ISSN 1210-2512 (Print)

ISSN 1805-9600 (Online)

Radioengineering

Radioeng

Proceedings of Czech and Slovak Technical Universities

About the Journal
Feature Articles
Editorial Board
Publishing Department
Society [CZ]

Log out
Your Profile
Administration

June 2019, Volume 28, Number 2 [DOI: 10.13164/re.2019-2]

Show all Hide all

S. Rebhi, R. Barrak, M. Menif [references] [full-text] [DOI: 10.13164/re.2019.0357] [Download Citations]
Flexible and Scalable Radio over Fiber Architecture

In this paper, we investigate a scalable Radio over Fiber (RoF) system compliant to 5G fronthauling requirements. The proposed RoF architecture is able to adjust the network resources and capacities to satisfy user demands in terms of service, data rate and bandwidth. The flexibility and the reconfigurability of the proposed topology are provided through the inclusion of flexible network nodes which are at the Central Office (CO), the Remote Node (RN) and the Remote Access Unit (RAU). The centralized management of the RoF system based on a Software Defined Networking (SDN) enables the monitoring of the overhaul RoF system and the reconfiguration of network nodes parameters. The proposed RoF system architecture is designed to support multi-standard operation and mm-wave services. We investigated multi-service operation assuming high speed mm-wave service at 60 GHz besides to conventional wireless services such as WiFi and WiMax. The introduced system is able to operate for different RF bands (2.4, 5.2 and 60 GHz) with various modulation schemas such as BPSK, QPSK, 16QAM and 64QAM, that may be associated to Orthogonal Frequency-Division Multiplexing (OFDM) and multi-data rates up to 5 Gbps. To validate the RoF system performances, we have considered the Error Vector Magnitude (EVM) and service constellation as figures of merit at the End User (EU). The simulated results testify the architecture viability.

  1. LIU, C., ZHANG, L., ZHU, M., et al. A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies. Journal of Lightwave Technology, 2013, vol. 31, no. 17, p. 2869–2875. DOI: 10.1109/JLT.2013.2274193
  2. XU, Z., WANG, H., JI, Y. Multichannel resource allocation mechanism for 60 GHz radio-over-fiber local access networks. Journal of Optical Communications and Networking, 2013, vol. 5, no. 3, p. 254–260. DOI: 10.1364/JOCN.5.000254
  3. REBHI, S., BARRAK, R., HRAGHI, A., et al. High spectral efficiency multi-band radio over fiber system for next generation network. In Proceedings of the IEEE 16th International Conference on Transparent Optical Networks (ICTON). Graz (Austria), 2014, p. 1–4. DOI: 10.1109/ICTON.2014.6876479
  4. KURI, T., OLMOS, J.J.V., KITAYAMA, K. Photonic dynamic channel allocation in optical-frequency-interleaved DWDM millimeterwave-band radio-over-fiber access network. In Proceedings of the IEEE International Topical Meeting on Microwave Photonics. Victoria (Canada), 2007, p. 249–252. DOI: 10.1109/MWP.2007.4378185
  5. BAKAUL, M., NIRMALATHAS, A., LIM, C., et al. Efficient multiplexing scheme for wavelength-interleaved DWDM millimeterwave fiber-radio systems. IEEE Photonics Technology Letters, 2005, vol. 17, no. 12, p. 2718–2720. DOI: 10.1109/LPT.2005.859518
  6. CHANG, G.-K., LIU, C., ZHANG, L. Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies. In Proceedings of the IEEE International Conference on Communications Workshops (ICC). Budapest (Hungary), 2013. p. 879–883. DOI: 10.1109/ICCW.2013.6649358
  7. LLORENTE, R., WALKER, S., TAFUR MONROY, I., et al. Tripleplay and 60-GHz radio-over-fiber techniques for next-generation optical access networks. In Proceedings of the 16th European Conference on Networks and Optical Communications (NOC). Newcastle-UponTyne (UK), 2011, p. 16–19.
  8. CHANG, G.-K., CHOWDHURY, A., JIA, Z., et al. Key technologies of WDM-PON for future converged optical broadband access networks. Journal of Optical Communications and Networking, 2009, vol. 1, no. 4, p. C35–C50. DOI: 10.1364/JOCN.1.000C35
  9. KIM, H. RoF-based optical fronthaul technology for 5G and beyond. In IEEE Optical Fiber Communications Conference and Exposition (OFC). San Diego (USA), 2018, p. 1–3. DOI: 10.1364/ofc.2018.tu3j.1
  10. NOVAK, D., WATERHOUSE, R. B., Nirmalathas, A., LIM, C., et al. Radio-over-fiber technologies for emerging wireless systems. IEEE Journal of Quantum Electronics, 2016, vol. 52, no. 1, p. 1–11. DOI: 10.1109/JQE.2015.2504107
  11. TZANAKAKI, A., ANASTASOPOULOS, M., BERBERANA, I., et al. Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 2017, vol. 55, no. 10, p. 184–192. DOI: 10.1109/MCOM.2017.1600643
  12. GONZALEZ, S., DE LA OLIVA, A., COSTA-PEREZ, X., et al. 5G-crosshaul: An SDN/NFV control and data plane architecture for the 5G integrated fronthaul/backhaul. Transactions on Emerging Telecommunications Technologies, 2016, vol. 27, no. 9, p. 1196–1205. DOI: 10.1002/ett.3066
  13. THYAGATURU, A. S., MERCIAN, A., MCGARRY, M. P., et al. Software defined optical networks (SDONs): A comprehensive survey. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 4, p. 2738–2786. DOI: 10.1109/COMST.2016.2586999
  14. TZANAKAKI, A., ANASTASOPOULOS, M., BERBERANA, I., et al. Wireless-optical network convergence: Enabling the 5G architecture to support operational and end-user services. IEEE Communications Magazine, 2017, vol. 55, no. 10, p. 184–192. DOI: 10.1109/MCOM.2017.1600643
  15. QUINLAN, F., YCAS, G., OSTERMAN, S., et al. A 12.5 GHz-spaced optical frequency comb spanning> 400 nm for astronomical spectrograph calibration. In Proceedings of the Conference on Lasers and Electro-Optics. Optical Society of America. San Jose (USA), 2010, p. 1–2. DOI: 10.1364/cleo.2010.cmhh1
  16. FUKUCHI, Y., HIRATA, K., IKEOKA, H. Wavelength-tunable and bandwidth-variable ultra-flat optical frequency comb block generation from a bismuth-based actively mode-locked fiber laser. IEEE Photonics Journal, 2014, vol. 6, no. 1, p. 1–9. DOI: 10.1109/JPHOT.2013.2295469
  17. BERTHOLD, J. E., ONG, L. Y. Next-generation optical network architecture and multidomain issues. Proceedings of the IEEE, 2012, vol. 100, no. 5, p. 1130–1139. DOI: 10.1109/JPROC.2012.2186213
  18. ZHANG, W., WANG, H., BERGMAN, K. Next-generation optically-interconnected high-performance data centers. Journal of Lightwave Technology, 2012, vol. 30, no. 24, p. 3836–3844. DOI: 10.1109/JLT.2012.2212696
  19. FUKUSHIMA, Y., JIANG, X., PATTAVINA, A., et al. Self-routing design of nonblocking WDM switches based on arrayed waveguide grating. In Proceedings of the IEEE International Conference on High Performance Switching and Routing. Shanghai (China), 2008, p. 285–290. DOI: 10.1109/HSPR.2008.4734457
  20. ELNDASH, A., MOHAMMED, N. A., RASHED, A. N. Z., et al. Estimated optimization parameters of arrayed waveguide grating (AWG) for C-band applications. International Journal of Physical Sciences, 2009, vol. 4, no. 4, p. 149–155.
  21. ITO, J. TSUDA, H. A compact arrayed-waveguide grating with a locally enhanced optical confinement structure using trenches filled with low-refractive index materials. In Proceedings of the Eur. Conf. Integr. Opt., 2007, 4p.
  22. YIM, J.-N., HWANG, G., LEE, J., et al. Ultra-dense WDM PON with 12.5-GHz spaced 256 channels. Journal of the Optical Society of Korea, 2008, vol. 12, no. 4, p. 351–354. DOI: 10.3807/josk.2008.12.4.351
  23. KAKEHASHI, S., HASEGAWA, H., SATO, K., et al. Analysis and development of fixed and variable waveband MUX/DEMUX utilizing AWG routing functions. Journal of Lightwave Technology, 2009, vol. 27, no. 1, p. 30–40. DOI: 10.1109/JLT.2008.929125
  24. Open Networking Fundation. Software-Defined Networking: The New Norm for Networks (White Paper). 4 pages. [Online] Cited 2012. Available at: https://www.opennetworking.org/images/stories/downloads/sdnresources/white-papers/wp-sdn-newnorm.pdf
  25. FIORANI, M., MONTI, P., SKUBIC, B., et al. Challenges for 5G transport networks. In Proceedings of the IEEE International Conference on Advanced Networks and Telecommuncations Systems (ANTS). New Delhi (India), 2014, p. 1–6. DOI: 10.1109/ANTS.2014.7057286
  26. KIM, B. G., BAE, S. H., KIM, H., et al. Optical fronthaul technologies for next-generation mobile communications. In Proceedings of the 18th International Conference on Transparent Optical Networks (ICTON). Trento (Italy), 2016, p. 1–3. DOI: 10.1109/ICTON.2016.7550604
  27. DAT, P. T., KANNO, A., KAWANISHI, T. Radio-on-radio-overfiber: efficient fronthauling for small cells and moving cells. IEEE Wireless Communications, 2015, vol. 22, no. 5, p. 67–75. DOI: 10.1109/MWC.2015.7306539
  28. RODRIGUEZ, S., MORALES, A., ROMMEL, S., et al. Real-time measurements of an optical reconfigurable radio access unit for 5G wireless access networks. In Proceedings of Optical Fiber Communication Conference. Optical Society of America. Los Angeles (USA), 2017, 3p. DOI: 10.1364/ofc.2017.w1c.3
  29. IEEE Standard for Information technology–Local and metropolitan area networks–Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Available at: https://standards.ieee.org/standard/802.11- 2012.html
  30. IEEE Standard for Air Interface for Broadband Wireless Access Systems. Available at: https://standards.ieee.org/findstds/standard/802.16-2012.html
  31. IEEE Standard for Information technology–Telecommunications and information exchange between systems–Local and metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. Available at: https://standards.ieee.org/standard/802.11ad-2012.html.
  32. CCM team. Introduction to Wi-Fi (802.11 or WiFi). Available at: http://ccm.net/contents/802-introduction-to-wi-fi-802-11-orwifi#q=Introduction+to+Wi-Fi+&cur=1&url=%2F
  33. REBHI, S., BARRAK, R., MENIF, M. Optic/RF co-design for oudoor RoF system at 60 GHz. In Proceedings of IEEE 13th Mediterranean Microwave Symposium (MMS). Saida (Lebanon), 2013, p. 1–4. DOI: 10.1109/MMS.2013.6663095
  34. HRAGHI, A., MENIF, M., BEN ABID, S. Optimization of optical flat comb source based on dual-arm Mach-Zehnder modulator for flexgrid terabit superchannel WDM-Nyquist systems. In Proceedings of IEEE 16th International Conference on Transparent Optical Networks (ICTON). Graz (Austria), 2014, p. 1–4. DOI: 10.1109/ICTON.2014.6876483
  35. L-Com. Hyperlink Wireless 2.4 Ghz 802.11b and 802.11b Compatible 8 Pole Ultra High Q Outdoor Wifi Bandpass Filter (datasheet).3 pages. Available at: http://www.l-com.com/bandpassfilter-rf-splitter-24-ghz-ultra-high-q-8-pole-outdoor-bandpass-filterchannel-11-2462-mhz
  36. SST. SST12LP00 2.4-2.5 Ghz power amplifier (datasheet). 14 pages. [Online] Cited 2009-04. Available at: http://www.mouser.com/ds/2/268/S71283-477580.pdf
  37. Yageo. 5Ghz EIA 0603 Low Profile Band Pass Filter (datasheet). 6 pages. [Online] Cited 2013-01. Available at: https://eu.mouser.com/Passive-Components/SignalConditioning/Datasheets/-/N-8bzui?P=1yzui8wZ1z0s2ciZ1yaf9oe
  38. Stealth microwave. Model SMTR4852-11G36-RSS 6W BiDirectional Power Amplifier (datasheet). 3 pages. Available at: http://www.datasheetlib.com/datasheet/1145263/smtr4852- 11g36-rss-stealth-microwave.html
  39. ZDA. 2.4/5 Ghz External Wireless Antenna (datasheet). 3 pages. [Online] Cited 2008. Available at: http://www.zdacomm.com/2-4-5-ghzdual-band-external-wireless-antenna.html
  40. YANG, B., SKAFIDAS, E., EVANS, R. J. Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS. IET microwaves, antennas & propagation, 2009, vol. 3, no. 6, p. 943–949. DOI: 10.1049/iet-map.2008.0222
  41. PFEIFFER, U. R., GOREN, D. A 20 dBm fully-integrated 60 GHz SiGe power amplifier with automatic level control. IEEE Journal of Solid-State Circuits, 2007, vol. 42, no. 7, p. 1455–1463. DOI: 10.1109/JSSC.2007.899116
  42. HEYDARI, B., BOHSALI, M., ADABI, E., et al. A 60 GHz power amplifier in 90nm CMOS technology. In IEEE Custom Integrated Circuits Conference (CICC). San Jose (USA), 2007, p. 769–772. DOI: 10.1109/CICC.2007.4405843
  43. ZHANG, B.,ZHANG, Y. P. Grid array antennas with subarrays and multiple feeds for 60-GHz radios. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 5, p. 2270–2275. DOI: 10.1109/TAP.2012.2189733
  44. REBHI, S., BARRAK, R., MENIF, M., et al. Performance evaluation of radio over fiber system at 60 GHz for outdoor and indoor environments. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems (ICMCS). Marrakech (Morocco), 2014, p. 1418–1421. DOI: 10.1109/ICMCS.2014.6911196
  45. LIU, D., AKKERMANS, J., FLOYD, B. A superstrate patch antenna for 60-GHz applications. In Proceedings of the IEEE European Conference on Antennas and Propagation (EuCAP). Berlin (Germany), 2009, p. 2592–2594.
  46. ALVARADO, J., KORNEGAY, K. T., DAWN, D., et al. 60-GHz LNA using a hybrid transmission line and conductive path to ground technique in silicon. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Honolulu (USA), 2007, p. 685–688. DOI: 10.1109/RFIC.2007.380975
  47. ZHANG, F., SKAFIDAS, E., SHIEH, W. A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits (RFIC). Honolulu (USA), 2007, p. 141–144. DOI: 10.1109/RFIC.2007.380851
  48. BORREMANS, J., DEHAN, M., SCHEIR, K., et al. VCO design for 60 GHz applications using differential shielded inductors in 0.13 ÎLm CMOS. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC). Atlanta (USA), 2008, p. 135–138. DOI: 10.1109/RFIC.2008.4561403
  49. HP. Silicon Bipolar MMIC 1.5 Ghz Variable Gain Amplifier (datasheet). 4 pages. Available at: http://www.hp.woodshot.com/hprfhelp/4- downld/products/rfics/iva05228.pdf
  50. Apissys. AV101, 10-Bit 10 GSPS ADC and Signal Processing 3U VPX Board (datasheet). 4 pages. Available at: http://www.apissys.com/views/media-produit/datasheets/3/AV101- 0.pdf
  51. LU, W.-J., LIU, G.-M., TONG, K. F., et al. Dual-band loop-dipole composite unidirectional antenna for broadband wireless communications. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 5, p. 2860–2866. DOI: 10.1109/TAP.2014.2307343
  52. LEE, J., LIM, Y. A dual-band bandpass filter using dual and triple-mode resonators. In IEEE Radio and Wireless Symposium (RWS). Santa Clara (USA), 2012, p. 143–146. DOI: 10.1109/RWS.2012.6175328
  53. AKHCHAF, I., KHOULJI, S., ESSAAIDI, M., et al. A singlechip tri-band low-noise amplifier for cellular transceiver in the wireless applications. In Proceedings of the IEEE International Conference on Complex Systems (ICCS). Agadir (Morocco), 2012, p. 1–5. DOI: 10.1109/ICoCS.2012.6458591
  54. KAO, H.-l., LEE, P.-C., LI, P.-M., et al. A 2.4/5 GHz dualband voltage-controlled oscillator using switched resonator. In Proceedings of the IEEE International Conference on Computational Problem-solving (ICCP). Jiuzhai (China), 2013, p. 20–22. DOI: 10.1109/ICCPS.2013.6893505
  55. SHAFIK, R. A., RAHMAN, M. S., ISLAM, A.H.M. R. On the extended relationships among EVM, BER and SNR as performance metrics. In Proceedings of the IEEE International Conference on Electrical and Computer Engineering (ICECE). Dhaka (Bangladesh), 2006, p. 408–411. DOI: 10.1109/ICECE.2006.355657

