DE PABLO, M.A., MOLINA, A., et al. Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). Catena, 2017, vol. 149, no. 2, p. 519–528. DOI: 10.1016/j.catena.2016.07.019
- RAMOS, M. Automatic device to measure the active permafrost layer near the Spanish Antarctic Station. Terra Antarctica, 1995, vol. 3, no. 1, p. 61–63.
- DE PABLO, M.A., RAMOS, M., MOLINA, A., et al. Thaw depth spatial and temporal variability at the Limnopolar Lake CALM-S site, Byers Peninsula, Livingston Island, Antarctica. Science of the Total Environment, 2018, vol. 615, p. 814–827. DOI: 10.1016/j.scitotenv.2017.09.284
- GARCIA, M. B., LOPEZ, F. V. AEMET en la Antartida Climatologia y Meteorologia Sinoptica en las Estaciones Meteorologicas Españolas en la Antartida. (AEMET in the Antarctica. Synoptic Climatology and Meteorology in the Spanish Weather Stations in the Antarctica. Ministry of Agriculture, Feeding and Environment). (in Spanish) Ministerio de Agricultura, Alimentacion y Medio Ambiente, 2015. ISBN: 9788478370931
- SARKAR, T. K., JI, Z., KIM, K., et al. Survey of various propagation models for mobile communications. IEEE Antennas and Propagation Magazine, 2003, vol. 45, no. 3, p. 51–82. DOI: 10.1109/MAP.2003.1232163
- ARRL Inc. The ARRL Handbook for Radio Communications. Amer Radio Relay League, 2017. ISBN: 9781625950727
- GAELENS, J., VAN TORRE, P., VERHAEVERTET, J., al. LoRa mobile-to-base-station channel characterization in the Antarctic. Sensors, 2017, vol. 17, no. 8, p. 1–18. DOI: 10.3390/s17081903
- JOVALEKIC, N., DRNDAREVIC, V., PIETROSEMOLI, E., et al. Experimental study of LoRa transmission over seawater. Sensors 2018, vol. 18, no. 9, p. 1–23. DOI: 10.3390/s18092853
- ITU-T Recommendation V23. 600/1200-Baud Modem Standardized for Use in the General Switched 670 Telephone Network. 1988, 1993
- RICE, P.L., LONGLEY, A.G., NORTON, K. A., et al. Transmission Loss Predictions for Tropospheric Communications Circuits. Technical Note 101, revised 1/1/1967, U.S. Department of Commerce NBS-NIST.
- POSHALA, P., RUSHIL, K.K., GUPTA, R. Signal Chain Noise Figure Analysis. Application Report SLAA652, Texas Instruments, 2014.
- SANTILLI, G., VENDITTOZZI, C, CAPPELLETTI, C., et al. CubeSat constellations for disaster management in remote areas. Acta Astronautica, 2018, vol. 145, p. 11–17. DOI: 10.1016/j.actaastro.2017.12.050
- BAUER, F. H., TAYLOR, D., WHITE, R. A., et al. Educational outreach and international collaboration through ARISS: Amateur radio on the International Space Station. Chapter in Space Operations: Inspiring Humankind’s Future. Springer, 2019. ISBN: 9783030115364. DOI: 10.1007/978-3-030-11536-4_33
Keywords: Data-link, Sensor network, APRS, Antarctica, NLOS
V. T. Pham, D. S. Ali, N. M. G. Al-Saidi, K. Rajagopal, F. E. Alsaadi, S. Jafari
[references] [full-text]
[DOI: 10.13164/re.2020.0140]
[Download Citations]
A Novel Mega-stable Chaotic Circuit
In recent years designing new multistable chaotic oscillators has been of noticeable interest. A multistable system is a double-edged sword which can have many benefits in some applications while in some other situations they can be even dangerous. In this paper, we introduce a new multistable two-dimensional oscillator. The forced version of this new oscillator can exhibit chaotic solutions which makes it much more exciting. Also, another scarce feature of this system is the complex basins of attraction for the infinite coexisting attractors. Some initial conditions can escape the whirlpools of nearby attractors and settle down in faraway destinations. The dynamical properties of this new system are investigated by the help of equilibria analysis, bifurcation diagram, Lyapunov exponents’ spectrum, and the plot of basins of attraction. The feasibility of the proposed system is also verified through circuit implementation.
- PISARCHIK, A.N., FEUDEL, U. Control of multistability. Physics Reports, 2014, vol. 540, no. 4, p. 167–218. DOI: 10.1016/j.physrep.2014.02.007
- SHARMA, P., M. SHRIMALI, M., PRASAD, A., et al. Control of multistability in hidden attractors. The European Physical Journal Special Topics, 2015, vol. 224, no. 8. p. 1485–91. DOI: 10.1140/epjst/e2015-02474-y
- WEI. Z. Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 2011, vol. 376, no. 2, p. 102–108. DOI: 10.1016/j.physleta.2011.10.040
- JAFARI, S., SPROTT, J. C., HASHEMI GOLPAYEGANI, S. M. R. Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 2013, vol. 377, no. 9, p. 699–702. DOI: 10.1016/j.physleta.2013.01.009
- WEI, Z., ZHANG., W. Hidden hyperchaotic attractors in a modified Lorenz-Stenflo system with only one stable equilibrium.International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 10, p. 1450127. DOI: 10.1142/S0218127414501272
- MOLAIE, M., JAFARI, S., SPROTT, J. C., et al. Simple chaotic flows with one stable equilibrium. International Journal of Bifurcation and Chaos, 2013, vol. 23, no. 11, p. 1350188. DOI: 10.1142/S0218127413501885
- GOTTHANS, T., PETRZELA, J. New class of chaotic systems with circular equilibrium. Nonlinear Dynamics, 2015, vol. 81, no. 3, p. 1143–1149. DOI: 10.1007/s11071-015-2056-7
- GOTTHANS, T., SPROTT J. C., PETRZELA, J. Simple chaotic flow with circle and square equilibrium. International Journal of Bifurcation and Chaos, 2016, vol. 26, no. 8, p. 1650137. DOI: 10.1142/S0218127416501376
- PETRZELA, J., GOTTHANS, T. New chaotic dynamical system with a conic-shaped equilibrium located on the plane structure. Applied Sciences, 2017, vol. 7, no. 10, p. 976. DOI: 10.3390/app7100976
- PETRZELA, J., GOTTHANS, T., GUZAN, M. Current-mode network structures dedicated for simulation of dynamical systems with plane continuum of equilibrium. Journal of Circuits, Systems and Computers, 2018, vol. 27, no. 9, p. 1830004-1–39. DOI: 10.1142/S0218126618300040
- JAFARI, S., SPROTT, J. C., PHAM, V.-T., et al. Simple chaotic 3D flows with surfaces of equilibria. Nonlinear Dynamics, 2016, vol. 86, no. 2, p. 1349–1358. DOI: 10.1007/s11071-016-2968-x
- SINGH, J. P., ROY, B. K., JAFARI, S. New family of 4-D hyperchaotic and chaotic systems with quadric surfaces of equilibria. Chaos, Solitons & Fractals, 2018, vol. 106, p. 243–257. DOI: 10.1016/j.chaos.2017.11.030
- MA, J., ZHOU, P., AHMAD, B., et al. Chaos and multiscroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor. PloS One, 2018, vol. 13, no. 1, p. 1–21. DOI: 10.1371/journal.pone.0191120
- DANCA, M.-F., KUZNETSOV, N., CHEN, G. Unusual dynamics and hidden attractors of the Rabinovich-Fabrikant system. Nonlinear Dynamics, 2017, vol. 88, no. 1, p. 791–805. DOI: 10.1007/s11071-016-3276-1
- KUZNETSOV, N., LEONOV, G., YULDASHEV, M., et al. Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 51, p. 39–49. DOI: 10.1016/j.cnsns.2017.03.010
- LI, C., SPROTT, J. C., YUAN, Z., et al. Constructing chaotic systems with total amplitude control. International Journal of Bifurcation and Chaos, 2015, vol. 25, no. 10, p. 1530025-1–14. IDOI: 10.1142/S0218127415300256
- LI, C., SPROTT, J. C., AKGUL, A., et al. A new chaotic oscillator with free control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2017, vol. 27, no. 8, p. 083101-1–6. DOI: 10.1063/1.4997051
- ZHANG, L.-M., SUN, K.-H., LIU, W.-H., et al. A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations. Chinese Physics B, 2017, vol. 26, no. 10, p. 100504-1–9. DOI: 10.1088/1674-1056/26/10/100504.
- YU, M., SUN, K., LIU, W., et al. A hyperchaotic map with grid sinusoidal cavity. Chaos, Solitons & Fractals, 2018, vol. 106, p. 107–117. DOI: 10.1016/j.chaos.2017.11.004
- CHEN, C., SUN, K., HE, S. A class of higher-dimensional hyperchaotic maps. The European Physical Journal Plus, 2019, vol. 134, no. 8, p. 1–13. DOI: 10.1140/epjp/i2019-12776-9
- PENG, D., SUN, K.H., ALAMODI, A.O. Dynamics analysis of fractional-order permanent magnet synchronous motor and its DSP implementation. International Journal of Modern Physics B, 2019, vol. 33, no. 6, p. 1950031-1–15. DOI: 10.1142/S0217979219500310
- PENG, Y., SUN, K., HE, S., et al. Parameter identification of fractional-order discrete chaotic systems. Entropy, 2019, vol. 21, no. 1, p. 1–27. DOI: 10.3390/e21010027
- PENG, Y., SUN, K., PENG, D., et al. Dynamics of a higher dimensional fractional-order chaotic map. Physica A: Statistical Mechanics and its Applications, 2019, vol. 525, p. 96–107. DOI: 10.1016/j.physa.2019.03.058
- ZHOU, P., KE, M. A new 3D autonomous continuous system with two isolated chaotic attractors and its topological horseshoes. Complexity, 2017, vol. 2017, p. 1–7. DOI: 10.1155/2017/4037682
- ZHOU, P., YANG, F. Hyperchaos, chaos, and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points. Nonlinear Dynamics, 2014, vol. 76, no. 1, p. 473–480. DOI: 10.1007/s11071-013-1140-0
- CHEN, M., FENG, Y., BAO, H., et al. Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity. Complexity, 2019, vol. 2019, p. 1–16. DOI: 10.1155/2019/8549472
- CHEN, M., SUN, M., BAO, H., et al. Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Transactions on Industrial Electronics, 2019, vol. 67, no. 3, p. 2197–2206. DOI: 10.1109/TIE.2019.2907444
- PROUSALIS, D.A., VOLOS, C.K., BAO, B., et al. Extreme multistability in a hyperjerk memristive system with hidden attractors. Chapter in Recent Advances in Chaotic Systems and Synchronization, Elsevier, 2019, p. 89–103. ISBN: 9780128162668. DOI: 10.1016/B978-0-12-815838-8.00006-6
- ZHANG, Y., LIU, Z., WU, H., et al. Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos, Solitons & Fractals, 2019, vol. 127, p. 354–63. DOI: 10.1016/j.chaos.2019.07.004
- SPROTT, J. C. Elegant Chaos: Algebraically Simple Chaotic Flows. World Scientific, 2010. ISBN: 9812838821
- WANG, Z., ABDOLMOHAMMADI, H.R., ALSAADI, F.E., et al. A new oscillator with infinite coexisting asymmetric attractors. Chaos, Solitons & Fractals, 2018, vol. 110, p. 252–258. DOI: 10.1016/j.chaos.2018.03.031
- LI, C., SPROTT, J. C., HU, W., et al. Infinite multistability in a self-reproducing chaotic system. International Journal of Bifurcation and Chaos, 2017, vol. 27, no. 10, p. 1750160. DOI: 10.1142/S0218127417501607
- SPROTT, J. C., JAFARI, S., KHALAF, A.J.M., et al. Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatially-periodic damping. The European Physical Journal Special Topics, 2017, vol. 226, no. 9, p. 1979–1985. DOI: 10.1140/epjst/e2017-70037-1
- PRAKASH, P., RAJAGOPAL, K., SINGH, J., et al. Megastability in a quasi-periodically forced system exhibiting multistability, quasi-periodic behaviour, and its analogue circuit simulation. AEUInternational Journal of Electronics and Communications, 2018, vol. 92, p. 111–115. DOI: 10.1016/j.aeue.2018.05.021
- TANG, Y., ABDOLMOHAMMADI, H.R., KHALAF, A.J.M., et al. Carpet oscillator: A new megastable nonlinear oscillator with infinite islands of self-excited and hidden attractors. Pramana, 2018, vol. 91, no. 1, p. 1–6. DOI: 10.1007/s12043-018-1581-6
- WEI, Z., PHAM, V.-T., KHALAF, A.J.M., et al. A modified multistable chaotic oscillator. International Journal of Bifurcation and Chaos, 2018, vol. 28, no. 07, p. 1850085. DOI: 10.1142/S0218127418500852
- TANG, Y.X., KHALAF, A.J.M., RAJAGOPAL, K., et al. A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors. Chinese Physics B, 2018, vol. 27, no. 4, p. 40502-1–6. DOI: 10.1088/1674-1056/27/4/040502
- LI, C., SPROTT, J. C., KAPITANIAK, T. et al. Infinite lattice of hyperchaotic strange attractors. Chaos, Solitons & Fractals, 2018, vol. 109, p. 76–82. DOI: 10.1016/j.chaos.2018.02.022
- LI, C., THIO, W.J.C., SPROTT, J. C. et al. Constructing infinitely many attractors in a programmable chaotic circuit. IEEE Access, 2018, vol. 6, p. 29003–29012. DOI: 10.1109/ACCESS.2018.2824984
- KAHN, P.B., ZARMI, Y. Nonlinear Dynamics: Exploration Through Normal Forms. Courier Corporation, 2014. ISBN: 0486780457.
- WOLF, A., SWIFT, J.B., SWINNEY, H.L. et al. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 1985, vol. 16, no. 3, p. 285–317. DOI: 10.1016/0167-2789(85)90011-9
- ITOH, M. Synthesis of electronic circuits for simulating nonlinear dynamics. International Journal of Bifurcation and Chaos, 2001, vol. 11, no. 3, p. 605–653. DOI: 10.1142/S0218127401002341
- BUSCARINO, A., FORTUNA, L., FRASCA, M. The jerk dynamics of Chua’s circuit. International Journal of Bifurcation and Chaos, 2014, vol. 24, no. 6, p. 1450085. DOI: 10.1142/S0218127414500850
- XU, Q., LIN, Y., BAO, B., et al. Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos, Solitons & Fractals, 2016, vol. 83, p. 186–200. DOI: 10.1016/j.chaos.2015.12.007
- PETRZELA, J. Strange attractors generated by multiple-valued static memory cell with polynomial approximation of resonant tunneling diodes. Entropy, 2018, vol. 20, no. 9, p. 697-1–23. DOI: 10.3390/e20090697
- PETRZELA, J. Multi-valued static memory with resonant tunneling diodes as natural source of chaos. Nonlinear Dynamics, 2018, vol. 94, no. 3, p. 1867–1887. DOI: 10.1007/s11071-018-4462-0
- RAJAGOPAL, K., LI, C., NAZARIMEHR, F. et al. Chaotic dynamics of modified wien bridge oscillator with fractional order memristor. Radioengineering, 2019, vol. 28, no. 1, p. 165–174. DOI: 10.13164/re.2019.0165
- PETRZELA, J., KOLKA, Z., HANUS, S. Simple chaotic oscillator: From mathematical model to practical experiment. Radioengineering, 2006, vol. 15, no. 1, p. 6–11. DOI: 10.1201/b11408-27
- GOTTHANS, T., PETRZELA, J. Experimental study of the sampled labyrinth chaos. Radioengineering, 2011, vol. 20, no. 4, p. 873–879.