Keywords: Radio over Fiber, mm-wave, flexible RoF, software defined networking, multi-services, multi-band

R. Bera, K. Kundu, N. N. Pathak [references] [full-text] [DOI: 10.13164/re.2019.0369] [Download Citations]
Optimal Pattern Synthesis of Thinned and Non-Uniformly Excited Concentric Circular Array Antennas using Hybrid GSA-PSO Technique

Side Lobe Level (SLL) is considered as the most significant array pattern parameter as it helps in reducing surrounding noise and interference. As higher SLL value results in higher wastage of power in undesired direction, transmitters of wireless communication systems face serious problems. In this paper, the optimal design of seven different sets of concentric circular antenna arrays (CCAAs) of isotropic antenna has been represented with the goal of maximum reduction in SLL. Optimal pattern synthesis of the proposed arrays has been executed by optimizing the normalized current distributions of array elements having fixed inter-element spacing. In present work inter-ring spacing has been fixed at 0.5λ.In order to achieve low SLL in the radiation pattern of the optimized array antenna, many conventional optimization methods have been proposed in last few decades for handling complex, non-differentiable, discontinuous and highly nonlinear array factor. To deal with the problems of premature convergence (fall into local optima) feature of gravitational search algorithm (GSA) and particle swarm optimization (PSO) has been merged. In high-dimensional space, gravitational search algorithm hybridized with particle swarm optimization (GSA-PSO) is considered while preserving the fast converging property of them. Numerical results in the present text assume the pattern synthesis of thinned array and non-uniformly excited array for seven different sets of CCAA geometries. An exhaustive simulation results are presented and the radiation pattern performances are analyzed. As compared with conventional optimization techniques like GSA and PSO, hybrid GSA-PSO technique outperforms with the goal of maximum SLL suppression.

  1. BALANIS, C. A. Antenna Theory: Analysis and Design. WileyInterscience. 3rd ed., 2005. ISBN: 0-471-66782-X
  2. KHODIER, M., AL-AQEEL, M. Linear and circular array optimization: a study using particle swarm intelligence. Progress In Electromagnetics Research B, 2009, vol. 15, p. 347–373. DOI: 10.2528/PIERB09033101
  3. IBRAHEM, S. M. M. Pattern synthesis of circular array. Computers & Electrical Engineering, 1993, vol. 19, no. 3, p. 251–254. DOI: 10.1016/0045-7906(93)90006-D
  4. STEARNS, C., STEWART, A. An investigation of concentric ring antennas with low sidelobes. IEEE Transactions on Antennas and Propagation, 1965, vol. 13, no. 6, p. 856–863. DOI: 10.1109/TAP.1965.1138544
  5. HOLTRUP, M. G., MARGUINAUD, A. CITERNE, J. Synthesis of electronically steerable antenna arrays with element on concentric rings with reduced sidelobes. In IEEE Antennas and Propagation Society International Symposium. Boston (MA, USA), 2001, p. 800–803. DOI: 10.1109/APS.2001.960218
  6. HAUPT, R. L. Optimized element spacing for low sidelobe concentric ring arrays. IEEE Transactions on Antennas and Propagation, 2008, vol. 56, no. 1, p. 266–268. DOI: 10.1109/TAP.2007.913176
  7. DESSOUKY, M. I., SHARSHAR, H. A., ALBAGORY, Y. A. Efficient sidelobe reduction technique for small-sized concentric circular arrays. Progress In Electromagnetics Research, 2006, vol. 65, p. 187–200. DOI: 10.2528/PIER06092503
  8. MANDAL, D., GHOSHAL, S. P., BHATTACHARJEE, A. K. Design of concentric circular antenna array with central element feeding using particle swarm optimization with constriction factor and inertia weight approach and evolutionary programing technique. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, vol. 31, no. 6, p. 667–680. DOI:10.1007/s10762-010-9629-9
  9. DESSOUKY, M. I., SHARSHAR, H. A., ALBAGORY, Y. A. Optimum normalized-Gaussian tapering window for side lobe reduction in uniform concentric circular arrays. Progress in Electromagnetics Research, 2007, vol. 69, p. 35–46. DOI: 10.2528/PIER06111301
  10. DAS, S., MANDAL, D., KAR, R., et al. Nondominated sorting genetic algorithm-II based sidelobe suppression of concentric regular hexagonal array of antennas. In Proceedings of Swarm, Evolutionary and Memetic Computing Conference (SEMCCO2014). SOA University, Odisha (India), December, 2014, p. 697–705. DOI: 10.1007/978-3-319-20294-5
  11. DAS, S., MANDAL, D., KAR, R., et al. Element spacing optimization of low sidelobe concentric hexagonal antenna arrays using MOEA/D. Intelligent Computing and Applications, Advances in Intelligent Systems and Computing, 2015, vol. 343, p. 189–196. DOI: 10.1007/978-81-322-2268-2-20
  12. GUNES, F., TOKAN, F. Pattern search optimization with applications on synthesis of linear antenna arrays. Expert Systems with Applications, 2010, vol. 37, no. 6, p. 4698–4705. DOI: 10.1016/j.eswa.2009.11.012
  13. ZARE, A. S., BAGHAIEE, S. Application of ant colony optimization algorithm to pattern synthesis of uniform circular antenna array. Applied Computational Electromagnetics Society Journal, 2015, vol. 30, no. 8, p. 810–818. ISSN: 1054-4887
  14. CHRYSSOMALLIS, M. Smart antennas. IEEE Antennas and Propagation Magazine, 2000, vol. 42, no. 3, p. 129–136. DOI: 10.1109/74.848965
  15. IOANNIDES, P., BALANIS, C. A. Uniform circular arrays for smart antennas. IEEE Antennas and Propagation Magazine, 2005, vol. 47, no. 4, p. 192–206. DOI: 10.1109/MAP.2005.1589932
  16. HAUPT, R. L. Thinned concentric ring arrays. In Proceedings of Antennas and Propagation Society International Symposium, AP-S 2008, p. 1–4. DOI: 10.1109/APS.2008.4619304
  17. MANDAL, D., GHOSHAL, S. P., BHATTACHARJEE, A. K. Application of evolutionary optimization techniques for finding the optimal set of concentric circular antenna array. Expert Systems with Applications, 2010, vol. 38, p. 2942–2950. DOI: 10.1016/j.eswa.2010.08.082
  18. DESSOUKY, M. I., SHARSHAR, H. A., ALBAGORY, Y. A. A novel tapered beamforming window for uniform concentric circular arrays. Journal of Electromagnetic Waves and Applications, 2006, vol. 20, no. 14, p. 2077–2089. DOI: 10.1163/156939306779322701
  19. SINGH, U., MUNISH, R. Design of thinned concentric circular antenna arrays using firefly algorithm. IET Microwaves, Antennas & Propagation, 2014, vol. 8, no. 12, p. 894–900. DOI: 10.1049/iet-map.2013.0695
  20. CHAN, S. C., CHEN, H. H. Uniform concentric circular arrays with frequency-invariant characteristics mdash; theory, design, adaptive beamforming and DOA estimation. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 1, p. 165–177. DOI: 10.1109/TSP.2006.882109
  21. HAUPT, R. L. Thinned arrays using genetic algorithms. IEEE Transactions on Antennas and Propagation, 1994, vol. 42, no. 7, p. 993–999. DOI: 10.1109/8.299602
  22. SCHWARTZMAN, L. Element behaviour in a thinned array. IEEE Transactions on Antennas and Propagation, 1967, vol. 15, no. 4, p. 571–572. DOI: 10.1109/TAP.1967.1138989
  23. RAZAVI, A., FOROORAGHI, K. Thinned arrays using pattern search algorithms. Progress in Electromagnetics Research, 2008. vol. 78, p. 61–71. DOI: 10.2528/PIER07081501
  24. BERA, R., ROY, J. S. Thinning of elliptical and concentric elliptical antenna arrays using particle swarm optimization. Microwave Review, 2013, vol. 19, no. 1, p. 2–7.
  25. PRATIHAR, K. D. Soft Computing. Alpha Science International Ltd, 2007. ISBN: 8184874952
  26. HUI, N. B., PRATIHAR, D. K. Camera calibration using a genetic algorithm. Engineering Optimization, 2008, vol. 40, no. 12, p. 1151–1169. DOI: 10.1080/03052150802344477
  27. HAUPT, R. L. Phase-only adaptive nulling with a genetic algorithm. IEEE Transactions on Antennas and Propagation, 1997, vol. 45, no. 6, p. 1009–1015. DOI: 10.1109/8.585749
  28. CHEN, K., HE, Z., HAN, C. A modified real GA for the sparse linear array synthesis with multiple constraints. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 7, p. 2169–2173. DOI: 10.1109/TAP.2006.877211
  29. CEN, L., SER, W., YU, Z. L., et al. An improved genetic algorithm for aperiodic array synthesis. In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas (USA), 2008, p. 2465–2468. DOI: 10.1109/ICASSP.2008.4518147
  30. MURINO, V., TRUCCO, A., REGAZZONI, C. S. Synthesis of unequally spaced arrays by simulated annealing. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 1, p. 119–122. DOI: 10.1109/78.482017
  31. RASHEDI, E., NEZAMABADI-POUR, H., SARYAZDI, S. GSA: A gravitational search algorithm. Information Sciences, 2009, vol. 179, no. 13, p. 2232–2248. DOI: 10.1016/j.ins.2009.03.004
  32. RASHEDI, E., RASHEDI, E., NEZAMABADI-POUR, H. A comprehensive survey on gravitational search algorithm. Swarm and Evolutionary Computation, 2018, vol. 41, p. 141–158. DOI: 10.1016/j.swevo.2018.02.018
  33. ING, K. G., MOKHLIS, H., ILLIAS, H. A., et al. Gravitational search algorithm and selection approach for optimal distribution network configuration based on daily photovoltaic and loading variation. Journal of Applied Mathematics, 2015, p. 1–11. DOI: 10.1155/2015/894758
  34. CHAU, K. W. Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction, 2007, vol. 16, no. 5, p. 642–646. DOI: 10.1016/j.autcon.2006.11.008
  35. EBERHART, R. C., SHI, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the Congress on Evolutionary Computation. Seoul (South Korea), 2001, vol. 1, p. 81–86. DOI: 10.1109/CEC.2001.934374
  36. GIES, D., RAHMAT-SAMII, Y. Particle swarm optimization for reconfigurable phase-differentiated array design. Microwave and Optical Technology Letters, 2003, vol. 38, no. 3, p. 168–175. DOI: 10.1002/mop.11005
  37. ROBINSON, J., RAHMAT-SAMII, Y. Particle swarm optimization in electromagnetics. IEEE Transactions on Antennas and Propagation, 2004, vol. 52, no. 2, p. 397–407. DOI: 10.1109/TAP.2004.823969
  38. JIN, N., RAHMAT-SAMII, Y. Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multiobjective implementations. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 3, p. 556–567. DOI: 10.1109/TAP.2007.891552
  39. KENNEDY, J., EBERHARD, R. C. Particle swarm optimization. In Proc. of IEEE International Conference on Neural Networks. Perth (Australia), 1995, p. 1942–1948. DOI: 10.1109/ICNN.1995.488968
  40. EBERHART, R. C., SHI, Y. Parameter selection in particle swarm optimization. In Proc. of the 7th Annual Conference on Evolutionary Programming. 1998, p. 591–600. DOI: 10.1007/BFb0040810
  41. MALLICK, S., KAR, R., MANDAL, D., et al. Optimal sizing of CMOS analog circuits using gravitational search algorithm with particle swarm optimization. International Journal of Machine Learning and Cybernetics, 2017, vol. 8, no. 1, p. 309–331. DOI: 10.1007/s13042-014-0324-3
  42. KHALEGHI, A., AZOULAY, A., BOLOMEY, J. C. Diversity techniques with dipole antennas in indoor multipath propagation. In Proceedings of the IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communication. 2005, p. 669–673. DOI: 10.1109/PIMRC.2005.1651520

Keywords: Concentric circular antenna array, Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), Side Lobe Level (SSL), thinning, Gravitational Search Algorithm hybridized with Particle Swarm Optimization (GSA-PSO)

F. Sboui, J. Machac, A. Gharsallah [references] [full-text] [DOI: 10.13164/re.2019.0386] [Download Citations]
Low-profile Slotted SIW Cavity Backed Antenna for Frequency Agility

The agile frequency antennas are widely used for wireless communication systems. This paper studies and designs a low-profile SIW antenna radiating from a circular slot graved in the ground plane, with the ability of alternating the frequency. The antenna is intentionally designed within a range of 1.8 GHz to 2.18 GHz obtained by varying the DC bias voltages from 0 to 26 V, which is able to cover the GSM1800, the LTE, and the UMTS wireless standards. The tuning technique consists in the integration of two varactor diodes across the circular slot. A prototype was manufactured, and the experiment results correspond well to those of the simulations.

  1. GUNDUMALLA, A., AGRAWAL, S., PARIHAR, M. S. Compact planar active integrated inverted-F antenna with frequency reconfigurable capability. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 13, p. 2012–2018. DOI: 10.1049/iet-map.2018.5236
  2. CHUNG, K. L., XIE, S., LI, Y., et al. A circular-polarization reconfigurable Meng-shaped patch antenna. IEEE Access, 2018, vol. 6, p. 51419–51428. DOI: 10.1109/ACCESS.2018.2869410
  3. BOUKARKAR, A., LIN, X. Q., JIANG, Y., et al. Compact mechanically frequency and pattern reconfigurable patch antenna. IET Microwaves, Antennas & Propagation, 2018, vol. 12, no. 11, p. 1864–1869. DOI: 10.1049/iet-map.2017.0917
  4. WU, R. X., TAN, L. R., LOU, Q. Reconfigurable ferrite-loaded SIW antenna. In 2015 Asia-Pacific Microwave Conference (APMC). Nanjing (China), 2015, vol. 2, p. 1–3. DOI: 10.1109/APMC.2015.7413098
  5. TAN, L. R., WU, R. X., POO, Y. Magnetically reconfigurable SIW antenna with tunable frequencies and polarizations. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 6, p. 2772–2776. DOI: 10.1109/TAP.2015.2414446
  6. MAZLOUMAN, S. J., JIANG, X. J., MAHANFAR, A., et al. A reconfigurable patch antenna using liquid metal embedded in a silicone substrate. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 12, p. 4406–4412. DOI: 10.1109/TAP.2011.2165501
  7. VERMA, A., PARIHAR, M. S. Multifunctional antenna with reconfigurable ultra-wide band characteristics. Radioengineering, 2017, vol. 26, no. 3, p. 647–654. DOI: 10.13164/re.2017.0647
  8. BARBUTO, M., BILOTTI, F., TOSCANO, A. Design of a multifunctional SRR-loaded printed monopole antenna. International Journal of RF and Microwave Computer-Aided Engineering, 2012, vol. 22, no. 4, p. 552–557. DOI: 10.1002/mmce.20645
  9. TOPALLI, K., ERDIL, E., CIVI, O. A., et al. Tunable dualfrequency RF MEMS rectangular slot ring antenna. Sensors and Actuators A: Physical, 2009, vol. 156, no. 2, p. 373–380. DOI: 10.1016/j.sna.2009.10.005
  10. BEHDAD, N., SARABANDI, K. A varactor-tuned dual-band slot antenna. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 2, p. 401–408. DOI: 10.1109/TAP.2005.863373
  11. CHI, P. L., WATERHOUSE, R., ITOH, T. Compact and tunable slot-loop antenna. IEEE Transactions on Antennas and Propagation, 2011, vol. 59, no. 4, p. 1394–1397. DOI: 10.1109/TAP.2011.2109687
  12. HUANG, H. J., LAI C. P., CHEN, S. Y. Miniaturized CPW-fed slot loop antenna with frequency agility. In IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis (TN, USA), 2014, p. 283–284. DOI: 10.1109/APS.2014.6904473
  13. HUSSAIN, R., GHALIB, A., SHARAWI, M. S. Annular slotbased miniaturized frequency agile MIMO antenna system. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2489–2492. DOI: 10.1109/LAWP.2017.2726058
  14. ZHU, S., HOLTBY, D. G., FORD, K. L., et al. Compact low frequency varactor loaded tunable SRR antenna. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 4, p. 2301–2304. DOI: 10.1109/TAP.2013.2239952
  15. SAGHATI A. P., ENTESARI, K. A tunable quarter-mode substrate integrated waveguide antenna. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI). Fajardo (Puerto Rico), 2016, p. 841–842. DOI: 10.1109/APS.2016.7696129
  16. SAGHATI A. P., ENTESARI, K. A reconfigurable SIW cavity backed slot antenna with one octave tuning range. IEEE Transactions on Antennas and Propagation, 2013, vol. 61, no. 8, p. 3937–3945. DOI: 10.1109/TAP.2013.2263215
  17. SAM, S., KANG, H., LIM, S. Frequency reconfigurable and miniaturized substrate integrated waveguide interdigital capacitor (SIW-IDC) antenna. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 3, p. 1039–1045. DOI: 10.1109/TAP.2013.2281662
  18. SBOUI, F., MACHAC, J., GHARSALLAH, A. Tunable slot antenna backed by substrate integrated waveguide cavity. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 28, no. 9, p. 1–6. DOI: 10.1002/mmce.21591
  19. PORTILLA, R. D. X-band substrate integrated waveguide cavitybacked patch antenna self-oscillating mixer. Thesis. Universitat Politècnica de Catalunya, Spain, 2010.
  20. ENTESARI, K., SAGHATI, A. P., SEKAR, V. et al. Tunable SIW structures: Antennas, VCOs, and filters. IEEE Microwave Magazine, 2015, vol. 16, no. 5, p. 34–54. DOI: 10.1109/MMM.2015.2408273
  21. ZHAO, Y., ZHANG, Z., FENG, Z. A dual-band tunable ultra-thin cavity antenna. IEEE Antennas and Propagation Letters, 2011, vol. 10, p. 717–720. DOI: 10.1109/LAWP.2011.2161745
  22. CHENG, Y. J. Substrate integrated waveguide frequency-agile slot antenna and its multibeam application. Progress in Electromagnetics Research, 2012, vol. 130, p. 153–168. DOI: 10.2528/PIER12061602
  23. http://datasheet.octopart.com/SMV1405-040LF-SkyworksSolutions-datasheet-11039839.pdf.

Keywords: Substrate integrated waveguide, frequency reconfigurable antenna, cavity backed antenna

R. Kumar, R. K. Chaudhary [references] [full-text] [DOI: 10.13164/re.2019.0391] [Download Citations]
A New Bidirectional Wideband Circularly Polarized Cylindrical Dielectric Resonator Antenna using Modified J-shaped Ground Plane for WiMAX/LTE Applications

A new singly-fed bidirectional wideband circularly polarized cylindrical dielectric resonator antenna (CDRA) using modified J-shaped ground plane is investigated and presented in this paper. The designed antenna excited by a single microstrip feed line with the modified J-shaped ground plane, which supports the orthogonal mode generation i.e. HEM_11δ mode for realizing circular polarization (CP). Measured results show that proposed antenna achieved S11≤-10 dB, input impedance bandwidth of 41.44% (centered at 3.74 GHz) and 3-dB axial ratio bandwidth in broadside direction of 29.91% (centered at 3.61 GHz). The average measured gain and simulated radiation efficiency in broadside are 2.84 dBic and 94.69% respectively, throughout the working band. The proposed CPDRA is a bidirectional radiator, and the radiation patterns on both sides are nearly the same. The antenna radiates left-handed CP wave in +z-direction and right-handed CP wave in -z-direction for both the resonance frequencies, which has been confirmed by plotting CP radiation pattern. The presented design can be used for Wi-MAX (3.3-3.7 GHz) and LTE3400 (3400–3800 MHz) bands.

  1. LUK, K. M., LEUNG, K. W. Dielectric Resonator Antenna. Research Studies Press, U. K., 2003. ISBN: 0 86380 263 X
  2. PALANDOKEN, M. Artificial Materials based Microstrip Antenna Design. Ch. 3 in NASIMUDDIN, N. (ed.) Microstrip Antennas. InTech Europe, 2011. ISBN: 978-953-307-247-0
  3. PALANDOKEN, M. Dual broadband antenna with compact double ring radiators for IEEE 802.11 ac/b/g/n WLAN communication applications. Turkish Journal of Electrical Engineerıng & Computer Sciences, 2017, vol. 25, p. 1326–1333. DOI: 10.3906/elk-1507-121
  4. PETOSA, A. Dielectric Resonator Antenna Handbook. London (UK): Artech House, 2007. ISBN: 9781596932067
  5. MONGIA, R. K., BHARTIA, P. Dielectric resonator antennas - a review and general design relations for resonant frequency and bandwidth. International Journal of Microwave and MillimeterWave Computer-Aided Engineering, 1994, vol. 4, no. 3, p. 230–247. DOI: 10.1002/mmce.4570040304
  6. CHAUDHARY, R. K., KUMAR, R., SRIVASTAVA, K. V. Wideband ring dielectric resonator antenna with annular-shaped microstrip feed. IEEE Antennas and Wireless Propagation Letters, 2013, vol. 12, p. 595–598. DOI: 10.1109/LAWP.2013.2260317
  7. KUMAR, R., CHAUDHARY, R. K. Modified microstrip-line-fed rectangular dielectric resonator antenna coupled with slotted ground plane for wideband circular polarization. Microwave and Optical Technology Letters, 2016, vol. 58, no. 1, p. 206–210. DOI: 10.1002/mop.29523
  8. GAO, S., LUO, Q., ZHU, F. Circularly Polarized Antennas. West Sussex (U.K.): Wiley, 2014. ISBN: 9781118374412
  9. HUANG, C. Y., WU, J. Y., WONG, K. L. Cross-slot-coupled microstrip antenna and dielectric resonator antenna for circular polarization. IEEE Transactions on Antennas and Propagation, 1999, vol. 47, no. 4, p. 605–609. DOI: 10.1109/8.768798
  10. KHOO, K.-W., GUO, Y.-X., ONG, L. C. Wideband circularly polarized dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 7, p. 1929–1932. DOI: 10.1109/TAP.2007.900241
  11. CHAIR, R., YANG, S. L. S., KISHK, A. A., et al. Aperture fed wideband circularly polarized rectangular stair shaped dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2006, vol. 54, no. 4, p. 1350–1352. DOI: 10.1109/TAP.2006.872665
  12. PAN, Y., LEUNG, K. W. Wideband circularly polarized trapezoidal dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 588–591. DOI: 10.1109/LAWP.2010.2053910
  13. CHOWDHURY, R., CHAUDHARY, R. K. Circularly polarized rectangular dielectric resonator antenna fed with unequal parallel microstrip lines for Wi-MAX applications. Microwave and Optical Technology Letters, 2017, vol. 59, no. 5, p. 1182–1188. DOI: 10.1002/mop.30492
  14. KUMAR, R., KUMAR CHAUDHARY, R. Circularly polarized rectangular DRA coupled through orthogonal slot excited with microstrip circular ring feeding structure for Wi-MAX applications. International Journal of RF and Microwave Computer-Aided Engineering, 2018, vol. 28, no. 1, p. 1–7. DOI: 10.1002/mmce.21153
  15. WANG, K. X., WONG, H. A circularly polarized antenna by using rotated-stair dielectric resonator. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 787–790. DOI: 10.1109/LAWP.2014.2385475
  16. FAKHTE, S., ORAIZI, H., KARIMIAN, R., et al. A new wideband circularly polarized stair-shaped dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 4, p. 1828–1832. DOI: 10.1109/TAP.2015.2392131
  17. BALANIS, C. A. Antenna Theory: Analysis and Design. 3rd ed. Hoboken (NJ): John Wiley & Sons, 2005. ISBN: 0-471-66782-X
  18. TOH, B. Y., CAHILL, R., FUSCO, V. F. Understanding and measuring circular polarization. IEEE Transactions on Education, 2003, vol. 46, no. 3, p. 313–318. DOI: 10.1109/TE.2003.813519
  19. YANG, S. L. S., CHAIR, R., KISHK, A. A., et al. Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2007, vol. 55, no. 2, p. 321–333. DOI: 10.1109/TAP.2006.889819
  20. ALTAF, A., YANG, Y., LEE, K. Y., et al. Circularly polarized Spidron fractal dielectric resonator antenna. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1806–1809. DOI: 10.1109/LAWP.2015.2427373
  21. LU, L., JIAO, Y.-C., LIANG, W., et al. A novel low-profile dual circularly polarized dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 9, p. 4078–4083. DOI: 10.1109/TAP.2016.2574882
  22. SUN, Y.–X., LEUNG, K. W., MAO, J.-F. Dualfunction dielectric resonator as antenna and phase-delay-line load: designs of compact circularly polarized/differential antennas. IEEE Transactions on Antennas and Propagation, 2018, vol. 66, no. 1, p. 414–419. DOI: 10.1109/TAP.2017.2767819
  23. KUMAR, R., CHAUDHARY, R. K. A wideband circularly polarized cubic dielectric resonator antenna excited with modified microstrip feed. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 1285–1288. DOI: 10.1109/LAWP.2015.2504840

Keywords: Bidirectional, wideband, circular polarization, dielectric resonator antenna, microstrip feed, J-shaped ground plane

N. Kumar, U. K. Kommuri [references] [full-text] [DOI: 10.13164/re.2019.0399] [Download Citations]
MIMO Antenna H-Plane Isolation Enhancement using UC-EBG Structure and Metal Line Strip for WLAN Applications

This paper presents design of novel uniplanar Compact Electromagnetic bandgap (EBG) structure and its application in enhancement of isolation in H-Plane of MIMO antenna system for WLAN (5.8 GHz). Isolation enhancement or coupling reduction of 5.6 dB is achieved by etching out the proposed EBG structure from the ground plane of microstrip patch MIMO antenna. Center to center distance is reduced to 0.45λo due to compactness of EBG. A metal line strip between radiating patches is used for further reduction in mutual coupling at 5.8 GHz. There is significant enhancement of 16.2 dB in isolation due to the introduction of metal line strip. Hence the total 21.8 dB reduction in mutual coupling is achieved and this coupling reduction is also verified by surface current plots and measured result. The envelope correlation coefficient (ECC) is less than 0.01 and channel capacity loss (CCL) is less than 0.1bps/Hz at operating frequency.