- PETRZELA, J., HRUBOS, Z., GOTTHANS, T. Modeling deterministic chaos using electronic circuits. Radioengineering, 2011, vol. 20, no. 2, p. 438–444.
- YENER S. C., KUNTMAN, H. H. Fully CMOS memristor based chaotic circuit. Radioengineering, 2014, vol. 23, no. 4, p. 1140–1149.
- SHEN, C., YU, S., LU, J. A systematic methodology for constructing hyperchaotic systems with multiple positive Lyapunov exponents and circuit implementation. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 61, no. 3, p. 854–864. DOI: 10.1109/TCSI.2013.2283994
- TANG, W.K., ZHONG, G.Q., CHEN, G., et al. Generation of n-scroll attractors via sine function. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, vol. 48, no. 11, p. 1369–1372. DOI: 10.1109/81.964432
Keywords: Multistability, chaotic oscillators, basin of attraction, coexisting attractors
S. Dautovic, N. Samardzic, A. Juhas
[references] [full-text]
[DOI: 10.13164/re.2020.0147]
[Download Citations]
Takacs Model of Hysteresis in Mathematical Modeling of Memristors
In this paper, the mathematical modeling of memristor via Takacs model of hysteresis is presented along with a modification of this model tailored to describe the asymmetric hysteresis loop and first order reversal curves. In particular, it is shown that there is a class of differential equations of the Duhem model of hysteresis where every member of the class could play a role of the state equation of memristor. Within this class of Duhem differential equations, there are two distinct subclasses: one corresponding to the Takacs model and the other one corresponding to the state equations of the memristor model with the Biolek window function of various degrees p. These two subclasses have a non-empty intersection, which contains the state equation of the memristor model with the Biolek window function for p=1. To demonstrate the proposed approach, three examples are presented.
- TAN, X., IYER, R. V. Modeling and control of hysteresis. IEEE Control Systems Magazine, 2009, vol. 29, no. 1, p. 26–28. DOI: 10.1109/mcs.2008.930921
- SMITH, R. C. Smart Material Systems: Model Development. Philadelphia, PA (USA): SIAM, 2005. ISBN: 9780898715835
- KRASNOSEL’SKII, M. A., POKROVSKII, A. V. Systems with Hysteresis. Berlin (Germany): Springer-Verlag, 1989. ISBN: 9783642613029
- MAYERGOYZ, I. D. Mathematical Models of Hysteresis. Berlin (Germany): Springer-Verlag, 1991. ISBN: 9781461230281
- VISINTIN, A. Differential Models of Hysteresis. Berlin (Germany): Springer-Verlag, 1994. ISBN: 9783662115572
- BROKATE, M., SPREKELS, J. Hysteresis and Phase Transitions. Berlin (Germany): Springer-Verlag, 1996. ISBN: 9781461240488
- IVANYI, A. Hysteresis Models in Electromagnetic Computation. Budapest (Hungary): ISBSI, 1997. ISBN: 9630574160
- HADJIPANAYIS. G. C. (Ed.). Magnetic Hysteresis in Novel Magnetic Materials. Dordrecht (Netherlands): Springer Netherlands, 1997. ISBN: 9789401154789
- BERTOTTI, G. Hysteresis in Magnetism. Boston (USA): Academic Press, 1998. ISBN: 9780080534374
- DELLA TORRE, E. Magnetic Hysteresis. New York (USA): Wiley-IEEE Press, 1999. ISBN: 9780780347199
- TAKACS, J. Mathematics of Hysteretic Phenomena. Weinheim (Germany): Wiley-VCH, 2006. ISBN: 9783527404018
- DIMIAN, M., ANDREI, P. Noise-Driven Phenomena in Hysteretic Systems. New York (USA): Springer, 2014. ISBN: 9781461413745
- TEAPE, J. W., SIMPSON, R. R. S., SLATER, R. D., et al. Representation of magnetic characteristic, including hysteresis, by exponential series. Proceedings of the IEEE, 1974, vol. 121, no. 1, p. 1019–1020. DOI: 10.1049/piee.1974.0235
- OSSART, F., MEUNIER, G. Comparison between various hysteresis models and experimental data. IEEE Transactions on Magnetics, 1990, vol. 26, no. 5, p. 2837–2839. DOI: 10.1109/20.104893
- DE LEON, F., SEMLYEN, A. A simple representation of dynamic hysteresis losses in power transformers. IEEE Transactions on Power Delivery, 1995, vol. 10, no. 1, p. 315–321. DOI: 10.1109/61.368383
- WIDGER, G. F. T. Representation of magnetisation curves over extensive range by rational fraction approximations. Proceedings of the IEEE, 1969, vol. 116, no. 1, p. 156–160. DOI: 10.1049/piee.1969.0032
- RIVAS, J., ZAMARRO, J. M., MARTIN, E., et al Simple approximation for magnetization curves and hysteresis loops. IEEE Transactions on Magnetics, 1981, vol. 17, no. 4, p. 1498–1502. DOI: 10.1109/TMAG.1981.1061241
- BATTISTELLI, L., GENTILE, G., PICCOLO, A. Representation of hysteresis loops by rational fraction approximations. Physica Scripta, 1989, vol. 40, no. 4, p. 502–507. DOI: 10.1088/0031- 8949/40/4/012
- SYKULSKI, J. K. Computational Magnetics. Dordrecht (Netherlands): Springer Netherlands, 1995. ISBN: 9789401112789
- SAITO, Y., HAYANO, S., NAKAMURA, H., et al. A representation of magnetic hysteresis by Fourier series. Journal of Magnetism and Magnetic Materials, 1986, vol. 54-57, Part 3, p. 1613–1614. DOI: 10.1016/0304-8853(86)90947-9
- WLODARSKI, Z., WLODARSKA, J., BRYKALSKI, A. Application of different saturation curves in a mathematical model of hysteresis. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2005, vol. 24, no. 4, p. 1367–1380. DOI: 10.1108/03321640510615661
- WLODARSKI, Z. Modeling hysteresis by analytical reversal curves. Physica B: Condensed Matter, 2007, vol. 398, no. 1, p. 159–163. DOI: 10.1016/j.physb.2007.05.012
- AVANAKI, Z. A., HASSANZADEH, A. J. Modified Brillouin function to explain the ferromagnetic behavior of surfactant-aided synthesized α-Fe2O3 nanostructures. Journal of Theoretical and Applied Physics, 2013, vol. 7, no. 19, p. 1–7. DOI: 10.1186/2251- 7235-7-19
- POTTER, R. I., SCHMULIAN, R. J. Self-consistently computed magnetization patterns in thin magnetic recording media. IEEE Transactions on Magnetics, 1971, vol. 7, no. 4, p. 873–880. DOI: 10.1109/TMAG.1971.1067251
- TRUJILLO, H., CRUZ, J., RIVERO, M., et al. Analysis of the fluxgate response through a simple spice model. Sensors and Actuators A: Physical, 1999, vol. 75, no. 1, p. 1–7. DOI: 10.1016/S0924-4247(98)00280-5
- WANG, Y., WU, S., ZHOU, Z., et al. Research on the dynamic hysteresis loop model of the residence times difference (RTD)- fluxgate. Sensors, 2013, vol. 13, no. 9, p. 11539–11552. DOI: 10.3390/s130911539
- MILOVANOVIC, A. M., KOPRIVICA, B. M. Mathematical model of major hysteresis loop and transient magnetizations. Electromagnetics, 2015, vol. 35, no. 3, p. 155–166. DOI: 10.1080/02726343.2015.1005202
- KOPRIVICA, B., MILOVANOVIC, A., MITROVIC, N. Mathematical modeling of frequency-dependent hysteresis and energy loss of FeBSiC amorphous alloy. Journal of Magnetism and Magnetic Materials, 2017, vol. 422, p. 37–42. DOI: 10.1016/j.jmmm.2016.08.061
- TAKACS, J. A phenomenological mathematical model of hysteresis. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2001, vol. 20, no. 4, p. 1002–1014. DOI: 10.1108/EUM0000000005771
- PETRESCU, L., CAZACU, E., PETRESCU, C. Sigmoid functions used in hysteresis phenomenon modeling. In 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE). Bucharest (Romania), 2015, p. 521–524. DOI: 10.1109/ATEE.2015.7133863
- ADHIKARI, S. P., SAH, M. P., KIM, H., CHUA, L. O. Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, vol. 60, no. 11, p. 3008–3021. DOI: 10.1109/TCSI.2013.2256171
- CHUA, L. O. If it’s pinched it’s a memristor. Semiconductor Science and Technology, 2014, vol. 29, no. 10, p. 1–42. DOI: 10.1088/0268-1242/29/10/104001
- CHUA, L. O. Everything you wish to know about memristors but are afraid to ask. Radioengineering, 2015, vol. 24, no. 2, p. 319–368. DOI: 10.13164/re.2015.0319
- BIOLEK, D., BIOLEK, Z. About fingerprints of Chua’s memristors. IEEE Circuits and Systems Magazine, 2018, vol. 18, no. 2, p. 35–47. DOI: 10.1109/MCAS.2018.2821759
- BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing'. Electronics Letters, 2011, vol. 47, no. 25, p. 1385–1387. DOI: 10.1049/el.2011.2913
- BIOLEK, Z., BIOLEK, D. How can the hysteresis loop of the ideal memristor be pinched? IEEE Transactions on Circuits and Systems II: Express Briefs, 2014, vol. 61, no. 7, p. 491–495. DOI: 10.1109/TCSII.2014.2327303
- BIOLEK, Z., BIOLEK, D., BIOLKOVA, V., et al. Comments on pinched hysteresis loops of memristive elements. Radioengineering, 2015, vol. 24, no. 4, p. 962–967. DOI: 10.13164/re.2015.0962
- BIOLEK, Z., BIOLEK, D., BIOLKOVA, V., et al. Variation of a classical fingerprint of ideal memristor. International Journal of Circuit Theory and Applications, 2016, vol. 44, no. 5, p. 1202–1207. DOI: 10.1002/cta.2121
- BIOLEK, D., BIOLEK, Z. BIOLKOVA, V. Every nonlinear element from Chua’s table can generate pinched hysteresis loops: generalised homothety theorem. Electronics Letters, 2016, vol. 52, no. 21, p. 1744–1746. DOI: 10.1049/el.2016.2961
- BIOLEK, D., BIOLEK, Z., BIOLKOVA, V., et al. About v-i pinched hysteresis of some non-memristive systems. Mathematical Problems in Engineering, 2018, vol. 2018, p. 1–10. DOI: 10.1155/2018/1747865
- BIOLEK, D., BIOLEK, Z., BIOLKOVA, V. Interpreting area of pinched memristor hysteresis loop. Electronics Letters, 2014, vol. 50, no. 2, p. 74–75. DOI: 10.1049/el.2013.3108
- SAH, M. P., KIM, H., CHUA, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine, 2014, vol. 14, no. 1, p. 12–36. DOI: 10.1109/MCAS.2013.2296414
- BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Computation of the area of memristor pinched hysteresis loop. IEEE Transactions on Circuits and Systems II: Express Briefs, 2012, vol. 59, no. 9, p. 607–611. DOI: 10.1109/TCSII.2012.2208670
- BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. Analytical computation of the area of pinched hysteresis loops of ideal memelements. Radioengineering, 2013, vol. 22, no. 1, p. 132–135. ISSN: 1210-2512
- JUHAS, A., DAUTOVIC, S. Computation of pinched hysteresis loop area from memristance-vs-state map. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, vol. 66, no. 4, p. 677–681. DOI: 10.1109/TCSII.2018.2868384
- ELWAKIL, A. S., FOUDA, M. E., RADWAN, A. G. A simple model of double-loop hysteresis behavior in memristive elements. IEEE Transactions on Circuits and Systems II: Express Briefs, 2013, vol. 60, no. 8, p. 487–491. DOI: 10.1109/TCSII.2013.2268376
- MAUNDY, B., ELWAKIL, A. S., PSYCHALINOS, C. Correlation between the theory of Lissajous figures and the generation of pinched hysteresis loops in nonlinear circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, vol. 66, no. 7, p. 2606–2614. DOI: 10.1109/TCSI.2019.2900944
- WANG, X., RON HUI, S. Y. Graphical modelling of pinched hysteresis loops of memristors. IET Science, Measurement & Technology, 2017, vol. 11, no. 1, p. 86–96. DOI: 10.1049/ietsmt.2016.0210
- MIRANDA, E. Compact model for the major and minor hysteretic I–V loops in nonlinear memristive devices. IEEE Transactions on Nanotechnology, 2015, vol. 14, no. 5, p. 787–789. DOI: 10.1109/TNANO.2015.2455235
- PATTERSON, A. G., SUNE, J., MIRANDA, E. Voltage-driven hysteresis model for resistive switching: SPICE modeling and circuit applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, vol. 36, no. 12, p. 2044–2051. DOI: 10.1109/TCAD.2017.2756561
- BAO, B., QIAN, H., XU, Q., et al. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based Hopfield neural network. Frontiers in Computational Neuroscience, 2017, vol. 11, no. 81, p. 1–14. DOI: 10.3389/fncom.2017.00081
- ASCOLI, A., TETZLAFF, R., BIOLEK, Z., et al. The art of finding accurate memristor model solutions. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2015, vol. 5, no. 2, p. 133–142. DOI: 10.1109/JETCAS.2015.2426493
- KRZYSTECZKO, P., REISS, G., THOMAS, A. Memristive switching of MgO based magnetic tunnel junctions. Applied Physics Letters, 2009, vol. 95, no. 11, p. 1–3. DOI: 10.1063/1.3224193
- CHANTHBOUALA, A., GARCIA, V., CHERIFI, R. O., et al. A ferroelectric memristor. Nature Materials, 2012, vol. 11, no. 10, p. 860–864. DOI: 10.1038/NMAT3415
- MIRANDA, E., JIMENEZ, D., SUNE, J. The quantum pointcontact memristor. IEEE Electron Device Letters, 2012, vol. 33, no. 10, p. 1474–1476. DOI: 10.1109/LED.2012.2210185
- FUKAMI, S., ZHANG, C., DUTTAGUPTA, S., et al. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nature Materials, 2016, vol. 15, no. 5, p. 535–541. DOI: 10.1038/NMAT4566
- FUKAMI, S., OHNO, H. Perspective: Spintronic synapse for artificial neural network. Journal of Applied Physics, 2018, vol. 124, no. 15, p. 1–8. DOI: 10.1063/1.5042317
- DUENAS, S., CASTAN, H., GARCIA, H., et al. Study of the admittance hysteresis cycles in TiN/Ti/HfO2/W-based RRAM devices. Microelectronic Engineering, 2017, vol. 178, p. 30–33. DOI: 10.1016/j.mee.2017.04.020
- CASTAN, H., DUENAS, S., GARCIA, H., et al. Analysis and control of the intermediate memory states of RRAM devices by means of admittance parameters. Journal of Applied Physics, 2018, vol. 124, no. 15, p. 1–8. DOI: 10.1063/1.5024836
- YAN, Z. B., LIU, J. M. Coexistence of high performance resistance and capacitance memory based on multilayered metaloxide structures. Scientific Reports, 2013, vol. 3, p. 1–7. DOI: 10.1038/srep02482
- BESSONOV, A. A., KIRIKOVA, M. N., PETUKHOV, D. I., et al. Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 2015, vol. 14, no. 2, p. 199–204. DOI: 10.1038/NMAT4135
- LIN, D., RON HUI, S. Y., CHUA, L. O. Gas discharge lamps are volatile memristors. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, vol. 61, no. 7, p. 2066–2073. DOI: 10.1109/TCSI.2014.2304659
- BIOLEK, Z., BIOLEK, D., BIOLKOVA, V. SPICE model of memristor with nonlinear dopant drift. Radioengineering, 2009, vol. 18, no. 2, p. 210–214. ISSN: 1210-2512
- PARKER, T. S., CHUA, L. O. Practical Numerical Algorithms for Chaotic Systems. New York (USA): Springer-Verlag, 1989. ISBN: 9781461234869
- SLIPKO, V. A., PERSHIN, Y. V. Transient dynamics of pulsedriven memristors in the presence of a stable fixed point. Physica E: Low-dimensional Systems and Nanostructures, 2019, vol. 114, p. 1–5. DOI: 10.1016/j.physe.2019.113561
- SLIPKO, V. A., PERSHIN, Y. V. Importance of the window function choice for the predictive modelling of memristors. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, early access, p. 1–5. DOI: 10.1109/TCSII.2019.2906295
- CORINTO, F., ASCOLI, A. A boundary condition-based approach to the modeling of memristor nano-structures. IEEE Transactions on Circuits and Systems-I: Regular Papers, 2012, vol. 59, no. 11, p. 2713–2726. DOI: 10.1109/TCSI.2012.2190563
Keywords: Hysteresis loop, Takacs model, pinched hysteresis loop, memristor
A. Lomayev, V. Kravtsov, M. Genossar, A. Maltsev, A. Khoryaev
[references] [full-text]
[DOI: 10.13164/re.2020.0159]
[Download Citations]
Method for Phase Noise Impact Compensation in 60 GHz OFDM Receivers
This paper presents a method for phase noise impact compensation in 60 GHz OFDM receivers and provides the results of performance evaluation using OFDM PHY parameters defined in the IEEE 802.11ay standard. It is shown that the phase noise in 60 GHz band has a critical impact on the OFDM performance for high data rate transmission employing high order modulation constellations. The proposed compensation method combines time domain algorithm predicting the linear average phase trend on the OFDM symbol duration and estimation in frequency domain of phase noise spectrum realization and convolution with correction filter response. Both algorithms use Maximum A Posteriori Probability (MAP) estimation approach to find the optimal solution and are applied successively. The proposed algorithms have moderate implementation complexity which is especially important for high speed 11ay hardware modem architecture. The performance of the proposed algorithms is evaluated in the frequency flat and frequency selective channels with phase noise model adopted in the IEEE 802.11ay.
- Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications – amendment 7: enhanced throughput for operation in license-exempt bands above 45 GHz, P802.11ay™/D4.0, Jun., 2019.
- CARIOU, L., VENKATESAN, G. TGay evaluation methodology. IEEE Document 802.11-15/0866r4, 2015. [Online] Available at: https://mentor.ieee.org/802.11/documents?is_dcn=866&is_group= 00ay.
- ROBERTSON, P., KAISER, S. Analysis of the effects of phase noise in OFDM systems. In Proceedings of IEEE International Conference on Communications ICC '95. Seattle (WA, USA), 1995, p. 1652–1657. DOI: 10.1109/ICC.1995.524481
- POLLET, T., VAN BLADEL, M., MOENECLAEY, M. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Transactions on Communications, 1995, vol. 43, no. 2, p. 191–193. DOI: 10.1109/26.380034
- ARMADA, A. G., CALVO, M. Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system. IEEE Communication Letters, 1998, vol. 2, p. 11–13. DOI: 10.1109/4234.658613
- TOMBA, L. On the effect of Wiener phase noise in OFDM systems. IEEE Transactions on Communications, 1998, vol. 46, no. 5, p. 580–583. DOI: 10.1109/26.668721
- SPEITH, M., FECHTEL, S. A., FOCK, G., et al. Optimum receiver design for wireless broad-band systems using OFDM - part I. IEEE Transactions on Communications, 1999, vol. 47, no. 11, p. 1668–1677. DOI: 10.1109/26.803501
- EL-TANANY, M. S., WU, Y., HAZY, L. Analytical modelling and simulation of phase noise interference in OFDM-based digital television terrestrial broadcasting systems. IEEE Transactions on Broadcasting, 2001, vol. 47, no. 3, p. 20–31. DOI: 10.1109/11.920777
- ARMADA, A. G. Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM). IEEE Transactions on Broadcasting, 2001, vol. 47, no. 2, p. 153–159. DOI: 10.1109/11.948268
- WU, S., BAR-NESS, Y. OFDM systems in the presence of phase noise: consequences and solutions. IEEE Transactions on Communications, 2004, vol. 52, no. 11, p. 1988–1996. DOI: 10.1109/TCOMM.2004.836441
- SCHENK, T. C. W., VAN DER HOFSTAD, R. W., FLEDDERUS, E. R., et al. Distribution of the ICI term in phase noise impaired OFDM systems. IEEE Transactions on Wireless Communication, 2007, vol. 6, no. 4, p. 1488–1500. DOI: 10.1109/TWC.2007.348345
- PETROVIC, D., RAVE, W., FETTWEIS, G. Phase noise suppression in OFDM including inter-carrier interference. In Proceedings of the 8th International OFDM Workshop. Hamburg (Germany), 2003, p. 219–224.
- PETROVIC, D., RAVE, W., FETTWEIS, G. Effects of phase noise on OFDM systems with and without PLL: characterization and compensation. IEEE Transactions on Communication, 2007, vol. 55, no. 8, p. 1607–1616. DOI: 10.1109/TCOMM.2007.902593
- GHOLAMI, M. R., NADER-ESFAHANI, S., EFTEKHAR, A. A. A new method of phase noise compensation in OFDM. In Proceedings of IEEE International Conference on Communication (ICC). Anchorage (AK, USA), 2003, p. 3443–3446. DOI: 10.1109/ICC.2003.1204094
- LIU, G., ZHU, W. Compensation of phase noise in OFDM systems using an ICI reduction scheme. IEEE Transactions on Broadcasting, 2004, vol. 50, no. 4, p. 399–407. DOI: 10.1109/TBC.2004.837884
- MATSUMOTO, K., CHANG, Y., GIA KHANH, T., et al. Frequency domain phase noise compensation employing adaptive algorithms for millimeter-wave OFDM systems. In IEEE Proceedings of Asia-Pacific Microwave Conference. Sendai (Japan), 2014, p. 1262–1264. Electronic ISBN: 978-4-9023-3931-4
- RABIEI, P., NAMGOONG, W., AL-DHAHIR, N. A non-iterative technique for phase noise ICI mitigation in packet-based OFDM systems. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 11, p. 5945–5950. DOI: 10.1109/TSP.2010.2057250
- MALTSEV, A., MASLENNIKOV, R., KHORYAEV, A. Influence of phase noise on OFDM data transmission systems. Radiophysics and Quantum Electronics, 2011, vol. 53, no. 8, p. 475–487. DOI: 10.1007/s11141-011-9244-1
- PREYSS, N., PANTIC, R. D., BURG, A. Correlation based phase noise compensation in 60 GHz wireless systems. In IEEE 28-th Convention of Electrical and Electronics Engineers in Israel. Eilat (Israel), 2014, p. 1–5. DOI: 10.1109/EEEI.2014.7005755
- MA, C-Y., WU, C-Y., HUANG, C-C. A simple ICI suppression method utilizing cyclic prefix for OFDM systems in the presence of phase noise. IEEE Transactions on Communication, 2013, vol. 61, no. 11, p. 4539–4550. DOI: 10.1109/TCOMM.2013.091513.130197
- LIU, W.-C., WEI, T.-C., HUANG, Y.-S., et al. All-digital synchronization for SC/OFDM mode of IEEE 802.15.3c and IEEE 802.11ad. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, vol. 62, no. 2, p. 545–553. DOI: 10.1109/TCSI.2014.2361035
- HUANG, L. Y., WU, C. Y., LIU, C. Y., et al. A 802.15.3c/802.11ad dual mode phase noise cancellation for 60 GHz communication system. In Proceedings of IEEE International Symposium on. VLSI Design, Automation and Test. Hsinchu (Taiwan), 2015, p. 1–4. DOI: 10.1109/VLSI-DAT.2015.7114575
- LIU, C.-Y., SIE, M.-S., LEONG, E. W. J., et al. Dual-mode alldigital baseband receiver with feed-forward and shared-memory architecture for dual-standard over 60 GHz NLOS channel. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, vol. 64, no. 3, p. 608–618. DOI: 10.1109/TCSI.2016.2615084
- Channel models for 60 GHz WLAN systems. IEEE 802.11, TGad. [Online] Available at: https: //mentor.ieee.org/802.11/documents?is_dcn=334&is_group=00ad.
- MASLENNIKOV, R., LOMAYEV, A. Implementation of 60 GHz WLAN Channel Model. IEEE Document 802.11-10/0854r3, 2010. [Online] Available at: https: //mentor.ieee.org/802.11/documents?is_dcn=854&is_group=00ad.
- OPPENHEIM, A. V., SCHAFER, R. Discrete-time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 0-13-754920-2
- HORLIN, F., BOURDOUX, A. Digital Compensation for Analog Front-Ends: A New Approach to Wireless Transceiver Design. John Wiley & Sons, 2008. ISBN: 978-0-470-51708-6
- KAY, S. M. Fundamentals of Statistical Signal Processing. Vol. 1. Englewood Cliffs, NJ: Prentice-Hall, 1998. ISBN: 0-13-345711-7
- STRANG, G. Introduction to Linear Algebra. Wellesley, MA: Cambridge Press, 2009. ISBN: 978-0-9802327-1-4
Keywords: Phase noise, 60 GHz, OFDM, linear phase trend, deconvolution, Maximum A Posteriori Probability, MAP, IEEE 802.11ay
P. Kurada, S. Maruvada, K. R. Sanagapallea
[references] [full-text]
[DOI: 10.13164/re.2020.0174]
[Download Citations]
Speech Bandwidth Extension Using DWT-FFT-Based Data Hiding
A novel transform-domain speech bandwidth extension algorithm is proposed to transmit information about the missing speech frequencies over a hidden channel, i.e., the related encoded spectral envelope parameters are hidden within the narrowband speech signal using discrete wavelet transform-fast Fourier transform-based data hiding (DWTFFTBDH) technique. The hidden information is recovered reliably at the receiver to produce a wideband speech signal of much higher quality. Obtained results confirm the excellent reconstructed wideband speech quality of the proposed algorithm over traditional methods.
- JAX, P., VARY, P. Bandwidth extension of speech signals: A catalyst for the introduction of wideband speech coding? IEEE Communications Magazine, 2006, vol. 44, no. 5, p. 106–111. DOI: 10.1109/MCOM.2006.1637954
- JAX, P. Enhancement of bandlimited speech signals: Algorithms and theoretical bounds. PhD Thesis. RWTH Aachen University, Aachen, Germany, 2002.
- PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of speech signals: A comprehensive review. International Journal of Intelligent Systems and Applications, 2016, vol. 8, no. 2, p. 45–52. DOI: 10.5815/ijisa.2016.02.06
- ABEL, J., FINGSCHEIDT, T. Artificial speech bandwidth extension using deep neural networks for wideband spectral envelope estimation. IEEE Transactions on Audio, Speech, and Language Processing, 2018, vol. 26, no. 1, p. 71–83. DOI: 10.1109/TASLP.2017.2761236
- LI, Y., KANG, S. Artificial bandwidth extension using deep neural network-based spectral envelope estimation and enhanced excitation estimation. IET Signal Processing, 2016, vol. 10, no. 4, p. 422–427, DOI: 10.1049/iet-spr.2015.0375
- WANG, Y., ZHAO, S., QU, D., et al., Speech bandwidth extension using recurrent temporal restricted Boltzmann machines. IET Signal Processing Letters, 2016, vol. 23, no. 12, p. 1877–1881. DOI: 10.1109/LSP.2016.2621053
- JAX, P., VARY, P. An upper bound on the quality of artificial bandwidth extension of narrowband speech signals. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Orlando (USA), 2002, p. 237–240. DOI: 10.1109/ICASSP.2002.5743698
- CHEN, S., LEUNG, H. Artificial bandwidth extension of telephony speech by data hiding. In Proceedings of the IEEE International. Symposium on Circuits and Systems. Kobe (Japan), 2005, p. 3151–3154. DOI: 10.1109/ISCAS.2005.1465296
- CHEN, S., LEUNG, H. Speech bandwidth extension by data hiding and phonetic classification. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu (Hawaii, USA), 2007, p. 593–596. DOI: 10.1109/ICASSP.2007.366982
- CHEN, Z., ZHAO, C., GENG, G., et al. An audio watermark based speech bandwidth extension method. EURASIP Journal on Audio, Speech and Music Processing, 2013, vol. 2013, no. 10, p. 1–8. DOI: 10.1186/1687-4722-2013-10
- SAGI, A., MALAH, D. Bandwidth extension of telephone speech aided by data embedding. EURASIP Journal on Advances in Signal Processing, 2007, vol. 2007, no. 1, p. 37–52. DOI: 10.1155/2007/64921
- CHEN, S., LEUNG, H., DING, H. Telephony speech enhancement by data hiding. IEEE Transactions on Instrumentation and Measurement, 2007, vol. 56, no. 1, p. 63–74. DOI: 10.1109/TIM.2006.887409
- GEISER, B., VARY, P. Speech bandwidth extension based on inband transmission of higher frequencies. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver (Canada), 2013, p. 7507–7511. DOI: 10.1109/ICASSP.2013.6639122
- GEISER, B., VARY, P. Backwards compatible wideband telephony in mobile networks: CELP watermarking and bandwidth extension. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Honolulu (Hawaii, USA), 2007, p. 533–536. DOI: 10.1109/ICASSP.2007.366967
- BHATT, N., KOSTA, Y. A novel approach for artificial bandwidth extension of speech signals by LPC technique over proposed GSM FR NB coder using high band feature extraction and various extension of excitation methods. International Journal of Speech Technology, 2015, vol. 18, no. 1, p. 57–64. DOI: 10.1007/s10772-014-9249-1
- BHATT, N. Simulation and overall comparative evaluation of performance between different techniques for high band feature extraction based on artificial bandwidth extension of speech over proposed global system for mobile full rate narrow band coder. International Journal of Speech Technology, 2016, vol. 19, no. 4, p. 881–893. DOI: 10.1007/s10772-016-9378-9
- REKIK, S., GUERCHI, D., SELOUANI, S. A., et al. Speech steganography using wavelet and Fourier transforms. EURASIP Journal on Audio, Speech, and Music Processing, 2012, vol. 2012, no. 20, p. 1–14. DOI: 10.1186/1687-4722-2012-20
- PROAKIS, J. G. Digital Communications. New York: McGrawHill, 1989. ISBN: 978-0070509375
- HANZO, L. L., SOMERVILLE, F. C. A., WOODARD, J. P. Voice Compression and Communications: Principles and Applications for Fixed and Wireless Channels. New York: John Wiley & Sons, 2001. ISBN: 978-0-471-15039-8 (electronic)
- NILSSON, M., KLEIJN, W. B. Avoiding overestimation in bandwidth extension of telephony speech. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City (UT, USA), 2001, vol. 2, p. 869–872. DOI: 10.1109/ICASSP.2001.941053
- BEZDEK, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum, 1981. DOI: 10.1007/978-1-4757-0450-1
- JAX, P., VARY, P. On artificial bandwidth extension of telephone speech. Signal Processing, 2003, vol. 83, no. 8, p. 1707–1719. DOI: 10.1016/S0165-1684(03)00082-3
- EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE (ETSI) Standard. Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech recognition; Frontend feature extraction algorithm; Compression algorithms, ETSI ES 201 108 V1.1.2, April 2000.