  1. LUO, C. M., HONG, J. S., ZHONG, L. L. Isolation enhancement of a very compact UWB-MIMO slot antenna with two defected ground structures. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 1766–1769. DOI: 10.1109/LAWP.2015.2423318
  2. XU, H. X., WANG, G. M., QI, M. Q. Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array. IEEE Transactions on Magnetics, 2013, vol. 49, no. 4, p. 1526–1529. DOI: 10.1109/TMAG.2012.2230272
  3. QAMAR, Z., PARK, H. C. Compact waveguided metamaterials for suppression of mutual coupling in microstrip array. Progress In Electromagnetics Research, 2014, vol. 149, p. 183–192. DOI: 10.2528/PIER14063002
  4. QAMAR, Z., NAEEM, U., KHAN, S. A., et al. Mutual coupling reduction for high performance densely packed patch antenna arrays on finite substrate. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 5, p. 1653–1660. DOI: 10.1109/TAP.2016.2535540
  5. GHOSH, J., GHOSAL, S., MITRA, D., et al. Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress In Electromagnetics Research Letters, 2016, vol. 59, p. 115–122. DOI: 10.2528/PIERL16012202
  6. AL-HASAN, M. J., DENIDNI, T. A., SEBAK, A. R. Millimeterwave compact EBG structure for mutual coupling reduction applications. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 2, p. 823–828. DOI: 10.1109/TAP.2014.2381229
  7. YANG, X., LIU, Y., XU, Y. X., GONG, S. X. Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 2175–2178. DOI: 10.1109/LAWP.2017.2703170
  8. ZHANG, J., CI, G., CAO, Y., et al. A wide band-gap slot fractal UC-EBG based on Moore space-filling geometry for microwave application. IEEE Antennas and Wireless Propagation Letters, 2017, vol. 16, p. 33–37. DOI: 10.1109/LAWP.2016.2553135
  9. KUMAR, N., KIRAN KOMMURI, U. MIMO antenna mutual coupling reduction for WLAN using spiro meander line UC-EBG. Progress In Electromagnetics Research C, 2018, vol. 80, p. 65–77. DOI: 10.2528/PIERC17101601
  10. ARORA, A., KUMAR, N. To reduce mutual coupling in microstrip patch antenna arrays elements using electromagnetic band gap structures for X-band. In 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2). Chennai (China), 2017, p. 228–230. DOI: 10.1109/ICNETS2.2017.8067937
  11. KUSH, C., PRATHIBHA, P., KUMAR, N. Wideband antenna with notches at frequencies of existing services band using EBG. In 2015 International Conference on Communications and Signal Processing (ICCSP). Melmaruvathur (India), 2015, p. 1407–1411. DOI: 10.1109/ICCSP.2015.7322742
  12. FARAHANI, H. S., VEYSI, M., KAMYAB, M., et al. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas and Wireless Propagation Letters, 2010, vol. 9, p. 57–59. DOI: 10.1109/LAWP.2010.2042565
  13. MOHAMADZADE, B., AFSAHI, M. Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure. IET Microwaves, Antennas & Propagation, 2017, vol. 11, no. 12, p. 1719–1725. DOI: 10.1049/iet-map.2017.0080
  14. LI, Q., FERESIDIS, A. P., MAVRIDOU, M., HALL, P. S. Miniaturized double-layer EBG structures for broadband mutual coupling reduction between UWB monopoles. IEEE Transactions on Antennas and Propagation, 2015, vol. 63, no. 3, p. 1168–1171. DOI: 10.1109/TAP.2014.2387871
  15. MAVRIDOU, M., FERESIDIS, A. P. GARDNER, P. Tunable double-layer EBG structures and application to antenna isolation. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 1, p. 70–79. DOI: 10.1109/TAP.2015.2496619
  16. LEE, J., KIM, S., JANG, J. Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Transactions on Antennas and Propagation, 2015 vol. 63, no. 9, p. 4194–4198. DOI: 10.1109/TAP.2015.2447052
  17. ISLAM, M. T., ALAM, M. S. Design of high impedance electromagnetic surfaces for mutual coupling reduction in patch antenna array. Materials, 2013, vol. 6, p. 143–155. DOI: 10.3390/ma6010143
  18. XIE, H.-H., JIAO, Y.-C., SONG, K., YANG, B. Miniature electromagnetic band-gap structure using spiral ground plane. Progress In Electromagnetics Research Letters, 2010, vol. 17, p. 163–170. DOI: 10.2528/PIERL10081203
  19. KOVACS, P., URBANEC, T. Electromagnetic band gap structures: Practical tips and advice for antenna engineers. Radioengineering, 2012, vol. 21, no. 1, p. 414–421. ISSN: 1210-2512
  20. ARUN, H. SARMA, A. K., KANAGASABAI, M., et al. Deployment of modified serpentine structure for mutual coupling reduction in MIMO antennas. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 277–280. DOI: 10.1109/LAWP.2014.2304541
  21. SEE, C. H., ABD-ALHAMEED, R. A., ABIDIN, Z. Z., et al. Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications. IEEE Transactions on Antennas and Propagation, 2012, vol. 60, no. 4, p. 2028–2035. DOI: 10.1109/TAP.2012.2186247
  22. WU, W. J., YUAN, B., WU, A. A quad-element UWB-MIMO antenna with band-notch and reduced mutual coupling based on EBG structures. International Journal of Antennas and Propagation, p. 1–10. DOI: 10.1155/2018/8490740

Keywords: Electromagnetic Band Gap (EBG), MIMO antenna, mutual coupling

B. Matolcsy, A. Zolomy [references] [full-text] [DOI: 10.13164/re.2019.0407] [Download Citations]
Designing an Efficient Ultra Small Form Factor On-Chip Antenna for UHF RFID Application

The efficient design of electrically small antennas (ESA) has recently evolved to an outstandingly active area of research. This paper aims to present an improved performance electrically small on-chip antenna design, for the 920 MHz UHF-RFID frequency. Performance improvement is based on creating a slow-wave structure with three-dimensional spiral meandering and dielectric loading of the complete antenna structure. A single layer spiral on-chip antenna simulation is presented first, based on a commercially available product, then an improved single layer spiral antenna and finally an alternative 3D multi-layer spiral on-chip antenna is investigated. The proposed alternative on-chip antenna structure fills a 2.5 x 2.5 x 1.3 mm3 volume and has significantly improved radiation performance compared to the single layer solution.

  1. HSIAO, H., WU, J., LU, J., et al. Multi-band dual-meander-line antenna for mobile handsets. In IEEE Antennas and Propagation Society International Symposium. Albuquerque (USA), 2006, p. 4705–4708. DOI: 10.1109/APS.2006.1711690
  2. AHMED, I., SHOAIB, I., SHOAIB, N., et al. A printed hybrid loop planar inverted-F antenna for next generation handheld terminals. In 7th European Conference on Antennas and Propagation (EuCAP). Gothenburg (Sweden), 2013, p. 2044–2047. ISBN: 9788890701832
  3. TIMOSHENKO, A., LOMOVSKAVA, K., SUSLOV, M. Features of design, implementation, and characterization of on-chip antennas for microwave frequencies. In East-West Design and Test Symposium (EWDTS). Rostov-on-Don (Russia), 2013, p. 1–5. DOI: 10.1109/EWDTS.2013.6673081
  4. DUBOK, A., SMOLDERS, A. B. Miniaturization of robust UHF RFID antennas for use on perishable goods and human bodies. IEEE Antennas and Wireless Propagation Letters, 2014, vol. 13, p. 1321–1324. DOI: 10.1109/LAWP.2014.2337051
  5. LUK, W. T., YUNG, K. N. Bending dipole design of passive UHF RFID tag antenna for CD / DVD discs. In AsiaPacific Microwave Conference. Macau (China), 2008, p. 1–4. DOI: 10.1109/APMC.2008.4958093
  6. BRAATEN, B. D., REICH, M., GLOWER, J. A Compact meanderLine UHF RFID tag antenna loaded with elements found in right/left-handed coplanar waveguide structures. IEEE Antennas and Wireless Propagation Letters, 2009, vol. 8, p. 1158–1161. DOI: 10.1109/LAWP.2009.2034990
  7. PACHLER, W., BOSCH, W., HOLWEG, G., et al. A novel booster antenna design coupled to a one square millimeter coil-on-chip RFID tag enabling new medical applications. In European Microwave Conference. Nuremberg (Germany), 2013, p. 1003–1006. DOI: 10.23919/EuMC.2013.6686829
  8. JANKOWSKI-MIHULOWICZ, P., KAWALEC, D., WEGLARSKI, M. Antenna design for semi-passive UHF RFID transponder with energy harvester. Radioengineering, 2015, vol. 24, no. 3, p. 722–728. DOI:10.13164/re.2015.0722
  9. JANKOWSKI-MIHULOWICZ, P., WEGLARSKI, M. A method for measuring the radiation pattern of UHF RFID transponders. Radioengineering, 2016, vol. 23, no. 2, p. 163–172. DOI:10.1515/mms-2016-0018
  10. GS1 EPCTM Radio-Ferquency Identity Protocols Generation-2 UHF RFID, Specification for RFID Air Interface, Protocol for Communications at 860 MHz - 960 MHz, Version 2.0.1 Ratified
  11. KING, R. W. P. The Theory of Linear Antennas. Harvard University Press, 1956. ISBN: 978-0-674-18218-9
  12. FUJIMOTO, K., MORISHITA, H. Modern Small Antennas. Cambridge University Press, 2013. ISBN: 978-0-521-87786-2
  13. RASHED-MOHASSED, J., MEHDIPOUR, A., ALINKBARIAN, H. New scheme of size reduction in space filling resonant dipole antennas. In European Conference on Antennas and Propagation (EuCAP). Berlin (Germany), 2009, p. 2430–2432. ISBN: 978-1-4244-4753-4
  14. BALIARDA, C. P., ROMEU, J., CARDAMA, A. The Koch monopole: A small fractal antenna. IEEE Transactions on Antennas and Propagation, 2000, vol. 48, no. 11, p. 1773–1781. DOI: 10.1109/8.900236
  15. ZHU, J., HOORFAR, A., ENGHETA, N. Peano antennas. IEEE Transactions on Antennas and Propagation Letters, 2004, vol. 3, p. 71–74. DOI: 10.1109/LAWP.2004.827899
  16. CHEN, X., SAFAVI, S., LIU, Y. A down-sized printed Hilbert antenna for VHF band. In IEEE Antennas and Propagation Society International Symposium. Columbus (USA), 2003, p. 581–584. DOI: 10.1109/APS.2003.1219304
  17. HOHLFELD, R. G., COHEN, N. Self-similarity and the geometric requirements for frequency independence in antennae. Fractals, 1999, vol. 7, no 1., p. 79–84. DOI: 10.1142/S0218348X99000098
  18. STOCKMAN, H. Communication by means of reflected power. Proceedings of the Institute of Radio Engineers (IRE), 1948, vol. 36, no. 10, p. 1196–1204. DOI: 10.1109/JRPROC.1948.226245
  19. Hitachi Chemical Co. Ultra small package tag by Hitachi Chemical, [Online] Cited 2018-11-20. Available at: http://www.hitachichem.co.jp/english/products/ppcm/014.html
  20. DU, M., XU, J., DING, X., et al. A low-profile wideband LTCC integrated circularly polarized helical antenna array for millimeter-wave applications. Radioengineering, 2018, vol. 27, no. 2, p. 455–462. DOI: 10.13164/re.2018.0455
  21. FUJIMAKI, T., TOEDA, Y., HAMADA, M., et al. An electrically small on-chip antenna scaled down to one-twentyfifth by one-fiftieth of wavelength. In IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. Boston (USA), 2018, p. 299–300. DOI: 10.1109/APUSNCURSINRSM.2018.8608514
  22. JANTARACHOTE, V., CHALERMWISUTKUL, S., SCHRAML, K., et al. Comparison of meander line and NFRP miniaturization techniques for RFID on-chip antennas. In International Symposium on Antennas and Propagation (ISAP). Phuket (Thailand), 2017, p. 1–2. DOI: 10.1109/ISANP.2017.8228986

Keywords: On-chip antenna design, antenna design, electrically small antennas (ESA), UHF RFID tag design

F. Mejri, T. Aguili [references] [full-text] [DOI: 10.13164/re.2019.0414] [Download Citations]
Design of a New Radio-Frequency Switch Topology with Very Low Polarization Current

Embedded systems are generally powered by batteries, characterized by a limited duration of electrical energy storage. For that, low power consuming RF components are often used. This work focuses on the design of a new RF switch based on one varicap diode within a series/parallel circuit topology. The latter is low-power-consuming in both ON and OFF mode and inhibits eventual nonlinearities caused by series diodes such as common PIN diodes. Before performing simulations, the diode has been characterized experimentally in the whole UHF band of interest and the extracted S-parameters have been used in the simulations of the resonating structure. The optimized switch has been measured and has showed a good agreement with simulated results in terms of high isolation (50 dB) and low insertion loss (0.1 dB). These results showed better performances compared to other structures based on RF MEMS, PIN diode or FET transistor devices, available in the literature.

  1. ALAM, M. S., ABBOSH, A. M. Beam-steerable planar antenna using circular disc and four pin-controlled tapered stubs for WiMAX and WLAN applications. IEEE Antennas and Wireless Propagation Letters, 2016, vol. 15, p. 980–983. DOI: 10.1109/LAWP.2015.2489684
  2. LU, P., YANG, X. S., LI, J. L., et al. Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission. IEEE Transactions on Antennas and Propagation, 2016, vol. 64, no. 3, p. 1136–1141. DOI: 10.1109/TAP.2016.2518198
  3. YANG, X. L., LIN, J. C., CHEN, G., et al. Frequency reconfigurable antenna for wireless communications using GaAs FET switch. IEEE Antennas and Wireless Propagation Letters, 2015, vol. 14, p. 807–810. DOI: 10.1109/LAWP.2014.2380436
  4. NGUYEN, D. P., PHAM, A. V., ARYANFAR, F. A k-band high power and high isolation stacked-FET single pole double throw MMIC switch using resonating capacitor. IEEE Microwave and Wireless Components Letters, 2016, vol. 26, no. 9, p. 696–698. DOI: 10.1109/LMWC.2016.2597235
  5. RAJAGOPALAN, H., KOVITZ, J. M., RAHMAT-SAMII, Y. MEMS reconfigurable optimized e-shaped patch antenna design for cognitive radio. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 3, p. 1056–1064. DOI: 10.1109/TAP.2013.2292531
  6. ANAGNOSTOU, D. E., CHRYSSOMALLIS, M. T., BRAATEN, B. D., et al. Reconfigurable UWB antenna with RF-MEMS for ondemand WLAN rejection. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 2, p. 602–608. DOI: 10.1109/TAP.2013.2293145
  7. RICHARDS, R. J., DE LOS SANTOS, H. J. MEMS for RF/Microwave Wireless Applications: The Next Wave. Tutorial. 2001. [Online] Available at: https://www.researchgate.net/profile/Hector_De_Los_Santos3/pub lication/237726374_MEMS_for_RFmicrowave_wireless_applicati ons_The_next_wave/links/54d27c870cf2b0c61469be98/MEMSfor-RF-microwave-wireless-applications-The-next-wave.pdf
  8. Varicap diode, https://en.wikipedia.org/wiki/Varicap
  9. KALAMKAR, S. Design and analysis of frequency reconfigurable microstrip patch antenna. International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE), 2017, vol. 5, no. 3, p. 4390–4395. DOI: 10.15680/IJIRCCE.2017. 0503144
  10. HINSZ, L., BRAATEN, B. D. A frequency reconfigurable transmitter antenna with autonomous switching capabilities. IEEE Transactions on Antennas and Propagation, 2014, vol. 62, no. 7, p. 3809–3813. DOI: 10.1109/TAP.2014.2316298
  11. Microstrip, https://en.wikipedia.org/wiki/Microstrip
  12. WADELL, B. C. Transmission Line Design Handbook. Norwood (MA, USA): Artech House, 1991 (p. 300). ISBN: 0-89006-436-9
  13. HONG J. S., LANCASTER, M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, 2001. (p. 90, p. 97–99, p. 188–189) ISBN: 0-471-22161-9
  14. FOOKS, E. H., ZAKAREVICIUS, R. A. Microwave Engineering using Microstrip Circuits. Prentice Hall of Australia, 1990. (p. 13, p. 93, p. 102, p. 104) ISBN: 0136916503
  15. BAHL, I., BHARTIA, P. Microwave Solid State Circuit Design. 2nd ed. Hoboken (NJ, USA): John Wiley & Sons, 2003. (p. 290) ISBN: 0-471-20755-1
  16. PHILIPS. BB149A UHF Variable Capacitance Diode. Product data sheet rev. 03 (2004).
  17. Touchstone File Format Specification. https: //ibis.org/connector/touchstone_spec11.pdf

Keywords: RF switch, micro-strip structure, microwave, varicap diode, parallel and series resonance, reconfigurable resonant circuit, very low polarization current

L. N. P. Nepaya, R. H. Geschke [references] [full-text] [DOI: 10.13164/re.2019.0422] [Download Citations]
Quasi-Lumped Element Implementation of a Wide-Band Dual-Band Filter based on Reactance Transformations

The synthesis and design of a quasi-lumped element dual-band filter is presented for a radiometry application. Band 1 is from 0.45 to 0.86 GHz and band 2 from 1.24 to 1.75 GHz. The filter circuit model has no theoretical bandwidth limitation and is implemented on multilayer substrate. Controlled suppression between the two bands is demonstrated. Agreement between simulation and measurement confirms the feasibility of the design method. The effect of dominant parasitic elements in the quasi-lumped element implementations is detailed.

  1. QIAN, S., HONG, J. Miniature quasi-lumped-element wideband bandpass filter at 0.5–2-GHz band using multilayer liquid crystal polymer technology. IEEE Transactions on Microwave Theory and Techniques, 2012, vol. 60, no. 9, p. 2799–2807. DOI: 10.1109/TMTT.2012.2205939
  2. BAVIS, A., SWAMINATHAN, A., MINA, E. Liquid crystal polymer-based planar lumped component dual-band filters for dual-band WLAN systems. In Proceedings of the IEEE Radio and Wireless Symposium. Long Beach (USA), 2007, p. 539–542. DOI: 10.1109/RWS.2007.351887
  3. VANAKURU, V. N. R., GODAVARTHI, N., CHAKRAVORTY, A. Miniaturized millimeter-wave narrow bandpass filter in 0.18 upµm CMOS technology using spiral inductors and inter digital capacitors. In Proceedings of the IEEE Conference on Signal Processing and Communications (SPCOM). Bangalore (India), 2014, p. 1–4. DOI: 10.1109/SPCOM.2014.6983960
  4. KRAMER, M., DRAGOMIRESCU, D., PLANA, R. Accurate electromagnetic simulation and measurement of millimeter-wave inductors in bulk CMOS technology. In IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF). New Orleans (USA), 2010, p. 61–64. DOI: 10.1109/SMIC.2010.5422948
  5. BRAND, T. B. Synthesis Methods for Multi-Band Coupled Resonator Filters. Ph.D. dissertation, Stellenbosch University, 2014. Available at: http://hdl.handle.net/10019.1/95910
  6. BRAND, T. B., MEYER, P., GESCHKE, R.H. Designing multiband coupled- resonator filters using reactance transformations. International Journal of RF and Microwave Computer-Aided Engineering, 2015, vol. 25, no. 1, p. 81–92. DOI: 10.1002/mmce.20826
  7. HONG, J.-S., LANCASTER M. J. Microstrip Filters for RF/Microwave Applications. John Wiley & Sons, 2001. ISBN: 9780470937297
  8. QIAN, S., HAO Z.-C., HONG, J., et al. Design and fabrication of a miniature highpass filter using multilayer LCP technology. In IEEE European Microwave Conference. Manchester (UK), 2011, p. 187–190. DOI: 10.23919/EuMC.2011.6101685

Keywords: Quasi lumped element filters, wide-band filter, dual-band filter, reactance transform method

G. Stancic, M. Đuric, B. Jovanovic, S. Cvetkovic [references] [full-text] [DOI: 10.13164/re.2019.0430] [Download Citations]
A Complexity Analysis of IIR Filters with an Approximately Linear Phase

In this paper, a comprehensive analysis of hardware complexity of different configurations for the realization of approximately linear phase filters is presented. Hardware complexity for the realization of the parallel all-pass structure (PA) is compared to the standard elliptic filters with the adequate group delay corrector (EC) in cascade. Both considered filters are designed to have the same cutoff frequency and magnitude approximation error, as well as the same maximal group delay error in all pass-bands. All analyzed infinite impulse response (IIR) filters will have an elliptic shape magnitude and approximately linear phase (i.e. constant group delay). In addition, the resulting group delay error of all the considered filters has an equiripple nature. The performed analysis revealed that consistently better results could be achieved with PA filters in terms of power consumption and hardware complexity. At the same time, the PA filters introduce significantly lower delay. The filter banks for efficient sub-band coding and signal transmission in communication systems could be successfully realized using the PA filters. The results presented here could be a valuable resource for designers of IIR filters to select the appropriate configuration for realization.

  1. REGALIA, P. A., MITRA, S. K., VAIDYANATHAN, P. P. The digital all-pass filter: A versatile signal processing building block. Proceedings of the IEEE, 1988, vol. 76, no. 1, p. 19–37. DOI: 10.1109/5.3286
  2. STANCIĆ, G., NIKOLIĆ, S. Digital linear phase notch filter design based on IIR all-pass filter application. Digital Signal Processing, 2013, vol. 23, no. 3, p. 1065–1069. DOI: 10.1016/j.dsp.2013.01.006
  3. BARSAINYA, R., AGGARWAL, M., RAWAT, T. K. Minimum multiplier implementation of a comb filter using lattice wave digital filter. In Proceedings of the Annual IEEE India Conference (INDICON). New Delhi (India), 2015, p. 1–6. DOI: 10.1109/INDICON.2015.7443491
  4. STANCIĆ, G., KRSTIĆ, I., ZIVKOVIĆ, M. Design of IIR fullband differentiators using parallel all-pass structure. Digital Signal Processing, April 2019, vol. 87, p. 132–144. DOI: 10.1016/j.dsp.2019.01.026
  5. BARSAINYA, R., RAWAT, T. Novel design of recursive differentiator based on lattice wave digital filter. Radioengineering, 2017, vol. 26, no. 1, p. 387–395. DOI: 10.13164/re.2017.0387
  6. SAMAD, S. A., HUSSAIN, A., ISA, D. Wave digital filters with minimum multiplier for discrete Hilbert transformer realization. Signal Processing, 2006, vol. 86, no. 12, p. 3761–3768. DOI: 10.1016/j.sigpro.2006.03.005
  7. AGGARWAL, M., BARSAINYA, R., RAWAT, T. K. FPGA implementation of Hilbert transformer based on lattice wave digital filters. In Proceedings of the IEEE Conference on Reliability, Infocom Technologies and Optimization (ICRITO). Noida (India), 2015, p. 1–5. DOI: 10.1109/ICRITO.2015.7359331
  8. VAIDYANATHAN, P. P., REGALIA, P. A., MITRA, S. K. Design of doubly-complementary IIR digital filters using a single complex allpass filter with multirate applications. IEEE Transactions on Circuits and Systems, 1987, vol. CAS-34, no. 4, p. 378–389. DOI: 10.1109/TCS.1987.1086156
  9. LEE, J.-H., JANG, Y.-H. Design of two-channel linear-phase QMF banks based on real IIR all-pass filters. IEE Proceedings – Visual Image Signal Processing, 2003, vol. 150, no. 5, p. 331–338. DOI: 10.1049/ip-vis:20030699
  10. COLLINS, T. F., GETZ, R., PU, D., WYGLINSKI, A. M. Software-Defined Radio for Engineers. Artech House, 2018. ISBN-13: 978-1-63081-457-1
  11. HARRIS, F., CHEN, X., VENOSA, E. Filter Banks for SoftwareDefined Radio. (Chapter 6 in Renfors, M., Mestre, X., Kofidis, E., et al. (eds.) Orthogonal Waveforms and Filter Banks for Future Communication Systems.) 2017, p. 105–127. DOI: 10.1016/b978- 0-12-810384-5.00006-2
  12. CAI, X., ZHOU, M., HUANG, X. Model-based design for Software Defined Radio on an FPGA. IEEE Access, 2017, vol. 5, p. 8276–8283. DOI: 10.1109/access.2017.2692764
  13. JAWAHAR, A., LATHA, P. P. Implementation of high-order FIR digital filtering for software defined radio receivers. In International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). Paralakhemundi (India), 2016, p. 1452–1456. DOI: 10.1109/scopes.2016.7955680
  14. HARRIS, F., VENOSA, E., CHEN, X., KUMAR, P., DICK, C. Comparison of standard low pass filter types in two-path half-band IIR filter structures. In International Symposium on Signals, Circuits and Systems ISSCS2013. Iasi (Romania), p. 1–4. DOI: 10.1109/isscs.2013.6651203
  15. MILIĆ, LJ. D., SARAMAKI, T., BREGOVIĆ, R. Multirate filters: An overview. In Proc. of IEEE Asia Pacific Conference on Circuits, Systems. Singapore, Dec. 2006, p. 914–917. DOI: 10.1109/APCCAS.2006.342190
  16. DJURIC, B. M. Equiripple phase for IIR all-pass filters. Electronics Letters, 1992, vol. 28, no. 20, p. 1860–1861. DOI: 10.1049/el:19921190
  17. SELESNICK, I. W. Low-pass filters realizable as all-pass sums: Design via a new flat delay filter. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, 1999, vol. 46, no. 1, p. 40–50. DOI: 10.1109/82.749080
  18. FERNANDEZ-VAZQUEZ, A., JOVANOVIC-DOLECEK, G. A new method for the design of IIR filters with flat magnitude response. IEEE Transactions on Circuits and Systems, 2006, vol. 53, no. 8, p. 1761–1771. DOI: 10.1109/TCSI.2006.877891
  19. DJURIĆ, M., STANCIĆ, G. Selective digital filters with quadratic phase. International Journal of Circuit Theory and Applications, 2016, vol. 44, no. 9, p. 1730–1741. DOI: 10.1002/cta.2190
  20. SCHELSTRAETE, S. Method for design of allpass filters. Electronics Letters, 1999, vol. 35, no. 7, p. 536–537. DOI: 10.1049/el:19990423
  21. GUINDON, D., SHPAK, D. J., ANTONIOU, A. Design methodology for nearly linear-phase recursive digital filters by constrained optimization. IEEE Transactions on Circuits and Systems, 2010, vol. 57, no. 7, p. 1719–1731. DOI: 10.1109/TCSI.2009.2035412
  22. PAVLOVIĆ, V., ANTIĆ, D., NIKOLIĆ, S., PERIĆ, S. Low complexity lowpass linear-phase multiplierless FIR filter. Electronics Letters, 2013, vol. 49, no. 18, p. 1133–1135. DOI: 10.1049/el.2013.1791
  23. SANTAMARIA, I. Design of linear-phase FIR filters using support vector regression approach. Electronics Letters, 2003, vol. 39, no. 19, p. 1422–1423. DOI: 10.1049/el:20030914
  24. MITRA, S. K. Digital Signal Processing: A Computer Based Approach. Chapter 6.7.1. 3rd ed. Mc Graw Hill, 2006. ISBN-10: 0072865466
  25. ANZOVA, V. I., YLI-KAAKINEN, J., SARAMAKI, T. An algorithm for the design of multiplierless IIR filters as a parallel connection of two all-pass filters. In IEEE Asia Pacific Conference on Circuits and Systems (APCCAS). Singapore, 2006, p. 744–747. DOI: 10.1109/apccas.2006.342115
  26. STANCIĆ, G., JOVANOVIĆ, B., PETROVIĆ, M. Complexity analysis of the quadratic phase IIR digital filters. In Proceedings of the 3rd International Conference on Electrical, Electronic and Computing Engineering IcETRAN. Zlatibor (Serbia), 2016, p. 44. (ELI1.6.1–5). ISBN 978-86-7466-618-0
  27. XILINX. DSP48E1 USER GUIDE [Online] Cited 2018-10-02. Available at: https://www.xilinx.com/support/documentation/ user_guides/ug369.pdf.

Keywords: Elliptic filters, FPGA analysis, approximately linear phase, all-pass filters, equiripple approximation error, filter banks.

Y. Xie, B. Li, Z. Yan, J. Fan, M. Yang [references] [full-text] [DOI: 10.13164/re.2019.0439] [Download Citations]
A General Hybrid Precoding Method for mmWave Massive MIMO Systems

Recently, hybrid precoding architectures have been proposed for the purpose of practical implementation of massive Multiple-Input Multiple-Output (MIMO) systems in the Fifth Generation (5G) networks. In this paper, a general precoding method is investigated for Millimeter Wave (mmWave) multi-user systems, which is composed of the designs in analog Radio Frequency (RF) and digital baseband matrices. In the general hybrid architecture, the analog part is constituted of independent analog sub-arrays with full connection inside. The analog precoding matrix is considered by maximizing Signal-to-Leakage-plus-Noise Ratio (SLNR) with only the long-term statistics of user groups. Due to the constant module constraint of RF chains, a supplemental matrix is introduced to reduce the performance loss. The digital precoding matrix performs Regularized Zero-Forcing (RZF) with the reduced amount of effective channels. Finally, simulation results demonstrate the performance improvement of the proposed precoding method. Meanwhile, trade-off between the performance and the complexity is handled well by the proposed method.

  1. LARSSON, E. G., EDFORS, O., TUFVESSON, F., et al. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, vol. 52, no. 2, p. 186–195. DOI: 10.1109/MCOM.2014.6736761
  2. MEKKAWY, T., YAO, R., TSIFTSIS, T. A., et al. Joint beamforming alignment with suboptimal power allocation for a two way untrusted relay network. IEEE Transactions on Information Forensics & Security, 2018, vol. 13, no. 10, p. 2464–2474, DOI: 10.1109/TIFS.2018.2819132.
  3. ZHANG, J. A., HUANG, X., DYADYUK, V., et al. Massive hybrid antenna array for millimeter-wave cellular communications. IEEE Wireless Communications, 2015, vol. 22, no. 1, p. 79–87. DOI: 10.1109/MWC.2015.7054722
  4. PARK, S., PARK, J., YAZDAN, A., et al. Exploiting spatial channel covariance for hybrid precoding in massive MIMO systems. IEEE Transactions on Signal Process, 2017, vol. 65, no. 14, p. 3818–3832. DOI: 10.1109/TSP.2017.2701321
  5. KIM, D., LEE, G., SUNG, Y. Two-stage beamformer design for massive MIMO downlink by trace quotient formulation. IEEE Transactions on Communications, 2015, vol. 63, no. 6, p. 2200–2211. DOI: 10.1109/TCOMM.2015.2429646
  6. LIN, C., LI, G. Y. Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 2016, vol. 54, no. 12, p. 124–131. DOI: 10.1109/MCOM.2016.1600306CM
  7. GAO, X., DAI, L., HAN, S., et al. Energy-efficient hybrid analog and digital precoding for mmwave MIMO systems with large antenna arrays. IEEE Journal on Selected Areas in Communications, 2016, vol. 34, no. 4, p. 998–1009. DOI: 10.1109/JSAC.2016.2549418
  8. YU, X., SHEN, J. C., ZHANG, J., et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE Journal of Selected Topics in Signal Processing, 2016, vol. 10, no. 3, p. 485–500. DOI: 10.1109/JSTSP.2016.2523903
  9. ZHANG, D., WANG, Y., LI, X., et al. Hybridly connected structure for hybrid beamforming in mmwave massive MIMO systems. IEEE Transactions on Communications, 2018, vol. 66, no. 2, p. 662–674. DOI: 10.1109/TCOMM.2017.2756882
  10. WU, K., WU, L., ZHANG, J. Multiuser hybrid analogue/digital beamforming for massive multiple-input-multiple-output. IET Commununications, 2016, vol. 10, no. 12, p. 1464–1472. DOI: 10.1049/iet-com.2015.0520
  11. SONG, N., WEN, P., SUN, H., et al. Multi-panel based hybrid beamforming for multi-user massive MIMO. In Proceedings of the IEEE Global Communications Conference (GLOBECOM). Singapore, 2017, p. 1–6. DOI: 10.1109/GLOCOM.2017.8254880
  12. ADHIKARY, A., SAFADI, E. A. Joint Spatial Division and Multiplexing for mm-Wave Channels. IEEE Journal on Selected Areas in Communications, 2014, vol. 32, no. 6, p. 1239–1255. DOI: 10.1109/JSAC.2014.2328173
  13. XU, Y., YUE, G., MAO, S. User grouping for massive MIMO in FDD systems: New design methods and analysis. IEEE Access, 2014, vol. 2, p. 947–959. DOI: 10.1109/ACCESS.2014.2353297
  14. SADEK, M., TARIGHAT, A., SAYED, A. H. A leakage-based precoding scheme for downlink multi-user MIMO channels. IEEE Transactions on Wireless Communications, 2007, vol. 6, no. 5, p. 1711–1721. DOI: 10.1109/TWC.2007.360373
  15. LIANG, L., DAI, Y., XU, W., et al. How to approach zero-forcing under RF chain limitations in large mmWave multiuser systems? In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC). Shanghai (China), 2014, p. 518–522. DOI: 10.1109/ICCChina.2014.7008332
  16. JOROUGHI, V., VAZQUEZ, M. A., PEREZ-NEIRA, A. I. Generalized multicast multibeam precoding for satellite communications. IEEE Transactions on Wireless Communications, 2017, vol. 16, no. 2, p. 952–966. DOI: 10.1109/TWC.2016.2635139
  17. RUSU, C., MENDEZ-RIAL, R., GONZALEZ, N., et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Transactions on Wireless Communications, 2016, vol. 15, no. 12, p. 8380–8393. DOI: 10.1109/TWC.2016.2614495
  18. Matlab V8.0. https://www.mathworks.com/products/matlab.html