- GAROFOLO, J. S., LAMEL, L. F., FISHER, W. M, et al. Getting Started with the DARPA TIMIT CD-ROM: An Acoustic Phonetic Continuous Speech Database. Gaithersburg (MD, USA): National Institute of Standards and Technology (NIST). ISBN: 1-58563- 019-5
- INTERNATIONAL TELECOMMUNICATIONS UNION. Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End to-end Speech Quality Assessment of Narrowband Telephone Networks and Speech Codecs. ITU-T Recommendation P.862, February 2001.
- KEISER, B. E., STRANGE, E. Digital Telephony and Network Integration. New York: Van Nostrand Reinhold, 1995. ISBN 978-1-4615-1787-0 (electronic)
- PRASAD, N., KISHORE KUMAR, T. Speech bandwidth extension aided by spectral magnitude data hiding. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 11, p. 4512–4540. DOI: 10.1007/s00034-017-0526-5
- CHEN, S., LEUNG, H. Concurrent data transmission through analog speech channel using data hiding. IEEE Signal Processing Letters, 2005, vol. 12, no. 8, p. 581–584. DOI: 10.1109/LSP.2005.851259
- PRASAD, N., KISHORE KUMAR, T. Bandwidth extension of narrowband speech using integer Wavelet transform. IET Signal Processing, 2017, vol. 11, no. 4, p. 437-445. DOI: 10.1049/ietspr.2016.0453
- PRASAD, N., KISHORE KUMAR, T., Bandwidth extension of telephone speech using magnitude spectrum data hiding. International Journal of Speech Technology, 2017, vol. 20, no. 1, p. 151–162. DOI: 10.1007/s10772-016-9393-x
- CHEN, S., LEUNG, H. A bandwidth extension technique for signal transmission using chaotic data hiding. Circuits, Systems, and Signal Processing, 2008, vol. 27, no. 6, p. 893–913. DOI: 10.1007/s00034-008-9066-3
- GEISER, B., JAX, P., VARY, P. Artificial bandwidth extension of speech supported by watermark-transmitted side information. In Proceedings of the 9th European Conference on Speech Communication and Technology. Lisbon (Portugal), 2005, p. 1497–1500.
- INTERNATIONAL TELECOMMUNICATIONS UNION. Wideband Extension to Recommendation P.862 for the Assessment of Wideband Telephone Networks and Speech Codecs. ITU-T Recommendation P.862.2, November 2005
- INTERNATIONAL TELECOMMUNICATIONS UNION. Methods for Subjective Determination of Transmission Quality. ITU-T Recommendation P.800, August 1996.
- INTERNATIONAL TELECOMMUNICATIONS UNION. Software Tools for Speech and Audio Coding Standardization. ITU-T Rec. G.191, September 2005.
Keywords: Public Switched Telephone Network (PSTN), bandwidth extension of narrowband speech, DWT-FFT-based data hiding, speech quality, spread spectrum
X. Fan, Z. Tan, P. Song, L. Chen
[references] [full-text]
[DOI: 10.13164/re.2020.0182]
[Download Citations]
A Variable Step-size CLMS Algorithm and Its Analysis
In this paper, a hyperbolic tangent variable step-size convex combination of the least mean square (HTVSCLMS) algorithm is proposed and analyzed. This work avoids the compromise between the convergence speed and the steady-state error for two filters in convex combination of the least mean square (CLMS) algorithm. In the proposed algorithm, the big step-size filter is replaced by a filter whose iteration step-size is a modified function based on hyperbolic tangent function. Thus it constructs hyperbolic tangent nonlinear relationship between step-size and error. At the same time, the small step-size filter remains unchanged but fixed. So, it conquers the slow convergence speed and the weak anti-interference ability of fixed step-size CLMS. Simulation results show that HTVSCLMS algorithm, compared with CLMS algorithm and variable step-size CLMS (VSCLMS) algorithm, not only has superior capability of tracking in the presence of noise and in a stable and even non-stable environment, but also can maintain a better convergence.
- MANOLAKIS, D. G., INGLE, V. K., KOGON, S. M. Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing. London (UK): Artech House, 2005. ISBN: 978-1580536103
- LI, Z., LI, D., XU, X., et al. New normalized LMS adaptive filter with a variable regularization factor. Journal of Systems Engineering and Electronics, 2019, vol. 30, no. 2, p. 259–269. DOI: 10.21629/JSEE.2019.02.05
- HAYKIN, S. O. Adaptive Filter Theory. 5th ed., rev. London (UK): Kluwer Academic Publishers, 2016. ISBN: 9787121250521
- ANAND, A., KAR, A., SWAMY, M. N. S. An improved CLMS algorithm for feedback cancellation in hearing aids. Applied Acoustics, 2018, vol. 129, p. 417–426. DOI: 10.1016/J.APACOUST.2017.09.002
- ARENAS-GARCIA, J., FIGUEIRAS-VIDAL, A. R., SAYED, A. H. Steady-state performance of convex combinations of adaptive filters. In Proceedings of IEEE International Conference Acoustics, Speech, and Signal Processing. Philadelphia (USA), 2005, vol. 4, p. 33–36. DOI: 10.1109/ICASSP.2005.1415938
- ARENAS-GARCIA, J., FIGUEIRAS-VIDAL, A. R., SAYED, A. H. Mean-square performance of a convex combination of two adaptive filters. IEEE Transactions on Signal Processing, 2006, vol. 54, no. 3, p. 1078–1090. DOI: 10.1109/TSP.2005.863126
- HONG, D., MIAO, J., SU, J., et al. An improved variable step-size convex combination of LMS adaptive filtering algorithm and its analysis. Acta Electronica Sinica, 2014, vol. 42, no. 11, p. 2225 to 2230. DOI: 10.3969/J.ISSN.0372-2112.2014.11.015 (in Chinese)
- KOZAT, S. S., SINGER, A. C. Multi-stage adaptive signal processing algorithms. In Proceedings of Sensor Array and Multichannel Signal Processing Workshop. Cambridge (USA), 2000, p. 380–384. DOI: 10.1109/SAM.2000.878034
- REN, C., WANG, Z., ZHAO, Z. A new variable step-size affine projection sign algorithm based on a posteriori estimation error analysis. Circuits, Systems, and Signal Processing, 2017, vol. 36, no. 5, p. 1989–2011. DOI: 10.1007/S00034-016-0389-1
- YU, X., LIU, J., LI, H. A convex combination of variable step-size adaptive filter and its mean-square performance analysis. Acta Electronica Sinica, 2010, vol. 38, no. 2, p. 480–484. (in Chinese)
- LIU, J., ZHAO, H., QUAN, H., et al. Iteration-based variable stepsize LMS algorithm and its performance analysis. Journal of Electronics & Information Technology, 2015, vol. 37, no. 7, p. 1674–1680. DOI: 10.11999/JEIT141501 (in Chinese)
- FUMIYASU, M., FUMIHIKO, I., YOSHI, A. Enhancing a tsunami evacuation simulation for a multi-scenario analysis using parallel computing. Simulation Modelling Practice & Theory, 2018, vol. 83, p. 36–50. DOI: 10.1016/J.SIMPAT.2017.12.016
- SAYED, A. H. Fundamentals of Adaptive Filtering. New York (USA): Wiley, 2003. ISBN: 978-0471461265
Keywords: Least mean square (LMS) filters, convex combination, variable step-size, hyperbolic tangent function
J. Kolar, J. Sykora, U. Spagnolini
[references] [full-text]
[DOI: 10.13164/re.2020.0189]
[Download Citations]
Distributed Network Tomography Applied to Stochastic Delay Profile Estimation
In this paper is shown, how delay properties of the edges of a network with stochastic properties can be estimated cooperatively by individual nodes that retain the delay profiles of the entire network. The proposed algorithm adopts null-space projection-based consensus among agents to find individual entries from a set of arbitrary sum-cumulative entities associated with graph edges (e.g., delays associated with edges) based on sums over the network paths. The local estimates of delay profile are estimated using Least Squares (LS). A modified, tailored, iterative consensus algorithm is then employed to distribute information among the neighbors. The distributed network tomography is compared to the conventional centralized solution and also to iterative solvers based on Cimmino, CAV, and Landweber methods applied in a distributed manner.
- COATES, A., HERO III, A. O., NOWAK, R., et al. Internet tomography. IEEE Signal Processing Magazine, 2002, vol. 19, no. 3, p. 47–65. DOI: 10.1109/79.998081
- TSANG, Y., COATES, M., NOWAK, R. D. Network delay tomography. IEEE Transactions on Signal Processing, 2003, vol. 51, no. 8, p. 2125–2136. DOI: 10.1109/TSP.2003.814520
- MOLOISANE, A., GANCHEV, I., O’DROMA, M. Internet Tomography: An Introduction to Concepts, Techniques, Tools and Applications. 1st ed., Newcastle upon Tyne (UK): Cambridge Scholars Publishing, 2013. ISBN: 978-1-4438-4421-5
- CHEN, A., CAO, J. Network tomography based on 1-D projections. Lecture Notes-Monograph Series, 2007, vol. 54, p. 45–61. DOI: 10.1214/074921707000000238
- MOU, S., LIU, J., MORSE, A. S. A distributed algorithm for solving a linear algebraic equation. IEEE Transactions on Automatic Control, 2015, vol. 60, no. 11, p. 2863–2878. DOI: 10.1109/tac.2015.2414771
- ZHAO, L., SONG, W. Z. Decentralized consensus in distributed networks. International Journal of Parallel, Emergent and Distributed Systems, 2018, vol. 33, no. 6, p. 550–569. DOI: 10.1080/17445760.2016.1233552
- MATEI, I., BARAS, J. Performance evaluation of the consensusbased distributed subgradient method under random communication topologies. IEEE Journal of Selected Topics in Signal Processing, 2011, vol. 5, no. 1, p. 754–771. DOI: 10.1109/JSTSP.2011.2120593
- NEDIC, A., OZDAGLAR, A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, vol. 54, no. 1, p. 48–61. DOI: 10.1109/TAC.2008.2009515
- OLFATI-SABER, R., MURRAY, R. M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 2009, vol. 49, no. 9, p. 1520–1533. DOI: 10.1109/TAC.2004.834113
- YU, H., JIAN, J. Multi-agent consensus with a time-varying reference state in directed network with switching topology and time-delay. In International Conference on Wavelet Analysis and Pattern Recognition. Baoding (China), 2009, p. 476–481. DOI: 10.1109/ICWAPR.2009.5207458
- NEDIC, A., PANG, J., SCUTARI, G., et al. Multi-agent Optimization. 1st ed., rev. Cetraro (IT): Springer International Publishing, 2018. ISBN: 3319971417
- KAMATH, G. Decentralized Convex Optimization for Wireless Sensor Networks. PhD. Thesis, Georgia State University, 2016. 73 pages. [Online] Cited 2019-12-06. Available at: https://scholarworks. gsu.edu/cs_diss/117
- CHUA, D. B., KOLACZYK, E. D., CROVELLA, M. Network Kriging. IEEE Journal on Selected Areas in Communications, 2006, vol. 24, no. 12, p. 2263–2272. DOI: 10.1109/JSAC.2006.884025
- RAJAWAT, K., DALL’ANESE, E., GIANNAKIS, M. B. Dynamic network delay cartography. IEEE Transactions on Information Theory, 2014, vol. 60, no. 5, p. 2910–2920. DOI: 10.1109/TIT.2014.2311802
- HANSEN, P. R. AIR Tools II: algebraic iterative reconstruction methods, improved implementation. Numerical Algorithms, 2018, vol. 79, no. 1, p. 107–137. DOI: 10.1007/s11075-017-0430-x
- CIMMINO, G. Approximate Solutions for Systems of Linear Equations (in Italian). La Ricerca Scientifica, 1938, vol. 9, p. 326–333.
- CENSOR, Y., GORDON, D., GORDON, R. R. Component averaging: An efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Computing, 2001, vol. 27, no. 1, p. 777–808. DOI: 10.1016/S0167-8191(00)00100-9
- LANDWEBER, L. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 1951, vol. 73, no. 3, p. 615–624. DOI: 10.2307/2372313
- SCHARF, L. L. Statistical Signal Processing: Detection, Estimation, and Time Series Analysis. 1st ed., rev. Boston (USA): AddisonWesley, 1991. ISBN: 9780201190380
- AZZIAN-RUHI, N., LAHOUTI, F., AVESTIMEHR, S., HASSIBI, B. Distributed solution of large-scale linear systems via accelerated projection-based consensus. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary (Canada), 2018, p. 6358–6362. DOI: 10.1109/ICASSP.2018.8462630
- OLFATI-SABER, R., FAX, J. A., MURRAY, R. M. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 2007, vol. 95, no. 1, p. 215–233. DOI: 10.1109/JPROC.2006.887293
- ARIOLI, M., DUFF, I., NOAILLES, I., et al. A block projection method for sparse matrices. SIAM Journal on Scientific and Statistical Computing, 1992, vol. 13, no. 1, p. 47–70. DOI: 10.1137/0913003
- GARBELETTO, C., DONINI, M., RAGAZZONI, R., et al. Kaczmarz and Cimmino: Iterative and layer-oriented approaches to atmospheric tomography. Proceedings SPIE, 2016, vol. 9909, no. 1, p. 1327–1345. DOI: 10.1117/12.2232494
- KOLAR, J. Implementation of Distributed Network Tomography Applied to Stochastic Delay Profile Estimation. Matlab script, [Online] Cited 2019-12-8. Available at: https://www.dropbox.com/sh/ gdl6rf1ynzhzdvv/AAAcXwsXh4N1n4iI386ULbOda?dl=0
Keywords: Network tomography, network delay profile, distributed consensus algorithm, projection-based consensus.
X. Y. Pan, Q. P. Xie, J. Y. Chen, S. P. Xiao
[references] [full-text]
[DOI: 10.13164/re.2020.0197]
[Download Citations]
Two-Dimensional Underdetermined DOA Estimation of Quasi-Stationary Signals using Parallel Nested Array
In this paper, a two dimensional underdetermined direction of arrival estimation (DOA) of quasi-stationary signals using a parallel nested array structure is investigated. The quasi-stationary signals have the statistical property that they remain locally static over one frame but exhibit differences from one time frame to others. The special time domain property enables us to perform underdetermined direction-of-arrival estimation in time domain. By exploiting the temporary diversity of the quasi-stationary signals and effective difference coarray virtual array aperture provided inherently in the parallel nested array, more degrees of freedom can be used to resolve DOA estimation. The Khatri-Rao operation for the cross covariance matrix of the subarrays received data is adopted to convert the 2-D DOA estimation problem into two separate one-dimensional DOA estimation problems. Then, a subspace-based estimation of signal parameters via rotational invariance technique and a sparsity-based sparse Bayesian learning are proposed to realize the according one-dimensional DOA estimation. And the estimated azimuth and elevation angles can be properly automatically paired. Simulation results are carried out to demonstrate the effectiveness of the proposed algorithms for the 2-D underdetermined DOA estimation.