Keywords: Massive MIMO, hybrid precoding architectures, beamforming, millimeter wave

Y. Hu, B. G. Yu, Z. X. Deng, G. D. He, H. J. Zhou [references] [full-text] [DOI: 10.13164/re.2019.0447] [Download Citations]
Efficient Cycle Frequency Acquisition of a Cyclostationary Signal with the FACA Method

The cycle frequencies of a cyclostationary signal can be used for the signal identification and classification, separation of the overlapped signals in cycle domain, and so on. Efficient cycle frequency acquisition depends on the fast measurement of cyclic autocorrelation function (CAF) or spectral correlation function (SCF) of the signal. Presently the relative efficient CAF and SCF measuring methods mainly include the cyclic correlogram, the well-known fast Fourier transform accumulation method (FAM), and so on. Motivated by these methods, a new efficient cycle frequency acquisition method which integrates the fast Fourier transform (FFT) algorithm with the autocorrelated cyclic autocorrelation function, named FACA, is presented. With the presented method, we can acquire the cycle frequencies of a cyclostationary signal more efficiently with a given level of reliability. Meanwhile, by enlarging the FFT window width of the FACA method we can get the same cycle frequency resolution as the benchmarked method FAM, but the computation cost still can be spared at this case.

  1. GARDNER, W. A. Measurement of spectral correlation. IEEE Transactions on Acoustics, Speech, Signal Processing, 1986, vol. 34, no. 5, p. 1111–1123. DOI: 10.1109/tassp.1986.1164951
  2. NAPOLITANO, A. Cyclostationarity: new trends and applications. Signal Processing, 2016, vol. 120, p. 385–408. DOI: 10.1016/j. sigpro.2015.09.011
  3. DOBRE, O. A. Signal identification for emerging intelligent radios: classical problems and new challenges. IEEE Instrumentation & Measurement Magazine, 2015, vol. 18, no. 2, p. 11–18. DOI: 10.1109/mim.2015.7066677
  4. YAWADA, P. S., WEI, A. J. Cyclostationary detection based on non-cooperative spectrum sensing in cognitive radio network. In IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Chengdu (China), 2016, p. 184–187. DOI: 10.1109/cyber.2016.7574819
  5. DOBRE, O. A., ABDI, A., BAR-NESS, Y., et al. Cyclostationarity based blind classification of analog and digital modulations. In Proceedings of the 2006 IEEE Conference on Military Communications. Washington (USA), 2006, p. 2176–2182. DOI: 10.1109/milcom.2006.302556
  6. SAHMOUDI, M., YANG, C., CALMETTES, V. The merits of the cyclostationarity of BOC signals for a cognitive GNSS receiver design. In IEEE/ION Position, Location and Navigation Symposium. Indian Wells (CA, USA), 2010, p. 1181–1188. DOI: 10.1109/plans.2010.5507238
  7. LOHAN, E. S., LUNDEN, J., SECO-GRANADOS, G., et al. Cyclic frequencies of BOC-modulated GNSS signals and their potential within a cognitive positioning framework. Navigation: Journal of the Institute of Navigation, 2014, vol. 61, no. 2, p. 95–114. DOI: 10.1002/navi.59
  8. GARDNER, W. A. Cyclic Wiener filtering: theory and method. IEEE Transactions on Communications, 1993, vol. 41, no. 1, p. 151–163. DOI: 10.1109/26.212375
  9. ZHANG, J., WONG, K. M., LUO, Z. Q., et al. Blind adaptive FRESH filtering for signal extraction. IEEE Transactions on Signal Processing, 1999, vol. 47, no. 5, p. 1397–1402. DOI: 10.1109/78.757230
  10. CHOPRA, R., GHOSH, D., MEHRA, D. K. Spectrum sensing for cognitive radios based on space-time FRESH filtering. IEEE Transactions on Wireless Communications, 2014, vol. 13, no. 7, p. 3903–3913. DOI: 10.1109/twc.2014.2314125
  11. SEBESTA, V., MARSALEK, R., FEDRA, Z. OFDM signal detector based on cyclic autocorrelation function and its properties. Radioengineering, 2011, vol. 20, no. 4, p. 926–931. ISSN: 1210-2512
  12. ROBERTS, R. S., BROWN, W. A., LOOMIS, H. H. Computationally efficient algorithms for cyclic spectral analysis. IEEE Signal Processing Magazine, 1991, vol. 8, no. 2, p. 38–49. DOI: 10.1109/79.81008
  13. YEUNG, G. K., GARDNER, W. A. Search-efficient methods of detection of cyclostationary signals. IEEE Transactions on Signal Processing, 1996, vol. 44, no. 5, p. 1214–1223. DOI: 10.1109/78.502333
  14. BROWN, W. A., LOOMIS, H. H. Digital implementations of spectral correlation analyzers. IEEE Transactions on Signal Processing, 1993, vol. 41, no. 2, p. 703–720. DOI: 10.1109/78.193211
  15. ANTONI, J., XIN, G., HAMZAOUI, N. Fast computation of the spectral correlation. Mechanical Systems and Signal Processing, 2017, vol. 92, p. 248–277. DOI: 10.1016/j.ymssp.2017.01.011
  16. HU, Y., SONG, M. Z., DANG, X. Y., et al. Interference mitigation for the GPS receiver utilizing the cyclic spectral analysis and RRMSWF algorithm. Radioengineering, 2017, vol. 26, no. 3, p. 798–807. DOI: 10.13164/re.2017.0798
  17. YESTE-OJEDA, O. A., GRAJAL, J. Cyclostationarity-based signal separation in interceptors based on a single sensor. In IEEE Radar Conference. Rome (Italy), 2008, p. 1–6. DOI: 10.1109/radar.2008.4720750
  18. NAPOLITANO, A. Cyclostationarity: limits and generalizations. Signal Processing, 2016, vol. 120, p. 323–347. DOI: 10.1016/j.sigpro.2015.09.013
  19. CIBLAT, P., LOUBATON, P., SERPEDIN, E., et al. Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators. IEEE Transactions on Information Theory, 2002, vol. 48, no. 7, p. 1922–1934. DOI: 10.1109/tit.2002.1013133
  20. GELLI, G., PAURA, L., TULINO, A. M. Cyclostationarity-based filtering for narrowband interference suppression in directsequence spread-spectrum systems. IEEE Journal on Selected Areas in Communications, 1998, vol. 16, no. 9, p. 1747–1755. DOI: 10.1109/49.737643

Keywords: Cycle frequency acquisition, cyclostationary signal, FACA method, FFT algorithm

F. Akram, I. Rashid, A. Ghafoor, A. M. Siddiqui [references] [full-text] [DOI: 10.13164/re.2019.0456] [Download Citations]
Fast Convergence Algorithms for Coherence Optimization of Rank-1 Grassmannian Codebooks

Best Complex Antipodal Spherical Codes (BCASC) and Coherence Based Grassmannian Codebooks (CBGC) are state of the art algorithms to produce minimal coherence codebooks, however have high running time (relatively more in BCASC search than CBGC algorithm) which restricts their wider application. BCASC and CBGC algorithms are modified in a novel way by incorporating additional parameters adapted to three categories of codebooknovercompleteness to check stagnance of optimization and divergent behaviour to achieve faster convergence. The proposed algorithms are compared with BCASC and CBGC algorithms to achieve similar coherence results in much less time.

  1. CHRISTENSEN, O. An Introduction to Frames and Riesz Bases. Birkhauser, 2016, ISBN: 978-0-8176-8224-8
  2. CANDES, E. J., WAKIN, M. B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, vol. 25, no. 2, p. 21–30. DOI: 10.1109/MSP.2007.914731
  3. LOVE, D., HEATH, R.W., STROHMER, T. Grassmannian beamforming for multiple input multiple output wireless systems. IEEE Transactions on Information Theory, 2003, vol. 49, no. 10, p. 2735–2747. DOI: 10.1109/TIT.2003.817466
  4. MEDRA, A., DAVIDSON, T. N. Flexible codebook design for limited feedback systems via sequential smooth optimization on the Grassmannian manifold. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 5, p. 1305–1318. DOI: 10.1109/TSP.2014.2301137
  5. XIA, P., ZHOU, S., GIANNAKIS, G.B. Achieving the Welch bound with difference sets. IEEE Transactions on Information Theory, 2005, vol. 51, no. 5, p. 1900– 1907. DOI: 10.1109/TIT.2005.846411
  6. CONWAY, J. H., HARDIN, R. H., SLOANE, N. J. Packing lines, planes, etc.: Packings in Grassmannian spaces. Experimental Mathematics, 1996, vol. 5, no. 2, p. 139–159. DOI: 10.1080/10586458.1996.10504585
  7. TROPP, J., DHILLON, I. S., HEATH, R. W., et al. Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory, 2005, vol. 51, no. 1, p. 188–209. DOI: 10.1109/TIT.2004.839492
  8. DHILLON, I. S., HEATH, R. W., STROHMER, T., et al. Constructing packings in Grassmannian manifolds via alternating projection. Experimental Mathematics, 2008, vol. 17, no. 1, p. 9–35. DOI: 10.1080/10586458.2008.10129018
  9. ELAD, M. Optimized projections for compressed sensing. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 12, p. 5695–5702. DOI: 10.1109/TSP.2007.900760
  10. SADEGHI, M., BABARIE-ZADEH, M. Incoherent unit-norm frame design via an alternating minimization penalty method. IEEE Signal Processing Letters, 2017, vol. 24, no. 1, p. 32–36. DOI: 10.1109/LSP.2016.2632199
  11. LI, S., GE, G. Deterministic sensing matrices arising from near orthogonal systems. IEEE Transactions on Information Theory, 2014, vol. 60, no. 4, p. 2291–2302. DOI: 10.1109/TIT.2014.2303973
  12. TAN, P., ZHOU, Z., ZHANG, D. A construction of codebooks nearly achieving the Levenstein bound. IEEE Signal Processing Letters, 2016, vol. 23, no. 10, p. 1306–1309. DOI: 10.1109/LSP.2016.2595106
  13. RUSU, C. Design of incoherent frames via convex optimization. IEEE Signal Processing Letters, 2013, vol. 20, no. 7, p. 673–676. DOI: 10.1109/LSP.2013.2263280
  14. RUSU, C., GONZALEZ-PRELCIC, N. Designing incoherent frames through convex techniques for optimized compressed sensing. IEEE Transactions on Signal Processing, 2016, vol. 64, no. 9, p. 2334– 2344. DOI: 10.1109/TSP.2016.2521607
  15. DUMITRESCU, B. Designing incoherent frames with only matrixvector multiplications. IEEE Signal Processing Letters, 2017, vol. 24, no. 9, p. 1265–1269. DOI: 10.1109/LSP.2017.2723044
  16. LAZIC, D.E. Class of block codes for the gaussian channel. Electronic Letters, 1980, vol. 16, no. 5, p. 185–186. DOI: 10.1049/el:19800133
  17. LAZIC, D. E., ZORLEIN, H., BOSSERT, M. Low coherence sensing matrices based on best spherical codes. In Proceedings of 9th International ITG Conference on Systems, Communication and Coding (SCC). Munich (Germany), 2013. ISBN: 978-3-8007-3482-5
  18. ZORLEIN, H., BOSSERT, M. Coherence optimization and best complex antipodal spherical codes. IEEE Transactions on Signal Processing, 2015, vol. 63, no. 24, p. 6606–6615. DOI: 10.1109/TSP.2015.2477052
  19. LAUE, H.E.A., DU PLESSIS, W. P. A coherence-based algorithm for optimizing rank-1 Grassmannian codebooks. IEEE Signal Processing Letters, 2017, vol. 24, no. 6, p. 823–827. DOI: 10.1109/LSP.2017.2690466
  20. ZORLEIN, H. Channel Coding Inspired Contributions to Compressed Sensing. Ph.D. dissertation, Universitat Ulm. 2015. DOI: 10.18725/OPARU-3247
  21. GLOVER, F., SORENSEN, K. Metaheuristics. Scholarpedia, 2015, vol. 10, no. 4. DOI:10.4249/scholarpedia.6532
  22. BLUM, C., PUCHINGER, J., RAIDL, G. R., ROLI, A. Hybrid metaheuristics in combinatorial optimization: A survey. Applied Soft Computing, 2011, vol. 11, no. 6, p. 4135–4151. DOI: 10.1007/978-3-540-78295-7_8
  23. TSAI, C., LIN, C., CHIANG, M. et al. A time-efficient particle swarm optimization-based codebook generation algorithm. In Proceedings of the IEEE Congress on Evolutionary Computation. Barcelona (Spain), 2010, p. 1–6. DOI: 10.1109/CEC.2010.5585985
  24. TSAI, C., TSENG, S., YANG, C., et al. PREACO: A fast ant colony optimization for codebook generation. Applied Soft Computing, 2013, vol. 13, no. 6, p. 3008–3020. DOI:10.1016/j.asoc.2013.01.017
  25. FONSECA, C. S., FERREIRA, F.A.B.S., MADEIRO, F. Vector quantization codebook design based on Fish School Search algorithm. Applied Soft Computing, 2018, vol. 73, p. 958–968. DOI: 10.1016/j.asoc.2018.09.025
  26. ZHENG, M., DONG, M. On codebook design for distributed relay beamforming network. In Proceedings of the IEEE International Conference on Communications in China (ICCC). Beijing (China), 2012, p. 323–328. DOI:10.1109/ICCChina.2012.6356901
  27. CHEN, J., CHIU, M., YANG, Y., et al. Efficient capacity-based joint quantized precoding and transmit antenna selection using crossentropy method for multiuser MIMO systems. International Journal of Antennas and Propagation, 2012, vol. 2012, Article ID 965834, 7p. DOI 10.1155/2012/965834
  28. RUBINSTEIN, R. The Cross-Entropy Method for Combinatorial and Continuous Optimization. Methodology and Computing in Applied Probability, 1999, vol. 7, no. 1, p. 127–190. DOI:10.1023/A:1010091220143
  29. WELCH, L. Lower bounds on the maximum cross correlation of signals. IEEE Transaction on Information Theory, 1974, vol. 20, no. 3, p. 397–399. DOI: 10.1109/TIT.1974.1055219
  30. SARWATE, D. V. Meeting the Welch Bound with Equality. Chapter in Ding, C., Helleseth, T., Niederreiter, H. Sequences and their Applications. Eds. Berlin, Germany: Springer-Verlag, 1999 ISBN: 978-1-4471-0551-0
  31. DELSARTE, P., GOETHALS, J. M., SEIDEL, J. J. Bounds for systems of lines and Jacobi polynomials. Philips Research Reports, 1974, vol. 30, no. 3, p. 91–105. Available at: http://www.extra.research.philips.com/hera/people/aarts/_Philips Bound Archive/PRRep/PRRep-30-1975B-091.pdf
  32. HENKEL, O. Sphere-packing bounds in the Grassmann and Stiefel manifolds. IEEE Transactions on Information Theory, 2005, vol. 51, no. 10, p. 3445–3456. DOI: 10.1109/TIT.2005.855594
  33. PITAVAL, R.A., TIRKKONEN, O., BLOSTEIN, S. Low complexity MIMO precoding codebooks from orthoplex packings. In Proceedings of the IEEE International Conference on Communication (ICC). Kyoto (Japan), 2011, p. 1–5. DOI: 10.1109/icc.2011.5963214
  34. LEVENSHTEIN, V. I., KABATIANSKY, G. A. On bounds for packings on a sphere and in space. Problemy Peredachi Informatsii, 1978, vol. 14, no. 1, p. 3–25.
  35. LEVENSHTEIN, V. I. Bounds for packings of metric spaces and some of their applications. Problemy Kibernetiki, 1983, vol. 40, p. 43–110.
  36. DING, C., YIN, J. Signal sets from functions with optimum nonlinearity. IEEE Transactions on Communication, 2007, vol. 55, no. 5, p. 936–940. DOI: 10.1109/TCOMM.2007.894113
  37. MUKKAVILLI, K., SABHARWAL, A., ERKIP, E., et al. On beamforming with finite rate feedback in multiple-antenna systems. IEEE Transactions on Information Theory, 2003, vol. 49, no. 10, p. 2562–2579. DOI: 10.1109/TIT.2003.817433