- WANG, A., LIU, L., ZHANG, J. Low complexity direction of arrival (DOA) estimation for 2D massive MIMO systems. In IEEE Globecom Workshops. Anaheim (CA, USA), 2012, p. 703–707. DOI: 10.1109/GLOCOMW.2012.6477660
- WAN, L., HAN, G., SHU, L., et al. The application of DOA estimation approach in patient tracking systems with high patient density. IEEE Transactions on Industrial Informatics, 2016, vol. 12, no. 6, p. 2353–2364. DOI: 10.1109/TII.2016.2569416
- CHEN, H., HOU, C., LIU, W., et al. Efficient two-dimensional direction-of-arrival estimation for a mixture of circular and noncircular sources. IEEE Sensors Journal, 2016, vol. 16, no. 8, p. 2527–2536. DOI: 10.1109/JSEN.2016.2517128
- MA, W. K., HSIEH, T. H., CHI, C. Y. Underdetermined DOA estimation of quasi-stationary signals with unknown spatial noise covariance: a Khatri-Rao subspace approach. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 4, p. 2168–2180. DOI: 10.1109/TSP.2009.2034935
- CAO, M., HUANG, L., QIAN, C., et al. Underdetermined DOA estimation of quasi-stationary signals via Khatri-Rao structure for uniform circular array. Signal Processing, 2015, vol. 106, p. 41–48. DOI: 10.1016/j.sigpro.2014.06.012
- WANG, Y., HASHEMI-SAKHATSARI, A., TRINKLE, M., et al. Sparsity-aware DOA estimation of quasi-stationary signals using nested arrays. Signal Processing, 2018, vol. 144, p. 87–98. DOI: 10.1016/j.sigpro.2017.09.029
- WANG, B., WANG, W., GU. Y., et al. Underdetermined DOA estimation of quasi-stationary signals using a partly-calibrated array. Sensors, 2017, vol. 17, p. 1–14. DOI: 10.3390/s17040702
- LI, J., ZHANG, X. Direction of arrival estimation of quasistationary signals using unfold coprime array. IEEE Access, 2017, vol. 5, p. 6538–6545. DOI: 10.1109/ACCESS.2017.2695581
- HU, J., LI, W., CHEN, Y. 2-D DOA estimation of quasi-stationary signals via tensor modeling. Applied Mechanics and Materials, 2015, p. 458–462. DOI: 10.4028/www.scientific.net/AMM.743.458
- PALANISAMY, P., KISHORE, C. 2-D DOA estimation of quasistationary signals based on Khatri-Rao subspace approach. In IEEE International Conference on Recent Trends in Information Technology (ICRTIT). Chennai (India), 2011, p. 798–803. DOI: 10.1109/ICRTIT.2011.5972295
- DONG, Y., DONG, C., LIU, W., et al. 2-D DOA estimation for Lshaped array with array aperture and snapshots extension techniques. IEEE Signal Processing Letters, 2017, vol. 24, no. 4, p. 495–499. DOI: 10.1109/LSP.2017.2676124
- GOOSSENS, R., ROGIER, H. A hybrid UCA-RARE/RootMUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 841–849. DOI: 10.1109/TAP.2007.891848
- CHEN, H., HOU, C., WANG, Q., et al. Improved azimuth/elevation angle estimation algorithm for three-parallel uniform linear array. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 329–332. DOI: 10.1109/LAWP.2014.2360419
- SHI, J., HU. G., ZHANG, X., et al. Computationally efficient 2D DOA estimation with uniform rectangular array in low-grazing angle. Sensors, 2017, vol. 17, p. 1–13. DOI: 10.3390/s17030470
- MARCOS, S., MARSAL, A., BENIDIE, M. The propagator method for source bearing estimation. Signal Processing, 1995, vol. 42, no. 2, p. 121–138. DOI: 10.1016/j.sigpro.0165- 1684(94)00122-G
- PAL, P., VAIDYANATHAN, P. P. Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 2010, vol. 58, no. 8, p. 4167–4181. DOI: 10.1109/TSP.2010.2049264
- PAL, P., VAIDYANATHAN, P. P. Coprime sampling and the MUSIC algorithm. In 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE). Sedona (AZ, USA), 2011. DOI: 10.1109/DSP-SPE.2011.5739227
- LIU, C., VAIDYANATHAN, P. P. Cramer-Rao bounds for coprime and other sparse arrays, which find more sources than sensors. Digital Signal Processing, 2016, vol. 61, p. 43–61. DOI: 10.1016/j.dsp.2016.04.011
- LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear sparse arrays with reduced mutual coupling-Part I: Fundamentals. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 15, p. 3997–4012. DOI: 10.1109/TSP.2016.2558159
- LIU, C., VAIDYANATHAN, P. P. Super nested arrays: linear sparse arrays with reduced mutual coupling-Part II: High-order extensions. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 16, p. 4203–4217. DOI: 10.1109/TSP.2016.2558159
- ZHAO, T., ELDAE, Y. C, NEHORAI, A. Direction of arrival estimation using co-prime arrays: a super resolution viewpoint. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 21, p. 5565–5576. DOI: 10.1109/TSP.2014.2354316
- QIN, S., ZHANG, Y. D., AMIN, M. G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 6, p. 1377–1390. DOI: 10.1109/TSP.2015.2393838
- MOFFET, A. Minimum-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 1968, vol. 16, no. 2, p. 172–175. DOI: 10.1109/TAP.1968.1139138
- VERTATSCHITSCH, E., HAYKIN, S. Nonredundant arrays. Proceeding of the IEEE, 2005, vol. 74, no. 1, p. 217–217. DOI: 10.1109/PROC.1986.13435
- LI, J., JIANG, D., ZHANG, X. Sparse representation based twodimensional direction of arrival estimation using co-prime array. Multidimensional Systems and Signal Processing, 2018, vol. 29, no. 1, p. 35–47. DOI: 10.1007/s11045-016-0453-9
- CHENG, Z., ZHAO, Y., LI, H., et al. Two-dimensional DOA estimation algorithm with co-prime array via sparse representation. Electronics Letters, 2015, vol. 51, no. 25, p. 2084–2086. DOI: 10.1049/el.2015.0293
- SUN, F., LAN, P., GAO, B., et al. An efficient dictionary learningbased 2-D DOA estimation without pair matching for co-prime parallel arrays. IEEE Access, 2018, vol. 6, p. 8510–8518. DOI: 10.1109/ACCESS.2018.2805168
- HAARDT, M., NOSSEK, J. Unitary ESPRIT: How to obtain increased estimation accuracy with a reduced computational burden. IEEE Transactions on Signal Processing, 1995, vol. 43, no. 5, p.1232–1242. DOI: 10.1109/78.382406
- TRIPPING, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, vol. 1, no. 9, p. 211–244. DOI: 10.1162/15324430152748236
- BABACAN, S. D., MOLINA, R., KATSAGGELOS, A. K. Bayesian compressive sensing using Laplace prior. IEEE Transactions on Image Processing, 2010, vol. 19, no. 1, p. 53–63. DOI: 10.1109/TIP.2009.2032894
- YANG, Z., XIE, L., ZHANG, C. Off-grid direction-of-arrival estimation using sparse Bayesian inference. IEEE Transactions on Signal Processing, 2013, vol. 61, no. 1, p. 38–43. DOI: 10.1109/TSP.2012.2222378
Keywords: 2-D DOA estimation, parallel nested subarrays, quasi-stationary signals, ESPRIT, SBL, Khatri-Rao operation
Y. Wang, H. Chen, W. Liu, Z. Liu, F. Wang
[references] [full-text]
[DOI: 10.13164/re.2020.0206]
[Download Citations]
Real-Time Triple-Frequency Cycle Slip Detection and Repair Algorithm Based on the Optimal Fixing Probability
Global Navigation Satellite System (GNSS) is now being speedily expanded to our daily life, but the positioning precision still can hardly meet the demands of many applications, such as approaching landing system on airports. Due to the development of GNSS, triple-frequency signals are now available which can contribute to positioning precision. Positioning precision cannot be improved by triple-frequency carrier phases until cycle slips are detected and repaired. Traditional cycle slip detection and repair algorithms choose detection combinations with long wavelength, weak ionospheric delay and small combination noise separately. However, these three conditions cannot be satisfied simultaneously. In this paper, these three conditions are not considered separately. On the contrary, the eventual fixing probability of cycle slip is set as the optimal goal to determine the three detection combinations. The combined ionospheric delay and noise in cycles can be regard as bias and variance respectively. The proposed algorithm has been tested on observations with simulated and real cycle slips. The results show that the proposed algorithm can detect and repair even single cycle slips in real time effectively.
- CHEN, D., YE, S., ZHOU, W., et al. A double-differenced cycle slip detection and repair method for GNSS CORS network. GPS Solution, 2016, vol. 20, no. 3, p. 439–450. DOI: 10.1007/s10291- 015-0452-6
- HATCH, R. The synergism of GPS code and carrier measurements. In Proceedings of the Third International Geodetic Symposium on Satellite Doppler Positioning. Physical Sciences Lab. of New Mexico State University, 1982, vol. 2, p. 1213–1231.
- CAI, C., LIU, Z., XIA, P., et al. Cycle slip detection and repair for undifferenced GPS observations under high ionospheric activity. GPS Solutions, 2013, vol. 17, no. 2 p. 247–260. DOI: 10.1007/s10291-012-0275-7
- BLEWITT, G. An automatic editing algorithm for GPS data. Geophysical Research Letters, 1990, vol. 17, no. 3, p. 199–202. DOI: 10.1029/GL017i003p00199
- LIU, Z. A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. Journal of Geodesy, 2011, vol. 85, no. 3, p. 171–183. DOI: 10.1007/s00190-010-0426-y
- BANVILLE, S., LANGLEY, R. B. Mitigating the impact of ionospheric cycle slips in GNSS observations. Journal of Geodesy, 2013, vol. 87, no. 2, p. 179–193. DOI: 10.1007/s00190-012-0604-1
- RICHERT, T., EL-SHEIMY, N. Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solutions, 2007, vol. 11, no. 1, p. 11–19. DOI: 10.1007/s10291-006-0024-x
- HATCH, R., JUNG, J., ENGE, P., et al. Civilian GPS: The benefits of three frequencies. GPS Solutions, 2000, vol. 3, no. 4, p. 1–9. DOI: 10.1007/PL00012810
- DAI, Z., KNEDLIK, S., LOFFELD, O. Instantaneous triplefrequency GPS cycle-slip detection and repair. International Journal of Navigation and Observation, 2009, article ID 407231, p. 1–15. DOI: 10.1155/2009/407231
- DE LACY, M. C., REGUZZONI, M., SANSÒ, F. Real-time cycle slip detection in triple-frequency GNSS. GPS Solutions, 2012, vol. 16, no. 3, p. 353–362. DOI: 10.1007/s10291-011-0237-5
- HUANG, L., LU, Z., ZHAI, G., et al. A new triple-frequency cycle slip detecting algorithm validated with BDS data. GPS Solutions, 2015, vol. 20, no. 4, p. 761–769. DOI: 10.1007/s10291-015-0487-8
- ZHAO, Q., SUN, B., DAI, Z., et al. Real-time detection and repair of cycle slips in triple-frequency GNSS measurements. GPS Solutions, 2015, vol. 19, no. 3, p. 381–391. DOI: 10.1007/s10291- 014-0396-2
- ZENG, T., SUI, L., XU, Y., et al. Real-time triple-frequency cycle slip detection and repair method under ionospheric disturbance validated with BDS data. GPS Solutions, 2018, vol. 22, p. 1–13. DOI: 10.1007/s10291-018-0727-9
- ZHANG, X., WU, M., LIU, W., et al. Initial assessment of the COMPASS/BeiDou-3: New-generation navigation signals. Journal of Geodesy, 2017, vol. 91, no. 10, p. 1225–1240. DOI: 10.1007/s00190-017-1020-3
- LIU, Z., WU, C. Study of the ionospheric TEC rate in Hong Kong region and its GPS/GNSS application. In Proceedings of the International Technical Meeting on GNSS Global Navigation Satellite System: Technology Innovation and Application. Beijing (China), 2009, p. 129–137. ISBN: 978-1-935068-03-7
- LIU, W., JIN, X., WU, M., et al. A new real-time cycle slip detection and repair method under high ionospheric activity for a triple-frequency GPS/BDS receiver. Sensors, 2018, vol. 18, no. 2, p. 427–446. DOI: 10.3390/s18020427
Keywords: GNSS, triple-frequency, cycle slip, fixing probability
B. Vondra, D. Bonefacić
[references] [full-text]
[DOI: 10.13164/re.2020.0215]
[Download Citations]
Mitigation of the Effects of Unknown Sea Clutter Statistics by Using Radial Basis Function Network
In this paper, we investigate feasibility of employing Radial Basis Function (RBF) network into non-coherent detection process, for detection of targets embedded in sea clutter of unknown statistics. We particularly have in mind Croatian part of Adriatic Sea, the local sea whose clutter statistic properties are not available in open literature. Performance of the detection process employing proposed RBF network is tested with simulated clutter samples based on real sea clutter data. These data were collected under sea state conditions that represent two thirds of the total wave heights in Adriatic and textcolor{red}{are} chosen to represent unknown clutter statistics due to the fact that no single probability density function equally well fits amplitude distribution of the range bins under test. It is demonstrated that, compared to the traditional [zlog(z)] method, RBF network with just four components and lognormal basis function, yields operating characteristics that better match designed ones.
- GINI, F., GRECO, M. Texture modeling and validation using recorded high resolution sea clutter data. In Proceedings of the 2001 IEEE Radar Conference. Atlanta, GA (USA), 2001, p. 387–392. DOI: 10.1109/NRC.2001.923010
- MEZACHE, A., SOLTANI, F., SAHED, M., CHALABI, I. Model for non-Rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 1, p. 142–153. DOI: 10.1109/TAES.2014.130332
- LEFAIDA, S., SOLTANI, F., MEZACHE, A. Radar seaclutter modelling using fractional generalised Pareto distribution. Electronics Letters, 2018, vol. 54, no. 16, p. 999–1001. DOI: 10.1049/el.2018.5233
- OLLILA, E., TYLER, D. E., KOIVUNEN, V., POOR, H. V. Complex elliptically symmetric distributions: Survey, new results and applications. IEEE Transactions on Signal Processing, 2012, vol. 60, no. 11, p. 5597–5625. DOI: 10.1109/TSP.2012.2212433
- MELIEF, H. W., GREIDANUS, H., GENDEREN, VAN, P., HOOGEBOOM, P. Analysis of sea spikes in radar sea clutter data. IEEE Transactions on Geoscience and Remote Sensing, 2006, vol. 44, no. 4, p. 985-993. DOI: 10.1109/TGRS.2005.862497
- KATALINIC, M., CORAK, M., PARUNOV, J. Maritime Technology and Engineering. London (UK): Taylor & Francis Group, 2015. (Analysis of wave heights and wind speeds in the Adriatic Sea.) ISBN: 978-1-138-02727-5
- CRISP, D. J., ROSENBERG, L., STACY, N. J., DONG, Y. Modelling X-band sea clutter with the K-distribution: Shape parameter variation. In International Radar Conference "Surveillance for a Safer World". Bordeaux (France), 2009, p. 1–6. ISSN: 1097-5764
- JOHNSEN, T. Characterization of X-band radar sea-clutter in a limited fetch condition from low to high grazing angles. In IEEE Radar Conference. Johannesburg (South Africa), 2015, p. 109–114. DOI: 10.1109/RadarConf.2015.7411864
- DONG, Y. Distribution of X-band high resolution and high grazing angle sea clutter. Research report DSTO-RR-0316, Defence Science and Technology Organisation (Australia), 2006, 88 pages. [Online] Cited 2019-04-27. Available at: http://cradpdf.drdcrddc.gc.ca/PDFS/unc56/p527164.pdf
- BERRY, P., VENKATARAMAN, K., ROSENBERG, L. Adaptive detection of low-observable targets in correlated sea clutter using Bayesian track-before-detect. In IEEE Radar Conference. Seattle, WA (USA), 2017, p. 398–403. DOI: 10.1109/RADAR.2017.7944235
- PARK, J., SANDBERG, I. W. Universal approximation using radialbasis-function networks. Neural Computation, 1991, vol. 3, no. 2, p. 246–257. DOI: 10.1162/neco.1991.3.2.246
- VONDRA, B., BONEFACIC, D. Estimation of heavy-tailed clutter density using adaptive RBF network. In 22nd International Conference on Applied Electromagnetics and Communications (ICECom). Dubrovnik (Croatia), 2016, p. 1–6. DOI: 10.1109/ICECom.2016.7843876
- MEZACHE, A., CHALABI, I. Estimation of the RiIG-distribution parameters using the artificial neural networks. In IEEE International Conference on Signal and Image Processing Applications. Melaka (Malaysia), 2013, p. 291–296. DOI: 10.1109/ICSIPA.2013.6708020
- VICEN-BUENO, R., CARRASCO-ALVAREZ, R., ROSAZURERA, M., NIETO-BORGE, J. C. Sea clutter reduction and target enhancement by neural networks in a marine radar system. Sensors, 2009, vol. 9, no. 3, p. 1913–1936. DOI: 10.3390/s90301913
- CUI, Y., YANG, J., YAMAGUCHI, Y., et al. On semiparametric clutter estimation for ship detection in synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 2013, vol. 51, no. 5, p. 3170–3180. DOI: 10.1109/TGRS.2012.2218659
- PARZEN, E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 1962, vol. 33, no. 3, p. 1065–1076. DOI :10.1214/aoms/1177704472
- ZHOU, H., LI, Y., JIANG, T. Sea clutter distribution modeling: a kernel density estimation approach. In 10th International Conference on Wireless Communications and Signal Processing (WCSP). Hangzhou (China), 2018, p. 1–6. DOI: 10.1109/WCSP.2018.8555876
- HENNESSEY, G., LEUNG, H., DROSOPOULOS, A., YIP, P. C. Seaclutter modeling using a radial-basis-function neural network. IEEE Journal of Oceanic Engineering, 2001, vol. 26, no. 3, p. 358–372. DOI: 10.1109/48.946510
- CHEIKH, K., SOLTANI, F. Application of neural networks to radar signal detection in K-distributed clutter. IEE Proceedings - Radar, Sonar and Navigation, 2006, vol. 153, no. 5, p. 460–466. DOI: 10.1049/ip-rsn:20050103
- VICEN-BUENO, R., ROSA-ZURERA, M., JARABO-AMORES, M. P., MATA-MOYA, DE LA, D. Coherent detection of Swerling 0 targets in sea-ice Weibull-distributed clutter using neural networks. IEEE Transactions on Instrumentation and Measurement, 2010, vol. 59, no. 12, p. 3139–3151. DOI: 10.1109/TIM.2010.2047579
- SARIKAYA, T. B., SOYSAL, G., EFE, M., et al. Sea-land classification using radar clutter statistics for shore-based surveillance radars. In International Conference on Radar Systems (Radar 2017). Belfast (UK), 2017, p. 1–4. DOI: 10.1049/cp.2017.0488
- PAN, M., CHEN, J., WANG, S., DONG, Z. A novel approach for marine small target detection based on deep learning. In IEEE 4th International Conference on Signal and Image Processing (ICSIP). Wuxi (China), 2019, p. 395–399. DOI: 10.1109/SIPROCESS.2019.8868862
- ZHU, L., XIONG, G., YU, W. Radar HRRP group-target recognition based on combined methods in the background of sea clutter. In International Conference on Radar. Brisbane, QLD (Australia), 2018, p. 1–6. DOI: 10.1109/RADAR.2018.8557334
- MAESTRE, DEL-REY, N., MATA-MOYA, D., JARABOAMORES, P., et al. Single MLP-CFAR for a radar Doppler processor based on the ML criterion. Validation on real data. In European Radar Conference. Paris (France), 2015, p. 53–56. DOI: 10.1109/EuRAD.2015.7346235
- CHEN, X., GUAN, J., HE, Y., ZHANG, J. Detection of low observable moving target in sea clutter via fractal characteristics in fractional Fourier transform domain. IET Radar, Sonar & Navigation, 2013, vol. 7, no. 6, p. 635–651. DOI: 10.1049/iet-rsn.2012.0116
- DROSOPOULOS, A. Description of the OHGR database. Technical Note 94-14, National Defence Canada, 1994, 42 pages. [Online] Cited 2019-03-13. Available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a290146.pdf
- BOCQUET, S. Parameter estimation for Pareto and K distributed clutter with noise. IET Radar, Sonar & Navigation, 2015, vol. 9, no. 1, p. 104–113. DOI: 10.1049/iet-rsn.2014.0148
- MEZACHE, A., CHALABI, I., SOLTANI, F., SAHED, M. Estimating the Pareto plus noise distribution parameters using non-integer order moments and [zlog(z)] approaches. IET Radar, Sonar & Navigation, 2016, vol. 10, no. 1, p. 192–204. DOI: 10.1049/iet-rsn.2015.0170
- FELLER, W. An Introduction to Probability Theory and its Applications. Vol. II. 2nd ed. New York (USA): John Wiley & Sons Inc., 1971. ISBN: 978-0-471-25709-7
- TRAVEN, H. G. C. A neural network approach to statistical pattern classification by "semiparametric" estimation of probability density functions. IEEE Transactions on Neural Networks, 1991, vol. 2, no. 3, p. 366–377. DOI: 10.1109/72.97913
- ZEEVI, A., MEIR, R. Density estimation through convex combinations of densities: Approximation and estimation bounds. Neural Networks, 1997, vol. 10, no. 1, p. 99–109. DOI: 10.1016/S0893-6080(96)00037-8
- GHAHRAMANI, Z. Proceedings of the 1993 Connectionist Models Summer School. Hillsdale, NJ (USA): Lawrence Erlbaum Associates, 1994. (Solving inverse problems using an EM approach to density estimation.) ISBN: 9780805815900
- DEMPSTER, A. P., LAIRD, N. M., RUBIN, D. B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B, 1977, vol. 39, p. 1–38. DOI: 10.1111/j.2517-6161.1977.tb01600.x
- GLASSER, L., KOHL, K., KOUTSCHAN, C., et al. The integrals in Gradshteyn and Ryzhik. Part 22: Bessel-K functions. Scientia, Series A: Mathematical Sciences, 2012, vol. 22, p. 129–151. ISSN: 0716-8446
- ZOROVIC, D., MOHOVIC, R., MOHOVIC, D. Towards determining the length of the wind waves of the Adriatic Sea (In Croatian). Nase more, 2003, vol. 60, no. 3-4, p. 145–150. ISSN: 0469-6255
- BALLERI, A., NEHORAI, A., WANG, J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture. IEEE Transactions on Aerospace and Electronic Systems, 2007, vol. 43, no. 2, p. 775–779. DOI: 10.1109/TAES.2007.4285370
- PULFORD, G. W., LA SCALA, B. F. Multihypothesis Viterbi data association. Algorithm development and assessment. IEEE Transactions On Aerospace And Electronic Systems, 2010, vol. 46, no. 2, p. 583–609. DOI: 10.1109/TAES.2010.5461643
- ROY, L. P., KUMAR, R. V. R. Accurate K-distributed clutter model for scanning radar application. IET Radar, Sonar and Navigation, 2010, vol. 4, no. 2, p. 158–167. DOI: 10.1049/iet-rsn.2009.0108
- NEYMAN, J., PEARSON, E. S. On the problem of the most efficient test of statistical hypotheses. Philosophical Transactions of the Royal Society of London, 1933, Series A, p. 289–337. DOI: 10.1098/rsta.1933.0009
- BREKKE, E. F., HALLINGSTAD, O., GLATTETRE, J. H. Target tracking in heavy-tailed clutter using amplitude information. In 12th International Conference on Information Fusion. Seattle, WA (USA), 2009, p. 2153–2160. ISBN: 978-0-9824-4380-4
- WEINBERG, G. V., HOWARD, S. D., TRAN, C. A Bayesianbased CFAR detector for Pareto Type II clutter. In International Conference on Radar. Brisbane, QLD (Australia), 2018, p. 1–6. DOI: 10.1109/RADAR.2018.8557282
- WEINBERG, G. V., BATEMAN, L., HAYDEN, P. Constant false alarm rate detection in Pareto Type II clutter. Digital Signal Processing, 2017, vol. 68, p. 192–198. DOI: 10.1016/j.dsp.2017.06.014
- ESI GROUP. Scilab: Free and Open Source software for numerical computation. [Online] Cited 2019-11-17. Available at: https://www.scilab.org
- SUSE LLC. Reference: openSUSE Leap 15.1. [Online] Cited 2019-11-19. Available at: https://doc.opensuse.org/documentation /leap/reference/book.opensuse.reference_color_en.pdf
- INTEL. Intel Core i5-3210M Processor. [Online] Cited 2019- 11-19. Available at: https://ark.intel.com/content/www/us/en/ark/ products/65708/intel-core-i5-3210m-processor-3m-cache-up-to-3- 10-ghz-bga.html
- SWERLING, P. Probability of detection for fluctuating targets. Research Memorandum RM-1217, Santa Monica, CA (USA): RAND Corporation, 1954, 45 pages. [Online] Cited 2019-03-22. Available at: https://www.rand.org/pubs/research_memoranda/RM1217.html
- HAZEWINKEL, M. (Ed.) Encyclopaedia of Mathematics: Supplement Volume II. Dordrecht (Nederlands): Kluwer Academic Publishers, 2012. ISBN: 978-90-481-5378-7
- JIANG, H., YI, W., CUI, G., KONG, L., YAN, X. Knowledge-based track-before-detect strategies for fluctuating targets in K-distributed clutter. IEEE Sensors, 2016, vol. 16, no. 19, p. 7124–7132. DOI: 10.1109/JSEN.2016.2597320
Keywords: Sea clutter, Adriatic sea, lognormal, non-coherent detection, RBF, [zlog(z)] method
B. Amin, M. M. Riaz, A.Ghafoor
[references] [full-text]
[DOI: 10.13164/re.2020.0228]
[Download Citations]
Automatic Image Matting of Synthetic Aperture Radar Target Chips
A matting technique to extract the targets from synthetic aperture radar (SAR) images is presented. Binary segmentation is performed initially for rough identification of target boundaries. Trimap is then estimated by combining the boundary structures of the input and segmented images using guided filter. In order to improve the accuracy of estimated trimap, super-pixels based segmentation is performed. A propagation based matting algorithm is then applied to separate the target from non-target region. Simulations conducted on different SAR images from MSTAR database show significance of proposed technique.
- MIDDELMANN, W., EBERT, A., THOENNESSEN. A. Automatic target recognition in SAR images based on a SVM classification scheme. In International Conference on Adaptive and Natural Computing Algorithms. Berlin (Germany), 2007, p. 492–499. DOI: 10.1007/978-3-540-71629-7-55
- CHO, H.-W., CHO, Y.-R., KIM, B.-K., et al. Image matting for automatic target recognition. IEEE Transactions on Aerospace and Electronic Systems, 2017, vol. 53, no. 5, p. 2233–2250. DOI: 10.1109/TAES.2017.2690529
- SAMANTA, D., SANYAL, G. An approach of segmentation technique of SAR images using adaptive thresholding technique. International Journal of Engineering Research and Technology, 2012, vol. 1, no. 7, p. 1–4.
- AMOON, M., REZAI-RAD, G.-A. Automatic target recognition of synthetic aperture radar (SAR) images based on optimal selection of Zernike moments features. IET Computer Vision, 2014, vol. 8, no. 2, p. 77–85. DOI: 0.1049/iet-cvi.2013.0027
- TAN, J., FAN, X., WANG, S., et al. Target recognition of SAR images via matching attributed scattering centers with binary target region. Sensors, 2018, vol. 18, no. 9, p. 3019. DOI: 10.3390/s18093019
- ANAGNOSTOPULOS, G. C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors. Nonlinear Analysis, 2009, vol. 71, no. 12, p. e2934–e2939. DOI: 10.1016/j.na.2009.07.030
- DING, B., WEN, G., MA, C., et al. Target recognition in synthetic aperture radar images using binary morphological operations. Journal of Applied Remote Sensing, 2016, vol. 10, no. 4, p. 1–14. DOI: 10.1117/1.JRS.10.046006
- HUANG, S., HUANG, W., ZHANG, T. A new SAR image segmentation algorithm for the detection of target and shadow regions. Scientific Reports, 2016, vol. 6, no. 1, p. 1–15. DOI: 10.1038/srep38596
- HAN, Y., LI, Y., YU, W. SAR target segmentation based on shape prior. In IEEE International Geoscience and Remote Sensing Symposium. Quebec City (Canada), 2014, p. 3738–3741. DOI: 10.1109/IGARSS.2014.6947296
- ZHANG, R., ZHANG, M. SAR target recognition based on active contour without edges. Journal of Systems Engineering and Electronics, 2017, vol. 28, no. 2, p. 276–281. DOI: 10.21629/JSEE.2017.02.09
- HU, Y., FAN, J., WANG, J. Target recognition of floating raft aquaculture in SAR image based on statistical region merging. In International Conference on Information Science and Technology. Da Nang (Vietnam), 2017, p. 429–432. DOI: 10.1109/ICIST.2017.7926798
- LANG, F., YANG, J., LI, D., et al. Polarimetric SAR image segmentation using statistical region merging. IEEE Geoscience and Remote Sensing Letters, 2014, vol. 11, no. 2, p. 509–513. DOI: 10.1109/LGRS.2013.2271040
- DA CUNHA, A. L., ZHOU, J., DO, M. N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Transactions on Image Processing, 2006, vol. 15, no. 10, p. 3089–3101. DOI: 10.1109/TIP.2006.877507
- WU, K.-L., YU, J., YANG. M.-S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Letters, 2005, vol. 26, no. 5, p. 639–652. DOI: 10.1016/j.patrec.2004.09.016
- PEI, J., HUANG, Y., HUO, W., et al. Synthetic aperture radar processing approach for simultaneous target detection and image formation. Sensors, 2018, vol. 10, no. 18, p. 3377. DOI: 10.3390/s18103377
- WANG, Z., DU, L., SU, H. Target detection via Bayesianmorphological saliency in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 2017, vol. 55, no. 100, p. 5455–5466. DOI: 10.1109/TGRS.2017.2707672
- AMBROSANIO, M., BASELICE, F., FERRAIOLI, G., et al. Kolgomorov Smirnov test based approach for SAR automatic target recognition. In IEEE International Geoscience and Remote Sensing Symposium. Fort Worth (USA), 2017, p. 1660–1663. DOI: 10.1109/IGARSS.2017.8127292
- ACHANTA, R., SHAJI, A., SMITH, K., et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, vol. 34, no. 11, p. 2274–2282. DOI: 10.1109/TPAMI.2012.120
- LEVIN, A., LISCHINSKI, D., WEISS, Y. A closed-form solution to natural image matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, vol. 30, no. 2, p. 228–242. DOI: 10.1109/TPAMI.2007.1177
- KARACAN, L., ERDEM, A., ERDEM, E. Alpha matting with KL-Divergence based sparse sampling. IEEE Transactions on Image Processing, 2017, vol. 26, no. 9, p. 4523–4536. DOI: 10.1109/TIP.2017.2718664
- CHEN, Q., LI, D., TANG, C. K. KNN matting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, no. 9, p. 2175-2188. DOI: 10.1109/TPAMI.2013.18
- ROSS, T., WORRELL, S., VELTEN, V., et al. Standard SAR ATR evaluation experiments using the MSTAR public release dataset. In SPIE, Algorithms for Synthetic Aperture Radar Imagery V. Orlando (Florida), 1998, p. 566–573. DOI: 10.1117/12.321859
Keywords: Image matting, Trimaps, SAR target detection, Superpixels
K. Zyka
[references] [full-text]
[DOI: 10.13164/re.2020.0235]
[Download Citations]
DAB+ Network Implementation in the Czech Republic and Impact of the Audio Coding on Subjective Perception of Sound Quality
Digital Audio Broadcasting (DAB+) is becoming a reality in the Czech Republic. The first nationwide DAB+ network, based on the regular broadcasting, is being completed. This paper presents the principles that were used to achieve a quick and efficient penetration of the DAB+ signal in the Czech population and the highways. Attention is focused on practical experience with the use of High-Efficiency Advanced Audio Coding (HE-AAC) emphasizing maximum efficiency of the multiplex. This is done with respect to the subjective perception of sound quality by the audience. Final audio processing and appropriate signal pre-processing are considered. The paper also focuses on how to use Forward Error Correction (FEC) coding to increase the reach of transmitters and the reasons for employing the specific transmitter network configuration, including indoor reception. The results of this complex method are demonstrated on the network rollout in particular periods, while the key assumptions were verified. The entire development process can be monitored on the maps of coverage.