Keywords: Grassmannian codebooks, hybrid metaheuristics, numerical optimization

R. Bozovic, M. Simic [references] [full-text] [DOI: 10.13164/re.2019.0464] [Download Citations]
Spectrum Sensing Based on Higher Order Cumulants and Kurtosis Statistics Tests in Cognitive Radio

In this paper, new algorithms for spectrum sensing in cognitive radio based on higher order cumulants and kurtosis are proposed. The cumulants represent statistical signal processing based on pattern recognition for signals of different structure, and has low implementation complexity. Kurtosis statistics are a well-known technique for testing the Gaussianity feature of the signals. Under the assumption that a detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal. The simulation results show that spectrum sensing algorithms based on the estimated normalised values of joint higher order cumulants (of fourth and sixth orders) and kurtosis are reliable for a wide range of signal-to-noise ratio environments. In order to improve performances of the spectrum sensing, the combination of these statistics tests into unique one statistic test is proposed. Simulation results have verified improvement of the performances.

  1. HAYKIN, S. Cognitive radio brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 2005, vol.23, no. 2, p. 201–220. DOI: 10.1109/JSAC.2004.839380
  2. MITOLA, J., MAQUIRE, Jr. G. Q. Cognitive radio: Making software radios more personal. IEEE Personal Communications, 1999, vol. 6, no. 4, p. 13–18. DOI: 10.1109/98.788210
  3. AKYILDIZ, I. F., LEE, W.Y., VURAN, M. Next generation/ dynamic spectrum access/ cognitive radio wireless networks: A survey. Computer Networks Journal, 2006, vol. 50, no. 13, p. 2127–2159. DOI: 10.1016/j.comnet.2006.05.001
  4. YUCEK, T., ARSLAN, H. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 2009, vol. 11, no. 1, p. 116–130. DOI: 10.1109/SURV.2009.090109
  5. CABRIC, D., TKACENKO, A., BRODERSEN, R. W. Experimental study of spectrum sensing based on energy detection and network cooperation. In Proceedings of the first International Workshop on TAPAS. Boston (USA), 2006. DOI: 10.1145/1234388.1234400
  6. JOSHI, D. R., POPESCU, D. C., DOBRE, O. A. Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 2011, vol. 15, no. 1, p. 19–21. DOI: 10.1109/LCOMM.2010.11.100654
  7. BOZOVIC, R., SIMIC, M., PEJOVIC, P., DUKIC, M. L. The Analysis of closed-form solution for energy detector dynamic threshold adaptation in cognitive radio. Radioengineering, 2017, vol. 26, no. 1, p. 1104–1109. DOI: 10.13164/re.2017.1104
  8. WANG, D., LI, Z., ZHANG, N., QI, P., SHEN, X. High order cumulants based spectrum sensing and power recognition in hybrid interweave-underlay spectrum access. In IEEE International Conference on Communications. Paris (France), 2017. DOI: 10.1109/ICC.2017.7997088
  9. WANG, D., ZHANG, N., LI, Z., GAO, F., SHEN, X. Leveraging high order cumulants for spectrum sensing and power recognition in cognitive radio networks. IEEE Transations on Wireless Communications, 2018, vol. 17, no. 2, p. 1298–1310. DOI: 10.1109/TWC.2017.2777488
  10. JUN, W., GUANGGUO, B. Spectrum sensing in cognitive radios based on multiple cumulants. IEEE Signal Processing Letters, 2010, vol. 17, no. 8, p. 723–726. DOI: 10.1109/LSP.2010.2052242
  11. SUBEKTI, A., SUKSMONO, A. B. Kurtosis based spectrum sensing for cognitive wireless cloud computing network. In International Conference on Cloud Computing and Social Networking (ICCCSN). Bandung (Indonesia), 2012. DOI: 10.1109/ICCCSN.2012.6215720
  12. CARVALHO, F. B. S., ROCHA, J. S., LOPES, W. T. A., ALENCAR, M. S. A spectrum sensing algorithm based on statistic tests for cognitive networks subject to fading. In European Signal Processing Conference (EUSIPCO). Lisbon (Portugal), 2014. DOI: 10.1109/icee.2018.8472493
  13. CARVALHO, F. B. S., LOPES, W. T. A., ALENCAR, M. S. A. A modified Jarque-Bera test for spectrum sensing in cognitive networks subject to Rayleigh fading. In IEEE Vehicular Technology Conference (VTC- Fall). Montreal (Canada), 2016. DOI: 10.1109/VTCFall.2016.7880860
  14. TEGUIG, D., NIR, V. L., SCHEERS, B: Spectrum sensing method based on Goodnes of Fit test using chi-square distribution. Electronic Letters, 2014, vol. 51, no. 3, p. 253–255. DOI: 10.1049/el.2014.0302
  15. TEGUIG, D., NIR, V. L., SCHEERS, B: Spectrum sensing method based on Likelihood Goodnes of Fit test using chi-square distribution. Electronic Letters, 2014, vol. 50, no. 9, p. 713–715. DOI: 10.1049/el.2014.3579
  16. DENKOVSKI, D., ATANASOVSKI, V., GAVRILOVSKA, L. GHOST: Efficient Goodness-Of-Fit HOS testing signal detector for cognitive radio networks. In IEEE International Conference on Communications (ICC). Ottawa (Canada), 2012. DOI: 10.1109/ICC.2012.6364001
  17. CABRIC, D. Cognitive Radio: System Design Perspective. Ph. D. dissertation, University of California, Berkley, USA, 2007, 168 p. [Online], Cited 2007-12-17. Available at: http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS2007- 156.pdf
  18. CRAMER, H. Mathematical Methods of Statistics. New Jersey (USA): Princeton University Press, 1946. ISBN: 0691005478
  19. LUKACH, E. Characteristic Functions. 2nd ed. London (UK): Griffin, 1970. ISBN: 0852641702
  20. HYVARINEN, A., KARHUNEN, J., OJA, E. Independent Component Analysis. New York (USA): Wiley, 2001. ISBN: 047140540X
  21. ORLIC, V. D., DUKIC, M. L. Automatic modulation classification algorithm using higher-order cumulants under real-world channel conditions. IEEE Communications Letters, 2009, vol. 13, no. 12, p. 917–919. DOI: 10.1109/LCOMM.2009.12.091711
  22. ORLIC, V. D., DUKIC, M. L. Multipath channel estimation algorithm for automatic classification using sixth-order cumulants. Electronic Letters, 2010, vol. 46, no. 19, p. 1348–1349. DOI: 10.1049/el.2010.1893
  23. BLOCK, H., FANG, Z. A multivariate extension of Hoeffding’s lemma. The Annals of Probability, 1988, vol. 16, no. 4, p. 1803–1820. DOI: 10.1214/aop/1176991598
  24. OLLILA, E., KOIVUNEN, V. Adjusting the generalized likelihood ratio test of circularity robust to non-normality. In IEEE Signal Processing Advances in Wireless Communications (SPAWC) Workshop. Perugia (Italia), 2009, p. 21–24. DOI: 10.1109/SPAWC.2009.5161847
  25. JAVIDI, S., MANDIC, D. P., TOOK, C. C., CICHOKI, A. Kurtosisbased blind source extraction of complex non-circular signals with applications in EEG artifact removal in real-time. Frontiers in Neuroscience, 2011, vol. 5, p. 1–18. DOI: 10.3389/fnins.2011.00105
  26. CRAMER, D. Fundamental Statistics for Social Research. New York (USA): Routledge, 1997. ISBN: 0415172047
  27. PALIWAL, K. K. Estimation of noise variance from the noisy AR signal and its applications in speech enhacement. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, vol. 36, no. 2, p. 292–294. DOI: 10.1109/29.1523
  28. CADZOW, J. A. Spectral estimation: An overdetermined rational model equation approach. Proceedings of the IEEE, 1982, vol. 70, no. 9, p. 907–939. DOI: 10.1109/PROC.1982.12424
  29. WU, H. C., SAQUIB, M., YUN, Z. Novel automatic modulation classification using cumulant features for communications via multipath channels. IEEE Transactions on Wireless Communications, 2008, vol. 7, no. 8, p. 3098–3105. DOI: 10.1109/TWC.2008.070015
  30. SWAMI, A., SADLER, B.M. Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 2000, vol. 48, no. 3, p. 416–429. DOI: 10.1109/26.837045
  31. HARADA, H., PRASAD, R. Simulation and Software Radio for Mobile Communications. Norwood (USA): Artech house, 2002. ISBN: 1580530443

Keywords: Cognitive radio, cumulants, energy detector, kurtosis, noise variance estimation, spectrum sensing

Y. Dalveren, A. Kara [references] [full-text] [DOI: 10.13164/re.2019.0473] [Download Citations]
Multipath Exploitation in Emitter Localization for Irregular Terrains

Electronic Support Measures (ESM) systems have many operational challenges while locating radar emitter’s position around irregular terrains such as islands due to multipath scattering. To overcome these challenges, this paper addresses exploiting multipath scattering in passive localization of radar emitters around irregular terrains. The idea is based on the use of multipath scattered signals as virtual sensor through Geographical Information System (GIS). In this way, it is presented that single receiver (ESM receiver) passive localization can be achieved for radar emitters. The study is initiated with estimating candidate multipath scattering centers over irregular terrain. To do this, ESM receivers’ Angle of Arrival (AOA) and Time of Arrival (TOA) information are required for directly received radar pulses along with multipath scattered pulses. The problem then turns out to be multiple-sensor localization problem for which Time Difference of Arrival (TDOA)-based techniques can easily be applied. However, there is high degree of uncertainty in location of candidate multipath scattering centers as the multipath scattering involves diffuse components over irregular terrain. Apparently, this causes large localization errors in TDOA. To reduce this error, a reliability based weighting method is proposed. Simulation results regarding with a simplified 3D model is also presented.