- HOEG, W., LAUTERBACH, T. (Eds.) Digital Audio Broadcasting: Principles and Applications of DAB. DAB+ and DMB. 3. ed. John Wiley & Sons, 2009. ISBN: 978-0-470-51037-7
- ETSI ETSI European Standard EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers, 01/2017.
- ZYKA, K. The digital audio broadcasting journey from the lab to listeners - the Czech Republic case study. Radioengineering, 2019, vol. 28, no. 2, p. 483–490. DOI: 10.13164/re.2019.0483
- ETSI ETSI Technical Specification TS 102 563, Digital Audio Broadcasting (DAB); Transport of Advanced Audio Coding (AAC) Audio, Sophia Antipolis Cedex, France, 2010.
- HERRE, J., DIETZ, M. MPEG-4 high-efficiency AAC coding [Standards in a nutshell]. IEEE Signal Processing Magazine, 2008, vol. 25, no. 3, p. 137–142. DOI: 10.1109/MSP.2008.918684
- ETSI ETSI Technical Specification TS 103 466 V1.1.1. Digital Audio Broadcasting (DAB); DAB Audio Coding (MPEG Layer II), 10/2016.
- ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for the Subjective Assessment of Intermediate Quality Levels of Coding Systems. Recommendation ITU-R BS.1534. 2001-2015. Approved in 2015-10.
- ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for Point-to-Area Predictions for Terrestrial Services in the Frequency Range 30 MHz to 3000 MHz. Recommendation ITU-R P.1546-2. Approved in 2013–09.
- WORLD DAB – The official Database of the Latest Information on Regulatory Frameworks, DAB+ Network Coverage, Services on Air. [Online] Available at: https://www.worlddab.org/countries
- NATIONAL REGULATORY AUTHORITY (CTO) Press Release about the Experimental Broadcasting “DAB Prague”. Czech Republic, 2015. [Online] Available at: https://www.ctu.cz/tiskova-zprava-ctu-podporil-experimentalnivysilani-t-dab
- ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. A Path-specific Propagation Prediction Method for Point-to-Area Terrestrial Services in the VHF and UHF Bands. Recommendation ITU-R P.1812-3. Approved in 2013-09.
- CRC DATA - RADIOLAB version 4.3.1. The Software Modeling System. [Online] Available at: https://www.crcdata.cz/index.php/radiokomunikace/radiolab-4
- NATIONAL REGULATORY AUTHORITY (CTO) Regulation No. 22/2011 on the Method of Setting the Coverage of Terrestrial Radio Broadcasting in Selected Bands, Czech Republic, 2011.
- GE06, Final Acts of the Regional Radiocommunication Conference for Planning of the Digital Terrestrial Broadcasting Service in Parts of Regions 1 and 3, in the Frequency Bands 174–230 MHz and 470–862 MHz (RRC-06). Geneva, 2006.
- STRANAK, P. New methods of stereo encoding for FM radio broadcasting based on digital technology. Radioengineering, 2007, vol. 16, no. 4, p. 12–17. ISSN: 1210-2512
- EBU TECH 3250, GENEVA SWITZERLAND. Specification of the Digital Audio Interface (AES/EBU). European Broadcasting Union, 3rd ed., 2004.
- AVT MAGIC AE1 DAB+ Go. The High Quality and Professional DSP-based Hardware Audio Encoder. [Online] Available at: https://www.avt-nbg.de/en/products/magic-ae1-dab-go
- ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Planning Standards for Terrestrial FM Sound Broadcasting at VHF. Recommendation ITU-R BS.412-9. Approved in 1998-12.
- BONELLO, O. J. Multiband audio processing and its influence on the coverage area of the FM stereo transmission. Journal of Audio Engineering Society, 2007, vol. 55, no. 3, p. 145–156.
- STRANAK, P. Interfering DC component, suppression and influence to digital signal processing. Radioengineering, 2008, vol. 17, no. 3, p. 121–123. ISSN: 1210-2512
- GILSKI, P. DAB vs DAB+ radio broadcasting: A subjective comparative study. Archives of Acoustics, 2017, vol. 42, no. 4, p. 715–723. DOI: 10.1515/aoa-2017-0074
- ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Audio Coding for Digital Broadcasting. BS Series Broadcasting Service (Sound). Recommendation ITU-R BS.1196-7. Approved in 2019-01.
- STRANAK, P., DOBES, J. Controlling peaks of the audio signal by dynamically allocated scale factor for lossy psychoacoustic encoder. In 53rd IEEE International Midwest Symposium on Circuits and Systems. Seattle (USA), 2010, p. 388–391. DOI: 10.1109/MWSCAS.2010.5548874
Keywords: DAB, DAB+, Digital Audio Broadcasting, network, non-entropic audio coding, HE-AAC, transmitter, FEC, implementation, broadcast audio processing
G. Ilievski, P. Latkoski
[references] [full-text]
[DOI: 10.13164/re.2020.0243]
[Download Citations]
Efficiency of Supervised Machine Learning Algorithms in Regular and Encrypted VoIP Classification within NFV Environment
Cloudification of all computing environments is an undergoing process. The process has overpassed the classical Virtual Machines (VM) and Software-Defined Networking (SDN) approach and has moved towards dockerizing, microservices, app functions, network functions etc. 5G penetration is another trend, and it is built on such platforms. In this environment we are investigating the efficiency of supervised machine learning algorithms for classification of regular and encrypted Voice over IP (VoIP) traffic that 5G relies on, within a virtualized Network Functions Virtualization (NFV) environment and an east-west based network traffic. We are using statistical methods for classification of network packets without the need of inspecting the payload data and without the source, destination and port information of the packets. The efficiency is analyzed from a point of precision of the classification, but also from a point of time consumption, as adding delay to the original traffic may cause a problem, especially within 5G environments where packet delay is crucial.
- CHIOSI, M., et al. Network Functions Virtualisation - Introductory White Paper. 2012. [Online] Cited 2019-10-10 Available at: https://portal.etsi.org/nfv/nfv_white_paper.pdf
- EIMAN, M. Minimum Technical Performance Requirements for IMT-2020 Radio Interface(s). Presentation. 2018. [Online] Cited 2019-10-10. Available at https://www.itu.int/en/ITU-R/studygroups/rsg5/rwp5d/imt-2020/Documents/S01- 1_Requirements%20for%20IMT-2020_Rev.pdf
- SHANKARA, U. Communication between Virtual Machines. US Patent US20070220217A1 Mar. 16 2007
- VERGARA-REYES, J., MARTINEZ-ORDONEZ, M. C., ORDONEZ, A., et al. IP traffic classification in NFV: A benchmarking of supervised Machine Learning algorithms. In IEEE Colombian Conference on Communications and Computing. Cartagena (Colombia), 2017, p. 1–6. DOI: 10.1109/ColComCon.2017.8088199
- ALSHAMMARI, R., NUR ZINCIR-HEYWOOD, A. Identification of VoIP encrypted traffic using a machine learning approach. Journal of King Saud University - Computer and Information Sciences archive, 2015, vol. 27, no. 1, p. 77–92. DOI: 10.1016/j.jksuci.2014.03.013
- MA, B., ZHANG, H., GUO, Y., et al. A summary of traffic identification method depended on machine learning. In International Conference on Sensor Networks and Signal Processing (SNSP). Xian (China), 2018, p. 469–474. DOI: 10.1109/SNSP.2018.00094
- TRIVEDI, U., PATEL, M. A fully automated deep packet inspection verification system with machine learning. In IEEE International Conference on Advanced Networks and Telecommunications Systems. Bangalore (India), 2016, p. 1–6. DOI: 10.1109/ANTS.2016.7947802
- REZAEI, S., LIU, X. Deep learning for encrypted traffic classification: An overview. IEEE Communication Magazine, 2019, vol. 57, no. 5, p. 76–81. DOI: 10.1109/MCOM.2019.1800819
- SHAFIQ, M., YU, X., LAGHARI, A. A., et al. Network Traffic Classification techniques and comparative analysis using Machine Learning algorithms. In The 2nd IEEE International Conference on Computer and Communications (ICCC). Chengdu (China), 2016, p. 2451–2455. DOI: 10.1109/CompComm.2016.7925139
- FRANK, E., HALL, M. A., WITTEN, I. H. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. San Francisco (CA, USA): Morgan Kaufmann, 2016. ISBN: 0128042915 9780128042915
- HUANG, U., LI, P., GUO, S. Traffic scheduling for deep packet inspection in software-defined networks. Concurrency and Computation: Practice and Experience. 2017, vol. 29, no. 16 (special issue), p. 1–8. DOI: 10.1002/cpe.3967
- MOUSA, M., BAHAA-ELDIN, A., SOBH, M. Software Defined Networking concepts and challenges. In 11th International Conference on Computer Engineering & Systems (ICCES). Cairo (Egypt), 2016, p. 79–90. DOI: 10.1109/ICCES.2016.7821979
- POLCAK, L., CALDAROLA, L., CHOUKIR, A., et al. High level policies in SDN. In International Conference on E-Business and Telecommunications. 2016, p. 39–57. DOI: 10.1007/978-3-319- 30222-5_2
- AREVALO HERRERA, J., CAMARGO, J. E. A Survey on Machine Learning Applications for Software Defined Network Security. In: Zhou J. et al. (eds) Applied Cryptography and Network Security Workshops. Lecture Notes in Computer Science, 2019, vol. 11605, Springer, p. 70–93. DOI: 10.1007/978-3-030- 29729-9_4
- CHOWDHARY, A., HUANG, D., ALSHAMRANI, A., et al. SDFW: SDN-based Stateful Distributed Firewall. 2018. DOI: 10.13140/RG.2.2.11001.93281
- CHOUDHURY S., BHOWAL, A. Comparative analysis of machine learning algorithms along with classifiers for network intrusion detection. In International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). Chennai (Tamil Nadu, India), 2015, p. 89–95. DOI: 10.1109/ICSTM.2015.7225395
- SHAFIQ, M. YU, X. LAGHARI, A. A., et al. WeChat text and picture messages service flow traffic classification using machine learning technique. In IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Sydney (Australia), 2016, p. 58–62. DOI: 10.1109/HPCCSmartCity-DSS.2016.0019
- HE, L., XU, C., LUO, Y. vTC: Machine Learning based traffic classification as a virtual network function. In ACM International Workshop, 2016, p. 53–56. DOI: 10.1145/2876019.2876029
- LI, Z., GE, Z., MAHIMKAR, A., et al. Predictive analysis in network function virtualization. In Proceedings of the Internet Measurement Conference. Boston (USA), 2018, p. 161–167. DOI: 10.1145/3278532.3278547
- ZANDER S., ARMITAGE, G. Practical machine learning based multimedia traffic classification for distributed QOS management. In IEEE 36th Conference on Local Computer Networks (IEEE LCN). Bonn (Germany), 2011, p. 399–406. DOI: 10.1109/LCN.2011.6115322
- MA, W., MEDINA, C., PAN, D. Traffic-aware placement of NFV middleboxes. In IEEE Global Communications Conference (GLOBECOM). San Diego (CA, USA), 2015, p. 1–6. DOI: 10.1109/GLOCOM.2015.7417851
- BONFIGLIO, D., MELLIA, M., MEO, M., et al. Revealing skype traffic: when randomness plays with you. ACM SIGCOMM Computer Communication Review, 2007, vol. 37, no. 4, p. 37–48. DOI: 10.1145/1282427.1282386
- LE, L., LIN, B., DO, S. Applying big data, machine learning, and SDN/NFV for 5G early-stage traffic classification and network QoS control. Transactions on Networks and Communications, 2016, vol. 6, no. 2, p. 36–50. DOI: 10.14738/tnc.62.4446
- Oracle VirtualBox. 2019 [Online] Cited 2019-09-10. Available at: https://www.virtualbox.org
- BERNAL, M. V., CERRATO, I., RISSO, F., et al. Transparent optimization of inter-virtual network function communication in open vSwitch. In IEEE International Conference on Cloud Networking (Cloudnet). Pisa (Italy), 2016, p. 76–82. DOI: 10.1109/CloudNet.2016.26
- Linux Foundatrion, Open vSwitch Project, 2016 [Online] Available at: http://www.openvswitch.org
- Wireshark, 2006 [Online] Cited 2019-09-10. Available at: https://www.wireshark.org/
- M. Team, 2017 Mininet: An instant virtual network on your laptop (or other pc) - mininet. [Online] Cited 2019-09-12. Available at: http://mininet.org
- Ryu Framework, 2019. [Online] Cited 2019-09-10. Available at: http://osrg.github.io/ryu/
- BOTTA, A., DAINOTTI, A., PESCAPÈ, A. A tool for the generation of realistic network workload for emerging networking scenarios. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2012, vol. 56, no. 15, p. 3531–3547. DOI: 10.1016/j.comnet.2012.02.019
- Argus Quosient, 2015. [Online] Cited 2019-09-10. Available at: https://qosient.com/argus/
- HALL, M., FRANK, E., HOLMES, G., et al. The WEKA data mining software: An update. In ACM SIGKDD Explorations Newsletter, 2009, vol. 11, no. 1, p. 10–18. DOI: 10.1145/1656274.1656278
Keywords: VoIP, classification, supervised algorithms, machine learning, NFV, 5G
A. Ghassemi, K. Kazemi, S. Sefidbakht, H. Danyali
[references] [full-text]
[DOI: 10.13164/re.2020.0251]
[Download Citations]
Reliable Estimation of the Intra-Voxel Incoherent Motion Parameters of Brain Diffusion Imaging Using θ-Teaching-Learning-Based Optimization
Intra-voxel incoherent motion (IVIM) imaging can characterize diffusion and perfusion of tissues. Traditionally, the least-square method has been used to determine IVIM parameters consisting of pure diffusion coefficient (D), pseudo-diffusion coefficient (D*) and the micro-vascular volume fraction (f). This paper proposes an accurate estimation method for IVIM parameters in human brain tissues using θ-teaching-learning-based-optimization (θ-TLBO). θ-TLBO as an evolutionary algorithm provides high quality solutions for parameter estimations in curve fitting problems. Evaluation of the proposed method was performed on simulated data with different levels of noise and experimental data. The estimated parameters were compared with the results of TLBO and three conventional algorithms: Segmented-Unconstrained (“SU”), Segmented-Constrained (“SC”) and “Full”. The results show that the proposed θ-TLBO has higher accuracy, precision and robustness than other methods in estimating parameters of simulated and experimental data in human brain images especially in low SNR images according to analysis of variance (ANOVA), coefficient of variation (CV), relative bias and relative root mean square errors.