  1. POISEL, R. Electronic Warfare Target Location Methods. 2nd ed., London (UK): Artech House, 2005. ISBN: 9781608075232
  2. RIGLING, B. Urban RF multipath mitigation. IET Radar, Sonar & Navigation, 2008, vol. 2, no. 6, p. 419–425. DOI: 10.1049/ietrsn:20080040
  3. LUI, K. W., SO, H. C. Range-based source localisation with pure reflector in presence of multipath propagation. IEEE Electronics Letters, 2010, vol. 46, no. 13, p. 957–958. DOI: 10.1049/el.2010.3431
  4. SEOW, C. K., TAN, S. Y. Localization of omni-directional mobile device in multipath environments. Progress In Electromagnetics Research, vol. 2008, no. 85, p. 323–348. DOI: 10.2528/PIER08090302
  5. SHEN, Y., WIN, M. Z. On the use of multipath geometry for wideband cooperative localization. In Proceedings of the IEEE Global Telecommunications Conference. Honolulu (USA), 2009. DOI: 10.1109/GLOCOM.2009.5425798
  6. MEISSNER, P., WITRISAL, K. Multipath-assisted single-anchor indoor localization in an office environment. In Proceedings of the IEEE 19th International Conference on Systems, Signals and Image Processing (IWSSIP). Vienna (Austria), 2012, p. 22–25. ISBN: 978-3-200-02328-4
  7. MUQAIBEL, A. H., AMIN, M. G., AHMAD, F. Target localization with a single antenna via directional multipath exploitation. International Journal of Antennas and Propagation, 2015. DOI: 10.1155/2015/510720
  8. O’CONNOR, A., SETLUR, P., DEVROYE, N. Single-sensor RF emitter localization based on multipath exploitation. IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 3, p. 1635–1651. DOI: 10.1109/TAES.2015.120807
  9. SETLUR, P., SMITH, G. E., AHMAD, F., AMIN, M. G. Target localization with a single sensor via multipath exploitation. IEEE Transactions on Aerospace and Electronic Systems, 2012, vol. 48, no. 3, p. 1996–2014. DOI: 10.1109/TAES.2012.6237575
  10. GIACOMETTI, R., BAUSSARD, A., JAHAN, D., et al. Localization of radar emitters from a single sensor using multipath and TDOA-AOA measurements in a naval context. In Proceedings of the IEEE 24th European Signal Processing Conference (EUSIPCO). Budapest (Hungary), 2016, p. 692–696. DOI: 10.1109/EUSIPCO.2016.7760337
  11. KAPUSUZ, K. Y., KARA, A. Determination of scattering center of multipath signals using geometric optics and Fresnel zone concepts. Engineering Science and Technology, 2014, vol. 17, no. 2, p. 50–57. DOI: 10.1016/j.jestch.2014.03.004
  12. JANE’S DEFENCE WEEKLY. [Online] Cited 2018-10-16 Available at: http://www.janes.com/defence/janes-defence-weekly
  13. RAPPAPORT, T. S. Wireless Communications - Principles and Practice. New Jersey (USA): Prentice Hall, 1996. ISBN: 9780780311671
  14. BERTONI, H. L. Radio Propagation for Modern Wireless Systems. London (UK): Pearson Education, 1999. ISBN: 0130263737
  15. KARA, A., BERTONI, H. L., YAZGAN, E. Limit and application range of the slope-diffraction method for wireless communications. IEEE Transactions on Antennas and Propagation, 2003, vol. 51, no. 9, p. 2512–2514. DOI: 10.1109/TAP.2003.816389
  16. TABAKCIOGLU, M. B. A top-down approach to S-UTD-CH model. Applied Computational Electromagnetics Society Journal, 2017, vol. 32, no. 7, p. 586–592. ISSN: 1054-4887
  17. NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY. Performance Specification Digital Terrain Elevation Data (DTED). 45 pages. [Online] Cited 2019-02-01. Available at: https://dds.cr.usgs.gov/srtm/version2_1/Documentation/MIL-PDF89020B.pdf
  18. HO, K., LU, X., KOVAVISARUCH, L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Transactions on Signal Processing, 2007, vol. 55, no. 2, p. 684–696. DOI: 10.1109/TSP.2006.885744
  19. WANG, G., LI, Y., ANSARI, N. A semidefinite relaxation method for source localization using TDOA and FDOA measurements, IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 2, p. 853–862. DOI: 10.1109/TVT.2012.2225074
  20. LIU, Y., GUO, F., YANG, L., JIANG, W. An improved algebraic solution for TDOA localization with sensor position errors. IEEE Communications Letters, 2015, vol. 19, no. 12, p. 2218–2221. DOI: 10.1109/LCOMM.2015.2486769
  21. DALVEREN, Y., KARA, A. Comparative analysis of TDOAbased localization methods in the presence of sensor position errors. In Proceedings of the IEEE 4th International Conference on Control, Decision and Information Technologies. Barcelona (Spain), 2017, p. 556–560. DOI: 10.1109/CoDIT.2017.8102652
  22. TRIVEDI, K. S. Probability and Statistics with Reliability, Queuing and Computer Science Applications. 2nd ed., New York (USA): John Wiley & Sons, 2002. ISBN: 9781119285427
  23. DALVEREN, Y., KARA, A. An approach for identifying the likelihood of an irregular terrain profile being a multipath scattering center in emitter localization. In Proceedings of the 7th International Conference on Information Communication and Management. Moscow (Russia), 2017, p. 36–39. DOI: 10.1145/3134383.3134402

Keywords: Emitter localization, multipath, scattering center, virtual sensor, Time Difference of Arrival (TDOA)

K. Zyka [references] [full-text] [DOI: 10.13164/re.2019.0483] [Download Citations]
The Digital Audio Broadcasting Journey from the Lab to Listeners - the Czech Republic Case Study

This paper describes the complex experiences and the results of the Digital Audio Broadcasting (DAB+) implementation in the conditions of the Czech Republic. It analyses the background of the EUREKA 147 program, its targets, and to what extent they were reached. The main focus is concentrated on the evaluation of the real steps which had to be done during the implementation process before the first regular broadcasting could be started and the difficulties encountered. The key point became experimental broadcasting “DAB Prague”. It demonstrated the advantages of this new platform and gave the opportunity to test its functions and physical behavior in real conditions, under the different parameter settings. The important issue is the allocation of the band III by National Regulatory Authority and the capacity of DAB+ multiplexes. The paper also demonstrates the experience from the setup of the DAB+ headend. It describes the content solution in context of using non-entropic audio coding, setting the codec algorithms and the way to use accompanying multimedia services. The results of the tests and measurements presented in this paper were used in the real project of the regular nationwide DAB+ network.

  1. HOEG, W., LAUTERBACH, T. (Eds.) Digital Audio Broadcasting: Principles and Applications of DAB. DAB+ and DMB. 3rd ed. John Wiley & Sons, 2009. ISBN: 978-0-470-51037-7
  2. ETSI ETSI European Standard EN 300 401 V2.1.1 Radio Broadcasting Systems; Digital Audio Broadcasting (DAB) to Mobile, Portable and Fixed Receivers, 01/2017.
  3. O' NEILL, B. DAB Eureka-147: The European platform for digital radio. New Media Society, 2009, vol. 11, no. 1–2, p. 261–278. DOI: 10.1177/1461444808099578
  4. BOWER, A. J. BBC digital radio - The Eureka 147 DAB system. Electronic Engineering, April 1998, p. 55–56. [Online] Available at: http://downloads.bbc.co.uk/rd/pubs/reports/1998-10.pdf
  5. ETSI ETSI European Standard EN 302 755 V1.4.1 Digital Video Broadcasting (DVB); Frame Structure Channel Coding and Modulation for a Second Generation Digital Terrestrial Television Broadcasting System (DVB-T2), 07/2015.
  6. WHITE PAPER PLANNING DVB-T2, Advance and Challenge. WHP01_3, LS telcom AG. October 2010. [Online] Available at: https://www.lstelcom.com/fileadmin/content/marketing/news/LS_ WhitePaper_DVB-T2_en.pdf
  7. ETSI ETSI Technical Specification TS 103 466 V1.1.1. Digital Audio Broadcasting (DAB); DAB Audio Coding (MPEG Layer II), 10/2016.
  8. GILSKI, P. DAB vs DAB+ radio broadcasting: A subjective comparative study. Archives of Acoustics, 2017, vol. 42, no. 4, p. 715–723. DOI: 10.1515/aoa-2017-0074
  9. BRANDENBURG, K. MP3 and AAC explained. In AES 17th International Conference on High Quality Audio Coding. Florence (Italy), 1999, p. 1–12.
  10. ETSI ETSI Technical Specification TS 102 563, Digital Audio Broadcasting (DAB); Transport of Advanced Audio Coding (AAC) Audio, Sophia Antipolis Cedex, France, 2010.
  11. HERRE, J., DIETZ, M. MPEG-4 high-efficiency AAC coding [Standards in a Nutshell]. IEEE Signal Processing Magazine, 2008, vol. 25, no. 3, p. 137–142. DOI: 10.1109/MSP.2008.918684
  12. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Audio Coding for Digital Broadcasting. BS Series Broadcasting Service (Sound). Recommendation ITU-R BS.1196. 2001–2017. Approved in 2017-12.
  13. JAIN, P., SHARMA, S. Efficient performance analysis of OFDM based DAB systems using Reed Solomon coding technique. IOSR Journal of Electronics and Communication Engineering, 2015, vol. 10, no. 4, p. 56–59. DOI: 10.9790/2834-10435659
  14. NATIONAL REGULATORY AUTHORITY (CTO) Press Release about the Experimental Broadcasting “DAB Prague”, 2015. [Online] Available at: https://www.ctu.cz/tiskova-zpravactu-podporil-experimentalni-vysilani-t-dab
  15. NATIONAL REGULATORY AUTHORITY (CTO) Regulation No. 22/2011 on the Method of Setting the Coverage of Terrestrial Radio Broadcasting in Selected Bands. 2011.
  16. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for Point-to-Area Predictions for Terrestrial Services in the Frequency Range 30 MHz to 3000 MHz. Recommendation ITU-R P.1546-2. Approved in 2013–09.
  17. ULOVEC, K., SMUTNY, M. Perceived audio quality analysis in digital audio broadcasting Plus system based on PEAQ. Radioengineering, 2018, vol. 27, no. 1, p. 342–352. DOI: 10.13164/re.2018.0342
  18. GILSKI, P., STEFAŃSKI, J. Subjective and objective comparative study of DAB+ broadcast system. Archives of Acoustics, 2017, vol. 42, no. 1, p. 3–11. DOI: 10.1515/aoa-2017-0001
  19. ITU RADIOCOMMUNICATION SECTOR, GENEVA SWITZERLAND. Method for the Subjective Assessment of Intermediate Quality Levels of Coding Systems. Recommendation ITU-R BS.1534. 2001-2015. Approved in 2015-10.
  20. STRANAK, P. New methods of stereo encoding for FM radio broadcasting based on digital technology. Radioengineering, 2007, vol. 16, no. 4, p. 12–17. ISSN: 1210-2512
  21. BONELLO, O. Multiband audio processing and its influence on the coverage area of the FM stereo transmission. Journal of Audio Engineering Society, 2007, vol. 55, no. 3, p. 145–156.
  22. STRANAK, P. Interfering DC component, suppression and influence to digital signal processing. Radioengineering, 2008, vol. 17, no. 3, p. 121–123. ISSN: 1210-2512
  23. NATIONAL REGULATORY AUTHORITY (CTO) Part of the Radio Spectrum Utilisation Plan for the Frequency Band 174-380 MHz. No. PV-P/21/01.2018-2, 2018.

Keywords: DAB+, Digital Audio Broadcasting, EUREKA 147, multiplex, headend, non-entropic audio coding

M. Sameer, P. Agarwal [references] [full-text] [DOI: 10.13164/re.2019.0491] [Download Citations]
Coplanar Waveguide Microwave Sensor for Label-Free Real-Time Glucose Detection

In this work, a~real-time label-free microwave diagnostic approach using Co-Planar Waveguide (CPW) design has been demonstrated for glucose detection. This mechanism has tremendous potential for the biomedical applications. Here, glucose biosensor is implemented with 50 Ω CPW transmission line, where the centre localized 3 mm diameter of CPW transmission line has been used for the sensing. Glucose sensor is implemented utilizing low cost multilayer PCB and polymer Poly-Di-Methyl-Siloxane(PDMS) fabrication technology. CPW transmission line is fabricated on FR4 microwave laminate board. To confine the Analyte Under Test (AUT) on the sensing area, PDMS polymer cavity is configured in the centre of CPW transmission line. The electromagnetic interaction with the varying dielectric constant of Glucose:DI water solution results shift in S11 parameter, which is closely observed to use as the source of sensing. CPW based glucose sensor is experimentally measured for S11 parameter using VNA, with varying glucose concentration range from 0 mg/ml (only DI water) to 4 mg/ml with the interval of 1 mg/ml. The measured results showed good sensitivity of 108.4 MHz/mg/ml and high accuracy with good linear regression coefficient of 0.9979.

  1. World Health Organization. [Online] Cited 2018-05-01. Available at http://www.who.int/diabetes/en/
  2. VASHIST, S. K. Continuous glucose monitoring systems: A review. Diagnostics, 2013, vol. 3, no. 4, p. 385–412. DOI: 10.3390/diagnostics3040385
  3. NEWMAN, J. D., TURNER, A. P. F. Home blood glucose biosensors: a commercial perspective. Biosensors and Bioelectronics, 2005, vol. 20, no. 12, p. 2453–2453. DOI: 10.1016/j.bios.2004.11.012
  4. ALORAEF, M., PFEFER, T. J., RAMELLA-ROMAN, J. C., SAPSFORD, K. E. In vitro evaluation of fluorescence glucose biosensor response. Sensors, 2014, vol. 14, no. 7, p. 12127–12148. DOI: 10.3390/s140712127
  5. OZANA, N., ARBEL, N., BEIDERMAN, Y., et al. Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level. Biomedical Optics Express, 2014, vol. 5, no. 6, p. 1926–1940. DOI: 10.1364/BOE.5.001926
  6. PRADHAN, R., MITRA, A., DAS, S. Quantitative evaluation of blood glucose concentration using impedance sensing devices. Journal of Electrical Bioimpedance, 2013, vol. 4, no. 1, p. 73–77. DOI: 10.5617/jeb.657
  7. HARPER, A., ANDERSON, M. R. Electrochemical glucose sensorsdevelopments using electrostatic assembly and carbon nanotubes for biosensor construction. Sensors, 2010, vol. 10, no. 9, p. 8248–8274. DOI: 10.3390/s100908248
  8. VARGHESE, S .H., YOSHIDA, Y., MAEKAWA, T., et al. Enhancement of glucose sensing behaviour of Cobalt tetraphenylporphyrin thin film using single wall CNT. Sensors and Materials, 2011, vol. 23, no. 6, p. 335–345. DOI: 10.18494/SAM.2011.724
  9. WANG, W., YIN, G., MA, X., WAN, J. Simple method for preparing glucose biosensor based on glucose oxidase in nanocomposite material of single-wall carbon nanotubes/ionic liquid. Journal of Analytical Sciences, Methods and Instrumentation, 2012, vol. 2, no. 2, p. 54–59. DOI: 10.4236/jasmi.2012.22011
  10. JIANG, D., LIU, Q., WANG, K., et al. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors and Bioelectronics, 2014, vol. 54, p. 273–278. DOI: 10.1016/j.bios.2013.11.005
  11. KIM, N. Y., ADHIKARI, K. K., DHAKAL, R., et al. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Scientific Reports, 2015, vol. 5, no. 1, p. 1–9. DOI: 10.1038/srep07807
  12. KIM, N. Y., DHAKAL, R., ADHIKARI, K. K., et al. A reusable robust radio frequency biosensor using microwave resonator by integrated passive device technology for quantitative detection of glucose level. Biosensors and Bioelectronics, 2015, vol. 67, p. 687–693. DOI: 10.1016/j.bios.2014.10.021
  13. VRBA, J., VRBA, D. A. Microwave metamaterial inspired sensor for non-invasive blood glucose monitoring. Radioengineering, 2015, vol. 24, no. 4, p. 877–884. DOI: 10.13164/re.2015.0877
  14. LI, L. J. Simultaneous detection of organic and inorganic substances in a mixed aqueous solution using a microwave dielectric sensor. Progress in Electromagnetics Research C, 2010, vol. 14, p. 163–171. DOI: 10.2528/PIERC10051308
  15. MASON, A., KOROSTYNSKA, O., ORTONEDA-PEDROLA, M., et al. A resonant co-planar sensor at microwave frequencies for biomedical applications. Sensors and Actuators A (Physical), 2013, vol. 202, p. 170–175. DOI: 10.1016/j.sna.2013.04.015
  16. NG, J. L., SHIN, Y., CHUNG, S. Microfluidic platforms for the study of cancer metastasis. Biomedical Engineering Letters, 2012, vol. 2, no. 2, p. 72–77. DOI: 10.1007/s13534-012-0055-x
  17. SIMONS, R. N. Coplanar Waveguide Circuits, Components and Systems. New York: Wiley & Sons, 2001. ISBN: 9780471161219
  18. MALMERG, C. G., MARYOTT, A. A. Dielectric constants of aqueous solutions of dextrose and sucrose. Journal of Research of the National Bureau of Standards, 1950, vol. 45, no. 4, p. 299–303. DOI: 10.6028/jres.045.030
  19. CAMLI, B., KUSAKCI, E., LAFCI, B., et al. Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose. IEEE Journal of Selected Topics in Quantum Electronics, 2017, vol. 23, no. 2, p. 404–409. DOI: 10.1109/JSTQE.2017.2659226

Keywords: CPW, polymer, microwave sensing, glucose sensor, label-free, real-time, PDMS