- LE BIHAN, D., BRETON, E., LALLEMAND, D., et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988, vol. 168, no. 2, p. 497–505. DOI: 10.1148/radiology.168.2.3393671
- HEUSCH, P., WITTSACK, H.-J., PENTANG, G., et al. Biexponential analysis of diffusion-weighted imaging: comparison of three different calculation methods in transplanted kidneys. Acta Radiologica, 2013, vol. 54, no. 10, p. 1210–1217. DOI: 10.1177/0284185113491090
- BARBIERI, S., DONATI, O. F., FROEHLICH, J. M., et al. Impact of the calculation algorithm on biexponential fitting of diffusionweighted MRI in upper abdominal organs. Magnetic Resonance in Medicine, 2015, vol. 75, no. 5, p. 2175–2184. DOI: 10.1002/mrm.25765
- JALNEFJORD, O., ANDERSSON, M., MONTELIUS, M., et al. Comparison of methods for estimation of the intravoxel incoherent motion (IVIM) diffusion coefficient (D) and perfusion fraction (f). Magnetic Resonance Materials in Physics, Biology and Medicine, 2018, vol. 31, no. 6, p. 715–723. DOI: 10.1007/s10334-018-0697-5
- FUSCO, R., SANSONE, M., PETRILLO, A. A comparison of fitting algorithms for diffusion-weighted MRI data analysis using an intravoxel incoherent motion model. Magnetic Resonance Materials in Physics, Biology and Medicine, 2017, vol. 30, no. 2, p. 113–120. DOI: 10.1007/s10334-016-0591-y
- SUO, S., LIN, N., WANG, H., et al. Intravoxel incoherent motion diffusion-weighted MR imaging of breast cancer at 3.0 tesla: Comparison of different curve-fitting methods. Journal of Magnetic Resonance Imaging, 2015, vol. 42, no. 2, p. 362–370. DOI: 10.1002/jmri.24799
- FEDERAU, C., O’BRIEN, K., MEULI, R., et al. Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. Journal of Magnetic Resonance Imaging, 2014, vol. 39, no. 3, p. 624–632. DOI: 10.1002/jmri.24195
- FEDERAU, C., MAEDER, P., O’BRIEN, K., et al. Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology, 2012, vol. 265, no. 3, p. 874–881. DOI: 10.1148/radiol.12120584
- FREIMAN, M., PEREZ-ROSSELLO, J. M., CALLAHAN, M. J., et al. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Medical Image Analysis, 2013, vol. 17, no. 3, p. 325–336. DOI: 10.1016/j.media.2012.12.001
- SASAKI, M., SUMI, M., EIDA, S., et al. Simple and reliable determination of intravoxel incoherent motion parameters for the differential diagnosis of head and neck tumors. PloS one, 2014, vol. 9, no. 11, p. e112866. DOI: 10.1371/journal.pone.0112866
- CHO, G. Y., MOY, L., ZHANG, J. L., et al. Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magnetic Resonance in Medicine, 2015, vol. 74, no. 4, p. 1077–1085. DOI: 10.1002/mrm.25484
- TRANSTRUM, M. K., SETHNA, J. P. Improvements to the Levenberg-Marquardt algorithm for nonlinear least-squares minimization. arXiv preprint, 2012. arXiv:1201.5885
- SBALZARINI, I. F., MULLER, S., KOUMOUTSAKOS, P. Multiobjective optimization using evolutionary algorithms. In Proceedings of the Summer Program, 2000, vol. 2000, p. 63–74.
- RAO, R. V, SAVSANI, V. J., VAKHARIA, D. P. Teachinglearning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-Aided Design, 2011, vol. 43, no. 3, p. 303–315. DOI: 10.1016/j.cad.2010.12.015
- NIKNAM, T., GOLESTANEH, F., SADEGHI, M. S. θmultiobjective teaching-learning-based optimization for dynamic economic emission dispatch. IEEE Systems Journal, 2012, vol. 6, no. 2, p. 341–352. DOI: 10.1109/JSYST.2012.2183276
- LEVENBERG, K. A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics, 1944, vol. 2, no. 2, p. 164–168. DOI: 10.1090/qam/10666
- MARQUARDT, D. W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, vol. 11, no. 2, p. 431–441. DOI: 10.1137/0111030
- MEEUS, E. M., NOVAK, J., WITHEY, S. B., et al. Evaluation of intravoxel incoherent motion fitting methods in low-perfused tissue. Journal of Magnetic Resonance Imaging, 2017, vol. 45, no. 5, p. 1325–1334. DOI: 10.1002/jmri.25411
- LIU, C., LIANG, C., LIU, Z., et al. Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. European Journal of Radiology, 2013, vol. 82, no. 12, p. e782–e789. DOI: 10.1016/j.ejrad.2013.08.006
- FUSCO, R., SANSONE, M., PETRILLO, A. The use of the Levenberg-Marquardt and variable projection curve-fitting algorithm in intravoxel incoherent motion method for DW-MRI data analysis. Applied Magnetic Resonance, 2015, vol. 46, no. 5, p. 551–558. DOI: 10.1007/s00723-015-0654-7
- RAO, R. V. Teaching-learning-based optimization algorithm. In Teaching Learning Based Optimization Algorithm, Springer, 2016, p. 9–39. DOI: 10.1007/978-3-319-22732-0
- AJA-FERNANDEZ, S., ALBEROLA-LOPEZ, C., WESTIN, C.-F. Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Transactions on Image Processing, 2008, vol. 17, no. 8, p. 1383–1398. DOI: 10.1109/TIP.2008.925382
Keywords: Human brain, Intra-Voxel Incoherent Motion (IVIM), diffusion, perfusion, θ-Teaching-Learning-Based Optimization (θ-TLBO).
B. Yang , Z. LI, E. Cao
[references] [full-text]
[DOI: 10.13164/re.2020.0259]
[Download Citations]
Facial Expression Recognition Based on Multi-dataset Neural Network
Facial activity is the most powerful and natural means for understanding emotional expression for humans. Recent years, extensive efforts have been devoted to facial expression recognition by using neural networks. However, automated emotion recognition in the wild from facial images remains a challenging problem. In this paper, an effective facial expression recognition scheme is proposed. A multi-dataset neural network is developed to learn facial expression features in several different but related datasets. The novel multi-dataset network fuses the intermediate layers of a deep convolutional neural network (CNN) by using separate CNNs and a multi-dataset loss function. Experimental results performed on emotion database demonstrate that our proposed method outperforms state-of-the-art.
- PIANA, S., STAGLIANÒ, A., ODONE, F., et al. Adaptive body gesture representation for automatic emotion recognition. ACM Transactions on Interactive Intelligent Systems, 2016, vol. 6, no. 1, p. 1–31. DOI:10.1145/2818740
- TIAN, Y., KANADE, T., COHN, J. F. Recognizing action units for facial expression analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, vol. 23, no. 2, p. 97–115. DOI: 10.1109/34.908962
- LI, S., DENG, W. Deep Facial Expression Recognition: A Survey. 2018, p. 1–25. arXiv:1804.08348v2
- MOLLAHOSSEINI, A., CHAN, D., MAHOOR, M. H. Going deeper in facial expression recognition using deep neural networks. In IEEE Winter Conference on Applications of Computer Vision (WACV). Lake Placid (NY, USA), 2016, p. 1–10. DOI: 10.1109/WACV.2016.7477450
- JUNG, H., LEE, S., YIM, J., et al., Joint fine-tuning in deep neural networks for facial expression recognition. In IEEE International Conference on Computer Vision. Santiago (Chile), 2015, p. 2983–2991. DOI: 10.1109/ICCV.2015.341
- FASEL, B. Head-pose invariant facial expression recognition using convolutional neural networks. In Proceedings of the IEEE International Conference on Multimodal Interfaces. Pittsburgh (PA, USA), 2002, p. 1–6. DOI: 10.1109/ICMI.2002.1167051
- MATSUGU, M., MORI, K., MITARI, Y., et al. Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Networks, 2003, vol. 16, no. 5, p. 555–559. DOI: 10.1016/S0893- 6080(03)00115-1
- SIKKA, K., DYKSTRA, K., SATHYANARAYANA, S., et al., Multiple kernel learning for emotion recognition in the wild. In Proceedings of the 15th ACM on International Conference on Multimodal Interaction. Sydney (Australia), 2013, p. 517–524. DOI: 10.1145/2522848.2531741
- CHEN, J., CHEN, Z., CHI, Z., et al., Emotion recognition in the wild with feature fusion and multiple kernel learning. In International Conference on Multimodal Interaction. Istanbul (Turkey), 2014, p. 508–513. DOI: 10.1145/2663204.2666277
- GIRSHICK, R., DONAHUE, J., DARRELL, T., et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition. Columbus (OH, USA), 2013, p. 580–587. DOI: 10.1109/CVPR.2014.81
- SUN, B., LI, L., ZHOU, G., et al. Facial expression recognition in the wild based on multimodal texture features. Journal of Electronic Imaging, 2016, vol. 25, no. 6, p. 1–8. DOI: 10.1117/1.JEI.25.6.061407
- PONS, G., MASIP, D. Multi-task, multi-label and multi-domain learning with residual convolutional networks for emotion recognition. 2018, p. 1–9. arXiv:1802.06664
- YANG, Y., HOSPEDALES, T. M. Unifying multi-domain multitask learning: Tensor and neural network perspectives. Chapter in CSURKA, G. (ed.) Domain Adaptation in Computer Vision Applications, 2017, p. 291–309. DOI: 10.1007/978-3-319- 58347-1_16
- THRUN, S., PRATT, L. Learning to Learn. Boston, MA: Springer US, 1998. DOI: 10.1007/978-1-4615-5529-2
- FOURURE, D., EMONET, R., FROMONT, E., et al. Multi-task, multi-domain learning: Application to semantic segmentation and pose regression. Neurocomputing, 2017, vol. 251, no. C, p. 68–80. DOI: 10.1016/j.neucom.2017.04.014
- OBERWEGER, M., LEPETIT, V. DeepPrior++: Improving fast and accurate 3D hand pose estimation. In IEEE International Conference on Computer Vision Workshops (ICCVW). Venice (Italy), 2018. p. 585–594. DOI: 10.1109/ICCVW.2017.75
- ZHANG, K., ZHANG, Z., LI, Z., et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, vol. 23, no. 10, p. 1499–1503. DOI: 10.1109/LSP.2016.2603342
- XIAN, Y., HU, H. Enhanced multi-dataset transfer learning method for unsupervised person re-identification using co-training strategy, IET Computer Vision, 2018, vol. 12, no. 8, p. 1219–1227. DOI: 10.1049/iet-cvi.2018.5103
- RANJAN, R., PATEL, V. M., CHELLAPPA, R. HyperFace: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 41, no. 1, p. 121–135. DOI: 10.1109/TPAMI.2017.2781233
- GOODFELLOW, I., ERHAN, D., LUC CARRIER, P., et al. Challenges in representation learning: a report on three machine learning contests. Neural Networks, 2015, vol. 64, p. 59–63. DOI: 10.1016/j.neunet.2014.09.005
- DHALL, A., GOECKE, R., LUCEY, S., et al. Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark. In IEEE International Conference on Computer Vision Workshops. Barcelona (Spain), 2011, p. 2106–2112. DOI: 10.1109/ICCVW.2011.6130508
- ASTHANA, A., ZAFEIRIOU, S., CHENG, S., et al. Incremental face alignment in the wild. In IEEE Conference on Computer Vision and Pattern Recognition. Columbus (OH, USA), 2014, p. 1859–1866. DOI: 10.1109/CVPR.2014.240
- NAIR, V., HINTON, G. E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10). Haifa (Israel), 2010, p. 807–814
- SHANG, W., SOHN, K., ALMEIDA, D., et al. Understanding and improving convolutional neural networks via concatenated rectified linear units. In Proceedings of the 33rd International Conference on Machine Learning. New York (USA), 2016, p. 2217–2225.
- SZEGEDY, C., LIU, W., JIA, Y., et al. Going deeper with convolutions. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston (MA, USA), 2015, p. 1–9. DOI: 10.1109/CVPR.2015.7298594
- WEN, Y., ZHANG, K., LI, Z., et al. A discriminative feature learning approach for deep face recognition. In European Conference on Computer Vision. Munich (Germany), 2016, p. 499–515. DOI: 10.1007/978-3-319-46478-7_31
- SAKR, C., PATIL, A., ZHANG, S., et al. Minimum precision requirements for the SVM-SGD learning algorithm. In IEEE International Conference on Acoustics. New Orleans (LA, USA), 2017, p. 1138–1142. DOI: 10.1109/ICASSP.2017.7952334
- LUCEY, P., COHN, J. F., KANADE, T., et al. The extended Cohn-Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops. San Frencisco (CA, USA), 2010, p. 94–101. DOI: 10.1109/CVPRW.2010.5543262
- PANTIC, M., VALSTAR, M., RADEMAKER, R., et al. Webbased database for facial expression analysis. In IEEE International Conference on Multimedia and Expo. Amsterdam (Netherlands), 2005, p. 5–13. DOI: 10.1109/ICME.2005.1521424
- ZHANG, Z., LUO, P., LOY, C. C., et al. Learning social relation traits from face images. In IEEE International Conference on Computer Vision. Santiago (Chile), 2015, p. 3631–3639. DOI: 10.1109/ICCV.2015.414
- KIM, B. K., ROH, J., DONG, S. Y., et al. Hierarchical committee of deep convolutional neural networks for robust facial expression recognition. Journal on Multimodal User Interfaces, 2016, vol. 10, no. 2, p. 173–189. DOI: 10.1007/s12193-015-0209-0
- MENG, Z., LIU, P., CAI, J., et al. Identity-aware convolutional neural network for facial expression recognition. In IEEE International Conference on Automatic Face & Gesture Recognition. Washington (DC, USA), 2017, p. 558–565. DOI: 10.1109/FG.2017.140
- LI, H., HUA, G., LIN, Z., et al. Probabilistic elastic part model for unsupervised face detector adaptation. In IEEE International Conference on Computer Vision. Sydney (Australia), 2014, p. 793–800. DOI: 10.1109/ICCV.2013.103
- CHEN, D., REN, S., WEI, Y., et al. Joint cascade face detection and alignment. In European Conference on Computer Vision. Zurich (Switzerland), 2014, p. 109–122. DOI: 10.1007/978-3-319- 10599-4_8
Keywords: Facial expression recognition, design of network architecture, deep learning, human–computer interaction, convolutional neural network